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Abstract—Understanding the distribution of congestion in
the Internet is a long-standing problem. Using data from the
SamKnows US broadband access network measurement study,
commissioned by the FCC, we explore patterns of congestion
distribution in DSL and cable Internet service provider (ISP) net-
works. Using correlation-based analysis we estimate prevalence
of congestion in the periphery versus the core of ISP networks.
We show that there are significant differences in congestion levels
and its distribution between DSL and cable ISP networks and
identify bottleneck sections in each type of network.

I. INTRODUCTION

Internet congestion has been a topic of active research for
as long as the Internet has existed[2]. Congestion in computer
networks more generally has been studied even longer and
is itself predated by research on congestion in telephone
networks and car traffic. There are good reasons for being
interested in Internet congestion since it largely determines
everyday Internet user experience from the time it takes to
load a webpage, to the visual quality of streaming media
and responsiveness of the on-line gaming experience. One
important question concerns the distribution of congestion
in the Internet[3]. Is it mainly concentrated in the so-called
“core” of the network or at its edge or somewhere in between?
Is it evenly distributed or concentrated at the edge in some
networks and in the core in others? Perhaps congestion can
occur in any of those network segments at different times.
The answers to these questions have so far proved elusive[2].
The companies that own various parts of the network guard
their traffic, capacity, and topology data to maintain their
competitive advantage, making it virtually impossible for the
research community to obtain any kind of insight into the
congestion distribution. Yet, even the Internet service providers
(ISPs) would benefit from such understanding as it would
allow them to target infrastructure improvements at the key
points in the network where return on investment, in terms of
enhanced user experience, would be greatest.

To date, the scarcity of data has been one of the main
obstacles to understanding congestion in the Internet. Sim-
ulations can shed some light on the range of possible network
congestion regimes, but in the absence of real data it is hard
to say what is and is not likely to be observed in practice[6].
In other words, simulations circumscribe the state space but
provide no probability distribution describing the likelihood
of various states. This is not surprising because in order to
assign such probabilities one would have to know something
about the distribution of demand and about routing, which is

precisely the information we lack.
The data that would permit research to move forward is

also hard to collect due to lack of measurement infrastructure.
Understanding the distribution of congestion requires, at a
minimum, end-to-end measurement of a range of characteris-
tics on a large and representative sample of Internet paths[3].
On the other hand, the Internet has hundreds of millions of
end-nodes[9], the vast majority of which are individual user
devices that can only be used for measurement purposes with
the consent of the user. One approach to tackling this problem
is to set up a limited number of measurement servers and to
allow users to test their connections against these servers when
they choose to (see, for example, [12],[11]). Unfortunately,
this approach has several drawbacks if they are to be used for
statistical analysis.

1) The samples are not collected to be representative in
terms of network distribution or geography. This can
potentially be dealt with post factum by paring down
the data sets to create a representative sample.

2) Dynamic allocation of Internet protocol (IP) addresses
by ISPs makes it impossible to ensure that measurements
corresponding to the same IP address (which is the
only unique connection identifier) truly correspond to
the same physical connection.

3) Since each measurement must be initiated by the user,
they are performed at irregular intervals and may also
be biased toward times when the network performance
is particularly poor.

4) Because measurement code runs on the user’s computing
device, the measurement is subject to interference from
the device’s operating system environment as well as
other devices in the user’s home network.

Thus, while such data sets provide a glimpse of network
performance from the end-user perspective, their value for
robust inferences about Internet congestion is limited.

In 2010 the Federal Communications Commission (FCC)
contracted with a private company, SamKnows, to perform the
first large scale measurement study of America’s broadband
access networks. This study, still on-going, is the largest such
effort to date, with over 10,000 measurement units deployed
on ISP customers’ premises and 16 ISPs participating in the
study. Moreover, the measurement approach taken by Sam-
Knows suffers none of the issues mentioned above. Section
II describes the details of the data collection methodology
relevant to the present manuscript. A full description of the
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data collection and sampling methodology can be found in
“Measuring Broadband America, Technical Appendix” by
SamKnows [15].

We analyze the publicly available SamKnows data to iden-
tify the location of congested network resources in the US
broadband access network1. Our approach is two-fold. First,
we identify connections that experience substantial perfor-
mance degradation. Then we use correlation-based analysis
for the detection of shared congested resources to determine
where the congestion occurs relative to the customer’s side of
the connection.

The rest of the paper is organized as follows. Relevant
details of the SamKnows data collection methodology and the
definitions necessary for data analysis are laid out in Section II.
The data processing and analysis methodologies are described
in Section III. Results of the analysis are described in Section
IV, followed by a discussion of open issues in Section V.
Section VI summarizes our findings and outlines directions
for future research.

II. DATA AND DEFINITIONS

Our study is based on the publicly released data collected by
SamKnows during the period March through June 2011[16].
The collected dataset comprises hourly measurements of 13
network characteristics measured from 13,404 measurement
units deployed across 16 ISPs.

There are two aspects of the SamKnows study that set
it apart from previous residential broadband measurement
projects: first, the meticulous positioning of measurement
units to ensure coverage across geographical regions and
ISP networks and, second, the deployment of advanced mea-
surement hardware that insulates measurements from most2

of the effects of a consumer’s networking and computing
equipment[15].

The SamKnows measurement infrastructure consists of
measurement units and measurement servers. Measurement
units, also referred to as Whiteboxes by SamKnows, are
Netgear wireless routers with custom built firmware that
incorporate code for running SamKnows measurement tests.
Measurement servers are hosts used as measurement reference
points. The primary measurement servers are located at nine
geographically distributed locations and hosted by M-Lab[15].
Additionally, some of the participating ISPs host secondary
measurement servers inside their own networks for verification
purposes.

The measurement units were configured to run a battery of
13 tests at one or two hour intervals (depending on the test)
starting with some random time offset, to balance the load
on measurement servers. The tests included multi-threaded
transmission control protocol (TCP) download and upload
throughput benchmarks, download timings for front webpages

1Any mention of commercial products is for information only; it does not
imply recommendation or endorsement by NIST.

2There is some evidence that characteristics of cable/DSL modems, the
one device between the measurement unit and the ISP’s line, may affect
measurements[17].

of ten popular websites, round-trip latency measurements and
a range of other tests[15]. In the present study we focus
our attention on the first two tests: the multi-threaded TCP
download speed benchmark and website download speed test,
because these measurements include a diversity of network
paths that allows us to make deductions about the distribution
of congestion in broadband access networks.

The multi-threaded TCP download throughput benchmark
consisted of an extended TCP data transfer session. Three
concurrent TCP connections were used to ensure saturation
of the available bandwidth. The transfer of the main payload
was preceded by a warm-up period which consisted of

“repeatedly transferring small chunks (256 kilobytes,
or kB) of the target payload before the real testing
began. This ‘warm-up’ period was said to have
been completed when three consecutive chunks were
transferred at within 10% of the speed of one an-
other. All three connections were required to have
completed the warm up period before the timed
testing began. The ‘warm-up’ period was excluded
from the measurement results.”[15]

The download speed test continued for 30 seconds with byte
totals transferred recorded at 5 second intervals. The download
speed test was performed every two hours.

The website download speed test measured the time neces-
sary to download the front webpage of each of the first ten
Alexa US Top 500 Global Sites:

http://www.cnn.com,
http://www.youtube.com,
http://www.msn.com,
http://www.amazon.com,
http://www.yahoo.com,
http://www.ebay.com,
http://www.wikipedia.org,
http://www.facebook.com,
http://www.google.com,
http://www.netflix.com.

“The primary measure for this test was the total time taken
to download the HTML front page for each website and all
associated images, JavaScript, and stylesheet resources.”[15].

We now lay out the definitions necessary to rigorously frame
the subsequent discussion. The first definition is related to the
download performance of a given connection.

Definition. Let X = {Xi}Ni=1 be a sequence of the TCP
download throughput measurements for a given connection.
We will say that the connection experiences (q, t)-recurrent
congestion if

P

[
X

Xmax
< q

]
> t

where P [] stands for the fraction of samples satisfying the
given condition (and is meant to be suggestive of probability),
Xmax is the ISP assigned download speed tier3 of the con-

3This is the upper limit of download speed, usually stated as “up to” speed,
specified in the customer-ISP contract.

http://www.cnn.com
http://www.youtube.com
http://www.msn.com
http://www.amazon.com
http://www.yahoo.com
http://www.ebay.com
http://www.wikipedia.org
http://www.facebook.com
http://www.google.com
http://www.netflix.com


nection, q ∈ [0, 1] is the fraction of the speed tier attained and
t ∈ [0, 1] is the fraction of the time the measurement is below
qXmax.

This definition covers the full range of performance levels
from nearly perfect (.99, 0) to complete failure (0, 100). We
refer to this performance measure as recurrent congestion
because it quantifies the performance level as well as its
duration. In particular, we will be interested in connections
whose low performance occurs a significant fraction of the
time, hence recurrent congestion.

Next, we introduce the notion of initial segment.

Definition. Let Pt(d) be the path taken by packets leaving a
given measurement unit at time t for destination d, expressed
as a sequence of IP level router interfaces (such as produced
by traceroute). Let P (d) = ∪t∈[T0,T1]Pt(d), where T0 and T1

specify the time interval of interest, then initial segment of
the connection corresponding to the given measurement unit
is

I =
⋂
d∈D

P (d), (1)

where D is the collection of destinations external to the ISP
of the connection.

The initial segment is clearly well defined since all the
sets involved in the definition are finite, but may theoretically
turn out to be the empty set. At the same time, the initial
segment is not necessarily a collection of consecutive links
but, depending on the routing architecture of the ISP, may
turn out to be a subnetwork or even a collection of disjoint
segments. As defined, the initial segment loosely corresponds
(somewhat ironically) to the union of the “last” and “second
mile” connectivity in the standard user centered network
segmentation scheme (Figure 1[5]) and certainly does not
extend beyond the “peering exchange” point.

The union over time, in the definition of the initial segment,
is necessary to account for routing changes on the time scale
of the time series considered. Clearly, repeated computations
of the initial segment over a time period long compared with
[T0, T1] may give different answers. For instance, the initial
segment computed over the span of a month may change
significantly on the time scale of years due to changes in the
physical network infrastructure and it may change on the time
scales of months and weeks due to changes in routing policies.
This said, we believe that the initial segment is sufficiently
stable over a period of a month to be considered a time
invariant construct.

In practice, the initial segment of a given end host can be
relatively easily computed using traceroute and a representa-
tive sample of destinations. Unfortunately, traceroute mapping
was not among the tests run by SamKnows and so we cannot
explicitly describe the initial paths of the connections in the
study.

The remaining ingredient of our study is the notion of a
tight initial segment.

Definition. A network resource, e.g., a link or a router, is said
to be tight (or narrow) at some fixed moment in time for a
given traversing path if its available bandwidth determines the
bandwidth of the whole path[10].

It is clear that every Internet path has a unique tight segment.
Note that the tight resource is path dependent, i.e., a resource
that is tight for one path may not be tight for another.

Definition. An initial segment is tight at a fixed time t if the
initial segment contains a network resource that is tight at time
t for at least one path terminating beyond the initial segment.

The initial segment includes all network devices between
consecutive IP router interfaces, i.e. all network devices and
links between the users side of the connection and the terminal
node(s) of the initial segment. A tight initial segment need not
be tight for all paths through the Internet. It is quite likely that
a long inter-continental path will be constrained somewhere
beyond its initial segment.

III. METHODOLOGY

We now discuss how recurrent congestion and tightness of
initial segments can be estimated based on the SamKnows
measurement data.

Collecting data on a large scale is bound to meet with
some technical difficulties. Whiteboxes located in customers’
homes or businesses might lose connectivity for any number
of reasons, from an ISP network outage to a power outage
or even user interference. So it is not surprising that the data
set contained a significant number of missing measurement
runs. We required that the data for individual connections
have a sufficiently large number of matched multi-threaded
TCP and website download speed measurements. Thus any
connection that had fewer than half of the roughly 12*30=360
total possible monthly matching pairs of measurements was
dropped from consideration. This reduced the number of
connections available for analysis from about 13,000 to 3,000.

Recurrent congestion is fairly easy to compute since Sam-
Knows data includes multi-threaded TCP download through-
put benchmarks. The only difficulty lies in determining a
connection’s speed tier. SamKnows provides information on
the speed tiers of connections but only as they were specified at
the time the study was initiated. The dataset, on the other hand,
spans four months during which some of the participants in
the study modified their broadband subscriptions and changed
providers.

Based on the available data, there is no way to detect a
change of ISP for a given connection, though one might expect
a change in ISP to be reflected in the change of the speed
tier, especially since speed tier structures of different ISPs
do not always match. Changes in the connection’s speed tier
can be detected since they typically lead to an abrupt change
in the maximum attainable download throughput. To detect
the change in maximum achievable download throughput of a
given connection, we applied the following algorithm.



Fig. 1. Boundary demarcations for residential broadband connections

1) For every day in a given month we selected the maxi-
mum sustained4 download throughput achieved on that
day.

2) If the largest and smallest of the daily maxima differed
by more than 50% of the mean the connection was
declared to have changed speed tiers.

3) If the connection’s speed tier did not change then its
speed tier was set to the mean of the daily maximum
sustained download speeds during the given month.

Connections detected to have changed their speed tiers were
dropped from further consideration. This reduced the number
of connections available for analysis by roughly 5-7%.

The complete two-parameter definition of recurrent conges-
tion is particularly useful when exploring the functional depen-
dence of a connection’s download throughput performance on
other factors, but it is not always convenient to specify (q, t)
parameters at every reference to recurrent congestion when
discussing congestion as a network state. Since we will not be
exploring the functional form of dependence, it will be useful
to settle on some canonical threshold at which the connection
can be said to experience recurrent congestion. We will set this
threshold at what might be considered the “C” grade level of
(.8, .2)-recurrent congestion, i.e. less than 80% of the speed
tier measured more than 20% of the time. While 20% of a
month’s span may not sound like much, when considered as
a fraction of peak usage hours5 (during which the download
speed is most likely to be degraded), it works out to be almost
90%.

Detecting tight initial segments is considerably more com-
plicated because tightness of an initial segment is not some-
thing directly measurable. Rather, an indirect method, relying
on correlation between download speed measurements for
paths sharing the same initial segment will be used.

The idea of using correlation to discover shared congested
resources is not new[14],[8],[13],[4]. The basic principle un-
derlying all these approaches is that flows constrained by
the same network resource are likely to exhibit temporal

4To deal with dynamic bandwidth technologies such as PowerBoost only
the last 5 seconds of the download speed test were used[15].

5Peak usage hours are weekday hours between 7pm and 11pm[15].

correlation in their characteristics. For example, suppose that
two TCP flows, A and B, share a tight link L (Figure 2), i.e., a
link whose available bandwidth determines the throughput of
the two flows. As the available bandwidth of link L changes
over time, so too will the throughput of flows A and B.
Since under TCP throughput is proportional to the available
bandwidth, the measured throughputs of the two flows will be
synchronized (at least as long as L remains tight) and will
exhibit temporal correlation.

B

A

L

Fig. 2. A tight link L shared by two flows A and B

We detected connections with tight initial segments by
adapting this correlation-based approach to the SamKnows
measurement data. Since all paths originating from a given
connection have some section, including the initial segment, in
common, correlation in download speeds on any pair of paths
gives some information about potential tightness of the initial
segment. The more pairs of paths exhibit a high correlation,
the more likely it is that the initial segment is tight. Indeed,
while a few pairs may by chance exhibit high correlations
independently due to tightness on links beyond the initial
segment, this becomes increasingly unlikely as the number
of pairs considered increases.

The SamKnows dataset contains measurements for down-
load speed benchmark as well as website download speeds to
which the outlined method can be applied. What distinguishes
the present setting from prior applications of this idea is that
the measurements are not strictly simultaneous and that the
interval between consecutive measurements is hours rather
than seconds or milliseconds. Since pairs of paths could not be



measured at exactly the same time, we assumed that pairs of
paths measured relatively close together in time were measured
simultaneously. This assumption is reasonable given that the
separation between measurement runs is roughly two hours.
The long interval between measurement runs drastically limits
the resolution of the correlation method. Correlating such
sparse measurements can only reveal tight network resources
that remain congested for hours. Sporadic tightness on the
order of minutes or tens of minutes will be invisible to our
detection method.

Details of the SamKnows measurement methodology also
had to be taken into account. Caution had to be taken to
avoid spurious correlation, i.e. one not actually resulting from
a tight resource on the shared portion of the paths. The website
download speed measurements may exhibit correlation due
to the diurnal user activity pattern. Since websites tend to
experience heavier loads during peak usage hours, download
speeds across many websites may be affected simultaneously,
causing correlation when there is no shared tight resource
in the path. To avoid this effect, we considered only pair-
wise correlations between the download speed benchmark
and website download speed measurements, but not between
website download speed measurements themselves. Spurious
correlation between a download speed benchmark, performed
against a measurement server, and a website download speed
measurement is highly improbable. This gives ten pairs of
paths, where each pair consists of a path to one of the websites
and an M-Lab measurement server.

In order for the correlation to be useful, the paired series
should have a sufficiently large number of measurements.
There is some leeway in defining “sufficiently large” and
we settled on 180 measurements, which is half of the 360
total possible. Limiting analysis to connections with 180 or
more paired measurements reduced the number of connections
available for analysis from about 13,000 to roughly 3,000.
Setting the limit much higher would have reduced the number
of connections even further.

Finally, for the connections that passed muster, correlations
for each of the ten pairs of paths were computed for each
month, yielding roughly 3,000×10×4 correlations. To decide
when a given connection has a tight initial segment we chose
a high correlation threshold of 0.6 and a high correlation
count threshold of 5. Every connection that had 5 or more
correlations greater than 0.6 was declared to have a tight initial
segment. These cut-offs are again a somewhat arbitrary mark
on a continuum scale, however, they are sufficient to provide
an idea of the relationship between initial segment tightness
and recurrent congestion, which is what we are really after.
We expect that the number of connections with tight initial
segments varies “continuously” with the high correlation and
high correlation count threshold, by which we mean that a
small change in either or both quantities would lead to a
small change in the number of connections with a tight initial
segment.

IV. RESULTS

There are many interesting observations that can be made on
the basis of the outlined analysis, but since our main concern
in the present paper is the distribution of congestion we will
limit our exposition to observations most salient to this topic.

We consider only DSL and cable connections since the data
set did not include a sufficient number of measurements for
analysis of wireless and fiber-optic technologies. Our study
indicates that cable and DSL technologies have substantially
different performance in the sense of delivering bandwidth
at the assigned speed tier as well as in distribution of the
congestion.

In this data set, DSL broadband provided connections on av-
erage delivering download speeds above 80% of the assigned
speed tier more than 80% of the time. By contrast, a significant
fraction of cable connections received less than 80% of their
assigned speed tier more than 20% of the time. One must keep
in mind that cable connections typically have higher download
speed tiers than DSL connections. In the SamKnows data the
average download speed tier for DSL connections was 5.4
Mbps vs. 13.5 Mbps for cable connections.

Tables I and II summarize recurrent congestion (RC) and
tight initial segment (TIS) data for cable and DSL samples
respectively. The difference in consistency of service is re-
flected in the number of connections with recurrent congestion,
a relatively low 9–12% for DSL in comparison to 27–32% for
cable connections. The distributions of recurrently congested
connections are very different among the ISPs (Figures 6 and
7). For DSL ISPs, concentrations of recurrently congested con-
nections are roughly similar, for cable connections there are
several ISPs that have disproportionately high concentrations
of recurrently congested connections. As will be discussed
further, this is closely connected with the prevalence of tight
initial segments in the poorly performing ISP networks.

Month Total FC PTIS FC∩PTIS FC∩PTIS/PTIS FC∩PTIS/FC

March 1559 416 55 55 100% 13%
27% 4%

April 1864 454 57 52 91% 11%
24% 3%

May 1818 582 49 45 92% 8%
32% 3%

June 1903 519 51 50 98% 10%
27% 3%

TABLE I
CABLE DATA

The percentages of connections with tight initial segments
for DSL — 5–7% — are roughly double those of cable
connections — 3–4%. There are also major differences when
recurrent congestion and tightness of initial segments are
considered together.

In the case of DSL 37–50% of the connections identified
as having a tight initial segment also experienced recurrent
congestion, whereas for cable connections the same number
was 91–100%. That is, a tight initial segment virtually always



Month Total FC PTIS FC∩PTIS FC∩PTIS/PTIS FC∩PTIS/FC

March 860 99 55 37 67% 37%
12% 6%

April 1031 103 75 50 67% 49%
10% 7%

May 1059 91 56 38 68% 41%
9% 5%

June 1012 110 68 44 65% 40%
11% 7%

TABLE II
DSL DATA

coincides with recurrent congestion for cable connections
but more than half of DSL connections manage to deliver
performance close to speed tier in spite of a tight initial
segment. This difference also underscores the point that a
tight initial segment need not lead to severe performance
degradation.

More interesting is the percentage of recurrently congested
connections that also have tight initial segments. While a tight
initial segment need not coincide with recurrent congestion,
when the two do coincide we can conclude that recurrent con-
gestion is most likely due to congestion on the initial segment.
If observed recurrent congestion was not due to congestion on
the initial segment the correlation between different download
speed measurements could only be explained by a chance
coincidence, making it extremely unlikely[4].

For DSL connections 65–67% of recurrently congested
connections also had tight initial segments whereas for cable
connections this percentage was only 8–13%. Taken at face
value these numbers seem to suggest that a significant amount
of congestion, especially for cable connections, occurs deeper
in the network, perhaps, in the “middle mile” (Figure 1) or
even farther, where the ISP connects to the “public Internet”.
This is somewhat contrary to the popular belief that the
edge is more congested than the core[13]. Here, however,
we must be careful not to exceed the limitations of our
congestion localization approach. It is possible that because
our method for detecting tight initial segments underestimates
their prevalence, they could still be the dominant cause of
recurrent congestion while remaining undetected.

To the extent that paths to a few popular websites may
turn out to have a congestion distribution that is substantially
different from the majority of the paths originating from the
same point, our estimates may give the wrong picture about the
presence of congestion at the periphery of the ISP networks.
This may happen, for example, because correlation due to
tightness of initial segment is most likely to arise at times
of peak usage, which are also the times when websites are
under heaviest load, possibly causing reduction in download
speeds due to limited bandwidth near the site itself.

We have no way to verify directly the degree to which
our analysis is impacted by such effects but we can look
for signatures that these effects may leave in the results.
Significant insight can be gained by considering variation
in recurrent congestion and tight initial segment prevalence

across ISPs. Since ISP networks are largely autonomous,
their internal patterns of congestion can be assumed to be
independent. On the other hand, being interconnected mainly
through the “public Internet”, ISPs are affected in roughly
equal measure by congestion in the core of the Internet.

Consider the partitioning of the Internet from the point of
view of a particular connection as in Figure 1. Since the
M-Lab servers used for download throughput measurements
were located in the “public Internet” (relative to the ISPs that
participated in the study) congestion affecting the download
throughput could occur at or between any of the Points 1
through 4 in Figure 1.

Let us consider the possible scenarios under which tight
initial segments are the primary limiters of download speed
but are undetected because of atypical congestion on the paths
to the test websites.

Suppose, first, that most connections were really constrained
on the initial segment (points 3 and 4 in Figure 1) but that these
tight initial segments went undetected because the website
download measurements were constrained near the test website
end of the path (point 1 in Figure 1). Since the bottlenecks at
such locations in the Internet are likely to affect connections
in different ISP networks equally, one would expect that the
number of tight initial segments detected in an ISP’s network
would be roughly proportional to the number of the ISP’s
connections in the sample.
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Fig. 3. Tight initial segment prevalence for cable connections by ISP
In this and subsequent figures different colors correspond to different months.
Blue for March, cyan for April, yellow for May and green for June.

Figures 3 and 4 show the relative frequency of tight initial
segments detected across ISPs for cable and DSL connections
respectively. The plot for DSL connections appears to be
consistent with the proposed hypothesis that most connections
are constrained on the initial segment but that this fails to
be detected because the paths to the chosen test websites
encounter tight resources near the test websites.

On the other hand, ISPs 3 and 10 (cable connections)
have much higher concentrations of tight initial segments than
the rest of the field, suggesting that either initial segment
congestion is genuinely more prevalent in some ISP networks



æ

æ

æ

æ

æ

à
à

à

à

à

ì
ì

ì

ì

ì

ì

ò

ò

ò

ò
ò

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0.00

0.05

0.10

0.15

0.20

ISP

P
re
v
al
en
ce ò June

ì May

à April

æ March

Fig. 4. Tight initial segment prevalence for DSL connections by ISP

than others or that tight initial segments fail to be detected due
to interference in the “middle mile” (between points 2 and 3
in Figure 1) rather than near the test websites.

There is no reason to expect the rates of false negatives
(i.e., undetected tight initial segments) for DSL and cable
technologies should be significantly different. Although Figure
4 is consistent with the hypothesis that congestion is predomi-
nantly concentrated on the initial segment, this possibility may
be ruled out for cable, and it also becomes less likely for DSL.
In light of this, the more plausible scenario is that even as a
large fraction of DSL connections is constrained by their initial
segments, a significant fraction is also constrained elsewhere
in the network.

Let us now consider the remaining possibility that connec-
tions are constrained primarily on their initial segments but
that this fails to be detected because website measurements
are hit by congestion in the “middle mile” between Points
2 and 3 inclusively. It seems very unlikely for a reasonably
diverse group of paths to encounter a significantly different
congestion distribution in the “middle mile” than the rest but
let us entertain this possibility anyway.

It is not obvious what signature such a scenario might
produce in the resulting analysis, since each ISP could po-
tentially have a different false negative rate determined by
congestion encountered by the website paths in its “middle
mile”. Assuming that initial segment congestion and “middle
mile” congestion are independent, and given that by hypothesis
the former determines the number of recurrently congested
connections and the latter the false negative rate for detection
of tight initial segments, one would expect there to be little
correlation between prevalence of tight initial segments and
recurrently congested connections.

Figure 5 shows the plot of recurrent congestion prevalence
versus tight initial segment prevalence per ISP for the month of
April (other months show a similar distribution of data points).
The data has to be considered on the monthly basis because
measurements for the same ISP during different months are not
independent. The plot exhibits no clear correlation structure.
Thus, we cannot rule out that our tight initial segment detection

method is foiled by congestion in the “middle mile”.
Figures 7 and 6 show plots of recurrent congestion preva-

lence across ISPs. The plot for DSL connections shows consis-
tently low prevalence of recurrently congested connections. By
contrast, the cable plot reveals a great deal of variation between
ISPs. Among the ISPs with the largest prevalence (3, 7 and
10), ISPs 3 and 10 had unusually high tight initial segment
prevalence, but the same is not true for 7. This suggests that
cable ISPs may have very different distributions of congestion
in their networks. Assuming our tight initial segment detection
method is accurate, it appears that ISPs 3 and 10 have most
of their congestion concentrated on the initial segment while
ISP 7 suffers mainly from congestion in the “middle mile” or
deeper.
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Based on the above we conclude:
• Distribution of recurrent congestion differs substantially

between DSL and cable broadband access networks.
• DSL connections experiencing recurrent congestion are

constrained in significant numbers on the initial segment
but about a third appear to be limited by congestion
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Fig. 7. Recurrent congestion prevalence for DSL connections by ISP

beyond the initial segment, most likely in the “middle
mile” or beyond.

• The majority of cable connections experiencing recurrent
congestion are constrained beyond the initial segment,
most likely in the “middle mile” or beyond, with a mi-
nority, located in networks with particularly high preva-
lence of recurrent congestion, being limited on the initial
segment.

• Overall, the majority of broadband connections expe-
riencing recurrent congestion appear to be constrained
beyond the initial segment.

V. OPEN ISSUES

One of the very difficult challenges we hope to address
in future publications, is the quantification of uncertainty.
While similar approaches have been shown to yield good
results in simulation studies [14],[8],[13],[4], they were typi-
cally implemented on time periods of minutes or hours with
measurements performed at much higher frequencies than in
our study. The longer time scale and the comparatively large
number of paths used in our correlation analysis may actually
provide a more robust platform for drawing conclusions about
congestion since the resulting metrics are less likely to be
susceptible to sporadic fluctuations in network performance.
Assuming that the performance of the underlying networks
does not change significantly in the course of a few months,
the variation in the metrics over the four months considered
in the study can be used to quantify measurement uncertainty
of the applied methodology [1]. Effect of parameter selection
on the results can be investigated by performing sensitivity
analysis.

An approach similar to the one we presented could also
be used to identify recurrently congested segments near the
test websites by correlating measurements made for the same
website from a large number of different measurement end-
points. In the present study we avoided considering correlation
between website measurements to avoid potential confusion
between correlations due to the user activity cycle and the
initial segment congestion. However, by carefully combining
the presented data with correlation measurements for websites,

we believe it would be possible to reduce the false negative
rate for both sets of measurements as well as increase the
precision with which congestion can be localized.

Finally, more needs to be done to elucidate the nature of
the initial segment of a connection as defined in Section II
to improve the accuracy of congestion localization. This can
potentially be accomplished by analyzing existing traceroute
data sets such as [7] and perhaps by less direct methods
such as using SamKnows measurement data from secondary
measurement servers positioned inside ISP networks.

VI. CONCLUSION

Using SamKnows’s broadband measurement data, we ex-
plored the distribution of congestion in the US Internet
broadband access networks. We found big differences in the
distribution of systemic congestion between DSL and cable
providers. While, DSL ISP networks suffer predominantly
from congestion in the “last mile”, distribution of congestion
in cable ISP networks exhibits a great deal of variability, with
a few cable ISP networks congested mainly in the “last mile”
but the majority congested elsewhere, in the “middle mile” or
beyond.
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