
An Industrial Robotic Knowledge Representation for Kit Building
Applications

Stephen Balakirsky, Zeid Kootbally, Craig Schlenoff, Thomas Kramer, and Satyandra Gupta

Abstract— The IEEE RAS Ontologies for Robotics and
Automation Working Group is dedicated to developing a
methodology for knowledge representation and reasoning in
robotics and automation. As part of this working group, the
Industrial Robots sub-group is tasked with studying industrial
applications of the ontology. One of the first areas of interest
for this subgroup is the area of kit building or kitting. This
is a process that brings parts that will be used in assembly
operations together in a kit and then moves the kit to the
assembly area where the parts are used in the final assembly.
This paper examines the knowledge representations that have
been developed and implemented for the kitting problem.

I. INTRODUCTION

Kitting is the process in which several different, but related
items are placed into a container and supplied together as a
single unit. Kitting itself may be viewed as a specialization
of the general bin-picking problem. In industrial assembly
of manufactured products, kitting is often performed prior to
final assembly. Manufacturers utilize kitting due to its ability
to provide cost savings [3] including saving manufacturing
or assembly space [13], reducing assembly workers walking
and searching times [15], and increasing line flexibility [2]
and balance [9].

Several different techniques are used to create kits. A
kitting operation where a kit box is stationary until filled
at a single kitting workstation is referred to as batch kitting.
In zone kitting, the kit moves while being filled and will pass
through one or more zones before it is completed. This paper
focuses on batch kitting processes.

In batch kitting, the kit’s component parts may be staged
in containers positioned in the workstation or may arrive on
a conveyor. Component parts may be fixtured, for example
placed in compartments on trays, or may be in random
orientations, for example placed in a large bin. In addition to
the kit’s component parts, the workstation usually contains a
storage area for empty kit boxes as well as completed kits.

Kitting has not yet been automated in many industries
where automation may be feasible. Consequently, the cost
of building kits is higher than it could be. We are addressing
this problem by building models of the knowledge that will

S. Balakirsky and C. Schlenoff are with the Intelligent Systems Division,
National Institute of Standards and Technology, Gaithersburg, MD, USA
(e-mail:stephen.balakirsky@nist.gov, craig.schlenoff@nist.gov)

Z. Kootbally is with the Department of Mechanical Engineering, Univer-
sity of Maryland, College Park, MD, USA (email: zeid.kootbally@nist.gov)

T. Kramer is with the Department of Mechanical Engineer-
ing, Catholic University of America, Washington, DC, USA (email:
thomas.kramer@nist.gov)

S. Gupta is with the Maryland Robotics Center, University of Maryland,
College Park, MD, USA (email: skgupta@umd.edu)

be required to operate an automated kitting workstation in
an agile manufacturing environment. This workstation must
be able to cope with variations in kit contents, kit layout,
and component supply. Our models include representations
for non-executable information about the workstation such as
information about parts and kit designs, models of executable
information such as actions, preconditions, and effects, and
models of the process plan necessary for kit construction. A
discussion of the functional requirements for the process plan
may be found in [1]. For our automated kitting workstation,
we assume that a robot performs a series of pick-and-place
operations in order to construct the kit. These operations
include:

1) Pick empty kit and place on work table.
2) Pick multiple component parts and place in kit.
3) Pick completed kit and place in full kit storage area.

Each of these actions may be a compound action that
includes other actions such as end-of-arm tool changes, path
planning, and obstacle avoidance.

It should be noted that multiple kits may be built simul-
taneously. Finished kits are moved to the assembly floor
where components are picked from the kit for use in the
assembly procedure. The kits are normally designed to facil-
itate component picking in the correct sequence for assembly.
Component orientation may be constrained by the kit design
in order to ease the pick-to-assembly process. Empty kits are
returned to the kit building area for reuse.

Although the knowledge requirements described in the
previous paragraph have been identified for the kitting do-
main, they are clearly applicable to many types of industrial
robot applications. As such, we expect that these knowledge
requirements will serve as the basis for the industrial robot
ontology being developed in the IEEE RAS Ontologies for
Robotics and Automation Working Group [11] (henceforth
referred to as the IEEE WG). Throughout the process of de-
veloping the kitting ontology, the group will constantly look
at the applicability of the requirements outside of kitting and
move the pertinent knowledge “up” the ontology (whether in
the portion that models the kitting sub-domain, the industrial
robot domain, or the upper ontology), as appropriate.

In keeping with the standards philosophy of the IEEE
WG, we require the models being developed to be as widely
applicable as possible. Therefore, we have created a layered
model abstraction where users may adopt as many of the
layers of the abstraction as make sense for their specific
application. The architecture shown in Figure 1, though
developed for the kitting ontology, can be equally applicable
to the implementation of any type of formal manufacturing



knowledge representation. Said in a different way, the imple-
mentor can plug in a knowledge representation for a different
domain and the architecture would still be valid. In a similar
manner, different planning language abstractions could be
utilized in the planning language layer of the abstraction and
different planning/execution systems could be utilized in the
robot language layer of the abstraction.

Specifics on the architecture may be found in Section II.
An example of the knowledge representations and the flow
from one to the next is presented in Section III. Finally,
conclusions and future work may be found in Section IV.

Fig. 1. Kitting data flow abstraction.

II. ARCHITECTURE DESCRIPTION

The main focus of this work is on the development of
knowledge models that allow a kitting workstation to con-
struct kits in an agile manufacturing environment. However,
in order to validate these knowledge models, we felt that it
was important to be able to utilize the models to construct
kit building plans, and then to execute these plans in dy-
namic virtual and real environments. Due to the advent of
open source robotic operating systems such as ROS1[6] and
simulation packages such as USARSim [4], we do not need
to design these systems ourselves. However, our architecture
must be designed to represent the required knowledge base
in several different abstractions that are likely to be required
by these systems as the knowledge flows from domain and
process specification, to plan generation, to plan execu-
tion. As shown in Figure 1, the abstraction is decomposed
into four distinct layers of Domain Specific Information,
Ontology, Planning Language, and Robot Language that
correspond to these knowledge requirements. In this paper,

1Certain commercial/open source software and tools are identified in this
paper in order to explain our research. Such identification does not imply
recommendation or endorsement by the authors, nor does it imply that the
software tools identified are necessarily the best available for the purpose.

we will discuss the layers of the Domain Specific Information
through Planning Language. Implementors of the abstraction
are free to connect to the knowledge interface at the layer
that makes sense for their particular application. For our
simulated kitting workstation, we intend to fully design the
Domain Specific Information and the Ontology and then
utilize open source tools that will automatically generate the
remaining layers and provide a workstation simulation.

A. Domain Specific Information

The foundation for the knowledge representation is do-
main specific information that is produced by an expert in
the particular field of study. This includes information on
items ranging from what actions and attributes are relevant,
to what the necessary conditions are for an action to occur
and what the likely results of the action are. We have chosen
to encode this basic information in a formalism know as a
state variable representation (SVR) [14]. This information
will then flow up the abstraction and be transformed into
the ontology, planning language, and robot language. In a
SVR, each state is represented by a tuple of values of n
state variables {x1, . . . , xn}, and each action is represented
by a partial function that maps this tuple into some other
tuple of values of the n state variables.

To build the SVR, the group has taken a very systematic
approach of identifying and modeling the concepts. Because
the industrial robot field is so broad, the group decided
to limit its efforts to a single type of operation, namely
kitting. A scenario was developed that described, in detail,
the types of operations that would be performed in kitting,
the sequencing of steps, the parts and machines that were
needed, constraints on the process such as pre- and post-
conditions, etc. For this scenario, a set of concepts were
extracted and defined. These concepts served as the initial
requirements for the kitting SVR. The concepts were then
modeling in our SVR, building off of the definitions and
relationships that were identified in the scenario.

A SVR relies on the elements of constant variable sym-
bols, object variable symbols, state variable symbols, rigid
relations, and planning operators. These are defined for the
kitting domain in the rest of this section.

1) Constant Variable Symbols: For the kitting domain,
there is a finite set of constant variable symbols that must
be represented. In the SVR, constant variable symbols are
partitioned into disjoint classes corresponding to the objects
of the domain. The finite set of all constant variable symbols
in the kitting domain is partitioned into the following sets:

• A set of Part: Parts are the basic items that will be used
to fill a kit.

• A set of PartsTray: Parts arrive at the workstation in
PartsTrays. Each Part is at a known position in the
PartsTray. Each PartsTray contains one type of Part.

• A set of KitTray: A KitTray can hold Parts in known
positions.

• A set of Kit: A Kit consists of a KitTray and, possibly,
some Parts. A Kit is empty when it does not contain



any Part and finished when it contains all the Parts that
constitute a kit.

• A symbol WorkTable: A WorkTable is an area in the
kitting workstation where KitTrays are placed to build
Kits.

• A set of LargeBoxWithKits: A LargeBoxWithKits con-
tains only finished Kits.

• A set of LargeBoxWithEmptyKitTrays: A Large-
BoxWithEmptyKitTrays is a box that contains only
empty KitTrays.

• A set of Robot: A Robot in the kitting workstation is
a robotic arm that can move objects in order to build
Kits.

• A set of VacuumEffectorSingleCup: VacuumEffectorSin-
gleCups are used in a kitting workstation to manipulate
Parts, PartsTrays, KitTrays, and Kits. A VacuumEffec-
torSingleCup is attached to a Robot.

• A set of EndEffectorHolder: An EndEffectorHolder is
a storage unit that holds one type of EndEffector.

2) Object Variable Symbols: Object variable symbols are
typed variables which range over a class or the union of
classes of constant variable symbols. Examples of object
variable symbols are r ∈ Robot, kt ∈ KitTray, etc.

3) State Variable Symbols: A state variable x symbol is
defined as follows: x : A1 × . . .×Ai × S→ B1 ∪ . . . ∪ Bj

(i, j ≥ 1) is a function from the set of states (S) and at least
one set of constant variable symbols A1 × . . .×Ai into a
set of constant variable symbols B1 ∪ . . . ∪ Bj.

The use of state variable symbols reduces the possibility
of inconsistent states and generates a smaller state space.
The following state variable symbols are used in the kitting
domain:

• effloc: VacuumEffectorSingleCup×S→Robot ∪ EndEf-
fectorHolder designates the location of a VacuumEffec-
torSingleCup in the workstation: Attached to a Robot
or placed in an EndEffectorHolder.

• reff: Robot×S→VacuumEffectorSingleCup ∪ {nil}
designates the VacuumEffectorSingleCup attached to the
Robot if there is one attached, otherwise nil.

• onworktable: WorkTable×S→Kit ∪ KitTray ∪ {nil}
designates the object placed on the WorkTable: A Kit,
a KitTray, or nothing.

• kitloc: Kit×S→LargeBoxWithKits ∪ WorkTable ∪
Robot designates the different possible locations of a
Kit in the workstation: in a LargeBoxWithKits, on the
WorkTable, or being held by a Robot.

• kittrayloc: KitTray×S→LargeBoxWithEmptyKitTrays
∪ Robot ∪ WorkTable designates the different possible
locations of a KitTray in the workstation: In a
LargeBoxWithEmptyKitTrays, being held by on a
Robot, or on a WorkTable.

• partloc: Part×S→PartsTray ∪ Kit ∪ Robot designates
the different possible locations of a Part in the work-
station: In a PartsTray, in a Kit, or being held by a
Robot.

• rhold: Robot×S→KitTray ∪ Kit ∪ Part ∪ {nil}: des-
ignates the object being held by a Robot: A KitTray, a

Kit, a Part, or nothing.
• islbwkfull: LargeBoxWithKits×S→ {0} ∪ {1} desig-

nates if a LargeBoxWithKits is full or not.
• islbwektempty: LargeBoxWithEmptyKitTrays×S→
{0} ∪ {1} designates if a LargeBoxWithEmptyKitTrays
is empty (1) or not (0).

• ispartstrayempty: PartsTray×S→ {0} ∪ {1} desig-
nates if a PartsTray is empty or not.

• efftype: VacuumEffectorSingleCup×S→KitTray ∪ Kit
∪ Part designates the type of object a VacuumEffectorS-
ingleCup can hold: A KitTray, a Kit, or a Part.

• eeffhtype: EndEffectorHolder×S→ {nil} ∪ Vacuum-
EffectorSingleCup designates the object an EndEffec-
torHolder is holding.

4) Sets of Literals: In order to generate PDDL files, each
state variable symbol must be converted into a set of literals
(i.e., atoms and negation of atoms). For instance, in order to
use the state variable symbol partloc: Part×S→PartsTray
∪ Kit ∪ Robot in PDDL, this state variable symbol is
converted into the set of literals {partloc(p,pt), partloc(p,k ),
partloc(p,r )}, where p ∈ Part, k ∈ Kit, k ∈ KitTray, and
r ∈ Robot. The representation of the location of a Part in
PDDL is performed by using the correct literal within this
set of literals.

5) Planning Operators: A planning operator is used to
describe one of the procedures that can be used to move
from one state to another. A planning operator [14] is a triple
o=(name(o), precond(o), effects(o)) whose elements are as
follows:

• name(o), the name of the operator, is a syntactic expres-
sion of the form n(x1, . . . , xk), where n is a symbol
called an operator symbol, x1, . . . , xk are all of the
object variable symbols that appear anywhere in o, and
n is unique (i.e., no two operators can have the same
operator symbol).

• precond(o) and effects(o), the preconditions and effects
of o, respectively, are sets of literals.

The kitting domain presented in this paper is composed
of eight operators: take-kit-tray, put-kit-tray, take-kit, put-kit,
take-part, put-part, attach-eff, and remove-eff. Due to space
restriction, this section describes only one of these operators
as follows:

• take-kit-tray(r ,kt ,lbwekt ,eff ,wtable): The Robot r
equipped with the VacuumEffectorSingleCup eff picks
up the KitTray kt from the LargeBoxWithEmptyKitTrays
lbwekt . TheWorkTable wtable must be a priori empty.

precond effects
rhold-empty(r ), ¬rhold-empty(r ),
lbwekt-not-empty(lbwekt), kittrayloc(kt ,r ),
r-with-eff(r ,eff ), rhold(r ,kt),
kittrayloc(kt ,lbwekt), ¬kittrayloc(kt ,lbwekt)
effloc(eff ,r ),
worktable-empty(wtable),
efftype(eff ,kt)

Note that an action a can be obtained by substituting



the object variable symbols that appear anywhere in the
operator with constant variable symbols.

B. Ontology

Knowledge models may take many forms ranging from
informal natural language, to XML schemas, to ontologies.
For the development of the knowledge representation, the
industrial robots sub-group has decided to use the Web On-
tology Language (OWL) [16] as the knowledge representa-
tion language. OWL is a family of knowledge representation
languages for authoring ontologies and is endorsed by the
World Wide Web Consortium (W3C). OWL was chosen
by the group because of its popularity among the ontology
development community, its endorsement by the W3C, as
well as the number of tools and reasoning engines that
are available. OWL was also selected as the representation
language that will be used in the overall IEEE WG efforts.

In addition to OWL, the industrial robots subgroup will
also be using OWL-S [12] to represent the processes and
actions that the robot will perform. OWL-S is an ontology
built on top of OWL by the DARPA Agent Markup Language
(DAML) program [5] for describing Semantic Web Services.
Many of the constructs that are used to describe services are
equally applicable to encoding our SVR. For example, con-
cepts such as preconditions, results, inputs, outputs, effects,
and participants are generic enough to be applied to just
about any type of process specification.

Since this work is being directed at the IEEE RAS On-
tologies for Robotics and Automation Working Group, it is
appropriate that our domain specific knowledge be encoded
in an OWL ontology at the first domain independent layer
of our abstraction. The knowledge contained in this layer is
derived from our SVR and may also contain information that
has been collected over other domains.

As more detailed scenarios are determined and a richer set
of concepts are uncovered, the ontology will be partitioned
based upon the generality of the concept, with the most
generally applicable concepts being “higher” in the ontology
so they are available to other domains and the more detailed
concepts being “lower” because they will likely be very
specific to the kitting area. An example of a general concept
may be a Robot while a specific concept may be a KitTray.

As shown in Figure 1, the information in our ontology is
divided into three sets of files and consists of a representation
of the process specification, the kitting ontology, and the
instance file. The process specification file is based off of
the planning operators from the SVR and contains descrip-
tions of the individual actions and sequences necessary to
construct a kit, e.g. gripping a component from a tray. The
kitting ontology file is based off of the constant variable
symbols and state variable symbols and contains the concepts
related to the specific items that compose the kitting domain,
e.g. the hierarchy of what it means to be a part a . That a
part a is a type of Part, and that all Parts contain properties
such as the part’s weight, dimensions, and grip points. The
instance file is based off of the SVR object variable symbols
and contains specific information on this particular kitting

problem and configuration, e.g. KitTray kit tray 1 contains
four Parts of type part a .

While this file set provides a complete description of the
problem domain and environment, most planning systems
cannot directly ingest information from an ontology. There-
fore, the next layer of the data abstraction known as the
Planning Language layer was created.

C. Planning Language

The Planning Domain Definition Language (PDDL) [7] is
an attempt by the domain independent planning community
to formulate a standard language for planning. A community
of planning researchers has been producing planning systems
that comply with this formalism since the first International
Planning Competition held in 1998. This competition series
continues today, with the seventh competition being held in
2011. PDDL is constantly adding extensions to the base
language in order to represent more expressive problem
domains. Our work is based on PDDL Version 3.0.

By placing our knowledge in a PDDL representation, we
enable the use of an entire family of open source planning
systems. As shown in Figure 1, each PDDL file-set consists
of two files that specify the domain and the problem. The
PDDL domain file is composed of four sections that include
requirements, types and constants, predicates, and actions.
This file may be automatically generated from a combination
of information that is contained in the OWL-S process
specification file and the OWL Kitting Ontology file. This
auto-generation uses a modified version of the algorithms
from Klusch and Gerber [10] that directly generate PDDL
syntax.

The requirements section specifies which extensions this
problem domain relies on. The planning system can examine
this statement to determine if it is capable of solving prob-
lems in this domain. In PDDL, all variables that are used in
the domain must be typed. Types are defined in the types
section. It is also possible to have constants that specify that
all problems will share this single value. For example, in
the simplest kitting workstation we will have a single Robot
robot 1 . Predicates specify relationships between instances.
For example, an instance of a KitTray, kit tray 1 , can have a
physical location and contains instances of Parts, part a 1 ,
part a 2 , part b 1 , and part c 1 . The final section of the
PDDL domain file is concerned with actions. An action
statement specifies a way that a planner affects the state of
the world. The statement includes parameters, preconditions,
and effects. The preconditions dictate items that must be
initially true for the action to be legal. The effect equation
dictates the changes in the world that will occur due to the
execution of the action.

The second file of the PDDL file-set is a problem file. The
problem file specifies information about the specific instance
of the given problem. This file contains the initial conditions
and definition of the world (in the init section) and the goal
state that the world must be brought to (in the goal section).
A specific example of the ontology to planning language
conversion is provided in Section III.



III. EXAMPLE OF OPERATION

The purpose of this section is to illustrate the various
knowledge representations, depicted in Figure 1, and the flow
from one knowledge representation to the next.

A. State Variable Representation

In the example, the Robot has to build a kit that contains
two Parts of type A, one Part of type B and one Part of type
C. The kitting process is completed once the kit is placed
in the LargeBoxWithKits. Section III-B details the steps that
build the PDDL domain file while Section III-C discusses
the process that builds the PDDL problem file.

The state variable representation defines the necessary
parameters for the PDDL domain and problem files. The
PDDL domain file contains predicates, characterized by
state variable symbols, and actions. The PDDL problem
file contains the objects present in the problem instance,
characterized by constant variable symbols, the initial state
s0 description and the goal state sG.

a) Constant Variable Symbols: The kitting do-
main proposed for the example contains a Robot
robot 1 , a KitTray kit tray 1 , a LargeBoxWithEmp-
tyKitTrays empty kit tray supply , a LargeBoxWithKits
finished kit receiver , a WorkTable work table 1 , three
PartsTrays part a tray , part b tray , and part c tray , four
Parts part a 1 , part a 2 , part b 1 , and part c 1 , two
VacuumEffectorSingleCup part gripper and tray gripper ,
and two EndEffectorHolders part gripper holder and
tray gripper holder . Since a Kit is by definition a KitTray
that contains Parts, the kitting domain also contains a con-
stant variable symbol kit 1 from Kit.

b) State Variable Symbols: The state variable symbols
for this example are the ones defined in Section II-A.3.

c) Initial State: The initial state s0 can be represented
by the set of state variable symbols depicted in Table I.

TABLE I
INITIAL STATE s0

r-no-eff(robot 1 )
kittrayloc(robot 1 ,empty kit tray supply)
lbwekt-not-empty(empty kit tray supply)
partloc(part a 1 ,part a tray)
lbwek-not-full(finished kit receiver )
partloc(part a 2 ,part a tray)
part-tray-not-empty(part a tray)
partloc(part b 1 ,part b tray)
part-tray-not-empty(part b tray)
partloc(part c 1 ,part c tray)
part-tray-not-empty(part c tray)
efftype(part gripper ,part a 1 )
eff-location(part gripper ,part gripper holder )
efftype(part gripper ,part a 2 )
effloc(tray gripper ,tray gripper holder )
efftype(part gripper ,part b 1 )
effhhold-eff(part gripper holder ,part gripper )
efftype(part gripper ,part c 1 )
effhhold-eff(tray gripper holder ,tray gripper )
efftype(tray gripper ,kit tray 1 )
worktable-empty(work table 1 )
efftype(tray gripper ,kit 1 )

d) Goal State: The goal state sG can be represented by
the set of state variable symbols depicted in Table II.

TABLE II
GOAL STATE sG

partloc(part a 1 ,kit 1 )
partloc(part a 2 ,kit 1 )
partloc(part b 1 ,kit 1 )
partloc(part c 1 ,kit 1 )
kitloc(kit 1 ,finished kit receiver )

B. Process for the PDDL Domain File

Once the state variable representation is defined, an OWL-
S process specification and OWL ontology is built. This
must be constructed by hand from the information in the
SVR as described in Section II-B. For this example, the
specific action take-kit-tray’s encoding into OWL-S will be
discussed.

1) OWL-S Representation: Once the action is specified in
the SVR, we can use that information to create an OWL-
S process. We are modeling the action as a process and
including information about its data inputs and outputs, the
preconditions that have to be true for it to be performed, and
the result that will be true after the process is executed. In
our example, the process is an atomic process because it only
involves a single interaction and consists of only one step.
If it were a more complex process that involved multiple
sub-actions, it would be modeled by an OWL-S composite
process.

In the SVR, the preconditions clearly map to the OWL-S
preconditions. The rules point to classes and instances in the
ontology that model the concepts of kit tray (kt), a set of
large box with empty kit trays (lbwekt), a robot (r ), and a
robot end effector (eff ). The SVR effects map to the OWL-S
results and are also represented in one of the rules languages
above. In the case of the take-kt action, the result would
specify that the location of the kit tray is no longer in a
fixed location and is now in the robot end effector.

Though not explicitly represented in the SVR, data inputs
and outputs are an important part of the OWL-S repre-
sentation and can be inferred from the SVR. Specifically,
it needs to know which robot is performing the action
(robot 1 ), which kit tray needs to be picked up (kit tray 1 ),
which end effector is on the robot (tray gripper ), and
from which box the robot needs to pick up the kit tray
(empty kit tray supply). The output of this action would
be a Boolean stating whether the action was completed
successfully or not.

2) PDDL Domain File: An external tool is used to
generate the PDDL Domain File from the OWL/OWL-S
representation. Due to space constraints, only an excerpt of
the PDDL domain file is displayed in Figure 2.

C. Process for the PDDL Problem File

The PDDL problem file is generated by a chain of data
conversions that take the SVR through an OWL representa-
tion to the PDDL representation.

1) OWL Representation: The OWL instance files shown
in Figure 1 are derived from the SVR initial and goal states
(s0, sG). These files contain specific instances of the classes



(define (domain kitting-domain)
(:requirements :strips :typing)
(:types

Robot
KitTray
LargeBoxWithEmptyKitTrays
...)

(:predicates
(rhold-empty ?r - Robot)
(kittrayloc ?kt - KitTray ?r - Robot)
...)

(:action take-kit-tray
:parameters(

?r - Robot
?kt - KitTray
?lbwekt - LargeBoxWithEmptyKitTrays
...)

:precondition(and (
rhold-empty ?r)
(lbwekt-not-empty ?lbwekt)
...)

:effect(and
(rhold ?r ?kt)
(not (kittrayloc ?kt ?lbwekt))
...))

...)

Fig. 2. Excerpt of the PDDL domain file for kitting.

that have been previously defined in the OWL ontology. Two
specific instance files are required for the representation with
both files containing the same class structures. The difference
between the two is that in the InitFile the specific properties
of the instantiated classes represent the initial state of the
domain, and in the GoalFile the specific properties of the
instantiated classes represent the goal state of the domain.

(define (problem kitting-problem)
(:domain kitting-domain)
(:objects

robot_1 - Robot
work_table_1 - WorkTable
part_gripper - VacuumEffectorSingleCup
part_gripper_holder - EndEffectorHolder
...)

(:init
(r-no-eff robot_1)
(effloc part_gripper part_gripper_holder)
(worktable-empty work_table_1)
...)

(:goal
(and
(partloc part_a_1 kit_1)
(partloc part_b_1 kit_1)
...)))

Fig. 3. Excerpt of the PDDL problem file for kitting.

2) PDDL Problem File: The PDDL file is once again
automatically generated. An excerpt of the PDDL problem
file is shown in Figure 3. This file contains the required
sections of objects, initial conditions, and goal conditions.

3) PDDL File Processing: Once the PDDL files have
been generated, a wide variety of planners exist that could
be used to generate a PDDL solution file. In our particular
implementation, we are utilizing a variant of the classical FF
system by Hoffmann and Nebel [8].

IV. CONCLUSIONS AND FUTURE WORK

In this paper we have presented the first knowledge model
that is part of the IEEE RAS Ontologies for Robotics and
Automation, Industrial Robotics subgroup on kitting. This
abstraction begins with data that has been created by an
expert user as a state variable representation and encoded

into an OWL ontology. The knowledge is then automatically
transitioned into a Planning Domain Definition Language
that may be used by a class of planners to find a solution
that will provide for actions that will transition the system
for its initial state to a prescribed goal state.

This workstation is still very much a work in progress. The
IEEE working group has an active mailing list and meets in
person at both the IEEE ICRA and IROS conferences. At
present, we are working on connecting the planned action
sequence through the ROS control stack to our USARSim
virtual world. As the knowledge representation is exercised,
it is expected that shortcomings and missing data will be
detected. Our representation will be updated as necessary to
cope with these developments. In addition, the representation
will be expanded to include metrics that allow us to represent
not only the the information necessary for the construction
of a kit, but also for the representation of the quality of the
finished kit and the kit building process.

REFERENCES

[1] S. Balakirsky, Z. Kootbally, T. Kramer, R. Madhavan, C. Schlenoff,
and M. Shneier. Functional Requirements of a Model for Kitting
Plans. In Proceedings of the 2012 Performance Metrics for Intelligent
Systems (PerMIS’12), 2012.

[2] Y. A. Bozer and L. F. McGinnis. Kitting Versus Line Stocking: A
Conceptual Framework and Descriptive Model. International Journal
of Production Economics, 28:1–19, 1992.

[3] O. Carlsson and B. Hensvold. Kitting in a High Variation Assembly
Line. Master’s thesis, Luleå University of Technology, 2008.

[4] S. Carpin, M. Lewis, Jijun Wang, S. Balakirsky, and C. Scrapper.
USARSim: A Robot Simulator for Research and Education. In
Robotics and Automation, 2007 IEEE International Conference on,
pages 1400 –1405, april 2007.

[5] DARPA. The DARPA Agent Markup Language Homepage. In
http://www.daml.org, 2012.

[6] Willow Garage. Robot Operating System (ROS). In
http://www.willowgarage.com/pages/software/ros-platform, 2012.

[7] M. Ghallab, A. Howe, C. Knoblock, D. McDermott, A. Ram,
M. Veloso, D. Weld, and D. Wilkins. PDDL–The Planning Domain
Definition Language. Technical Report CVC TR98-003/DCS TR-
1165, Yale, 1998.

[8] J. Hoffmann and B. Nebel. The FF Planning System: Fast Plan
Generation Through Heuristic Search. Journal of Artificial Intelligence
Review, 14:253–302, 2001.

[9] J. Jiao, M. M. Tseng, Q. Ma, and Y. Zou. Generic Bill-of-Materials-
and-Operations for High-Variety Production Management. Concurrent
Engineering: Research and Applications, 8(4):297–321, December
2000.

[10] M. Klusch and A. Gerber. Semantic web service composition planning
with owls-xplan. In In Proceedings of the 1st Int. AAAI Fall
Symposium on Agents and the Semantic Web, pages 55–62, 2005.

[11] R. Madhavan, W. Yu, G. Biggs, and C. Schlenoff. IEEE RAS STand-
ing Committee for Standards Activities: History and Status Update.
Journal of Advanced Robotics Special Issue on Internationalization,
2011.

[12] D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. McDermott, S. McIl-
raith, S. Narayanan, M. Paolucci, B. Parsia, T. Payne, E. Sirin,
N. Srinivasan, and K. Sycara. OWL-S: Semantic Markup for Web
Services. In http://www.w3.org/Submission/OWL-S/, 2012.

[13] L. Medbo. Assembly Work Execution and Materials Kit Functionality
in Parallel Flow Assembly Systems. International Journal of Produc-
tion Economics Journal of Industrial Ergonomics, 31:263–281, 2003.

[14] D. Nau, M. Ghallab, and P. Traverso. Automated Planning: Theory
& Practice. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 2004.

[15] G.F. Schwind. How Storage Systems Keep Kits Moving. Material
Handling Engineering, 47(12):43–45, 1992.

[16] W3C. OWL 2 Web Ontology Language Document Overview. In
http://www.w3.org/TR/owl-overview/, 2012.


