
Versus: A Framework for General
Content-Based Comparisons

Luigi Marini∗, Peter Bajcsy†, Smruti Padhy∗, Antoine Vandecreme†, Rob Kooper∗, Benjamin Long†,
Michal Ondrejcek∗, Paul Khouri Saba†, Devin Bonnie∗, Joe Chalfoun†, Kenton McHenry∗

∗National Center for Supercomputing Applications
University of Illinois at Urbana-Champaign

Email: {lmarini, mchenry}@illinois.edu
†National Institute of Standards and Technology

Email: peter.bajcsy@nist.gov

Abstract—We present a framework for the execution and
dissemination of customizable content-based file comparison
methods. Given digital objects such as files, database entries,
or in-memory data structures, we are interested in establishing
their proximity (i.e. similarity or dissimilarity) based on the
information encoded within the files (text, images, 3D, video,
audio, etc.). We provide an implementation of this abstraction
as a Java API and a RESTful service API. This implementation
includes a set of tools to support access and execution of content-
based comparisons both on local and distributed computational
resources, and a library of methods focused on images, 3D
models, text, and documents comprised of the three. We provide
three use cases to demonstrate the use of the framework:
(1) content-based retrieval of handwritten text, (2) quantifying
information loss and (3) the evaluation of image segmentation
accuracy in cell biology.

I. INTRODUCTION

The information age has been producing digital data at an
unprecedented scale. In order to make use of this data, we rely
on tools to quickly sift through these enormous collections of
data. One common requirement of these tools is the ability to
compare digital content with each other. Relevant application
areas include content-based image retrieval, novel tools within
content management systems, detecting duplicates or slightly
modified versions of the same file, means of grouping and
organizing large digital collections in an automated manner,
and detecting differences in files such as how similar two files
are when created under two different processes or information
lost as a file goes through some process.

II. THE VERSUS FRAMEWORK

The Versus framework is comprised of five major com-
ponents: data adapters, feature extractors, feature descriptors,
proximity measures, proximity values, and indexers. Figure 1
shows the overall flow for comparing two files. The formal-
ization of the task of establishing proximity between two files
that we present is based on the general trend of many content
based retrieval, machine learning, and data mining approaches.
Since there are many file formats for what is a relatively
smaller number of possible content types (e.g. text, images,
video, 3D models), we use methods referred to as adapters to
abstract away the differences between these formats. Adapters
are specific to content types and provide ways to load the raw

Fig. 1. Overview of the Versus framework.

content independently from the underlying byte encoding. It is
important to note that as little information as possible should
be lost when applying an adapter. Adapters are for translating
content from one encoding to a more generic one and it should
be easy, ideally, to reverse the process and go from the more
generic data structure to the original encoding.

Extractors are methods used to identify features within the
raw content. These features tend to be a subset of the data,
reducing the amount of information to be considered during
comparisons, and be somehow semantically meaningful with
regards to an aspect of the content that will be considered
during comparison. Once features are found within the content
they must be described in such a way that they can be robustly
identified or matched with features extracted from differing
content. Feature descriptors can have a variety of forms
with various pros and cons in terms of high level meaning,
computational cost, and tolerance in terms of slightly differing
features (i.e. noise). It is important to note that information will
be lost during feature extraction, but this loss can be beneficial
when it is intentional since it reduces the problem space.

Measures will take the descriptors obtained from extractors

run on two different files and return a value indicating the
proximity between the contents. This proximity value can be
either a similarity or a dissimilarity. Proximities include infor-
mation its potential minimum and maximum as well as what
represents an equality between the two content descriptors.

The core package of the Java implementation provides a
registry to retrieve lists of adapters, extractors, descriptors
and measures at runtime. This package is primarily used in
clients that need to provide a choice to the user or need to
use the registry to check if a particular method is available in
that instance. The framework also provides indexing facilities,
since content based retrieval is one area where the ability
of calculating pairwise distance between digital objects is a
common task and using a linear search to compare the query
object to all objects in a collection can be highly inefficient
for large collections.

The current implementation provides two execution engines:
a default single content descriptor engine and a comprehensive
document comparison engine. The default execution engine
accepts one job at a time and queues them into a threaded
pool of fixed size. Here each job is represented by the two
files to be compared, the identifiers of the two adapters
(one per file in case the two have different formats), the
identifier of an extractor, and the identifier of a measure. The
comprehensive document comparison engine is used to apply
different comparison measures to the same two files and return
a linearly weighted combination of the results. We refer to
this engine as being for documents as documents are often
made of several data types (e.g. text and images) and thus
several measures should be applied and then combined in some
manner.

A RESTful web service, built on top of the core API,
provides a service API for users who want to write distributed
applications or prefer writing clients in languages other than
Java. It also provides facilities to store the results of previous
executions and a master-slave configuration to horizontally
scale to a cluster of compute nodes. Comparisons over large
archives of digital content can be executed more practically in
a scalable manner over a variety of computational resources.

III. APPLICATIONS

A. Content-Based Retrieval
We provide an application of the Versus content comparison

framework for content-based retrieval of images of handwrit-
ten text. Based on the investigations of Diesendruck et al [1]
we incorporate into the framework a new extractor that uses a
Word Spotting technique [2] to extract feature descriptors from
an image in a manner that is sensitive to handwritten text. To
load the image contents to a compatible data structure we use
a Buffered Image Adapter. To compare the resulting content
descriptor returned from the extractor, which is a vector of
frequency coefficients, we use a EuclideanMeasure. The power
of this framework can be demonstrated in terms of its API,
which can be programmed against in a variety of languages,
and is used here to implement a CBIR system within a bash
script possessing less than 40 lines of instructions:

! / b i n / bash

ADAPTER=edu . i l l i n o i s . nc sa . v e r s u s . a d a p t e r . impl . B u f f e r e d I m a g e A d a p t e r
EXTRACTOR=edu . i l l i n o i s . nc sa . v e r s u s . c e n s u s . W o r d s p o t t i n g E x t r a c t o r
MEASURE=edu . i l l i n o i s . nc sa . v e r s u s . measure . impl . E u c l i d e a n D i s t a n c e M e a s u r e
SERVER= h t t p : / / l o c a l h o s t : 8 0 8 1 / v e r s u s / a p i / v1

Upload query f i l e
ID1=$ (c u r l −s −F ” f i l e T o U p l o a d =@$2” ${SERVER}/ f i l e s / up l oa d)

#Compare a g a i n s t d i r e c t o r y o f f i l e s
rm r e s u l t

f o r f i n $1 /∗ ; do
ID2=$ (g rep $ f i d s . t x t | awk ’{ p r i n t $1} ’)
i f [−z ” $ID2 ”] ; t h e n

ID2=$ (c u r l −s −F ” f i l e T o U p l o a d =@$f” ${SERVER}/ f i l e s / u p l oa d)
echo −e ” $ID2\ t $ f ” >> i d s . t x t

f i

POST=” d a t a s e t 1 =${SERVER}/ f i l e s / ${ID1}&d a t a s e t 2 =${SERVER}/ f i l e s / ${ID2}”
POST=”${POST}&a d a p t e r =${ADAPTER}&e x t r a c t o r =${EXTRACTOR}&measure =${MEASURE}”
MID=$ (c u r l −s−−d a t a ”$POST” ${SERVER}/ c o m p a r i s o n s)

#Check r e s u l t s
STATUS=$ (c u r l −s ${SERVER}/ c o m p a r i s o n s / ${MID}/ s t a t u s)
w h i l e [” ${STATUS}” == ”STARTED”] ; do

STATUS=$ (c u r l −s ${SERVER}/ c o m p a r i s o n s / ${MID}/ s t a t u s)
done

P r i n t r e s u l t s
i f [”$STATUS” == ”DONE”] ; t h e n

VALUE=$ (c u r l −s ${SERVER}/ c o m p a r i s o n s / ${MID}/ v a l u e)
p r i n t f ”%10.2 f\ t%s\n ” $RESULT $VALUE $f >> r e s u l t

e l s e
echo ”JOB ’$MID’ s t a t u s = ${STATUS}”

f i
done

s o r t −n r e s u l t | head −10

As a linear search will be very inefficient for large col-
lections of images one can include an additional indexer
component to structure the collection descriptors. For example
the HierarchicalAgglomerativeClusteringIndexer based on the
hierarchical clustering used in [1] will construct a binary tree
over the feature descriptors that allows for logarithmic search
times of the content.

B. Quantifying Information Loss

A problem for archivists is that of preserving content within
digital files across a variety of file formats. Many of the file
formats encountered are proprietary, owned by a software
vendor, and do not have open specifications by which to
implement software needed to load the content from the file.
In McHenry et al [3] the authors construct an extensible
conversion engine utilizing 3rd party software [4] (i.e. the
software of the vendors owning proprietary formats) as the
basis of carrying out conversions. With the automated conver-
sion engine available the authors then attempt to empirically
quantify the information loss incurred to a file’s contents
as it goes through a number of conversions. To do this
quantification the Versus framework was used to examine the
contents of a file before and after a conversion occurs. As [3]
focuses on 3D models they consider a number of different
comparisons for that type of content:
• Mesh Adapter → Statistics Extractor → Euclidean Measure
• Mesh Adapter → Surface Area Extractor → Euclidean Measure
• Mesh Adapter → Spin Image Extractor → Euclidean Measure
• Mesh Adapter → Light Field Extractor → Euclidean Measure

The purpose of utilizing four different comparison methods
is in the realization that different content comparisons will
have different properties in terms of the differences they pick
up on as well as computational requirements. Results obtained
from these comparisons allowed for an optimal format, in
terms of least information loss when when converted to by

manually labelled manually thresholded
manually labelled 1 0.9999999990613203

manually thresholded 0.9999999990613203 1
Isodata 0.9999913417609221 0.9999913689826113
Maxen 0.9999906283525553 0.9999906593289739
Otsu 0.999991221608019 0.9999912497683915

Canny edge 0.9999999929599045 0.9999999929599043
k-means (k=2) 0.9999911129545518 0.9999911420536064
k-means (k=4) 0.9999999910825415 0.9999999957759406

manually labelled manually thresholded
manually labelled 1 0.9999999995306601

manually thresholded 0.9999999995306601 1
Isodata 0.9999956708617197 0.999995684472682
Maxen 0.9999953141543205 0.9999953296426748
Otsu 0.9999956107847444 0.999995624865054

Canny edge 0.9999999964799522 0.9999999964799522
k-means (k=2) 0.9999955564575309 0.9999955710071873
k-means (k=4) 0.9999999955412707 0.9999999978879702

manually labelled manually thresholded
manually labelled 0 2

manually thresholded 2 0
Isodata 192.0807122019283 191.7785180879235
Maxen 199.83743393068278 199.50689211152581
Otsu 193.40889328053143 193.09842050104916

Canny edge 5.477225575051661 5.477225575051661
k-means (k=2) 194.6021582614129 194.28329830430613
k-means (k=4) 6.164414002968976 4.242640687119285

TABLE I
Top: Proximities obtained from the Jaccard measure. A value of
one indicates two identical images. Middle: Proximities obtained

from the Dice measure. A value of one indicates two identical
images. Bottom: Proximities obtained from the Euclidean measure.

A value of zero indicates two identical images.

other formats, to be chosen according to a particular situations
preservation requirements.

C. Cell Biology: Image Segmentation Accuracy Evaluations

In cell biology, large volumes of microscopy images are
generated with the goal of extracting cell measurements. One
of the basic software-based measurement steps involved is cell
segmentation which precedes any extraction of cell charac-
teristics or cell tracking. Reference cell image segmentations
are established by manual means. Due to the large volume of
microscopy images, a variety of machine image segmentation
methods have been developed [5]. Accuracies and sensitivity
to parameters have to be evaluated by comparing manual and
machine segmentation outcomes. We study the accuracy of
several machine segmentation methods as a function of a
chosen comparison method:
• BufferedImage Adapter → Grayscale Histogram Extractor → Jaccard Measure
• BufferedImage Adapter → Grayscale Histogram Extractor → Dice Measure
• BufferedImage Adapter → Grayscale Histogram Extractor → Euclidean Measure

The range of similarity values for Jaccard and Dice [6]
measures is from zero (very different images) to one (identical
images). The Euclidean L2 measure is a standard math-
ematical distance ranging from zero (identical images) to
infinity (dissimilar images). Based on results comparing man-
ually segmented images and images automatically segmented
via a variety of methods we see that the Euclidean based
comparison shows the greatest distinction and from this are
able to conclude that the highest similarity to the manual

segmentation is a manual intensity thresholding, followed by
k-means segmentation with k = 4, followed by Canny edge
methods.

IV. CONCLUSION

We believe that a framework such as Versus could serve as
the basis for a variety of applications requiring the comparison
of digital content, from content based retrieval, to digital
curation, to experimental evaluations with ground truth data.
The ability to share adapters, extractors, and measures could
also enable reuse of existing methodologies across application
domains. Current and future work include the ability to provide
decision support to users for selecting methods based on
application specific data and previous executions as well as
enhancing the web service with respect to performance and
fault tolerance.

ACKNOWLEDGMENTS

This research at NCSA/UIUC has been funded through the National
Science Foundation Cooperative Agreement NSF OCI 05-25308
and Cooperative Support Agreement NSF OCI 05-04064 by the
National Archives and Records Administration (NARA). The research
at NIST has been conducted as a part of the Computational Science
for Biological Metrology (CS-BIO-MET) project. We would like to
acknowledge all members of the CS-BIO-MET project for their
contributions.

DISCLAIMER

No approval or endorsement of any commercial product by NIST
is intended or implied. Certain commercial software, products, and
systems are identified in this report to facilitate better understanding.
Such identification does not imply recommendations or endorsement
by NIST nor does it imply that the software and products identified
are necessarily the best available for the purpose.

REFERENCES

[1] L. Diesendruck, L. Marini, R. Kooper, M. Kejriwal, and
K. McHenry, “A Framework to Access Handwritten Infor-
mation within Large Digitized Paper Collections,” IEEE
eScience, 2012.

[2] R. Manmatha, C. Han, and E. Riseman, “Word Spotting:
A New Approach to Indexing Handwriting,” IEEE Confer-
ence on Computer Vision and Pattern Recognition, 1996.

[3] K. McHenry, R. Kooper, and P. Bajcsy, “Towards a Uni-
versal, Quantifiable, and Scalable File Format Converter,”
IEEE eScience Conference, 2009.

[4] K. McHenry, R. Kooper, M. Ondrejcek, L. Marini, and
P. Bajcsy, “A Mosaic of Software,” IEEE eScience Con-
ference, 2011.

[5] A. Dima, J. Elliott, J. Filliben, M. Halter, A. Peskin,
J. Bernal, M. Kociolek, M. Brady, H. Tang, and A. Plant,
“Comparison of segmentation algorithms for fluorescence
microscopy images of cells,” Cytometry Part A, 2011.

[6] S.-H. Cha, “Taxonomy of nominal type distogram distance
measures,” American Conference on Applied Mathematics,
no. 2, pp. 325–330, 2008.

