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We fix several errors in “Developments in determining the gravitational potential using toroidal functions” (Astronomische
Nachrichten, Vol. 321, Issue 5/6, p. 363).
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1 Introduction

In Cohl et al. (2000), several addition theorems are de-
rived for associated Legendre functions. These addition
theorems arise by the study of the Newtonian gravita-
tional potential expressed in axisymmetric coordinate sys-
tems that admit separable solutions to Laplace’s equation
in three-dimensional Euclidean space. There are several er-
rors that appear in this paper in regard to these addition
theorems. In this erratum we would like to correct these
errors. We use the notation that for a, a′ ∈ R, we define
a≶ := min

max{a, a′}.
In Sect. 5.2 of Cohl et al. (2000), we discuss eigen-

function expansions for the reciprocal distance between two
points |x − x

′|−1 in oblate spheroidal coordinates. The ex-
pansion formula that is cited in the original reference (Hob-
son 1931, Sect. 251) is incorrect. This expansion formula is
given correctly in (41), p. 218, MacRobert (1947), namely

1

|x− x′| =
i

a
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×Pm
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n (i sinhσ>) cos(m(φ− φ′)),

where εm = 2− δm,0 is the Neumann factor commonly oc-
curring in Fourier cosine series, with σ, σ′ ∈ [0,∞), θ, θ′ ∈
[0, π], φ, φ′ ∈ R. If we define χ > 1 by

χ = (2 coshσ coshσ′ sin θ sin θ′)−1(sinh2 σ + sinh2 σ′

+ sin2 θ + sin2 θ′ − 2 sinhσ sinhσ′ cos θ cos θ′),

then for m = 0,±1,±2, . . . , the correct addition theorems
are given by

Qm−1/2(χ) = iπ(−1)m
√
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In Sect. 6.1 of Cohl et al. (2000), we discuss eigenfunc-
tion expansions for |x − x

′|−1 in bispherical coordinates.
The expansion formula that is cited in the original reference
(Morse & Feshbach 1953, 10.3.74) is incorrect. This expan-
sion formula is given correctly in (9), p. 222, MacRobert
(1947), namely if we define s = coshσ, s′ = coshσ′, τ =
cos θ, τ ′ = cos θ′, then

1

|x− x′| =
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where σ, σ′ ∈ [0,∞), θ, θ′ ∈ [0, π], φ, φ′ ∈ R. If we define
χ > 1 by
χ = (2 sin θ sin θ′(s− τ)(s′ − τ ′))−1

×(sin2 θ(s′ − τ ′)2 + sin2 θ′(s− τ)2

+
[
(s′ − τ ′) sinhσ − (s− τ) sinh σ′

]2
),

then for m = 0,±1,±2, . . . , the correct addition theorems
are given by

Qm−1/2(χ) = π
√
sin θ sin θ′
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In Sect. 6.2 we discuss eigenfunction expansions for
|x − x

′|−1 in toroidal coordinates. The expansion formula
cited in this section is correct. However, the given addition
theorems are incorrect. With χ > 1 defined in (51) of Cohl
et al. (2000), then for m = 0,±1,±2, . . . , the correct addi-
tion theorems are given by
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