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SUMMARY & CONCLUSIONS1 

The advent of smaller, faster, and always connected 
handheld devices along with the ever-increasing reliance on 
technology for our everyday activities have introduced novel 
threats and risks. Beyond hardware security another primary 
factor that affects the reliability of the device is mobile 
applications. Indeed, the shift to smart commercially available 
mobile devices has created a pressing need for understanding 
the risks in using foreign mobile code running on the mobile 
devices. This new generation of smart devices, including 
iPhone and Google Android, are powerful enough to 
accomplish most of the user tasks previously requiring a 
personal computer. In our paper, we discuss the cyber threats 
that stem from these new smart device capabilities and the on-
line application markets for mobile devices. These threats 
include malware, data exfiltration, exploitation through USB, 
and user and data tracking.  

In this manuscript, we present our efforts towards a 
framework for exposing the functionality of a mobile 
application through a combination of static and dynamic 
program analysis that attempts to explore all available 
execution paths including libraries. We verified our approach 
by testing a large number of Android applications with our 
dynamic analysis framework to exhibit its functionality and 
viability.  The framework allows complete automation of the 
execution process so that no user input is required. We also 
discuss how our static analysis output can be used to inform 
the execution of the dynamic analysis. Our approach can serve 
as an extensible basis to fulfill other useful purposes such as 
symbolic execution, program verification, interactive 
debugger, and other approaches that require deep inspection of 
an Android application.   

In summary, we believe that our efforts are the beginning 
of a long journey to asserting and exposing the risks of 
commercially available mobile devices. Our future work will 
include non-Android platforms. 
 

1 INTRODUCTION 

Static analysis of application code serves as a useful 
method to examine the possible behavior that an application 
can exhibit; however, static analysis is constrained to certain 
functionality due to its inherent limitations of not actually 
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executing the code [1].  Static analysis is susceptible to false 
positives, false negatives, and obfuscation [2, 3].  The 
precision of the analysis increases when the analysis process 
better understands the semantics of the code and is able to 
observe the state of an application.  When using dynamic 
analysis, test inputs need to be randomly generated, come 
from a pre-generated set, or be input by an active entity.  
Dynamic analysis may or may not get complete coverage of 
the code, but all the instructions executed will be reachable 
and the application's true behavior can be observed.   

We have developed a process for static and dynamic 
analysis of Android programs. Our approach allows us to 
perform a quick, first-pass analysis and in-depth analysis to 
understand the behavior of Android applications. The dynamic 
analysis framework runs on a computer and performs concrete 
execution of an Android application while abstracting certain 
details from the execution of the application.  This abstraction 
allows the dynamic analysis to automate the analysis of as 
many paths as possible through the application without 
requiring any user input.  Due to the abstraction, automation is 
achieved, but the precision of the analysis is reduced.  The 
abstraction is necessary due to not running the application on 
an Android-enabled phone and the absence of the Android 
Application Programming Interface (API) in disassembled 
applications, although we can still utilize the Java API calls 
resident within the Android API.  The dynamic analysis 
framework only requires an Android Package (apk) file, which 
is the compressed format used to encapsulate the constituent 
files of an Android application into a single file.   

To get as close as possible to complete coverage of the 
code, a method must exist to affect the control flow of the 
application.  As each conditional statement is encountered, 
either the values of the variables would need to be changed at 
runtime to obtain the desired outcome, determined a priori by 
symbolic analysis, or be forced by controlling the jump to a 
particular branch independent of the outcome of the Boolean 
condition being evaluated.  This type of execution approach 
[4, 5, 6] stresses the application by entering as many branches 
as possible to make the application exhibit different types of 
behavior. 
The impetus behind this approach is to maximize the coverage 
in terms of code, as opposed to examining the behavior of the 
application exhibited by a more limited number of execution 
traces.  This is important because malware can contain very 
specific conditions that must be met in order for it to display 
malicious behavior [7].  In certain instances, the behavior is 
triggered by certain events such as specific times, dates, 
hostnames, local IP addresses, the presence of a file, and other 
factors.  In addition, an application may restrain its malicious 



functionality when it determines that it is being debugged, 
running in an emulator, or some other type of controlled 
execution environment [8]. 
 

 
 
Figure 1.  Overall task flow for Analysis of Android 
Applications. 
 

2 STATIC ANALYSIS 

To expose security and reliability risks, we developed a 
static analysis suite to quickly examine an Android application 
in order to examine the possible behavior of the application. 
Figure 1 shows the steps of the static analysis. The static 
analysis performs an in-depth scan of an application’s 
requested permissions and its corresponding functionality 
based on the API calls detected in the decompiled code, and 
then reports any discrepancies between the two.  Research has 
shown that Android application developers have a tendency to 
request superfluous permissions for their applications [9].  In 
addition, an application may lack permission(s) even though 
its functionality justifies its inclusion in its 
AndroidManifest.xml file. 

Certain Android API calls will require the application to 
declare one or more permission for the call to execute 
successfully.  In addition, to the permission analysis that 
examines the correspondence between permissions and API 
call, the static analysis process also classifies sensitive API 
calls into categories based on behavior.  After the static 
analysis has completed, a list of API calls, if any, 
corresponding to each category is generated. For the most part, 
these categories in the static analysis correspond to the groups 
that are used in the dynamic analysis..The groups are: 
commands executed, execution of binaries, Java reflection, 
loading of libraries, network events, files accessed, dynamic 
class-loading, etc. The list of API calls for each category also 
lists the file name and line number of each API call 
occurrence, so that further analysis can be performed to obtain  
more context for the API call. 

The static analysis process enumerates the list of method 
calls and Android API calls that the application can make.  
The analysis also extracts hard-coded values from the 
application.  It will parse through the smali [10] files of the 
application to find all the initialization of strings in the 
application. The smali format is a human-readable 
representation of the Dalvik bytecode, which shows the 
instructions as well as the register numbers, object types, and 
literal values that can be used as arguments to the instructions.  
This set of strings from the smali files can then be parsed for 
known malicious URLs or suspicious strings such as nc, su, 
etc.  This only works for hard-coded values where the 

  
Figure 2.  Simple domain name obfuscation using String 
manipulation. 
 
application developer has not made any attempt at obfuscating 
the value.  For example, there is an Android application with 
the package name of “com.antivirus.kav”, which uses a 
simple technique to obfuscate the actual domain that it 
connects to.  The method called LinkAntivirus in the 
application returns a domain that has been transformed using 
three calls to the replace method of the java.lang.String class.  
Figure 2 shows the smali  for the LinkAntivirus method, 
which upon conclusion will ultimately return a String 
containing http://routingsms.com/z.php. 

We executed the application within the dynamic analysis 
framework to obtain a better understanding of the 
functionality of the application.  The dynamic analysis output 
revealed that the application connects to this domain using the 
openConnection method of the java.net.URL class.  The 
application also appends the phone number, the device ID, and 
the subscriber ID of the phone to this domain which occurs in 
the GetRequest method of the SmsReceiver class within the 
application.  Performing static analysis on the files of the 
disassembled application would not be able to detect the 
obfuscated domain, as well as the phone-specific information 
it appends to the domain. 

We plan to use the static analysis to identify all the 
sensitive calls in an application and then try to determine a 
path or paths to the sensitive call from one of the entry points 
of the application.  The path information would be of the form 
of the application component to start from and then a sequence 
of conditional jump values to input, switch cases to enter, and 
callbacks to execute. A list of methods is not needed since the 
dynamic analysis program always executes each method call it 
encounters.  The output of the static analysis can be used to 
guide the dynamic analysis as to how to reach the sensitive 
calls within an application.  This would significantly improve 
the performance of the dynamic analysis since it currently 
performs an exhaustive search for un-traversed executed paths 
through the application.  The static analysis output can 
augment and reinforce the dynamic analysis process by 
directing it in an intelligent manner. 



3 DYNAMIC ANALYSIS 

3.1 Dalvik Bytecode and Java implementation 

We utilized apktool, a free open-source utility, which 
unpacks an apk file into its constituent resources and 
disassembles the Android application's classes.dex file into a 
format called smali.  Each application contains a single 
classes.dex file, and apktool disassembles it into a directory 
tree of smali files.  Each smali file corresponds to a single Java 
class file.  Android applications are written in Java and 
converted to Dalvik bytecode. 

Dalvik bytecode uses 1 byte to denote the opcode for an 
instruction.  This yields 256 possible instructions although 
there are currently only 226 instructions in use [11].  We 
examined the documentation for the instructions and 
developed a Java implementation for all of the instructions 
that occur in Dalvik bytecode.  This enables us to perform 
concrete execution of an Android application's bytecode 
within certain limitations.  Although the Android API is 
notably absent from the disassembled application, certain API 
calls from the wrapper classes for primitive data types, the 
java.lang.reflect package, the java.lang.String class, the 
java.lang.System class, the java.lang.Runtime class, and 
different classes to load classes dynamically are handled by 
our dynamic analysis framework. In addition, we also leverage 
the Java API since dynamic analysis executes inside the Java 
Virtual Machine, which allows us to creates a wrapper around 
certain Java API calls and have them executed.   

Dalvik bytecode uses registers, as opposed to a stack, to 
pass and maintain the values of primitive data types and object 
references as an optimization for the mobile platform [12].  
Our dynamic analysis creates a register entry object to keep 
track of the following data: type, object type (if applicable), 
value, register number, variable name, elements (for arrays), 
and fields (for objects).  The value attribute in the register 
entry object is stored as a string, and it is converted to the 
format of its respective primitive data type once it is used in 
an operation.  Dalvik bytecode does not declare the primitive 
data type belonging to the literal value being loaded into a 
register.  Davlik bytecode has mathematical and logic 
instructions specifically to operate on different primitive data 
types.  The value variable retains the literal value, in hex, in 
the register entry object until the register is used as a 
parameter to a mathematical or logic instruction.  The type of 
the primitive data type can be inferred by the type of 
instruction that it is used in. 

When an Android API call, which is not specifically 
handled by the dynamic analysis, is encountered, then the code 
for the API call is not actually executed and a register entry 
object of its return type, if any, is created.  A default value is 
used for primitive data types in this scenario. We use an 
abstract representation for the objects that are returned from 
Android API calls, which are not specifically handled by our 
dynamic analysis. These objects will have the same 
corresponding type but they will have no state.  The state can 
be built as operations from the application to set the value of 
the instance variables of an object.   

 This limitation can be overcome by incorporating a more 
dynamic approach where an Android-enabled phone is 

employed to handle all API calls that our dynamic analysis 
framework does not specifically handle.  In addition, random 
values could be used for the values of the primitive data types, 
as well as the use of shadow objects.  For a more dynamic 
approach, the phone would be tethered to the computer 
running the dynamic analysis.  This could be achieved by 
using the standard format, which is used for the creation of 
objects and the calling of methods using Java reflection.   

3.2 Dynamic Analysis - Structure and Operation 

There are two primary components that comprise the 
dynamic analysis framework: the execution module and the 
controller module.  The execution module handles the 
execution of the Dalvik bytecode and contains data structures 
related to a single execution path through the Android 
application.  The controller contains a stack to temporarily 
retain data about each method that is called.  As the execution 
encounters method calls and returns, the stack grows and 
shrinks, respectively.  The controller module creates a new 
instance of the execution module after it completes each 
execution path.  Certain data is transferred from the execution 
module to the controller module before each execution module 
is replaced by a new instance of itself.  A single instance of 
the controller module persists until all the possible execution 
paths have been traversed or the time limit, if used, is reached.  
An optional time limit can be used to bound the execution 
time of the dynamic analysis.  The execution of different paths 
through the application is modeled using a binary tree [13].  
The controller module contains the logic to determine: (1) 
which path should be taken when a conditional statement is 
encountered, (2) the management of the binary tree (i.e., 
insertion of nodes and updating the state of nodes), and (3) 
various routines for detecting loops, maintenance of ancillary 
data structures, handling recursion, and detecting infinite 
loops.   

An Android application can have various entry points into 
the application which are called application components [14].  
The AndroidManifest.xml file enumerates the list of entry 
points into an application.  The dynamic analysis framework 
parses the AndroidManifest.xml file to get the list of the 
application components and sequentially performs forced path 
execution on each.  A binary tree is created for each 
application component.  The dynamic analysis framework 
starts execution of the class constructor, constructor, and 
initial method (i.e., onCreate or onReceive) for the application 
component after examining its corresponding smali file which 
associates application components with their initial class.  The 
initial method, and any other method that is called, is searched 
for infinite loops before the execution of the method begins.   

In the case of a conditional statement or switch statement, 
the dynamic analysis will locate the appropriate branch to 
execute within the method by examining the binary tree to 
determine which path(s) from the node have not been 
traversed.  In the event of a method call, the smali directory 
tree is searched to determine if the code is available in the 
smali directory tree.  If the code for the method is not 
available (i.e., Android API call) and the method has a return 
type that is not void, then a register entry object with no state 
is created with the return type of the method.  If the code is 



present for the method call in the smali directory tree, all of 
the data related to the current method, variable values, 
execution location, and various data structures related to the 
processing of the method remain on the stack and the data 
related to the new method is pushed onto the stack.  The stack 
easily enables the resumption of the execution of the previous 
method once a called method returns.  The output from 
processing each application component is: (1) a method call 
graph, (2) control flow graph, (3) the output of an in-order 
traversal of the binary tree, (4) a list of the jump values for 
each conditional statement taken for each execution through 
the application component, and (5) a list of relevant behaviors 
of the application (e.g., commands executed, execution of 
binaries, Java reflection, loading of libraries, network events, 
files accessed, dynamic class-loading, etc.).  The dynamic 
analysis process could easily be modified to search for and 
record any functionality or behavior.   

3.3 Forced Path Execution 

To get full coverage of the execution paths through the 
code, the dynamic analysis controls the outcome of the 
evaluation of the Boolean condition for conditional 
statements.  When a conditional statement is encountered, the 
execution module queries the controller module for what the 
outcome of the Boolean condition should be depending on 
which path(s) from the node have not been taken.  This 
alleviates the importance of actual values that are evaluated in 
conditional statements since all possible paths are taken (or as 
many as possible before time expires).  Taking all available 
paths yields a comprehensive view of the application's 
behavior.  Dalvik bytecode has 12 different instructions to 
evaluate if conditional statements and 2 instructions to 
evaluate switch statements.  The 12 instructions for if 
conditional statements have two possible outcomes.  If the 
Boolean expression in an if statement evaluates to true, then 
execution continues after jumping to a particular code branch.  
If the Boolean condition of an if  statement evaluates to false, 
then execution continues on a different branch (i.e., linear 
execution from the conditional statement).  Switch statements 
will have at least one case and possibly a default case that is 
executed if all of other cases evaluate to false.  The switch 
case that evaluates to true will have execution continue at the 
specific branch associated with the switch case. 

The paths taken through the application are modeled 
using a binary tree.  The nodes in the binary tree represent 
conditional statements that alter the control flow of the 
application.  As conditional statements are encountered they 
are inserted into the binary tree assuming that the conditional 
statements are not part of a path that has already been 
traversed.  If execution traverses a path that partially overlaps 
with another path that has already been traversed, then the 
reference to the current node will be moved along already 
established nodes in the binary tree until the paths diverge.  
Specifically, a node can represent an if conditional statement 
or a case of a switch statement.  Unconditional jumps are not 
included since they occur without any condition being 
evaluated.  Each node in the tree contains the following 
components {type/name, relative path and file name, line 
number, method, and switch name (if any)}.  These attributes 

of each node uniquely identify a conditional statement within 
an application. 

Each node will have two child nodes unless it is a leaf 
node – leaf nodes represent the conclusion of an execution 
path through the application.  This can be caused by the 
eventual return from the initial method, detection of an infinite 
loop, or encountering an API call that causes the JVM to exit.  
Once a conditional statement is encountered, the two options 
are to make the jump to a specific branch if the Boolean 
condition is true or to continue linear execution if the Boolean 
condition is false.  In the binary tree, the right child represents 
the next if conditional statement or switch statement case that 
is encountered when the Boolean condition of the current 
conditional statement evaluates to true and the jump to that 
particular branch is taken.  The left child represents the next if 
conditional statement or switch statement case that is 
encountered when the evaluated condition of the current 
conditional statement evaluates to false and linear execution 
occurs.  During our dynamic analysis process, following a 
jump (i.e., Boolean condition is true) is represented by the 
integer value 1 and continuing linear execution (i.e., Boolean 
condition is false) is represented by the integer value of 0. 

The binary tree contains instance variables that reference 
the current node, the previous node, and the root node.  The 
current node variable represents the current conditional 
statement or switch statement case that is currently being 
processed.  The previous node variable represents the node 
that was immediately processed before the current node.  The 
root variable references the root node of the binary tree.  Each 
node contains Boolean variables representing whether the 
node itself is finished, whether its left child node is finished, 
and whether its right child node is finished.  A node is 
considered to be finished when its left child node and right 
child node are both finished indicating that all possible 
execution paths starting from the node have been completed.   

Once an execution path is finished, a finished node 
representing the completion of an execution path is inserted as 
the left child or right child of the current node depending on 
the value of the last jump taken.  The finished node has its left 
child finished, right child finished, and node finished Boolean 
variables set to true.  After the finished node is inserted, the 
tree is traversed to update any Boolean variables that indicate 
whether the Boolean variables for the left child, right child, or 
the node itself is finished for all nodes.  This is a process that 
starts updating the Boolean variables after an execution path 
completes.  The traversals occur until no Boolean values are 
modified throughout an entire traversal of the binary tree.  As 
an execution path is taken, the Boolean variables representing 
whether a node's child nodes are finished for each node on the 
path are examined to ensure that the path has not already been 
traversed.  This process repeats until the root node becomes 
finished by having both its left and right child nodes become 
finished which indicates that all possible paths through the 
application component has been traversed. 

We have taken various measures to bound the execution 
time of an application during execution.  We have limited 
recursion, cyclical calling of methods to each other, the 
number of loop iterations allowed, and execution time.  We 
make an attempt to detect infinite loops, although it is not 



possible to detect all infinite loops due to the halting problem. 
There are certain cases where it is straightforward to detect an 
infinite loop such as a method lacking a return statement and 
continuous iteration of code between an unconditional jump 
and its target location that it jumps to.  Bounding the analysis 
time of the application, however, obviates the possibility of 
execution causing an infinite loop.   

3.4 Runtime File I/O Events 

File I/O events can provide a valuable source of 
information for security inspection of Android applications 
[15]. The file I/O activities include file creation on the file 
system, reading from files, writing to them or deleting them 
from the file system.  Malicious apps make extensive use of 
file I/O for various malicious activities.  For instance, many 
malware families include publicly available root exploits in 
their packages in either plain or obfuscated form [16].  As 
another example, consider a malicious app which masquerades 
as a legitimate app to steal a user’s credentials, the app might 
save the information as a file if a network connection is not 
currently available for sending the credentials back to its 
remote server.  To avoid raising suspicion, a malicious app 
could delete its files once it has successfully used them for its 
malicious activities.  To gain better visibility into file I/O 
activity of apps, we utilize system calls made to the kernel to 
fully capture the file I/O content.    
 

The linux kernel constitutes the lowest level in the 
Android's architecture.  As a result, all user space requests 
made by apps have to pass through the system call interface to 
get executed in the hardware.  Capturing the file I/O content at 
the system call level provides an accurate picture of app 
behavior.  We use the strace program to capture a full dump 
(HEX and ASCII) of each read and write system call made on 
behalf of the app under monitoring. A numerical file 
descriptor specifies the target for a read or write system call.  
To gain better insight, we correlate the file descriptor 
argument of each read/write system call with its actual file.  
To do this, we record all the file descriptors to file mappings, 
which happen in the open system call.  This way, we would be 
able to identify the file associated with a file descriptor used as 
an argument in a subsequent read/write system call.  However, 
when the target of a read or write call is not a file on the file 
system, for instance, when named pipes or Unix domain 
sockets are used for inter-process communication, mapping 
will fail.  To resolve such file descriptors, we look at the 
/proc/PID/fd path. 

3.5 Runtime Network Communications 

To capture the network traffic for all the applications, we 
run the application on a real device.   By running applications 
on a real device, we overcome the inefficiency of the 
emulator.  In addition, some malware may arm themselves 
with VM or emulator evasion techniques.  The lack of cellular 
data network on an emulator may also affect the malware 
network footprint.  The challenge for running applications on 
real devices is scalability.   Even if we could have multiple 
devices to run different applications simultaneously on a “one 

app per device” basis, it is inefficient.  To solve this problem, 
we run multiple apps in a single device simultaneously.   
However, network traffic capturing tools such as tcpdump or 
wireshark only can work at the device level.  In other words, 
such tools cannot provide the granularity that is required by 
malware analysis to differentiate network connections on a 
per-app basis.  As such, network address information is only 
available under the socket level given that we don’t have 
access to the target malware application context at runtime. 
Therefore, we developed a dedicated kernel module to log the 
application and network address mapping in the kernel.  
Particularly, we monitor all sys_connect system calls and log 
the caller’s process name and target network address 
information.  For TCP/IP, we have the destination IP address 
and port number, while for the Unix domain socket we have 
the socket file name.  By applying such mappings onto 
tcpdump capture file offline, we obtain the network traces of 
the malware application.  With the storage space of the real 
device, we can run 200 applications in parallel within a single 
device. 

4 RESULTS & FINDINGS 

The GMU team tested the dynamic analysis framework 
on a number of malicious Android applications.  Android 
applications can send text messages by declaring the 
SEND_SMS permission in its AndroidManifest.xml file and 
using API calls from the SmsManager class.  We examined an 
Android application available online with the package name of 
com.ku6.android.videobrowser. This application is known-
malware, which sends text messages to a premium phone 
number.  We log the values of parameters to specific API calls 
that require security permissions or lead to administrative 
actions on the phone.  For instance, we examined the 
sendTextMessage API call in the application which sends a 
text message to the destination phone number “1066156686”, 
a Chinese premium phone number and a text message body of 
the number 8.  The application also transmits the phone’s 
International Mobile Equipment Identity when connecting to 
the domain http://info.ku6.cn/clientRequest.htm.  We have 
noticed similar functionality in an application with a package 
name of “sectoolgoogle”.  This application sends a message 
of 1234567 to the destination number 10086.  The application 
creates the directory /data/data/com.android.vending.sectool. 
v1/files/.hide/ to store various xml files.  In addition, it 
connects to the following URL: http://www.youlubg.com:81 
/Coop/request3.php.   

Android applications can also programmatically make 
phone calls without any user interaction by using the 
CALL_PHONE permission.  We identified an application 
with the package name of com.xmedia.gobrowser that creates 
an Intent object containing URI with an Intent action of 
android.intent.action.DIAL.  The application then calls the 
startActivity method to send this Intent, which will call the 
number supplied as a URI.  Upon investigation, this number 
appears to be registered to an operator  outside US.  The 
previous two aforementioned applications are well known.  
We were unable to find any analysis on the third application 

http://www.youlubg.com:81/


by searching for the phone number it contained or its package 
name. 

5 LIMITATIONS 

Our approach can be computationally expensive 
depending on the structure and size of the application being 
analyzed.  Each if conditional statement that occurs outside of 
a loop exponentially raises the number of iterations that must 
be executed to cover all possible paths within an application.  
Loops that are deeply nested significantly affect the 
performance of the dynamic analysis due to the large number 
of iterations through the code, especially when many if 
conditional statements occur within each loop.  An attacker 
could purposefully plant various computationally expensive 
activities throughout the application to slow the analysis of the 
application.  There are approaches to make a trade-off 
between performance and analysis precision.  There are the 
options to: (1) limit the number of iterations through a loop, 
(2) prevent loop nesting beyond a certain number of loops, (3) 
limit recursion, or (4) use a timer that sets a maximum time 
that can elapse to indicate that a path should end. 

Currently, the dynamic analysis framework does not have 
support for multithreading.  In addition, there are limitations to 
our approach due to the entropy in environment variables, user 
input, and non-deterministic routines: the analysis will enter 
all branches even if they are logically unreachable based on 
the set of inputs or environmental variables.  The unreachable 
branches, i.e., conditional statements that will always be false, 
can result from programming logic errors.  Upon execution of 
the application, the branch will never be entered when it is 
executed without forcing the outcome of a boolean conditional 
associated with an if conditional statement.  As the dynamic 
analysis encounters an if conditional statement, it will execute 
both branches of an if conditional statement without 
consideration as to whether the Boolean condition can never 
be true.  This could result in a false positive when looking for 
certain behaviors if it occurs in an unreachable branch. 
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