
Current distribution and transition width in superconducting transition-edge sensors
D. S. Swetz, D. A. Bennett, K. D. Irwin, D. R. Schmidt, and J. N. Ullom 
 
Citation: Applied Physics Letters 101, 242603 (2012); doi: 10.1063/1.4771984 
View online: http://dx.doi.org/10.1063/1.4771984 
View Table of Contents: http://scitation.aip.org/content/aip/journal/apl/101/24?ver=pdfcov 
Published by the AIP Publishing 
 
Articles you may be interested in 
Close-packed arrays of transition-edge x-ray microcalorimeters with high spectral resolution at 5.9 keV 
Appl. Phys. Lett. 92, 013508 (2008); 10.1063/1.2830665 
 
Optimized transition-edge x-ray microcalorimeter with 2.4 eV energy resolution at 5.9 keV 
Appl. Phys. Lett. 87, 194103 (2005); 10.1063/1.2061865 
 
Characterization and reduction of unexplained noise in superconducting transition-edge sensors 
Appl. Phys. Lett. 84, 4206 (2004); 10.1063/1.1753058 
 
High-resolution operation of frequency-multiplexed transition-edge photon sensors 
Appl. Phys. Lett. 81, 159 (2002); 10.1063/1.1489486 
 
Thermal fluctuation noise in a voltage biased superconducting transition edge thermometer 
Appl. Phys. Lett. 77, 4422 (2000); 10.1063/1.1336550 
 
 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

132.163.136.19 On: Tue, 24 Nov 2015 15:16:57

http://scitation.aip.org/content/aip/journal/apl?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/435435879/x01/AIP-PT/APL_ArticleDL_111815/AIP-2639_EIC_APL_Photonics_1640x440r2.jpg/6c527a6a713149424c326b414477302f?x
http://scitation.aip.org/search?value1=D.+S.+Swetz&option1=author
http://scitation.aip.org/search?value1=D.+A.+Bennett&option1=author
http://scitation.aip.org/search?value1=K.+D.+Irwin&option1=author
http://scitation.aip.org/search?value1=D.+R.+Schmidt&option1=author
http://scitation.aip.org/search?value1=J.+N.+Ullom&option1=author
http://scitation.aip.org/content/aip/journal/apl?ver=pdfcov
http://dx.doi.org/10.1063/1.4771984
http://scitation.aip.org/content/aip/journal/apl/101/24?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov
http://scitation.aip.org/content/aip/journal/apl/92/1/10.1063/1.2830665?ver=pdfcov
http://scitation.aip.org/content/aip/journal/apl/87/19/10.1063/1.2061865?ver=pdfcov
http://scitation.aip.org/content/aip/journal/apl/84/21/10.1063/1.1753058?ver=pdfcov
http://scitation.aip.org/content/aip/journal/apl/81/1/10.1063/1.1489486?ver=pdfcov
http://scitation.aip.org/content/aip/journal/apl/77/26/10.1063/1.1336550?ver=pdfcov


Current distribution and transition width in superconducting
transition-edge sensors

D. S. Swetz,a) D. A. Bennett, K. D. Irwin, D. R. Schmidt, and J. N. Ullom
National Institute of Standards and Technology, 325 Broadway MS 817.03, Boulder, Colorado 80305, USA

(Received 21 September 2012; accepted 26 November 2012; published online 13 December 2012)

Present models of the superconducting-to-normal transition in transition-edge sensors (TESs) do

not describe the current distribution within a biased TES. This distribution is complicated by

normal-metal features that are integral to TES design. We present a model with one free parameter

that describes the evolution of the current distribution with bias. To probe the current distribution

experimentally, we fabricated TES devices with different current return geometries. Devices where

the current return geometry mirrors current flow within the device have sharper transitions, thus

allowing for a direct test of the current-flow model. Measurements from these devices show that

current meanders through a TES low in the resistive transition but flows across the normal-metal

features by 40% of the normal-state resistance. Comparison of transition sharpness between device

designs reveals that self-induced magnetic fields play an important role in determining the width of

the superconducting transition. [http://dx.doi.org/10.1063/1.4771984]

The sharp change in resistance of a superconductor over

a narrow temperature range is both a natural temperature ref-

erence and an attractive thermometer. A transition-edge sen-

sor (TES) consists of a two-dimensional metal film that is

electrically biased into the superconducting phase transition,

where its temperature and resistance respond to deposited

energy.1 TES thermometers have enabled some of the most

sensitive calorimetric and bolometric measurements known.

TES measurements of single X-ray, gamma-ray, and alpha

quanta achieve the highest resolving powers of any energy-

dispersive technique: E=�E � 4000� 5000.2–4 Arrays of

TES microbolometers are integral to modern submillimeter

and millimeter-wave astronomy, achieving microkelvin sen-

sitivity in maps of the cosmic microwave background (for

example, see Ref. 5). Despite the broad use and success of

these sensors, much remains uncertain about their behavior,

including their internal current distribution and the physics

that determines the width of the superconducting transition

under bias.

There are several models for describing the TES transi-

tion. Bennett et al.6 recently extended the two-fluid model of

Irwin et al.7 where the TES bias is separated into supercur-

rent and quasiparticle components. Two-fluid predictions for

transition shape were compared to data, but the current frac-

tions were treated as fitting parameters. Sadleir et al.8 identi-

fied the importance of the proximity effect and treated a TES

as a weak link between superconducting leads. Working

within the weak-link context, Kozorezov et al.9 model a TES

as a shunted junction. However, it is unclear whether a

weak-link approach can predict the transition shape under

bias, and doubtful whether proximitization from the leads

has a strong role in the large devices studied here. The

critical-current variation with field that is the clearest indica-

tor of weak-link behavior is absent in our devices. All three

models lack geometric detail; yet, real-world TESs have

additional normal-metal features deposited in complex geo-

metries on the transitioning film. These features are used to

reduce noise and control the transition width,10 and are likely

to influence the flow of the sensor bias current.

The lack of geometric detail in existing transition mod-

els means that they cannot treat the effects of self-induced

magnetic fields from geometry-dependent bias currents or

the effects of field inhomogeneities across a device. More

generally, these approaches assume that the resistive surface

is a function only of current and temperature and neglect

external or self magnetic fields. In general, a nonuniform

field creates a distribution of critical temperatures and cur-

rents within a device that can be expected to broaden the

superconducting transition. A crucial unresolved question is

the origin of the transition width in a TES, a fundamental pa-

rameter that affects application-relevant quantities such as

sensor dynamic range and speed.

In this letter, we map the current distribution in a widely

used TES geometry as a function of bias point within the

transition. Further, we show that geometry-specific self-

fields affect transition shape and that the transition is signifi-

cantly broadened by self-fields.

The devices used in this study are representative of

TESs used for ultrahigh-resolution calorimetry. They consist

of proximity-coupled layers of Mo and Cu whose thicknesses

(100 nm and 200 nm, respectively) result in a transition tem-

perature Tc for the whole film of approximately 121 mK.

The bilayer has planar dimensions of 350 lm by 350 lm and

is deposited on a freestanding silicon-nitride membrane. An

additional 500 nm Cu layer is deposited on top of the bilayer

and patterned by use of standard photolithographic techni-

ques into banks along the bilayer edges parallel to current

flow and into seven interdigitated bars perpendicular to cur-

rent flow. In our “standard” device geometry, shown in Fig.

1(a), both the Mo current supply and the return lines run

along one edge of the TES.

We first calculate the magnitude of the self-fields in our

standard design and assess whether it is reasonable that they

broaden the superconducting transition. Consider the self-

field in a film of thickness h and width W, with the x-axis

parallel and the y-axis perpendicular to the plane of the film.a)Electronic mail: swetz@nist.gov.
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Solutions for the current density and field profile based on

the London equations are given by Rhoderick and Wilson,11

but a uniform current distribution provides a similar result to

the expected self-field gradient (see Ref. 11, Fig. 1). For sim-

plicity, we assume a uniform current distribution within the

current carrying regions and calculate the perpendicular field

component at a point ðx0; y0Þ relative to the center of the film

using

Byðx0; y0Þ ¼
l0J

2pðWhÞ

ðh
2

�h
2

ðW
2

�W
2

ðxþ x0Þ
ðxþ x0Þ2 þ ðy0 � yÞ2

dxdy: (1)

By applying this equation to our standard device lead

geometry, we have calculated the perpendicular field across

our sensors, including the field generated by the supply and

return leads running along the device edges. We consider

two potential current-flow patterns in the TESs. One option

is for current to meander in a serpentine path between the

normal bars of the device. The second possibility is for cur-

rent to flow as quasiparticles across the normal bars so that

the current density is uniform throughout the TES (horizon-

tally in Fig. 1). Fig. 2 shows the two-dimensional field pat-

tern for both a meandering current and a uniform current. In

the meandering case, we model the current as traveling in a

30 lm-wide sheet that traverses a serpentine path between

the seven bars. In the uniform case, we assume the current

travels in the entire 350 lm-wide width of the device. A

meandering current generates field gradients approximately

ten times greater than those for a uniform current, and the

meandering field pattern is more complex, with several local

maxima and minima across the device. Furthermore, the

self-field of the meander dominates the field produced by the

leads. However, in the uniform geometry, field from the

leads dominates over the TES current contribution.

In our devices, bias currents range from 180 lA to

60 lA when the devices are biased between 6% and 60% of

the normal-state resistance RN , and are close to 100 lA at

20% of RN . Combining these values with the calculations of

Fig. 2 results in a predicted self-field variation of 5 lT–10 lT

for the meander case and � 0:5 lT for uniform current flow.

The most direct effect of a magnetic field on a sensor is

to suppress both its transition temperature and critical current

Ic. To quantify this change, we measured the reduction in Tc

and Ic as a function of externally driven perpendicular mag-

netic field.12 By combining the measured Tc and Ic suppres-

sion with the calculated self-field, we can estimate the

contribution of the self-field to the transition width of our

sensors. Transition sharpness is conveniently parameterized

by the partial logarithmic derivatives of resistance with

respect to temperature at constant current aI ¼ ðT0=R0Þ
@R=@TjI0

and with respect to current at constant temperature

bI ¼ ðI0=R0Þ@R=@IjT0
. For a 5 lT field, we measured a

dTc ¼ �0:9 mK and a dIc ¼ �55 lA. As a first approxima-

tion, we imagine that gradients in self-field create a spread in

Tc and Ic within a device. If we assume a linear transition,

with @R ¼ RN over the measured dTc and dIc; aI � ðT0=R0Þ
RN=dTc and bI � ðI0=R0ÞRN=dIc. At a bias of 20%, aI � 670

and bI � 10. These values of aI and bI are similar to meas-

ured results discussed below and presented elsewhere,13 con-

firming that self-field magnitudes are sufficient to broaden

the superconducting transition.12

To determine the current distribution in a TES, we fabri-

cated devices with sensing elements identical to those of the

standard design but with a different return path for the bias

current. This bias-return geometry is shown in Fig. 1(b) and

consists of a “meander” return geometry, where a 350 nm-

thick transparent dielectric layer of silicon oxide grown by

plasma enhanced chemical vapor deposition, and a via, allow

a 300 nm-thick by 6 lm-wide Nb trace to return the bias cur-

rent on top of the TES in a serpentine pattern between the

normal-metal bars. When current flows in a serpentine path

between the normal bars of the device, the meander return

geometry produces a field that reduces the perpendicular

component of the magnetic field generated by the bias

current.

Since this magnetic field suppresses superconductivity

and broadens the superconducting transition, comparison of

the transition sharpness between designs can be used to

probe the nature of the current distribution. It is likely that

the current flow in the device varies based on the bias point.

We can see this by considering two operating extremes.

FIG. 1. Pictures of TESs with two bias return geometries. The base sensors

are 350 lm by 350 lm MoCu bilayers with seven normal-metal bars. Current

flows from left to right. (a) Standard bias return. (b) Meander bias return

with galvanically isolated superconducting Nb trace deposited over the TES.

For the meander design, the supply and return lines approach the sensor as a

microstrip. For the standard design, the supply and return approach the

sensor side-by-side. The bar width wbar ¼ 16 lm, the bank width

wbank ¼ 17 lm, the bilayer width between bars wbi ¼ 32 lm, the bar length

Lbar ¼ 300 lm, the number of normal bars Nbar ¼ 7, and the bank length

Lbank ¼ 350 lm.

-750 -500 -250 0 500 750250

350 μm

a) b)
350 μm

(G/A) (G/A)
-125 -100 -75 -50 0 25-25

x

y
I

FIG. 2. Estimated field per amp of bias current across our TESs for the

standard lead geometry evaluated at the film centerline (y0 ¼ 0; evaluating

Eq. (1) away from the y0 ¼ 0 centerline reduces the field per amp by a maxi-

mum of �8% at the film edges x0 ¼ W
2

and y0 ¼ h
2
). (a) Meandering current

pattern. (b) Uniform current pattern. The black arrows show the current

path. Typical bias currents range from 60 lA to 180 lA.
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When the sensor is low in the resistive transition, the bilayer

between the normal-metal bars is nearly perfectly supercon-

ducting, and current will meander between the bars. Higher

in the transition, normal resistance will appear in parts of the

bilayer. Once resistance begins to appear, it becomes ener-

getically favorable for current to flow across the bars because

of the greater length of the meander path compared to the

uniform path, and because the normal resistance of one

square of bar material (Rw;bar ¼ Rw;bank ¼ 4:47 mX=w) is

less than the normal resistance of one square of bilayer

(Rw;bi ¼ 11:77 mX=w).

To pursue this hypothesis, we have measured transition

sharpness at multiple bias points from 6% to 60% of RN cor-

responding to bias currents from 180 lA to 60 lA, respec-

tively.12 Measured values of aI are shown in Fig. 3. The

measured values of bI show similar trends and are therefore

presented in the supplementary material.12 Low in the transi-

tion, below about 30% RN , we observe an increase in both aI

and bI for the meander bias return when compared to the

standard geometry. At the lowest bias measured, the average

values of both parameters are increased by up to 50% in the

meander return as compared to the standard return. The

increase in aI and bI in the meander geometry demonstrates

that current does indeed travel a serpentine path between the

bars at low % RN .

To understand the results of Fig. 3, we consider the re-

sistance contributions of three parallel current paths through

a TES: (1) resistance from the normal banks Rbanks, (2) resist-

ance from a meandering path between the normal bars

Rmeander , and (3) resistance from uniform current flow (bus

flow) between the normal banks Rbus. Following the defini-

tions of the various geometric features given in Fig. 1, the re-

sistance in the banks is given by Rbanks ¼ Lbank=ð2wbankÞ
Rw;bank. Rmeander depends on the strength f of superconduc-

tivity in the bilayer, where f ranges from 0 to 1, correspond-

ing to fully superconducting and fully normal. For the

devices of Fig. 1, Rmeander ¼ f2þ wbar=wbi þ ðNbar � 1Þ
ð1þ wbar=wbi þ Lbar=wbiÞgfRw;bi. Rbus depends on the dis-

tance in the bilayer KQ� over which a normal current that has

traversed a bar returns to the condensate as a supercurrent.

The quantity KQ� is the well known branch-imbalance

length.14 Here, Rbus�NbarfwbarRw;bar=Lbarþ2KQ�Rw;bi=
ðLbarþwbiÞgþ fRw;bi=ðLbarþwbiÞf2 ðwbi�KQ� ÞþðNbar�1Þ
ðwbi�2KQ� Þg. We take device resistance R to be the parallel

combination of Rbanks;Rmeander, and Rbus; when f¼1, the de-

vice is normal with a resistance R¼RN . A schematic illus-

trating the meander and uniform current paths in the device

and algebraic derivations of Rmeander and Rbus are given in

the supplementary material.12

From the expressions above, we expect a cross-over re-

sistance RX that depends on KQ� above (below) which

Gmeander ¼ R�1
meander is less (greater) than Gbus ¼ R�1

bus. Values

of Gmeander=Gbus are plotted versus R=RN for varying KQ� in

Fig. 4. Our measurements of transition sharpness for the me-

ander and standard geometries show that significant current

flows in a meander pattern for R=RN as high as 0.3. There-

fore, Gmeander � Gbus low in the transition below 0:3 R=RN .

At R=RN � 0:4, there is no measurable difference in the tran-

sition sharpness between the two device geometries, indicat-

ing that the majority of the current is in the bus mode, hence

Gmeander � Gbus at biases above 0:4 R=RN . Low in the transi-

tion, we take the constraint that Gmeander=Gbus � 0:25. Simi-

larly, high in the transition we take the constraint that

Gmeander=Gbus � 0:25. These conditions are met by the curves

in Fig. 4, where KQ� falls between 3 and 6 lm. We note that

while our choice of constraints on Gmeander=Gbus is subjec-

tive, varying these constraints only shifts the bounds on KQ� .

For KQ� ¼ 4:5 lm (used hereafter), RX=RN ¼ 0:21. We make

several observations. First, measurements of a macroscopic

parameter, transition sharpness, provide remarkably tight

constraints on the microscopic parameter KQ� . Second, these

results provide clear proof of the importance of quasiparticle

transport in TES bilayers under realistic working conditions,

since KQ� ¼ 0 is inconsistent with the data. Third, because

the meander path length is greater than the uniform path

length and because Rw;bar < Rw;bi; RX is achieved at a very

low value, fX ¼ 0:005, indicating that the appearance of

FIG. 3. Measured aI versus bias point for the two lead geometries. Measure-

ments were taken on four different sensors of each bias-return geometry.

Multiple sensors were tested to account for device-to-device variation, and

multiple measurements were performed with some sensors. In total, there

are six measurements of aI at each bias point. Plot markers indicate average

values, thick vertical lines show the standard deviation at each bias point,

and thin vertical lines depict the full range of values at each bias point.

Markers for the meander geometry taken at the same bias as the standard ge-

ometry are slightly offset to the left along the x-axis for clarity.

Λ

FIG. 4. Calculated ratio of Gmeander=Gbus versus bias point as a function of

KQ� . The measurements of transition sharpness (Fig. 3 and Ref. 12, Fig. 1)

indicate that Gmeander � Gbus for bias values below 0:3 R=RN , but that

Gmeander � Gbus above biases of 0:4 R=RN . These conditions constrain KQ�

to a value between 3 lm and 6 lm, where Gmeander=Gbus � 0:25 for R=RN

below 0.3 and Gmeander=Gbus � 0:25 for R=RN above 0.4. Inset: Calculated

fraction of current in the three current paths versus bias for KQ� ¼ 4:5 lm.
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almost infinitesimal resistance values in the bilayer will

begin the transfer of current into the bus mode.

Having determined KQ� , we can compute the fraction of

the device current in the meander and bus modes, as well as

in the banks. A current fraction i is given by

Gi=ðGbus þ Gbanks þ GmeanderÞ. The three current fractions

are plotted versus R=RN in the inset of Fig. 4. At low R=RN ,

most current is in the meander, but current in the bus mode

increases with R=RN , and the two modes are equal at

RX=RN ¼ 0:21.

The large difference in transition sharpness between de-

vice geometries sheds light on an important unresolved ques-

tion, namely the origin of the transition width in biased TES

devices. Not only can the relative values of aI and bI be used

to locate current flow, the quantitative differences in aI and

bI indicate that self-fields play an important role in determin-

ing the transition width. Since transition width is propor-

tional to 1=aI, the transition in the meander geometry is

roughly 2/3 narrower than in the standard geometry. Because

the designs differ only in the self-field experienced by the

TES, as much as 1/3 of the transition width in the standard

device geometry at realistic bias points between

0:05 and 0:2 RN must be due to self-field effects.

The calculated self-fields of Fig. 2 provide additional

insight into the measurements of Fig. 3. Above RX, the cur-

rent flow switches from a meandering supercurrent to uni-

form current flow. At high bias, we might expect that the

standard design would have a sharper transition than that of

the meander design, as the fields from the device current and

the meander return no longer cancel. However, the current is

decreasing, and the total field gradient across the sensor also

drops dramatically, as shown in Fig. 2(b), so self-field effects

simply become less relevant.

In summary, our findings provide strong evidence that de-

vice geometry, particularly normal-metal features, influences

the flow of current in a TES. For a sensor with interdigitated

normal-metal bars, we have shown that current travels in a

serpentine path between the bars at low % RN , but that this is

completely finished by 40% of RN . We have developed a

model of the current distribution as a function of device bias

and used this model to constrain the quasiparticle branch

imbalance length KQ� . This bias current produces an inhomo-

geneous self-induced magnetic field across the sensor. These

self-fields contribute to the superconducting transition width.

Low in the transition, the aI and bI differences between the

meander and the standard current returns indicate that self-

field effects can account for as much as 1/3 of the observed

transition widths. Because TES calorimeters are typically bi-

ased between 5% and 20% of RN , self-field effects are most

relevant at actual working conditions. Our measurements of

the transition broadening from self-fields are likely a lower

bound, since several effects contribute to imperfect field can-

cellation by the meander return: the 350 nm thickness of the

dielectric, the somewhat arbitrary 6 lm width of the Nb mean-

der, and a layout error where the meander return enters and

exits the TES at the top of the device (as shown in Fig.1) but

should enter and exit at the bottom.

These results provide insight into the physics governing

the superconducting transition in two-dimensional films with

additional normal-metal features. Our determination of the

internal current distribution may inform future models that

move beyond a strictly monolithic picture of TES devices.

While we have shown that self-fields account for a signifi-

cant fraction of the transition width at low % RN , other

effects must also play a role in determining the transition

width. A likely mechanism is spatial Tc and Ic variation

within the device induced by the lateral proximity effect

between the bilayer and the normal-bar regions. Finally, we

speculate that the observed suppression of excess noise by

normal-metal features10 is because they rapidly force current

into a quasiparticle mode that resembles current flow in con-

ventional resistors and is less susceptible to fluctuation

mechanisms associated with the superconducting phase

transition.
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