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GENERALIZATIONS AND SPECIALIZATIONS OF GENERATING

FUNCTIONS FOR JACOBI, GEGENBAUER, CHEBYSHEV AND

LEGENDRE POLYNOMIALS WITH DEFINITE INTEGRALS

HOWARD S. COHL AND CONNOR MACKENZIE

Abstract. In this paper we generalize and specialize generating functions for classical orthogo-

nal polynomials, namely Jacobi, Gegenbauer, Chebyshev and Legendre polynomials. We derive

a generalization of the generating function for Gegenbauer polynomials through extension a two

element sequence of generating functions for Jacobi polynomials. Specializations of generat-

ing functions are accomplished through the re-expression of Gauss hypergeometric functions in

terms of less general functions. Definite integrals which correspond to the presented orthogonal

polynomial series expansions are also given.

1. Introduction

This paper concerns itself with analysis of generating functions for Jacobi, Gegen-

bauer, Chebyshev and Legendre polynomials involving generalization and specializa-

tion by re-expression of Gauss hypergeometric generating functions for these orthog-

onal polynomials. The generalizations that we present here are for two of the most

important generating functions for Jacobi polynomials, namely [4, (4.3.1–2)].1 In fact,

these are the first two generating functions which appear in Section 4.3 of [4]. As we

will show, these two generating functions, traditionally expressed in terms of Gauss hy-

pergeometric functions, can be re-expressed in terms of associated Legendre functions

(and also in terms of Ferrers functions, associated Legendre functions on the real seg-

ment (−1,1)). Our Jacobi polynomial generating function generalizations, Theorem 1,

Corollary 1 and Corollary 2, generalize the generating function for Gegenbauer polyno-

mials. The presented proofs of these generalizations rely upon the series re-arrangment

technique. The motivation for the proofs of our generalizations was purely intuitive.

Examination of the two Jacobi polynomial generating functions which we generalize,2

indicate that these generating functions represent two elements of an infinite sequence

of eigenfunction expansions.

Our generalized expansions and hypergeometric orthogonal polynomial generat-

ing functions are given in terms of Gauss hypergeometric functions. The Gauss hy-

pergeometric Jacobi polynomial generating functions which we generalize, as well as
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1The interesting question of which orthogonal polynomial generating functions are important is addressed

in [4, Section 4.3] (see also R. A. Askey’s MathSciNet review of Srivastava & Manocha (1984) [12]).
2As well as their companion identities, see Section 2.
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their eigenfunction expansion generalizations, are all re-expressible in terms of asso-

ciated Legendre functions. Associated Legendre functions [9, Chapter 14] are given

in terms of Gauss hypergeometric functions which satisfy a quadratic transformation

of variable. These have an abundance of applications in Physics, Engineering and Ap-

plied Mathematics for solving partial differential equations in a variety of contexts. Re-

cently, efficient numerical evaluation of these functions has been investigated in [11].

Associated Legendre functions are (specializations of and) less general than Gauss hy-

pergeometric functions because Gauss hypergeometric functions have three free pa-

rameters, whereas associated Legendre functions have only two. One can make this

argument of specialization with all of the functions which can be expressed in terms of

Gauss hypergeometric functions, namely (inverse) trigonometric, (inverse) hyperbolic,

exponential, logarithmic, Jacobi, Gegenbauer, and Chebyshev polynomials, and com-

plete elliptic integrals. We summarize how associated Legendre functions, Gegenbauer,

Chebyshev and Legendre polynomials and complete elliptic integrals of the first kind

are interrelated. In a one-step process, we obtain definite integrals from our orthogonal

polynomial expansions and generating functions.

To the best of our knowledge our generalizations, re-expressions of Gauss hyper-

geometric generating functions for orthogonal polynomials and definite integrals are

new and have not previously appeared in the literature. Furthermore, the generating

functions presented in this paper are some of the most important generating functions

for these hypergeometric orthogonal polynomials and any specializations and general-

izations will be similarly important.

This paper is organized as follows. In Sections 2, 3, 4, 5, 6, we present generalized

and specialized expansions for Jacobi, Gegenbauer, Chebyshev of the second kind,

Legendre, and Chebyshev of the first kind polynomials respectively. In Appendix A

we present definite integrals which correspond to the derived hypergeometric orthgonal

polynomial expansions. Unless stated otherwise the domains of convergence given in

this paper are those of the original generating function and/or its corresponding definite

integral.

Throughout this paper we rely on the following definitions. Let a1,a2,a3, . . . ∈ C .

If i, j ∈ Z and j < i, then ∑
j
n=i an = 0 and ∏

j
n=i an = 1. The set of natural num-

bers is given by N := {1,2,3, . . .} , the set N0 := {0,1,2, . . .} = N∪ {0} , and Z :=
{0,±1,±2, . . .}. Let D := {z ∈ C : |z| < 1} be the open unit disk.

2. Expansions over Jacobi polynomials

The Jacobi polynomials P
(α ,β )
n : C → C can be defined in terms of a terminating

Gauss hypergeometric series as follows ([9, (18.5.7)])

P
(α ,β )
n (z) :=

(α + 1)n

n!
2F1

(

−n,n + α + β + 1

α + 1
;

1− z

2

)

,
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for n ∈ N0 , and α,β > −1. The Gauss hypergeometric function 2F1 : C2 × (C\N0)×
D → C (see Chapter 15 in [9]) is defined as

2F1

(

a,b

c
;z

)

:=
∞

∑
n=0

(a)n(b)n

(c)n

zn

n!
,

where the Pochhammer symbol (rising factorial) (·)n : C → C [9, (5.2.4)] is defined by

(z)n :=
n

∏
i=1

(z+ i−1),

where n ∈ N0 . Note that the Gauss hypergeometric function can be analytically con-

tinued through, for instance, Euler’s integral representation for z ∈ C \ (1,∞) (see for

instance [2, Theorem 2.2.1]).

Consider the generating function for Gegenbauer polynomials (see Section 3 for

their definition) given by [9, (18.12.4)], namely

1

(1 + ρ2 −2ρx)ν
=

∞

∑
n=0

ρnCν
n (x). (1)

We attempt to generalize this expansion using the representation of Gegenbauer poly-

nomials in terms of Jacobi polynomials given by [9, (18.7.1)], namely

Cν
n (x) =

(2ν)n
(

ν + 1
2

)

n

P
(ν−1/2,ν−1/2)
n (x). (2)

By making the replacement ν − 1/2 to α and β in (1) using (2), we see that there

are two possibilities for generalizing the generating function for Gegenbauer polyno-

mials to a generating function for Jacobi polynomials. These two possibilities are given

below, namely (3), (7). The first possibility is given for ρ ∈ D\(−1,0] by [9, (18.12.3)]

1

(1 + ρ)α+β+1 2F1

(

α+β+1
2

, α+β+2
2

β + 1
;

2ρ(1 + x)

(1 + ρ)2

)

=

(

2

ρ(1 + x)

)β/2
Γ(β + 1)

Rα+1
P
−β
α (ζ+) =

∞

∑
n=0

(α + β + 1)n

(β + 1)n

ρnP
(α ,β )
n (x), (3)

where we have used the definitions

R = R(ρ ,x) :=
√

1 + ρ2−2ρx, ζ± = ζ±(ρ ,x) :=
1±ρ

√

1 + ρ2−2ρx
.

Note that the restriction given by ρ ∈ D \ (−1,0] is so that the values of ρ are en-

sured to remain in the domain of P
µ
ν , but may otherwise be relaxed to D by analytic

continuation if one uses the Gauss hypergeometric representation. The Ferrers func-

tion of the first kind representation given below provides the analytic continuation to
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the segment (−1,0] . Here P
µ
ν : C \ (−∞,1] → C is the associated Legendre function

of the first kind (see Chapter 14 in [9]), which can be defined in terms of the Gauss

hypergeometric function as follows [9, (14.3.6), (15.2.2), Section 14.21(i)]

P
µ
ν (z) :=

1

Γ(1− µ)

(

z+ 1

z−1

)µ/2

2F1

(

−ν,ν + 1

1− µ
;

1− z

2

)

. (4)

The associated Legendre function of the first kind can also be expressed in terms of the

Gauss hypergeometric function as (see [9, (14.3.18), Section 14.21(iii)]), namely

P
µ
ν (z) =

2µzν+µ

Γ(1− µ)(z2 −1)
µ/2 2F1

( −ν−µ
2

, −ν−µ+1
2

1− µ
;1− 1

z2

)

, (5)

where |arg(z− 1)| < π . We have used (5) to re-express the generating function (3).

We will refer to a companion identity as one which is produced by applying the map

x 7→ −x to an expansion over Jacobi, Gegenbauer, Chebyshev, or Legendre polyno-

mials with argument x , in conjunction with the parity relations for those orthogonal

polynomials.

We use the parity relation for Jacobi polynomials (see for instance [9, Table 18.6.1])

P
(α ,β )
n (−x) = (−1)nP

(β ,α)
n (x), (6)

and the replacement α,β 7→ β ,α in (3) producing a companion identity which gener-

alizes the generating function for Gegenbauer polynomials to a generating function for

Jacobi polynomials for ρ ∈ (0,1) by

1

(1−ρ)α+β+1 2F1

(

α+β+1
2

, α+β+2
2

α + 1
;
−2ρ(1− x)

(1−ρ)2

)

=

(

2

ρ(1− x)

)α/2
Γ(α + 1)

Rβ+1
P−α

β (ζ−) =
∞

∑
n=0

(α + β + 1)n

(α + 1)n

ρnP
(α ,β )
n (x). (7)

Note that the restriction given by ρ ∈ (0,1) is so that the values of ρ are ensured to

remain in the domain of P
µ
ν , but may otherwise be relaxed to D by analytic continuation

if one uses the Gauss hypergeometric representation. Here P
µ
ν : (−1,1) → C is the

Ferrers function of the first kind (associated Legendre function of the first kind on the

cut) through [9, (14.3.1)], defined as

P
µ
ν (x) :=

1

Γ(1− µ)

(

1 + x

1− x

)µ/2

2F1

(

−ν,ν + 1

1− µ
;

1− x

2

)

. (8)

The Ferrers function of the first kind can also be expressed in terms of the Gauss hy-

pergeometric function as (see [7, p. 167]), namely

P
µ
ν (x) =

2µxν+µ

Γ(1− µ)(1− x2)µ/2 2F1

( −ν−µ
2

, −ν−µ+1
2

1− µ
;1− 1

x2

)

, (9)
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for x∈ (0,1) . We have used (9) to express (7) in terms of the Ferrers function of the first

kind. One can easily see that (3) and (7) are generalizations of the generating function

for Gegenbauer polynomials by taking α = β = ν −1/2. The right-hand sides easily

follow using the identification (2) and the left-hand sides follow using [1, (8.6.16–17)].

There exist natural extensions of (3), (7) in the literature (see [4, (4.3.2)]). The

extension corresponding to (7) is given for ρ ∈ (0,1) by

(α + β + 1)(1 + ρ)

(1−ρ)α+β+2 2F1

(

α+β+2
2

, α+β+3
2

α + 1
;
−2ρ(1− x)

(1−ρ)2

)

=

(

2

ρ(1− x)

)α/2 (α + β + 1)(1 + ρ)Γ(α + 1)

Rβ+2
P−α

β+1
(ζ−)

=
∞

∑
n=0

(2n + α + β + 1)
(α + β + 1)n

(α + 1)n

ρnP
(α ,β )
n (x), (10)

and its companion identity corresponding to (3), for ρ ∈ D\ (−1,0] is

(α + β + 1)(1−ρ)

(1 + ρ)α+β+2 2F1

(

α+β+2
2

, α+β+3
2

β + 1
;

2ρ(1 + x)

(1 + ρ)2

)

=

(

2

ρ(1 + x)

)β/2 (α + β + 1)(1−ρ)Γ(β + 1)

Rα+2
P
−β
α+1(ζ+)

=
∞

∑
n=0

(2n + α + β + 1)
(α + β + 1)n

(β + 1)n

ρnP
(α ,β )
n (x). (11)

We have used (5), (9) to re-express these Gauss hypergeometric function generating

functions as associated Legendre functions. We have not seen the companion identity

(11) in the literature, but it is an obvious consequence of [4, (4.3.2)] using parity. Also,

we have not seen the associated Legendre function representations of (10), (11) in the

literature.

Upon examination of these two sets of generating functions, we suspected that

these were just two examples of an infinite sequence of such expansions. This led us to

the proof of the following theorem, which is a Jacobi polynomial expansion which gen-

eralizes the generating function for Gegenbauer polynomials (1). According to Ismail

(2005) [4, (4.3.2)], the generating functions (10), (11), their generalizations Theorem

1, Corollary 1 and their corresponding definite integrals (45), (45), are closely related

to the Poisson kernel for Jacobi polynomials, so our new generalizations will have cor-

responding applications.

THEOREM 1. Let m ∈ N0 , α,β > −1 , x ∈ [−1,1], ρ ∈ D\ (−1,0]. Then

(1 + x)−β/2

Rα+m+1
P
−β
α+m(ζ+) =

∞

∑
n=0

a
(α ,β )
n,m (ρ)P

(α ,β )
n (x), (12)
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where a
(α ,β )
n,m : D\ (−1,0]→ C is defined by

a
(α ,β )
n,m (ρ) :=

(2n + α + β + 1)Γ(α + β + n + 1)(α + β + m+ 1)2n

2β/2Γ(β + n + 1)

× 1

ρ (α+1)/2(1−ρ)m
P
−α−β−2n−1
−m

(

1 + ρ

1−ρ

)

.

Proof. Let ρ ∈ (0,ε) with ε sufficiently small. Then using the definition of the

following Gauss hypergeometric function

2F1

(

α+β+m+1
2

, α+β+m+2
2

β + 1
;

2ρ(1 + x)

(1 + ρ)2

)

=
∞

∑
n=0

(

α+β+m+1
2

)

n

(

α+β+m+2
2

)

n
(2ρ)n(1 + x)n

n!(α + 1)n(1 + ρ)2n
, (13)

the expansion of (1 + x)n in terms of Jacobi polynomials is given by

(1 + x)n = 2n(β + 1)n

n

∑
k=0

(−1)k(−n)k(α + β + 2k + 1)(α + β + 1)k

(α + β + 1)n+k+1(β + 1)k

P
(α ,β )
k (x), (14)

whose coefficients can be determined using orthogonality of Jacobi polynomials (see

Appendix A) combined with the Mellin transform given in [9, (18.17.36)]. By inserting

(14) in the right-hand side of (13), we obtain an expansion of the Gauss hypergeometric

function on the left-hand side of (13) in terms of Jacobi polynomials. By interchanging

the two sums (with justification by absolute convergence), shifting the n -index by k ,

and taking advantage of standard properties such as

(−n− k)k =
(−1)k(n + k)!

n!
,

(a)n+k = (a)k(a + k)n,

(a

2

)

n

(

a + 1

2

)

n

=
1

22n
(a)2n ,

n,k ∈ N0 , a ∈ C , produces a Gauss hypergeometric function as the coefficient of the

Jacobi polynomial expansion. The resulting expansion is

2F1

(

α+β+m+1
2

, α+β+m+2
2

β + 1
;

2ρ(1 + x)

(1 + ρ)2

)

=
∞

∑
n=0

f
(α ,β )
n,m (ρ)P

(α ,β )
n (x), (15)

where f
(α ,β )
n,m : (0,ε) → R is defined by
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f
(α ,β )
n,m (ρ) :=

(2n + α + β + 1)(α + β + 1)n(α + β + m+ 1)2n ρn

(β + 1)n(α + β + 1)2k+1(1 + ρ)2n

× 2F1

(

α+β+m+2n+1
2

, α+β+m+2n+2
2

α + β + 2n + 2
;

4ρ

(1 + ρ)2

)

.

The above expansion is actually analytic on D . However, if we express it in terms of

associated Legendre functions, then we must necessarily subdivide it into two regions.

The Gauss hypergeometric function coefficient of this expansion, as well as the Gauss

hypergeometric function on the left-hand of (15) are realized to be associated Legendre

functions of the first kind through (5). Both sides of the resulting Jacobi polynomial

expansion are analytic functions on ρ ∈ D \ (−1,0]. Since we know that (12) is valid

for ρ ∈ (0,ε), then by the identity theorem for analytic functions, the equation holds

on this domain. This completes the proof. �

Note that the left-hand side of Theorem 1 can be rewritten as

(ρ/2)β/2

Γ(β + 1)(1 + ρ)α+β+m+1 2F1

(

α+β+m+1
2

, α+β+m+2
2

β + 1
;

2ρ(1 + x)

(1 + ρ)2

)

.

We have also derived the companion identity to (12), which we give in the follow-

ing corollary.

COROLLARY 1. Let m ∈ N0 , α,β > −1 , x ∈ [−1,1] , ρ ∈ (0,1) . Then

(1− x)−α/2

Rβ+m+1
P−α

β+m
(ζ−) =

∞

∑
n=0

b
(α ,β )
n,m (ρ)P

(α ,β )
n (x), (16)

where b
(α ,β )
n,m : (0,1) → R is defined by

b
(α ,β )
n,m (ρ) :=

(2n + α + β + 1)Γ(α + β + n + 1)(α + β + m+ 1)2n

2α/2Γ(α + n + 1)

× 1

ρ (β+1)/2(1 + ρ)m
P
−α−β−2n−1
−m

(

1−ρ

1 + ρ

)

.

Proof. We start with (15) and apply the parity relation for Jacobi polynomials (6).

Let ρ ∈ (0,1) . The Gauss hypergeometric function coefficient of the Jacobi expansion

is seen to be a Ferrers function of the first kind (8). After the application of the parity

relation, the left-hand side also reduces to a Ferrers function of the first kind through

(9). This completes the proof. �

Theorem 1 generalizes (3), (11), while Corollary 1 generalizes (7), (10). Both The-

orem 1 and Corollary 1 generalize the generating function for Gegenbauer polynomials

(1), which is its own companion identity.
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2.1. Expansions and definite integrals from the Szegő transformation

If one applies on the complex plane, the Szegő transformation (conformal map)

z =
1 + ρ2

2ρ
, (17)

(which maps a circle with radius less than unity to an ellipse with foci at ±1) to the

expansion in Theorem 1, then one obtains a new expansion. By [13, Theorem 12.7.3],

this new Jacobi polynomial expansion is convergent for all x ∈ C within the interior of

this ellipse. Applying (17) to (12) yields the following corollary.

COROLLARY 2. Let m ∈ N0 , α,β > −1 , x,z ∈ C , with z ∈ C \ (−∞,1] on any

ellipse with the foci at ±1 and x in the interior of that ellipse. Then

(1 + x)−β/2

(z− x)(α+m+1)/2
P
−β
α+m





1 + z−
√

z2 −1
√

2(z−
√

z2 −1)(z− x)



=
∞

∑
n=0

c
(α ,β )
n,m (z)P

(α ,β )
n (x), (18)

where c
(α ,β )
n,m : C\ (−∞,1]→ C is defined by

c
(α ,β )
n,m (z) :=

(2n + α + β + 1)Γ(α + β + n + 1)(α + β + m+ 1)2n

2(β−α−m−1)/2Γ(β + n + 1)

× (z−
√

z2 −1)m/2

(

1− z+
√

z2 −1
)m P

−α−β−2n−1
−m

(

√

z+ 1

z−1

)

.

We would just like to briefly note that one may use the Szegő transformation (17)

to obtain new expansion formulae and corresponding definite integrals from all the Ja-

cobi, Gegenbauer, Legendre and Chebyshev polynomial expansions used in this paper.

For the sake of brevity, we leave this to the reader.

3. Expansions over Gegenbauer polynomials

The Gegenbauer polynomials C
µ
n : C→C can be defined in terms of a terminating

Gauss hypergeometric series as follows ([9, (18.5.9)])

Cµ
n (z) :=

(2µ)n

n!
2F1

(

−n,n + 2µ

µ + 1
2

;
1− z

2

)

, (19)

for n ∈ N0 and µ ∈ (−1/2,∞) \ {0}. The Gegenbauer polynomials (19) are defined

for µ ∈ (−1/2,∞) \ {0}. However many of the formulae listed below actually make

sense in the limit as µ → 0. In this case, one should take the limit of the expression

as µ → 0 with the interpretation of obtaining Chebyshev polynomials of the first kind

(see Section 6 for the details of this limiting procedure).
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COROLLARY 3. Let m∈N0, µ ∈ (−1/2,∞)\{0}, x∈ [−1,1] . If ρ ∈D\(−1,0],
then

1

R2µ+m
Cµ

m(ζ+) =
2Γ(2µ + m)

m!ρ µ(1−ρ)m

∞

∑
n=0

(n + µ)(2µ + m)2nP
−2µ−2n
−m

(

1 + ρ

1−ρ

)

Cµ
n (x),

(20)

and if ρ ∈ (0,1) then

1

R2µ+m
Cµ

m(ζ−) =
2Γ(2µ + m)

m!ρ µ(1 + ρ)m

∞

∑
n=0

(n + µ)(2µ + m)2nP
−2µ−2n
−m

(

1−ρ

1 + ρ

)

Cµ
n (x).

(21)

Proof. Using (12), substitute α = β = µ −1/2 along with (2) and [9, (14.3.22)],

namely

P
1/2−µ
n+µ−1/2

(z) =
2µ−1/2Γ(µ)n!√

π Γ(2µ + n)
(z2 −1)µ/2−1/4Cµ

n (z).

Through (4), we see that the Gauss hypergeometric function in the definition of the

associated Legendre function of the first kind on the right-hand side is terminating

and therefore defines an analytic function for ρ ∈ D . The analytic continuation to the

segment ρ ∈ (0,1] is provided by replacing the associated Legendre function of the first

kind with the Ferrers function of the first kind with argument (1−ρ)/(1 + ρ) . �

As an example for re-expression using specialization to associated Legendre func-

tions which was mentioned in the introduction, we now apply to two generating func-

tion results of Koekoek et al. (2010) [6, (9.8.32)] and Rainville (1960) [10, (144.8)].

THEOREM 2. Let λ ∈ C, µ ∈ (−1/2,∞)\ {0}, ρ ∈ (0,1), x ∈ [−1,1] . Then

(1− x2)1/4−µ/2P
1/2−µ
µ−λ−1/2

(R+ ρ) P
1/2−µ
µ−λ−1/2

(R−ρ)

=
21/2−µ

Γ(µ + 1
2
)

∞

∑
n=0

(λ )n (2µ −λ )n

(2µ)n Γ(µ + 1
2
+ n)

ρ µ−1/2+nCµ
n (x). (22)

Proof. The formula [6, (9.8.32)] gives a generating function for Gegenbauer poly-

nomials, namely

2F1

(

λ ,2µ −λ

µ + 1
2

;
1−R−ρ

2

)

2F1

(

λ ,2µ −λ

µ + 1
2

;
1−R+ ρ

2

)

=
∞

∑
n=0

(λ )n (2µ −λ )n

(2µ)n (µ + 1
2
)n

ρnCµ
n (x).

Using [9, (15.8.17)] to apply a quadratic transformation to the Gauss hypergeometric

functions and then using (5), with degree and order given by µ − λ − 1/2, 1/2− µ ,
respectively and either z = R + ρ or z = R − ρ , with simplification completes the

proof. �
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THEOREM 3. Let α ∈ C, µ ∈ (−1/2,∞)\ {0}, ρ ∈ (0,1), x ∈ [−1,1] . Then

(

1− x2
)1/4−µ/2

R1/2+α−µ
P

1/2−µ
µ−α−1/2

(

1−ρx

R

)

=
(ρ/2)µ−1/2

Γ(µ + 1
2
)

∞

∑
n=0

(α)n

(2µ)n

ρnCµ
n (x). (23)

Proof. On p. 279 of [10, (144.8)] there is a generating function for Gegenbauer

polynomials, namely

(1−ρx)−α
2F1

(

α
2
, α+1

2

µ + 1
2

;
−ρ2(1− x2)

(1−ρx)2

)

=
∞

∑
n=0

(α)n

(2µ)n

ρnCµ
n (x).

Using (5) to rewrite the Gauss hypergeometric function on the left-hand side of the

above equation completes the proof. �

4. Expansions over Chebyshev polynomials of the second kind

The Chebyshev polynomials of the second kind can be obtained from the Gegen-

bauer polynomials using [9, (18.7.4)], namely

Un(z) = C1
n(z), (24)

for n ∈ N0 . Hence and through (19), the Chebyshev polynomials of the second kind

Un : C → C can be defined in terms of a terminating Gauss hypergeometric series as

follows

Un(z) := (n + 1)2F1

(

−n,n + 2
3
2

;
1− z

2

)

. (25)

COROLLARY 4. Let m ∈ N0, x ∈ [−1,1]. If ρ ∈ D\ (−1,0] then

1

Rm+2
Um(ζ+) =

2(m+ 1)

ρ(1−ρ)m

∞

∑
n=0

(n + 1)(m+ 2)2n P−2n−2
−m

(

1 + ρ

1−ρ

)

Un(x), (26)

and if ρ ∈ (0,1) then

1

Rm+2
Um(ζ−) =

2(m+ 1)

ρ(1 + ρ)m

∞

∑
n=0

(n + 1)(m+ 2)2n P−2n−2
−m

(

1−ρ

1 + ρ

)

Un(x). (27)

Proof. Using (20), with (24) and

Um(z) =

√

π

2

m+ 1

(z2 −1)1/4
P
−1/2

m+1/2
(z), (28)

which follows from (4), (25), and [9, (15.8.1)]. Analytically continuing to the segment

ρ ∈ (0,1) completes the proof. �
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Note that using [1, (8.6.9)], namely

P
−1/2
ν (z) =

√

2

π

(

z2 −1
)−1/4

(2ν + 1)

[

(

z+
√

z2 −1
)ν+1/2

−
(

z+
√

z2 −1
)−ν−1/2

]

,

and (28) one can derive the elementary function representation for the Chebyshev poly-

nomials of the second kind [8, (1.52)].

COROLLARY 5. Let ρ ∈ D, x ∈ [−1,1] . Then

(1− x2)−1/4P
−1/2

1/2−λ (R+ ρ)P
−1/2

1/2−λ (R−ρ)

=
25/2√ρ

π

∞

∑
n=0

(λ )n (2−λ )n 22nρn

(2n + 2)!
Un(x). (29)

Proof. Substituting µ = 1 into (22), and using (24) with simplification, completes

the proof. �

COROLLARY 6. Let α ∈ C, ρ ∈ (0,1), x ∈ [−1,1] . Then

R1/2−α

(1− x2)1/4
P
−1/2

1/2−α

(

1−ρx

R

)

=

√

2ρ

π

∞

∑
n=0

(α)n

(n + 1)!
ρnUn(x). (30)

Proof. Using (24), and substituting µ = 1 into (23) with simplification, produces

this generating function for Chebyshev polynomials of the second kind. �

5. Expansions over Legendre polynomials

Legendre polynomials can be obtained from the Gegenbauer polynomials using

[9, (18.7.9)], namely

Pn(z) = C
1/2
n (z), (31)

for n ∈ N0 . Hence and through (19), the Legendre polynomials Pn : C → C can be

defined in terms of a terminating Gauss hypergeometric series as follows

Pn(z) := 2F1

(

−n,n + 1

1
;

1− z

2

)

. (32)

Using (31) we can write the previous expansions over Gegenbauer polynomials in terms

of expansions over Legendre polynomials.

COROLLARY 7. Let m ∈ N0, x ∈ [−1,1] . If ρ ∈ D\ (−1,0] then

1

Rm+1
Pm(ζ+) =

(1−ρ)−m

√
ρ

∞

∑
n=0

(2n + 1)(m+ 1)2nP−2n−1
−m

(

1 + ρ

1−ρ

)

Pn(x), (33)
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and if ρ ∈ (0,1) then

1

Rm+1
Pm(ζ−) =

(1 + ρ)−m

√
ρ

∞

∑
n=0

(2n + 1)(m+ 1)2n P−2n−1
−m

(

1−ρ

1 + ρ

)

Pn(x). (34)

Proof. Using (20), substitute µ = 1/2 with (31) and Pm(z) = P0
m(z), which fol-

lows from (4), (32). Analytic continuation to ρ ∈ (0,1) completes the proof. �

COROLLARY 8. Let λ ∈ C, ρ ∈ {x ∈ C : |z| < 1}, x ∈ [−1,1] . Then

P−λ (R+ ρ)P−λ (R−ρ) =
∞

∑
n=0

(λ )n (1−λ )n

(n!)2
ρnPn(x). (35)

Proof. Substituting µ = 1/2 into (22) and using (31) with simplification com-

pletes the proof. �

Note that Corollary 8 is just a restatement of [14, Theorem A], and therefore The-

orem 2 is a generalization of Brafman’s theorem.

COROLLARY 9. Let α ∈ C, ρ ∈ D, x ∈ [−1,1]. Then

R−α Pα−1

(

1−ρx

R

)

=
∞

∑
n=0

(α)n

n!
ρnPn(x). (36)

Proof. Substituting µ = 1/2 in (23) with simplification completes the proof. �

As a further example of the specialization to associated Legendre functions men-

tioned in the introduction, we apply to the recent generating function results of Wan &

Zudelin (2012) [14].

THEOREM 4. Let x,y be in a neighborhood of 1. Then

π2

2

∞

∑
n=0

( 1
2
)2

n

(n!)2
P2n

(

(x + y)(1− xy)

(x− y)(1 + xy)

)(

x− y

1 + xy

)2n

=



























































































π2

2
if x = y = 1,

1 + xy

xy
K

(√
x2 −1

x

)

K

(

√

y2 −1

y

)

if x,y > 1,

1 + xy

x
K

(√
x2 −1

x

)

K
(

√

1− y2
)

if x > 1 and y 6 1,

1 + xy

y
K
(
√

1− x2
)

K

(

√

y2 −1

y

)

if x 6 1 and y > 1,

(1 + xy)K
(
√

1− x2
)

K
(

√

1− y2
)

if x,y 6 1.
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Proof. If we start with (10) from [14], namely

∞

∑
n=0

(

1
2

)2

n

(n!)2
P2n

(

(x + y)(1− xy)

(x− y)(1 + xy)

)(

x− y

1 + xy

)2n

=
1 + xy

2
2F1

(

1
2
, 1

2

1
;1− x2

)

2F1

(

1
2
, 1

2

1
;1− y2

)

,

and use [9, (15.9.21)] we can express the Gauss hypergeometric functions as Legendre

functions. For instance

2F1

(

1
2
, 1

2

1
;1− x2

)

= P−1/2(2x2 −1),

with x ∈ C \ (−∞,0] . This domain is as such because the Legendre function of the

first kind Pν and the Ferrers function of the first kind Pν , both with order µ = 0, are

given by the same Gauss hypergeometric function and are continuous across argument

unity (cf. (4), (8)). So there is no distinction between these two functions, except that

the Ferrers function has argument on the real line with modulus less than unity and

the Legendre function is defined on C \ (−∞,1) (both being well defined with argu-

ment unity). (Hence there really is no need to use two different symbols to denote this

function.) The proof is completed by noting the two formulae

P−1/2(z) =
2

π

√

2

z+ 1
K

(

√

z−1

z+ 1

)

, P−1/2(x) =
2

π
K

(
√

1− x

2

)

[1, (8.13.1), (8.13.8)], where K : [0,1) → [π/2,∞) is the complete elliptic integral of

the first kind defined by [9, (19.2.8)]

K(k) :=
π

2
2F1

(

1
2
, 1

2

1
;k2

)

. �

THEOREM 5. Let x,y be in a neighborhood of 1. Then

3
∞

∑
n=0

(

1
3

)

n

(

2
3

)

n

(n!)2
P3n

(

x + y−2x2y2

(x− y)
√

1 + 4xy(x + y)

)(

x− y
√

1 + 4xy(x + y)

)3n

.

=
√

1 + 4xy(x + y)







































1 if x = y = 1

P−1/3

(

2x3 −1
)

P−1/3

(

2y3 −1
)

if x,y > 1

P−1/3

(

2x3 −1
)

P−1/3

(

2y3 −1
)

if x < 1 and y > 1

P−1/3

(

2x3 −1
)

P−1/3

(

2y3 −1
)

if x > 1 and y < 1

P−1/3

(

2x3 −1
)

P−1/3

(

2y3 −1
)

if x,y < 1

Proof. This follows by [14, (11)] and [9, (15.9.21)]. �
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6. Expansions over Chebyshev polynomials of the first kind

The Chebyshev polynomials of the first kind Tn : C → C can be defined in terms

of a terminating Gauss hypergeometric series as follows [7, p. 257]

Tn(z) := 2F1

(

−n,n
1
2

;
1− z

2

)

, (37)

for n ∈ N0 . The Chebyshev polynomials of the first kind can be obtained from the

Gegenbauer polynomials using [2, (6.4.13)], namely

Tn(z) =
1

εn

lim
µ→0

n + µ

µ
Cµ

n (z), (38)

where the Neumann factor εn ∈ {1,2} , commonly seen in Fourier cosine series, is

defined as εn := 2− δn,0.

COROLLARY 10. Let m ∈ N0, x ∈ [−1,1] . If ρ ∈ D\ (−1,0] then

1

Rm
Tm(ζ+) =

1

(1−ρ)m

∞

∑
n=0

εn(m)2n P−2n
−m

(

1 + ρ

1−ρ

)

Tn(x), (39)

and if ρ ∈ (0,1) then

1

Rm
Tm(ζ−) =

1

(1 + ρ)m

∞

∑
n=0

εn(m)2n P−2n
−m

(

1−ρ

1 + ρ

)

Tn(x). (40)

Proof. Using (20), (38), and

Tm(z) =

√

π

2
(z2 −1)1/4P

1/2

m−1/2
(z), (41)

which follows from (4), (37), [9, (15.8.1)]. Analytic continuation to ρ ∈ (0,1) com-

pletes the proof. �

Note that using [1, (8.6.8)], namely

P
1/2
ν (z) =

1√
2π

(

z2 −1
)−1/4

[

(

z+
√

z2 −1
)ν+1/2

+
(

z+
√

z2 −1
)−ν−1/2

]

,

and (41) one can derive the elementary function representation for the Chebyshev poly-

nomials of the first kind [5, p. 177].
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Appendix A. Definite integrals

As a consequence of the series expansions given above, one may generate corre-

sponding definite integrals (in a one-step procedure) as an application of the orthogo-

nality relation for these hypergeometric orthogonal polynomials. We now describe this

correspondence. Given an expansion over a set of orthogonal polynomials pn such that

f (x) =
∞

∑
n=0

an pn(x), (42)

and the orthogonality relation

∫ 1

−1
pn(x)pm(x)w(x)dx = cnδn,m, (43)

where w : (−1,1) → [0,∞), then using (43) one has

∫ 1

−1
f (x)pn(x)w(x)dx =

∞

∑
m=0

am

∫ 1

−1
pn(x)pm(x)w(x)dx = ancn,

and therefore

an =
1

cn

∫ 1

−1
f (x)pn(x)w(x)dx. (44)

The definite integral expression (44) for the coefficient an is of equal importance to

the expansion (42), since one may use it to derive the other. Integrals of such sort are

always of interest since they are very likely to find applications in applied mathematics

and theoretical physics and could be included in tables of integrals such as [3].

For Jacobi, Gegenbauer, Chebyshev of the second kind, Legendre, and Chebyshev

of the first kind polynomials, the orthogonality relations can be found in [9, (18.2.1),

(18.2.5), Table 18.3.1]. Using the above procedure, we obtain the following definite

integrals for products of special functions with Jacobi, Gegenbauer, Chebyshev and

Legendre polynomials. Let m,n ∈ N0 , α,β > −1, ρ ∈ {z ∈ C : 0 < |z| < 1}\ (−1,0] .
Then

∫ 1

−1

(1− x)α(1 + x)β/2

Rα+m+1
P
−β
α+m(ζ+)P

(α ,β )
n (x)dx

=
2α+β/2+1Γ(α + n + 1)(α + β + m+ 1)2n

n!ρ (α+1)/2(1−ρ)m
P
−α−β−2n−1
−m

(

1 + ρ

1−ρ

)

.

Let ρ ∈ (0,1). Then

∫ 1

−1

(1− x)α/2(1 + x)β

Rβ+m+1
P−α

β+m
(ζ−)P

(α ,β )
n (x)dx

=
2α/2+β+1Γ(β + n + 1)(α + β + m+ 1)2n

n!ρ (β+1)/2(1 + ρ)m
P
−α−β−2n−1
−m

(

1−ρ

1 + ρ

)

.
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Let µ ∈ (−1/2,∞)\ {0}, ρ ∈ {z ∈ C : 0 < |z| < 1} \ (−1,0]. Then

∫ 1

−1

(1− x2)µ−1/2

R2µ+m
Cµ

m(ζ+)Cµ
n (x)dx

=
22−2µπΓ(2µ + n)Γ(2µ + 2n + m)

m!n!Γ2(µ)ρ µ(1−ρ)m
P
−2n−2µ
−m

(

1 + ρ

1−ρ

)

.

A similar integral on ρ ∈ (0,1) can be obtained using (21).

It should be noted that by using (24), (31), (38), the previous definite integral over

Gegenbauer polynomials can be written as an integral over Chebyshev polynomials of

the first and second kind, and well as Legendre polynomials. Let λ ∈ C , ρ ∈ D. Then

∫ 1

−1
(1− x2)µ/2−1/4P

1/2−µ
µ−1/2−λ

(R+ ρ)P
1/2−µ
µ−1/2−λ

(R−ρ)Cµ
n (x)dx

=
(λ )n (2µ −λ )n ρn+µ−1/2 2µ−1/2

(n + µ)Γ(2µ)(µ + 1/2)n n!
.

Let ρ ∈ (0,1) . Then

∫ 1

−1

(1− x2)1/4−µ/2

R1/2−µ+λ
P

1/2−µ
µ−λ−1/2

(

1−ρx

R

)

Cµ
n (x)dx

=
(λ )n

√
πρn+µ−1/2 21/2−µ

(n + µ)Γ(µ)n!
.

The previous two definite integrals over Gegenbauer polynomials can also be written

as integrals over Chebyshev polynomials of the second kind and Legendre polynomials

using (24), (31).
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