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Abstract This paper reviews the available information for the thermal-conductivity
enhancement. This enhancement can be represented by a simplified solution of the
mode-coupling theory of critical dynamics with two critical amplitudes and one cutoff
wave number as fluid-specific parameters. Using corresponding states, these fluid-
specific parameters are correlated in terms of their dependence on the acentric factor.
A universal representation of the critical enhancement of the thermal conductivity for
a large number of molecular fluids is presented.

Keywords Acentric factor · Correlation length · Corresponding states · Critical
amplitudes · Critical dynamics · Mode-coupling theory · Thermal conductivity ·
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1 Introduction

The thermal conductivity is known to exhibit a substantial increase for fluids in the
vicinity of their vapor-liquid critical points. To account for this phenomenon, the total
thermal conductivity λ is decomposed as the sum of an enhancement of the thermal
conductivity, �cλ, caused by the presence of long-range critical fluctuations, and a
background thermal conductivity, λb,which is the thermal conductivity to be expected
in the absence of critical fluctuations [1]:
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λ = �cλ + λb. (1)

The critical thermal-conductivity enhancement is significant over a substantial range
of densities and temperatures around the critical point. This phenomenon is illustrated
in Fig. 1, which shows the reduced ranges of density, temperature, and pressure where
a critical enhancement of the thermal conductivity is observed for H2O as an example
[2]. It is seen that the enhancement is significant over the reduced density range
0.06 < ρ/ρc < 2.27 and over the reduced temperature range 0.81 < T/Tc < 1.44.
The thermal conductivity exhibits an appreciable enhancement over similarly large
ranges of density, temperature, and pressure in other fluids such as CO2 [3]. Hence,
this critical enhancement phenomenon is not only of scientific interest but must also be
accounted for in practical applications, such as for power generation and refrigeration
cycles, and should be incorporated in fluid-property packages such as REFPROP [4].

A theoretical description for the thermal-conductivity enhancement in the critical
region of fluids has been developed by a number of authors [5–13]. These theoretical
descriptions have been used as tools to represent experimental thermal-conductivity
data for a variety of fluids. The purpose of the present paper is to assess the avail-
able information so as to obtain a general procedure for dealing with the critical
thermal-conductivity enhancement in a large number of molecular fluids for practical

ρρ ρ

Fig. 1 Reduced ranges of density (ρ), temperature (T ), and pressure (P), relative to their values ρc, Tc,
Pc at the critical point, where the critical enhancement contribution to the thermal conductivity is larger
than 1 % for H2O [2]. The critical enhancement exceeds 50 % in the regions between dotted 50 % curves
and the saturation curves (solid), while it ranges from 5 % to 50 % in the regions between the dashed 5 %
curves and the dotted 50 % curves and it ranges from 1 % to 5 % in the regions between the dotted–dashed
1 % curves and the dashed 5 % curves
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applications, including fluids for which only limited experimental information is avail-
able. We shall proceed as follows. In Sect. 2, we review results from the mode-coupling
theory of critical dynamics for the transport properties of fluids in the critical region.
Specifically, we consider a simplified solution, originally developed by Olchowy and
Sengers [6], relating the thermal-conductivity enhancement to thermodynamic prop-
erties of the fluid, to a correlation length associated with the critical fluctuations, and to
a fluid-specific cutoff wave number for the long-range critical fluctuations. In Sect. 3,
we describe how in this solution the correlation length can be related to the isothermal
compressibility of the fluid. In Sect. 4, we develop a procedure for estimating the
relevant thermodynamic critical amplitudes and the length scale associated with the
cutoff wave number for the critical fluctuations for a large number of molecular fluids
by using an extended corresponding-states approach that includes a dependence of
the critical amplitudes on the acentric factor. In Sect. 5, we then formulate a general
method for representing the thermal-conductivity enhancement in a large number of
molecular fluids with no adjustable parameters. In Sect. 6, we briefly compare our
expression for the critical enhancement of the thermal conductivity with those pro-
posed by other investigators. Finally, some concluding remarks are presented in Sect. 7.
Our procedure can be used not only to correlate experimental thermal-conductivity
data, but also to estimate the critical thermal-conductivity enhancement when limited
experimental information is available.

2 Theory

The decay rate of the critical fluctuations in fluids near the vapor-liquid critical point
is determined by the thermal diffusivity D = λ/(ρCP ), where ρ is the density and
CP is the isobaric heat capacity. In this paper, we identify ρ with the molar density
and CP with the molar isobaric heat capacity. The separation, Eq. 1, of the thermal
conductivity into both critical and background contributions implies a corresponding
separation of the thermal diffusivity D into a critical contribution �c D = �cλ/(ρCP )

and a background contribution Db = λb/(ρCP ) [1]:

D = �c D + Db. (2)

At the critical point, both �c D and Db and, hence, D become zero, a phenomenon
known as critical slowing down of the fluctuations. The background contribution Db
represents the classical contribution to the slowing down of the fluctuations in which
the diffusivity would vanish in proportion to C−1

P . In addition, the shear viscosity η

also contains a critical enhancement contribution �cη and a background contribution
ηb:

η = �cη + ηb. (3)

In contrast to the critical thermal-conductivity enhancement �cλ, the critical viscosity
enhancement �cη is small and restricted to a very narrow range of temperatures near
the critical point [14].
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The mode-coupling theory of critical dynamics [15,16] yields a set of coupled
integral equations for the critical contributions to the thermal diffusivity and the shear
viscosity. Because of the long-range nature of the critical fluctuations, one needs to
account for the dependence of �c D(q) and �cη(q) on the wave number q of the
fluctuations. One then obtains [9]

�c D(q) = �cλ(q)

ρCP (q)
= kBT

(2π)3 ρ

qD∫

0

dk
[

C p (|q − k|)
CP (q)

]
sin2 θ

k2η (k) /ρ + |q − k|2 D (|q − k|) ,

(4)

�cη (q) = 1

2q2

kBT

(2π)3

qD∫

0

dkCP (k) CP (|q − k|)
[

1

CP (k)
− 1

CP (|q − k|)
]2

k2 sin2 θ sin2 φ

k2 D (k) + |q − k|2 D (|q − k|) , (5)

where kB is Boltzmann’s constant and T is the temperature, and where θ and φ are,
respectively, the polar and azimuthal angles of the wave vector k with respect to
the wave vector q. The integrals are to be evaluated over all magnitudes k = |k|
up to a maximum value qD which corresponds to a length scale separating long-
range critical fluctuations, where mode-coupling theory is applicable, and short-range
fluctuations. In principle, the cutoff wave number qD could be dependent on density
and temperature, but is, in practice, approximated by a constant. Note that D, η, and
CP depend only on the magnitude of the wave vector of the critical fluctuations. To
deduce the critical contributions to the actual thermal diffusivity, thermal conductivity,
and shear viscosity, we need the solution of Eqs. 4 and 5 in the hydrodynamic limit
q → 0.

Asymptotically close to the critical point, �c D approaches a Stokes–Einstein law
of the form,

�c D = �c D (0) ≈ RDkBT

6πηξ
, (6)

where ξ is a correlation length and RD is a universal dynamic amplitude ratio [17,18].
An asymptotic evaluation of Eq. 4 yields RD � 1 [15,16]. If account is made of
a small frequency dependence of the viscosity in the mode-coupling integrals, one
obtains RD � 1.03 [19]. Slightly larger theoretical values have been reported on
the basis of a dynamic renormalization approach, namely, RD ≈ 1.038 [20,21] and
RD ≈ 1.065 [13].

Asymptotically close to the critical point, the viscosity η satisfies an equation of
the form [22],

η ≈ ηb (Qξ)z , (7)

where z is a universal dynamic critical exponent, and Q is a system-specific coefficient.
An asymptotic evaluation of Eq. 5 yields z = 8/(15π2) = 0.054 [9]. The currently
accepted value of the dynamic critical exponent is z � 0.068 [23,24].
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The asymptotic Stokes–Einstein law in Eq. 6 is valid only in a very small region
around the critical point [9]. Thus, to obtain a realistic description of the observed
critical thermal-conductivity enhancement, one needs a nonasymptotic solution of
the mode-coupling equations, Eqs. 4 and 5. A comprehensive nonasymptotic solu-
tion was obtained by Olchowy, Luettmer-Strathmann, and Sengers [5,9]. An alter-
native solution has been presented by Kiselev and Kulikov [10,11]. The solution
of Olchowy and coworkers [5,9] has been applied to represent the critical thermal-
conductivity enhancement of carbon dioxide [9,25], ethane [7,9,26], nitrogen [8],
argon [27,28], methane [29], propane [30], butane [31], isobutane [32], and of some
refrigerants, namely, R134a [33,34] and R152a [35]. The alternative solution of Kise-
lev and Kulikov has been applied to carbon dioxide, ethane, and methane [11,12,36],
and also to some refrigerants [37].

The comprehensive solution of Olchowy and coworkers [5,9] is rather complicated.
Hence, for practical applications, Olchowy and Sengers [6] proposed a simplified
approximate solution of Eq. 4. First, it is noted that the critical enhancement of the
viscosity is sufficiently small and can be neglected in practical applications [38].
Hence, we approximate η(k) in Eq. 4 by η � ηb independent of the wave number
k. This approximation decouples the two mode-coupling integrals, and in the limit
q → 0, Eq. 4 then reduces to

�c D = �cλ

ρCP
� RDkBT

(2π)3 η

qD∫

0

dk
[

C p (k)

CP (0)

]
k−2 sin2 θ

1 + ρD (k) /η
. (8)

In Eq. 8, we entered the universal dynamic amplitude ratio RD so that Eq. 8 will
reproduce the asymptotic behavior in Eq. 6 near the critical point. In the near-critical
region, the term ρD(k)/η in the integrand of Eq. 8 becomes small, since the thermal
diffusivity D vanishes at the critical point. Away from the critical point, its value is
positive. Hence, if we neglect this term, we overestimate the integral. However, this
term never becomes really large, and one may try to compensate for the overestimation
by integrating up to a lower cutoff wave number qD < qD:

�c D = �cλ

ρCP
� RDkBT

(2π)3 η

qD∫

0

dk
[

C p (k)

CP (0)

]
sin2 θ

k2 . (9)

It is interesting to note that Eq. 8 is identical to the simple mode-coupling integral
originally considered by Kawasaki [15] and by Ferrell [39] except for the presence
of a finite upper cutoff wave number qD. Retention of a finite upper cutoff number
is an essential and necessary feature for getting a physically realistic nonasymptotic
representation for the critical thermal-conductivity enhancement. The wave-number
dependence of the isobaric heat capacity CP is related to the wave-number dependence
of the isothermal susceptibility χ = ρ (∂ρ/∂ P)T through the thermodynamic relation,
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CP (k) = CV (k) + T

ρ3

(
∂ P

∂T

)2

ρ

χ (k) � CV + T

ρ3

(
∂ P

∂T

)2

ρ

χ (0)

1 + k2ξ2 , (10)

where P is the pressure and CV is the isochoric molar heat capacity. The isochoric heat
capacity CV diverges only weakly at the critical point; thus, it depends only weakly
on the wave number k, while the slope (∂ P/∂T )ρ remains finite at the critical point.
In the Ornstein-Zernike approximation, χ (k) = χ (0) /

(
1 + k2ξ2

)
[40].

Using these approximations, Olchowy and Sengers [6] arrived at a representation
for the critical enhancement that can be written in the form [2],

�cλ = ρCP�c D � ρCP RDkBT

6πηξ
Y

(
qDξ

)
. (11)

In this equation, Y is a crossover function defined by

Y (y) ≡ 2

π

{[(
1 − κ−1

)
arctan (y) + κ−1 y

]
−

[
1 − exp

( −1

y−1 + y2ρ2
c /3ρ2

)]}
,

(12)

where κ is the ratio of the isobaric and isochoric heat capacities:

κ = CP

CV
. (13)

In the limit y = qDξ → ∞, Eq. 11 reproduces the asymptotic critical behavior in
accordance with Eq. 6. The mode-coupling integrals in Eqs. 4 and 8 do not vanish far
away from the critical point, since mode coupling also accounts for the presence of
the so-called long-time-tail contributions to the transport properties far away from the
critical point [41,42], which are contained in the background thermal conductivity λb.
The second term in Eq. 12 subtracts a residual contribution so as to ensure that the
critical thermal-conductivity enhancement will vanish in the limit y = qDξ → 0 far
away from the critical point [5,9].

We note that the expression for the critical thermal-conductivity enhancement in
Eqs. 11–13 depends on the heat capacities CP and CV , the shear viscosity η, the corre-
lation length ξ , and a system-specific cutoff parameter qD. A procedure for estimating
the correlation length will be described in the subsequent section. The correlating
equation for the critical thermal-conductivity enhancement requires an equation of
state that yields reliable values for the compressibility and the heat capacities in the
critical region. In addition, it assumes that an equation for the viscosity is available.
However, information about the small critical enhancement of the viscosity is not
necessary.

3 Critical Amplitudes and Correlation Length

In the theory of critical phenomena, it is convenient to express all thermodynamic
properties in dimensionless form. One procedure, to be referred to as option I, is to
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express the temperature T in terms of the critical temperature Tc, the density ρ in
terms of the critical density ρc, and the chemical potential μ per mole in terms of RTc,
where R is the molar gas constant. One thus defines [43]

T = T

Tc
, ρ = ρ

ρc
, P = P

ρc RTc
, μ = μ

RTc
, CV = ρCV

ρc R
, χ = RTc

ρc
χ,

(14)

where χ = (∂ρ/∂μ)T = ρ (∂ρ/∂ P)T is the susceptibility. Note that the proper
isomorphic heat capacity in the theory of critical phenomena is not the molar heat
capacity CV , but the heat-capacity density ρCV [44]. In addition, one defines the
difference functions,

�T = T − Tc

Tc
, �ρ = ρ − ρc

ρc
. (15)

Asymptotically close to the critical point, the isochoric heat capacity and the suscep-
tibility diverge as a function of temperature in the one-phase region (�T ≥ 0) along
the critical isochore ρ = ρc as

CV ≈ A0
(
�T

)−α
, (16)

χ ≈ Γ 0
(
�T

)−γ
. (17)

The coexistence density ρ = ρcxc on either side of the phase boundary below the
critical temperature (�T ≤ 0) depends on the temperature asymptotically close to the
critical point as

�ρcxc ≈ ±B0
∣∣�T

∣∣β . (18)

In these power laws α, β, and γ are universal critical exponents such that γ = 2 −
α − 2β. Currently accepted values are [45,46]

α � 0.110, β � 0.326, γ � 1.239. (19)

The critical amplitudes A0, B0, Γ 0 satisfy a universal relation [18,45,47],

αA0Γ 0

B
2
0

= 0.058 ± 0.001. (20)

The asymptotic power law for the temperature dependence of the correlation length
along the critical isochore in the one-phase region (�T ≥ 0) reads [40]

ξ ≈ ξ0
(
�T

)−ν
, (21)
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with

ν = (2 − α) /3 � 0.630. (22)

According to the principle of two-scale-factor universality [43,45,47,48],

ξ0
(
αA0 NAρc

)1/3 = 0.266 ± 0.003, (23)

where NA is Avogadro’s number. Equations 20 and 23 represent the currently accepted
values of these universal amplitude relations [45,47]. Note that NAρc is the inverse of
the molecular volume, vc, at the critical point.

An alternative procedure, often adopted in articles dealing with the thermodynamic
behavior of fluids near the critical point and here referred to as option II, uses, instead
of RTc, the critical pressure Pc as a reduction parameter. One then defines [49]

T ∗ = T

Tc
, ρ∗ = ρ

ρc
, P∗ = P

Pc
, μ∗ = μ

ρc

Pc
, C∗

V = ρCV
Tc

Pc
, χ∗ = χ

Pc

ρ2
c
.

(24)

In terms of this option, the asymptotic equations corresponding to the power laws
given by Eqs. 16 and 17 are

C∗
V ≈ A∗

0

(
�T ∗)−α

, χ∗ ≈ Γ ∗
0

(
�T ∗)−γ

, (25)

where �T ∗ = �T . The critical amplitudes are related to those in Eqs. 16 and 17 by
A∗

0 = A0 Z−1
c , Γ ∗

0 = Γ 0 Zc, where Zc ≡ Pc/(ρc RTc) is the value of the compress-
ibility factor at the critical point. Although option II defined by Eq. 24 appears to be
the one most frequently adopted, we prefer here to adopt option I defined by Eq. 14.
The reason is that in the theory of critical phenomena, the ordering field is μ/(RT )

and not μρ/P , so that option I has a more physical foundation [50].
From Eqs. 17 and 21 we note that, asymptotically,

ξ = ξ0

(
Γ

−1
0 χ

)ν/γ

. (26)

Equation 26 is valid only in the asymptotic critical limit on the critical isochore [44],
but is used as an approximation for estimating the correlation length at all relevant
densities and temperatures. Equation 26 provides an estimate for the actual correlation
length that approaches a molecular scale far away from the critical point. On the other
hand, ξ in Eq. 11 is to be identified with that part of the correlation length that is
associated with the long-range critical fluctuations and, hence, should vanish far away
from the critical point. This inconsistency is removed by subtracting from Eq. 26 a
molecular-scale value implied by this equation far away from the critical point. Hence,
Olchowy and Sengers [5,6] have proposed to modify Eq. 26 into

ξ = ξ0

(
Γ

−1
0 �χ

)ν/γ

, (27)
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Table 1 Application of simplified Olchowy–Sengers model for critical thermal-conductivity enhancement

Fluid RD T R ν γ Γ 0 ξ0(nm) q−1
D (nm)

Argon [54] 1.01 2 0.63 1.2415 0.190 0.130 0.32

Nitrogen [54] 1.01 2 0.63 1.2415 0.190 0.170 0.4

Oxygen [54] 1.01 2 0.63 1.2415 0.191 0.240 0.51

Carbon dioxide [6] 1.01 2 0.63 1.2415 0.189 0.150 0.4

Carbon dioxide [25] 1.01 1.5 0.63 1.2415 0.189 0.150 0.4

Normal hydrogen [58] 1.01 1.5 0.63 1.2415 0.171 0.150 0.4

Parahydrogen [58] 1.01 1.5 0.63 1.2415 0.172 0.150 0.5

Water [2] 1.01 1.5 0.63 1.239 0.262 0.130 0.4

Methane [6] 1.01 2 0.63 1.2415 0.213 0.180 0.38

Ethane [6] 1.01 2 0.63 1.2415 0.201 0.190 0.29

Ethane [51] 1.01 2 0.63 1.242 0.201 0.190 0.545

Propane [30] 1.03 1.5 0.63 1.239 0.179 0.194 0.717

Butane [31] 1.03 1.5 0.63 1.239 0.181 0.194 0.875

Isobutane [32] 1.03 1.5 0.63 1.239 0.180 0.194 0.658

n-Octane [55] 1.03 1.5 0.63 1.239 0.193 0.194 0.686

n-Nonane [55] 1.03 1.5 0.63 1.239 0.195 0.194 1.04

n-Decane [55] 1.03 1.5 0.63 1.239 0.199 0.194 0.709

R125 [56] 1.03 1.5 0.63 1.239 0.185 0.194 0.5835

R134a [52] 1.03 2 0.63 1.239 0.191 0.194 0.529

R125 [53] 1.03 1.5 0.63 1.239 0.185 0.194 0.748

Methylcyclohexane [57] 1.03 1.5 0.63 1.2415 0.193 0.150 0.624

Sulfur hexafluoride [59] 1.01 1.5 0.63 1.2415 0.187 0.190 0.35

Toluene [60] 1.02 1.5 0.63 1.239 0.189 0.220 0.62

where

�χ = χ
(
T , ρ

) − χ
(
T R, ρ

) (
TR

T

)
, (28)

with the additional condition that ξ should be set equal to zero when �χ ≤ 0. In Eq. 28
T R corresponds to a reference temperature where the critical thermal-conductivity
enhancement will be negligibly small. In practice, values for T R varying from 1.5 to
2.5 have been used.

Equations 11 and 27 completely specify the simplified Olchowy–Sengers model for
the critical thermal-conductivity enhancement. This simplified model has been used
to represent the thermal conductivity of many fluids, as shown in Table 1 [2,6,25,30–
32,51–60]. In Table 1, we have listed the values used for the dynamic amplitude ratio
RD, the reference temperature ratio T R, the inverse cutoff wave number q−1

D , the
critical exponents ν and γ , the susceptibility amplitude Γ 0 (converted from Γ ∗

0 ), and
the correlation-length amplitude ξ0. The critical exponents ν and γ and the dynamic
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amplitudes ratio RD should be universal. We also expect that one should be able to
assign in practice the same value for the reference-temperature ratio T R. On the other
hand, the critical amplitudes ξ0 and Γ 0, and also the cutoff wave number q−1

D , are fluid-
specific parameters. However, accurate information for the critical amplitudes is not
available for all fluids, and estimates have been made. In addition, the cutoff parameter
q−1

D is commonly determined from a fit of Eq. 11 to experimental thermal-conductivity
data. The question arises whether we can develop a procedure for obtaining consistent
values for these fluid-specific parameters. For this purpose, we consider a generalized
corresponding-states approach including a dependence on the acentric factor often
used in correlating thermodynamic properties of fluids [61].

4 A Generalized Corresponding-States Approach

In Table 2, we present a survey of the critical amplitudes that we have deduced
from a review of the literature [11,28,29,34,35,62–94]. The values for the critical
amplitudes in the literature have either been determined from an asymptotic analy-
sis of experimental data [49,63,65–67,70–72,74,82,86,87] or from a fit to exper-
imental heat capacity and P–ρ–T data in terms of a crossover equation of state
[28,29,35,62,64,68,69,73,75–81,83–85,88–94]. The critical amplitudes found in
Refs. [75,85] for methane and ethane are very different from those found in Refs.
[49,77,80,81] and have been discarded. In some cases, we found that the value for
the heat-capacity amplitude strongly depends on the temperature range used in fitting
the asymptotic power law. In the case of n-pentane and n-hexane, we reinterpreted the
information in Refs. [86,90] by determining an effective value for A0 as a function of
�T and extrapolating these values to �T → 0. In the case of toluene, there is a large
discrepancy between the amplitudes in Refs. [83,85]; we adopted the heat-capacity
amplitude from a fit to a crossover equation [83] and determined B0 from a re-analysis
of coexistence-curve data [85]. We used a similar procedure for deducing A0 and B0
for n-hexane from Ref. [88].

The values for A0, B0, and Γ 0 for the fluids listed in Table 2 are plotted as a function
of the acentric factor ω in Figs. 2, 3, and 4, respectively. The acentric factor is defined
in terms of the vapor pressure of the liquid at a reduced temperature T = 0.7 and is
nearly zero for monatomic gases, such as argon [95]. The acentric factor ranges from
negative values for quantum gases to larger positive values for large polyatomic and
polar molecules. For this purpose we used the values for the acentric factor ω provided
by the REFPROP package [4], with some additional values from the book of Reid et
al. [95]. The critical amplitudes depend not only on the values adopted for the critical
exponents in the analysis, but also on the temperature range of the analysis and how an
account has been made for the presence of nonasymptotic corrections to the asymptotic
power laws. Hence, the uncertainty in the values reported for critical exponents cannot
be assessed from standard deviations of least-squares fits to experimental data. From
the spread in reported critical-amplitude values in the literature that were obtained by
different authors for the same fluids, it appears that the uncertainties may be of the
order of 15 % for A0, 10 % for B0, and 20 % for Γ 0. In view of these considerations, we
submit that a linear dependence of the critical amplitudes, A0 and B0, on the acentric
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Table 2 Critical amplitudes for a number of fluids

Fluid Tc (K) ρc (kmol · m−3) Pc (MPa) A0 B0 Γ 0 ξ0 (nm) Refs.

3He 3.310 13.7 0.114 1.09 1.07 0.50 0.26 [62]

Ne 44.48 24.0 2.720 5.86 1.42 0.18 0.13 [49,63]

Ar 150.73 13.4 4.865 5.28 1.42 0.20 0.14 [49]

Ar 150.66 13.4 4.860 5.02 1.50 0.21 0.16 [28]

Ar 150.69 13.4 4.863 5.31 1.48 0.19 [64]

Ar 150.69 13.4 4.863 5.18 [65]

Kr 209.29 10.8 5.493 5.30 1.42 0.20 0.17 [49]

Xe 289.73 8.50 5.840 5.13 1.42 0.20 0.19 [49,66,67]

HD 35.96 15.9 1.484 4.55 1.28 0.18 0.16 [49]

N2 126.21 11.2 3.398 6.82 1.48 0.16 0.15 [49,63]

H2O 647.10 17.9 22.064 7.25 1.97 0.25 0.13 [68,69]

H2O 647.10 17.7 22.064 7.64 1.95 0.25 0.13 [70]

D2O 643.85 17.8 21.671 7.20 1.97 0.25 0.13 [68,69]

D2O 643.85 17.8 21.671 7.97 2.02 0.27 0.13 [70]

CO2 304.11 10.6 7.372 7.62 1.68 0.22 0.15 [71]

CO2 304.13 10.6 7.372 7.95 1.64 0.18 0.15 [72]

CO2 304.14 10.6 7.377 7.37 1.71 0.20 0.15 [11]

SF6 318.72 5.08 3.755 8.34 1.71 0.18 0.19 [73,74]

NH3 405.04 13.7 11.277 6.61 1.82 0.26 [75]

NH3 405.37 13.8 11.336 7.56 1.77 0.22 0.14 [76]

CH4 190.56 10.1 4.599 4.92 1.46 0.22 0.18 [29,77]

C2H4 282.35 7.63 5.040 5.88 1.55 0.21 0.18 [49,78]

C2H4 282.35 7.64 5.042 5.98 1.59 0.20 [79]

C2H6 305.32 6.87 4.872 6.24 1.60 0.19 0.19 [80]

C2H6 305.32 6.87 4.872 5.81 1.57 0.22 [77]

C2H6 305.32 6.87 4.872 6.17 1.60 0.20 [81]

C2H6 305.32 6.87 4.872 6.09 [82]

C3H8 369.85 5.00 4.248 6.84 1.67 0.21 [75]

C7H8 591.89 2.91 4.126 8.79 1.83 0.20 [83,84]

n-C4H10 425.16 3.93 3.796 6.40 1.67 0.21 [85]

i-C4H10 407.84 3.89 3.629 7.02 1.64 0.20 0.22 [49]

n-C5H12 469.70 3.22 3.370 9.02 1.90 [86]

n-C5H12 469.62 3.20 3.372 9.88 1.78 [87]

n-C6H14 507.79 2.69 3.088 9.27 1.81 0.18 [88]

n-C6H14 507.20 2.71 3.028 8.71 1.69 0.16 [89]

n-C7H16 539.86 2.32 2.727 8.20 1.85 [90]

R134a 374.27 5.05 4.065 8.00 1.70 0.19 0.19 [34,91,92]

R134a 374.27 5.05 4.065 8.21 1.81 0.20 [93]

R152a 386.41 5.57 4.520 7.85 1.69 0.19 0.19 [35,94]

R32 351.35 8.21 5.795 7.02 1.82 0.24 [93]
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factor yields a reasonable estimate for these critical amplitudes of molecular fluids.
The critical amplitudes reported for 3He [62] have not been included in these figures,
since they appear to be affected by quantum effects and cannot be expected to obey the
proposed correlation. The amplitudes, A0 and B0, are directly related to experimental
heat-capacity and coexistence-curve data, and we prefer to use these amplitudes as
our primary information for developing a practical correlation:

A0 = 5.58 + 7.94ω, (29)

B0 = 1.45 + 1.21ω. (30)

The relative standard deviations between the data and the fits of Eqs. 29 and 30 are
10 % and 3.5 % respectfully, which is comparable to the estimated uncertainties in
the critical-amplitude values themselves. The susceptibility amplitude Γ 0 can then be
calculated in accordance with Eq. 20:

Γ 0 = 0.058B
2
0

αA0
. (31)

Gerasimov has proposed a correlation for the thermodynamic properties of n-alkanes
and some aromatic hydrocarbons in the critical region also in terms of the acentric
factor [96]. Rather than considering the critical amplitudes directly, Gerasimov intro-
duced a linear dependence on the acentric factor of the fluid-specific coefficients in the
crossover model developed by Chen et al. [97]. From this correlation, one can readily
calculate the critical amplitudes A∗

0, B∗
0 = B0, and Γ ∗

0 . We have converted A∗
0 and

Γ ∗
0 to the values for A0 and Γ 0 by using a linear fit of Zc of the fluids given in Table 2

in terms of the acentric factor ω:

Zc = 0.2925 − 0.1222ω. (32)

The values for the critical amplitudes resulting from the correlation of Gerasimov are
represented by dashed curves in Figs. 2 and 3. From Figs. 2 and 3, we see that both
correlations are consistent with the available information, except that our correlation
also includes fluids with a negative acentric factor.

The amplitude Γ 0 is more difficult to determine than the amplitudes A0 and B0,
since it has to be deduced from differentiation of the P–ρ–T surface. As can be
seen from Fig. 4, there is a considerable spread among the values of Γ 0 from the
literature. The values for Γ 0 estimated from Eqs. 29–31 are represented by the solid
curve in Fig. 4. Values for Γ 0 estimated from the correlation of Gerasimov [96] are
represented by the dashed curve in Fig. 4. The slope of the correlation of Gerasimov
[96] disagrees with both the data and the present correlation since it includes helium
(not shown in Fig. 4), which we excluded from our analysis due to large quantum
effects. The amplitude Γ 0 shows very little dependence on the acentric factor, as can
also be seen from the values listed in Table 1. While Eqs. 29–31 are used in this paper,
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ωω

Fig. 2 Heat-capacity amplitude A0 as a function of the acentric factor ω. The symbols indicate values
deduced from the literature in Table 2. The solid line represents values calculated from the correlating
Eq. 29. The dashed curve represents values calculated from the correlation of Gerasimov [96]

Fig. 3 Coexistence-curve amplitude B0 as a function of the acentric factor ω. The symbols indicate values
deduced from the literature in Table 2. The solid line represents values calculated from the correlating
Eq. 30. The dashed curve represents values calculated from the correlation of Gerasimov [96]

a reasonable alternative would be to identify Γ 0 with its average value (with a two
standard-deviation uncertainty) of

Γ 0 � 0.206 ± 0.051. (33)
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Fig. 4 Susceptibility amplitude Γ 0 as a function of the acentric factor ω. The symbols indicate values
deduced from the literature in Table 2. The solid curve represents values calculated from the correlating
Eq. 31. The dashed curve represents values calculated from the correlation of Gerasimov [96]

Having obtained a correlation, Eq. 29, for the heat-capacity amplitude A0, we can now
estimate the correlation-length amplitude ξ0 from Eq. 23:

ξ0 = 0.266

(
vc

αA0

)1/3

, (34)

where vc = (NAρc)
−1 is the molecular volume at the critical point. A comparison

with the correlation-length amplitudes estimated from Eq. 34 with the experimentally
derived correlation-length amplitudes listed in Table 2 is shown in Fig. 5. It is seen
that Eq. 34 provides good estimates for the correlation-length amplitude. We note that
ξ0 depends not only on v

1/3
c , but also on the acentric factor ω through Eq. 23 for A0.

In order to represent the critical thermal-conductivity enhancement, we also need
an estimate for the cutoff parameter qD in Eq. 11. In Fig. 6, we show the values for q−1

D

listed in Table 1 as a function of the cube root of the critical volume, v
1/3
c . The actual

values for q−1
D are somewhat sensitive to the equation adopted for the background

thermal conductivity λb. We conclude that q−1
D correlates with the cube root of the

critical volume, v
1/3
c , within the accuracy with which this cutoff parameter can be

determined:

q−1
D = −0.0240 + 0.863v1/3

c , (35)

with both q−1
D and v

1/3
c expressed in nanometers.
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Fig. 5 Correlation-length amplitude ξ0 as a function of the cubic root of the molecular volume vc. The
closed symbols indicate the values deduced from the literature in Table 2. The open symbols indicate values

calculated from the correlating Eq. 34. Note that ξ0 depends not only on v
1/3
c but also on the acentric factor

through A0 in Eq. 34

Fig. 6 Cutoff parameter q−1
D as a function of v

1/3
c . The symbols indicate the values of q−1

D from Table 1.
The solid curve represents values calculated from the correlating Eq. 35
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5 Universal Representation of the Critical Thermal-Conductivity Enhancement

From the information provided in the previous sections, we conclude that for practical
applications the critical thermal-conductivity enhancement �cλ can be represented by
Eq. 11 with the following recommended universal parameters:

RD = 1.02, T R = 1.5, ν = 0.630, γ = 1.239, (36)

with α = 2 − 3ν = 0.110 in accordance with Eq. 22. The susceptibility amplitude
Γ 0 is to be calculated from Eq. 31 with the amplitudes A0 and B0 given by Eqs. 29
and 30, or one can use the value given by Eq. 33 as an estimate. The correlation-
length amplitude ξ0 is to be calculated from Eq. 34 with the amplitude A0 again to
be calculated from Eq. 29. Finally, the cutoff parameter q−1

D is to be calculated from
Eq. 35. This procedure yields a practical representation of the thermal-conductivity
enhancement without any adjustable parameters and enables one to calculate �cλ from
a fundamental equation for the thermodynamic properties, provided that equations
for the background viscosity and background thermal conductivity are available. We
show in Figs. 7–9 the thermal conductivity calculated with this procedure relative to
data for H2O [98], R125 [56], and isobutane [99] in the critical region, as examples.
As mentioned earlier, the actual values of the cutoff parameter q−1

D are somewhat
sensitive to the equation adopted for the background thermal conductivity λb. For this
reason, the cutoff parameter q−1

D is often determined by simultaneously optimizing
the equation for the critical enhancement �cλ and an equation for the background
thermal conductivity λb. In applying the theory for fluids where adequate experimental
information for the thermal conductivity in the critical region is available, one could
continue to fit for an effective q−1

D . However, we expect that such a fit will hardly
be necessary. Instead, one could use the universal representation for �cλ, and just
develop an equation for the background thermal conductivity λb. Moreover, in the
absence of experimental thermal-conductivity data in the critical region, the proposed
universal representation will yield a realistic estimate for the magnitude of the critical
thermal-conductivity enhancement as a function of temperature and density.

6 Comparison with Work of Other Investigators

As can be seen from Eqs. 6 and 11, asymptotically close to the critical point, the critical
thermal-conductivity enhancement becomes

�cλ ≈ ρcP RDkBT

6πηξ
. (37)

The expressions proposed for �cλ by Olchowy, Luettmer-Strathmann, and Sengers in
Refs. [5,9] and the one by Kiselev and Kulikov [10,11] all incorporate the asymptotic
Stokes–Einstein limit, given by Eq. 37, but they contain more comprehensive expres-
sions for the crossover function Y

(
qDξ

)
in Eq. 11. The solution of the mode-coupling
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λλ
⋅

⋅

ρ ⋅

Fig. 7 Thermal conductivity of H2O in the critical region. The symbols indicate experimental thermal-
conductivity data reported by Tufeu and LeNeindre [98]. The curves represent values calculated with the
universal representation for �cλ and with an equation for the background thermal conductivity λb developed
by Huber et al. [2]

Eqs. 4 and 5 obtained by Olchowy and coworkers in [5,9] has the form,

Y (y) = 2

π

(
1 − κ−1

)
arctan (y) + . . ., (38)

so that the first correction to the asymptotic Stokes–Einstein limit is identical to the one
in Eq. 12. However, it contains many additional terms, which we have approximated
by (2/π) κ−1 y. The expression adopted for the subtracted term in Eq. 12 for Y (y) is
a simplified version of the ones adopted in [5] and [9]. As we have done in the present
paper, Kiselev and Kulikov [10,11] also decouple Eq. 4 from Eq. 5 by neglecting any
wave-number dependence of the viscosity η. However, they retain an approximate
expression for the k-dependent thermal diffusivity in the denominator in the integrand
of Eq. 8. Thus our crossover equation, given by Eq. 12, is actually an approximation
to the more comprehensive solutions of both Olchowy and coworkers [5,9] and of
Kiselev and Kulikov [10,11], except that Kiselev and Kulikov assume that κ−1 in
Eq. 12 is negligibly small.

A very simple practical empirical estimate for the critical thermal-conductivity
enhancement has been proposed by Mathias et al. [100]:

�cλ = a

(
RT

ρ
χ

)b

, (39)

where a and b are two fluid-specific parameters to be determined from a fit to exper-
imental thermal-conductivity data. Hence, in this approximation, �cλ will diverge
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λλ
⋅

⋅

ρ ⋅

Fig. 8 Thermal conductivity of R125 in the critical region. The symbols indicate experimental thermal-
conductivity data reported by Perkins and Huber [56]. The curves represent values calculated with the
universal representation for �cλ and with an equation for the background thermal conductivity λb adopted
by Perkins and Huber [56]

λλ
⋅

⋅

ρ ⋅

Fig. 9 Thermal conductivity of isobutane in the critical region. The symbols indicate experimental thermal-
conductivity data reported by Nieuwoudt et al. [99]. The curves represent values calculated with the universal
representation for �cλ and with an equation for the background thermal conductivity λb adopted by Perkins
[32]
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asymptotically as χb. It is interesting to compare this asymptotic behavior with the
asymptotic behavior of Eq. 37 predicted by the mode-coupling theory of critical
dynamics. From Eq. 10 we see that ρCP = ρCP (0) will diverge as χ , while the
correlation length ξ according to Eq. 27 will diverge as χν/γ . If we approximate the
viscosity η by the non-divergent background viscosity, as we have done in the present
paper, we conclude from Eq. 37 that �cλ should diverge as χ1−ν/γ . Hence, in princi-
ple, the exponent b in Eq. 39 should not be a fluid-specific parameter, but should have
the universal value,

b = 1 − ν/γ � 0.49. (40)

The fluid-specific values found by Mathias et al. [100] for b differ significantly from
this universal value. In this connection, we note that Mathias et al. [100] use a Peng-
Robinson equation of state to estimate the susceptibility. We have found that use of a
Peng-Robinson equation of state is not consistent with the more theoretically based
Eq. 11 for the critical enhancement due to incorrect behavior of both the susceptibility
and heat capacity in the critical region. Equation 39 does not vanish far away from the
critical point, but this minor deficiency could be remedied by subtracting a term from
χ similar to Eq. 27.

7 Discussion

We have confirmed that the crossover model given by Eq. 11, together with Eqs. 12, 13,
and 36, yields a good practical representation of the critical enhancement of the ther-
mal conductivity of many fluids. Use of this equation requires an equation of state for
the thermodynamic properties and an equation for the viscosity of the fluid. The equa-
tion of state must provide reasonable values for the compressibility and specific-heat
capacities of the fluid in the critical region. Systematic errors in the fluid compressibil-
ity and specific heat from an equation of state will translate to systematic errors in the
critical enhancement of the thermal conductivity. In this regard, we recommend that
cubic equations of state, such as the Peng-Robinson equation, not be used with this
model in the critical region. In addition, the representation requires two fluid-specific
critical amplitudes and one fluid-specific cutoff wave number qD. When reliable val-
ues for the critical amplitudes are not available, they can be estimated by the procedure
described in Sect. 4. When experimental thermal-conductivity data are available in the
critical region, the cutoff wave number qD can, in principle, be determined from a fit
to the crossover model. However, in practice, it can be equally well estimated from
Eq. 35. Hence, the procedure described in this paper can be used to obtain quantitative
estimates for the critical enhancement of the thermal conductivity of many molecular
fluids, even in the absence of experimental thermal-conductivity data in the critical
region. An assessment of an extension of the theory to describe the critical enhance-
ment of the thermal conductivity in fluid mixtures [11,101] will require additional
research.
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