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Abstract—A set of metrics is proposed that evaluates speed and
separation monitoring efficacy in industrial robot environments
in terms of the quantification of safety and the effects on produc-
tivity. The collision potential is represented by separation metrics
and sensor uncertainty based on perceived noise and bounding re-
gion radii. In the event of a bounding region collision between a
robot and an obstacle during algorithm evaluation, the severity
of the separation failure is reported as a percentage of volume
penetration.

Note to Practitioners—This work draws upon the necessity of
testing and evaluating industrial robotic safety systems. With a
plethora of existing collision avoidance methods (and many more
currently in the pipeline), there is a clear and present need for
an assessment basis to gauge speed and separation efficacy. This
paper presents a comparative set of metrics based on separation
distance, sensor uncertainty, and robot velocity and mass. Tools
are provided for system performance and failure assessment. Ap-
plying the metrics directly, intelligent robot systems can recognize
unsafe operating conditions and respond accordingly. Postprocess
analysis of logs and calculated values identifies the conditions and
circumstances for which the safety of the system is at a minimum.

Index Terms—Robot safety, collision avoidance, speed and sep-
aration monitoring.

I. INTRODUCTION

W ITHIN the realm of industrial collaborative robotics,
the safety of a robot is categorically assessed based on

two dichotomous practices: power and force limiting (PFL),
which minimizes the potential for operator injury upon robot
impact based on established injury standards [1]–[3]; and speed
and separation monitoring (SSM), or speed and position moni-
toring (SPM), which aims to prevent impact from occurring al-
together [1], [2]. The goal of SSM is to maintain a static safe
separation distance between the robot and any humans walking
through the collaborative workspace. This distance is enforced
by dynamically monitoring the travel distance required to bring
the robot to a safe, controlled stop. When the separation dis-
tance between the human and the robot is less than or equal to
this travel distance plus the safe Euclidean buffer distance, a
safety-monitored stop of the robot is initiated to halt the motion
of the robot before it can impact the human.
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Although the separation question is directly traceable to the
classical problem of robot collision avoidance, there is no uni-
fying process that quantitatively scores the scale of separation
since distances between the robot and obstacles are treated as
operational factors rather than qualitative safety measures. Fur-
ther, there is little in the literature on which one may judge the
actual safety of a given SSM algorithm, or directly compare two
different implementations.
Parts 1 and 2 of the International Organization for Standards

(ISO) standard 10218 (“Robots for Industrial Environments:
Safety Requirements. Part 1: Robot,” and “Robots and Robot
Devices: Safety Requirements. Part 2: Industrial Robot Sys-
tems and Integration”) and the upcoming ISO Proposed Draft
Technical Specification (TS) 15066 (“Robots and Robotic
Devices—Industrial Safety Requirements: Collaborative In-
dustrial Robots”) address the issue of robot speed and separation
monitoring, but are derived from the ISO 13855 (“Safety of
Machinery—Positioning of Protective Equipment with Respect
to the Approach Speeds of Parts of the Human Body”) protocol
for safe separation distances. ISO 13855 specifies that the
minimum allowable distance, , from the danger zone to
the detection point, line, plane or bounding region should be
calculated by using the following formula:

(1)

Here, is the speed derived from data on approach speeds of
the intruding human. The value of is expected to be 2.0 m/s,
unless the total computed value of is greater than 0.5 m, in
which case may be set at 1.6 m/s. The total system stopping
performance time, , in seconds, is based on the sum of the
maximum time between the actuation of the sensing function
and the output signal switching devices being in the off state, ,
and the maximum response time of the machine (i.e., the time
required to stop the machine), . The term is an additional dis-
tance, based on the expected intrusion toward the critical zone
prior to actuation of the protective equipment.
The equation defined in (1) has been updated for the ISO TS

15066 to include dynamic properties of the robot

(2)

where is the speed of the intruding human, is the speed
of the robot, and is the Euclidean distance required to bring
the robot to a safe, controlled stop.
A shortcoming of basing separation distances on ISO 13855,

however, is that the standard was intended for static machinery,
not dynamic, reconfigurable robotic systems. Updates to the
SSM standards are being explored by ISO, and the standards
development process will benefit from these metrics to quanti-
tatively assess and compare the safety of robot systems.
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This paper proposes a set of metrics for evaluating and com-
paring collision avoidance algorithms in general, and SSM al-
gorithms specifically. This work draws inspiration from efforts
to generalize robot safety in terms of impact force (e.g., [3]–[6]),
separation distance (e.g., [7] and [8]), velocity and configuration
(e.g., [9]), inertia (e.g., [10] and [11]), and collision cost (e.g.,
[12]), but focuses efforts on robot platform invariance, indus-
trial applications, and extending reporting beyond safety criteria
to include sensor uncertainty, impact on work throughput, and
severity of separation failure. The underlying considerations of
the evaluation metrics are discussed in Section II. These fac-
tors are then integrated into the metrics proposed in Section III.
Sections IV and V demonstrate the efficacy of the metrics using
simulations and physical trial data.

II. METRICS OF COLLISIONS AND SEPARATIONS

Unlike PFL, which may use comparative metrics such as
the Head Injury Criterion [13] or the Gadd Severity Index
[14] to address safety when contact between the robot and
humans is expected (e.g., in power-assisted manufacturing
[15]), SSM does not have a metric by which different robot
implementations may be gauged. In this section, the factors for
SSM measurement and efficacy are outlined.

A. Collision Detection and Avoidance

The spectrum of collision detection and avoidance algo-
rithms in existence is effectively reduced to one of two possible
classifications based on what it is they are measuring. The
first classification, separation, can further be subcategorized
into spatial (Euclidean distance) and temporal (i.e., time to
collision) classifications. Either metric can be utilized directly
by a robot’s route planner (e.g., plotting paths around obstacles
[16], or coordinating robot motions to maintain set distances
[17]), or fed into control algorithms as a functional parameter
(e.g., potential fields [18], [19] and velocity scaling [20] for
collision avoidance).
The second classification reflects the probability of collision.

Such measurements attempt to capture modeling errors (e.g.,
[21]), sensor uncertainties (e.g., [22]), and uncertainties of
Cartesian space occupancy (e.g., [23]–[25]). These measure-
ments are used for preemptive maneuvering to reduce the
probability that a collision will occur in the near future.
An issue encountered with both classification algorithms is

that their implementations are limited in scope and not appli-
cable across domains. In industrial environments, for example,
the safety boundary definitions for open-chain manipulators
bear little relevance to mobile robot collision avoidance sys-
tems. A generalized metric is thus needed if the safety of a
diversified robotic infrastructure is to be assessed.

B. Metrics Considerations

Several key factors must be considered if a given collision
safety metric will be readily adopted by the industry. First, a
potential metric must be easily implemented and understood.
The maintenance of safety is a task for everyone working
around industrial machinery, and the utility of the metric should
not require knowledge or experience beyond that of an average

user. Second, the metric must be reliable, repeatable, and
robust. The results provided by the metric should be consistent
and provide good, useful information. Special considerations
for conditions that result in undefined or contrary performances
are symptoms of insufficiently robust metrics. Third, the metric
should maintain low computational overhead; system integra-
tion should not burden or hinder the control of a robot. Finally,
the metric should be modular and effectively adaptable to a
broad spectrum of robot designs. A metric that is applicable
only to open-chain robots, for example, cannot capture the
complexity of environments that employ mobile platforms or
closed-chain manipulators.

III. METRIC PROPOSAL

In human-centered robotic systems, speed and separation
metrics are expected to focus more on preserving human safety
in a shared environment than the completion of a given task.
However, concern for task completion cannot be ignored lest
the usability of the robot be eliminated. A middle ground must
therefore be achieved: a robot should be able to accomplish its
given task, but if an obstacle enters its work zone, it must re-
spond in a safe and reliable fashion. If the robot is not in danger
of impacting an obstacle, its motion should not be hindered
beyond the normal physical constraints of the manipulator
or task. However, if an obstacle is present, the robot’s joint
velocities should be scaled down to limit the power and force
of an accidental collision.

A. System Safety

A proposed evaluation metric of a safety algorithm is pre-
sented in order to assess the actual safety of said system. This
metric includes three different measured collision components
to establish the degree of safety.
1) The safe separation between the robot and its obstacles.
2) The system uncertainty as a function of measurement error.
3) The severity of a collision, if one were to occur.
This metric is currently intended for relative comparisons be-
tween robotic implementations, though ongoing research fo-
cuses on absolute safety indices.
The first collision metric component focuses on evaluating

the separation between the robot and all potential obstacles in
the workspace. There are two related separation metrics used in
robot safety literature: separation distance (e.g., [26] and sepa-
ration time (time to collision, or TTC, e.g., [27]). The separation
distance, , between the robot at position and a given
obstacle, , located at at time , is given as the Euclidean dis-
tance between the two representative point coordinates in Carte-
sian space

(3)

The variable term is an additional distance used to improve
the accuracy of the separation estimate by accounting for bound-
aries of the robot and obstacle. For example, if and are
represented by bounding spheres, would equal the sum of their
respective radii.
In contrast, TTC measures the minimum time separating a

moving robot’s link (i.e., the commanded velocity, , is not 0)
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from any given obstacle in the workspace. The relative ve-
locity, , and the acceleration, , of approach are nega-
tive when the distance between the robot and the obstacle closes.
It is assumed that is known with certainty.
Given at time is approximated by

(4)

where the velocity profile of duration is defined as

.
(5)

Unlike other common TTC equations (e.g., [27]), certain as-
sumptions are made regarding the nonholonomic capabilities of
the robot and mobile obstacles in the environment. If

, there is no relative motion between the obstacle

and the robot (either the obstacle and the robot are traveling par-
allel to one another, or the relative motion is expected to reverse
direction instantaneously), TTC is calculated as though the di-
rection of the robot could change at instantaneously toward
the obstacle. If is also 0, the time to collision is infinite.
The second collision metric component quantifies the ex-

pected safety of the robot system. With a perfect detection
system, the positions of the robot joints and any obstacles (e.g.,
bounding boxes or centroids in Cartesian space) are known with
a high degree of certainty. In the presence of noise, however,
the measurement uncertainty poses a hazard for any collision
metric. As the separation distance approaches the magnitude
of the noise variance, the likelihood of collision approaches 1
nonlinearly. The probability of collision, , with object is thus
derived from the sensor uncertainty, and it is assumed that
increases faster as the measured separation distance approaches
0. An estimation of this probability, , at time , is given as

.
(6)

where is the sensor-driven position error estimate, calcu-
lated as the normalized average measurement error for each axis
coordinate as

(7)

where is the size of one half of the low-pass filter sample
window. For all tests performed in subsequent sections, a value
of was used for sampling. The value of is based on what
is expected to be a low probability of collision

(8)

which is derived from the first conditional of (6). Here, is a
scalar multiplier of the noise factor beyond which it is given
that there is a low probability of collision, (for these tests

). For this set of metrics, it is assumed that a sep-
aration distance equal to twice the magnitude of the noise (i.e.,

) has a low probability of collision, so .
The system uncertainty has a direct correlation with the

robot’s reliability to maintain a safe working environment. As
the sensor error-driven uncertainty increases, the likelihood
that the robot is or will soon be in a collision state increases.
Similarly, as the separation distance decreases, so, too, does the
degree of tolerable sensor error.
It should be noted that this metric for collision probability is

simplified and generalized, and that alternative methods, such
as Monte Carlo estimations (e.g., [12]) and probabilistic agent
reactions (e.g., [28]), may be utilized quite effectively here in-
stead. However, alternative approaches typically require consid-
erably more computational effort, and may be applicable only
to select robot configurations.
A limitation with both the separation distance and TTC met-

rics is that neither succinctly quantifies the complexity of the
safety question. Merely gauging the distance between the robot
and an obstacle, for instance, does not reflect the time remaining
until contact. Similarly, the time separating the robot and an ob-
stacle does not necessarily imply a safe operational distance.
Onemust therefore address the issue of what it means for one al-
gorithm variant to be “safer” than another. As an illustrative ex-
ample, consider two possible configurations of identical robots.
• A 100 kg robot, , is moving toward a stationary object
at velocity , and has a minimum separation distance of
0.5 m.

• A 100 kg robot, , is moving toward a stationary object
at velocity , and has a minimum separation distance of
1.0 m.

Knowing only what has been presented, one would assume
was safer. However, if is moving at 0.05 m/s, and

is moving at 1.0 m/s, has a TTC of 10.0 s, whereas has
s. Intuition concludes that is safer. Now con-

sider the inverse problem, where is moving at 0.1 m/s. Both
robots have s, but never gets closer than 1.0 m
from the obstacle while approaches within 0.5 m. Intuition
now points to as being safer.
The safety of a robot system can be assessed based on the

following three observations.
1) A robot that has a larger separation distance from an ob-
stacle is safer than one with equal momentum but with a
smaller separation distance.

2) A robot that has a slower speed is safer than one of equal
mass moving faster.

3) A robot that has a lower mass is safer than one with a larger
mass moving at the same speed.

It is posited that the safety of a robot system is a function of
the Euclidean distance and velocity of a robot with mass at
time . This value is further limited by the probability of col-
lision, , defined in (6). A given system is only as safe as
its least-safe moment, so, while the safety can be assessed on a
continuous basis, postprocess analysis summarizes the system’s
performance, , as the minimum safety measurement

(9)
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TABLE I
RELATIVE SAFETY MATRIX FOR SPEED AND SEPARATION DISTANCES

ASSUMING CONSTANT AND . THE VARIABLE IS USED TO IDENTIFY
THE VELOCITY FOR WHICH IN THE EVENT THAT THE
INEQUALITIES FOR AND , AND AND ARE IDENTICAL

That is, for robot link , the total system safety is defined
as the minimum safety value encountered for any obstacle
over all times . If a robot is compared only to itself, however,
the mass term may be omitted. Similarly, assuming a constant
probability of collision, the term may also be omitted, and the
safety term for the robot can be written as . For
a given configuration, the safety performance of two different
trials, and , can be assessed by validating the equality

A relative safety matrix (Table I) can be defined to quickly iden-
tify which motion profile is safer than another for a given robot.
The complexity of the computation of robot safety is asymptot-
ically driven by the number of obstacles present, , the number
of tracked links on the robot, , and the size of the sampling
window, , used to derive the probability of collision. For any
given time step, it can be shown that the separation distances
can be computed in time, and all the probabilities of
collision computed in time. Thus, it can be shown that
the computational cost of calculating the total system safety is
bounded to time.
The third collision metric focuses on measuring the severity

of an observed collision. In the event of a failure in separation
maintenance, the robot should come to a safe, monitored stop.
The bounding region penetration severity, , for obstacle is
then reported for all tracked robot links, and is based on both
the degree of overlap of the robots’ and obstacles’ bounding
regions, and the severity of penetration into an obstacle’s
bounding volume

(10)

where is the intersection for the link with the obstacle ,
and is the total bounding volume for obstacle . The value

is the maximum reach of the obstacle toward the robot, and
is the distance from the center of the obstacle’s bounding

volume, , to the closest point of the robot’s bounding volume.

Fig. 1. (A) Overlap for two 2D colliding bounding circles. (B) Transforming
the obstacle bounding circle to be inline with the robot bounding circle reduces
the problem complexity to two unknown variables: and . (C) Each asym-
metric half of the collision region is found by subtracting the area of the triangle
with lengths and , from the area of the incidental wedge

If is inside the robot’s bounding volume, is 0. For
bounding circles, is calculated as

(11)

where is the effective reach of the robot.
While no explicit geometrical representations of the robot or

obstacle are specified, more physically accurate bounding re-
gions necessarily provide increased severity accuracy at the ex-
pense of increased computational complexity.
Consider the simple case of the penetration of 2D bounding

circles for a single robot and a single object projected onto an
arbitrary - plane (Fig. 1). Assume that is the centroid of
a single object with radius . The center of the point robot,
, is located at the robot’s base, and is the distance to the

maximum effective reach of the robot.
If the assertion that is true, then a collision

has occurred. Its severity is measured by computing the area de-
fined by the overlap of the two bounding circles [Fig. 1(A)]. To
simplify the computation of the overlap, assume is centered
at (0, 0), and transform by rotating it about to

. The distance between the two centers remains
constant at , so [Fig. 1(B)].
In Fig. 1(B), the points and mark the coordi-

nates of the two intersections between the circles. The value of
can be calculated by

Plugging back into the original circle equation for , the value
of can be found as

The collision region is defined as the two halves of the asym-
metric lens. The bisecting chord has length . The half-an-
gles for the arcs defined by the respective circle centers and
points of intersection [see Fig. 1(C) illustrating this half angle
for the circle centered at ] are thus defined by
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The area of a half-lens is equal to the area of the wedge

minus the area of the incident triangles defined by the respective
circle centers and the points of intersection

Because only a single robot and a single obstacle are consid-
ered, the collision region is computed as

And the area for the bounding circle for obstacle is

Thus, for a given obstacle , in the event of a collision the
severity of a single robot is defined as

(12)

The postprocess 2D equation given in (12) is used in the case
studies outlined in Sections IV and V, and can be computed in

time. The method described above is readily extended
for arbitrary -dimensional bounding spheres, but increases the
computational time. For bounding volumes other than -di-
mensional spheres, however, the quantification of penetration
grows more computationally expensive as the complexity of
the volumes increases. Generalized volume penetrations are ad-
dressable (e.g., [29] and [30]), but are typically expressed in
terms of penetration distances, not areas of overlap. Alterna-
tively, methods for computing the area of overlap of 2D poly-
gons with sides exist for convex volumes with complexity

[31], and volumes without the convex assumption
with complexity [32].

B. System Performance

It is worth reiterating the importance of the distinction be-
tween safe and usably safe. A trivially safe robotic system is
one that never moves (i.e., for all times ), and thus has

. For a comparison between SSM algorithms, the
performance of a system must demonstrate some level of use-
fulness, which draws attention to the tradeoff between safety
and productive capacity. It is thus necessary to quantify the ef-
fect a given algorithm will have on productivity.
There is difficulty in quantifying the impact a given safety

system has on productivity. In order to remain general and ap-
plicable to the broad spectrum of robot tasks, a common factor
must be used. For example, “the distance traveled along the
- plane” is not valid for a robot inserting screws and moving

only on the axis.
The one common factor all robots have is that they are re-

quired to perform some job over time. This expected time mea-
surement provides a convenient and generalized basis for com-

Fig. 2. The inverted 6DOF robot arm mounted on a 7th axis rail. The workcell
is monitored by dual safety laser scanners (one shown in the lower-right) and
protected by a fence with three gate interlocks (one shown on the left).

parison for a broad spectrum of robot tasks. The productivity
can thus be quantified as

(13)

Here, we evaluate the expected time necessary for the robot
to complete its task, , versus the time to perform the same task
with the safety system in effect, . The result indicates the
percentage of the time the robot was doing useful work.

C. Metrics Summary

The properties discussed in the preceding Sections III-A and
III-B can be thus combined to provide a basis for evaluating
the safety and performance of a given robot safety protocol im-
plementing separation monitoring based on circular bounding
regions such as the ISO TS 15066 SSM. The scalar defined by
(9) provides a basis for system safety assessment based on ob-
ject separation and system uncertainty. In the event of a colli-
sion between the robot and an obstacle (i.e., the system safety is
0), the severity of the penetration into the obstacle’s bounding
volume can be found using (10), which has been generalized
for bounding spheres in (12). For a given trial, the value calcu-
lated by (13) succinctly describes the overall productivity with
the SSM system engaged.

IV. CASE STUDY: SIMULATION TRIALS

A. Robot Configuration
A robot testbed at the National Institute of Standards and

Technology (NIST) containing an inverted rail-mounted 6DOF
industrial manipulator (Fig. 2) was configured for manufac-
turing process test and evaluation. The workcell is enclosed
by a security fence with three interlocked gates around the
perimeter, and is monitored by three optical safety systems:
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Fig. 3. (A) The robot simulation tracks the planar centers of the base and
TCP and (B) maintains separation thresholds centered around each joint for ve-
locity scaling.

a dual inward-facing safety laser scanner system (one laser
scanner mounted on each post of the rail supporting the
robot) that tracks objects as they move in the work zone, a
ceiling-mounted stereo camera directly above the rail, and a
six-camera motion capture system distributed around workcell
that tracks retro-reflective targets on the robot arm at the tool
center point (TCP) and on a mannequin torso used for safety
testing.
To accommodate repeatable testing, a simulator was written

to mimic the capabilities of the robot testbed modulated by
different 2D (top–down), threshold-based SSM algorithms
(Fig. 3). The simulated robot consisted of a mobile base plat-
form whose motions were limited by a trapezoidal acceleration
profile and a single arm linkage that could be set to any length
and joint angle. The position of the robot base along
with the orientation and length of the arm define the TCP
position [ , Fig. 3(A)].
The robot motions simulate a robot picking up an object at

one location, and then placing that object down at a specified
location 5 m away. At each extreme of the swing, the robot
pauses for 4.5 s, and then reverses its direction. The simulation
consisted of ten repetitions of this back-and-forth cycle. For all
trials, the robot’s commanded velocity was 0.5 m/s, and had a
constant acceleration profile of 0.3 m/s . Because only a single
robot was considered for all trials, the mass of the robot was
omitted for comparisons as discussed in Section III-A. The sim-
ulation was evaluated in real time at 30 Hz, and, when uninter-
rupted, completed the task in 343.6 s on average.

B. Operator Path Data

Errors of human pose estimation result in unstable or oth-
erwise unpredictable robot behaviors. Also, instantaneous ve-
locities and accelerations calculated from raw, noisy track data
make TTC approximations unreliable. It is for these reasons that
it can be argued that SSM algorithm testing using recorded raw,
nonlinear sensor information is an imperative.
The trajectory of a human operator moving through the

NIST testbed was recorded using the safety laser scanner
system (Fig. 4) at 16.6 Hz. The tracked human’s position is
estimated by computing the centroid of the detected coordinate
points. This motion was then played back through the robot
simulator to provide a repeatable test scenario. The simulated

Fig. 4. Full path projection of a safety laser scanner-tracked human operator
walking through the robot testbed.

robot TCP performed ten repetitions of a movement between
the 0.0 and 5.0 m marks along the axis, while the axis
coordinate was set constant at m. The robot was com-
manded to pause for 4.5 s at each extreme swing. Without any
SSM algorithm to control the velocity of the robot, the closest
approach distance to the logged human data was 0.68 m, at
which point m/s. Given a probability of collision at
that time of , the total system safety was 0.9223.

C. SSM Description

Commercial SSM solutions (e.g., [33]–[35]) consist of
velocity-scaled threshold regions centered on the robot’s
joints [Fig. 3(B)] that define three operational states: clear,
slow, and pause. The clear state indicates that there are no
detected potential collisions, and the robot moves at 100% of
its programmed trajectory velocity. The slow state marks that
a potential collision state exists, and the robot’s trajectory ve-
locity is reduced. And the pause state indicates that a collision
is imminent, and the robot comes to a controlled stop. Two
custom SSM algorithms, Basic SSM and Tri-Modal SSM, sim-
ilar to the commercial solutions were evaluated for
and m. Both algorithms transition from one state to
another based on thresholds comparing separation distances,
and are modeled after commercial SSM products that modulate
the robot’s velocity based on user-defined warning zones.
The Basic SSM algorithm relies on a single threshold distance

value to switch between states, and is most congruent with the
2D space monitoring system described in [36]. When is
less than the pause threshold, , the robot transitions from clear
to pause. To illustrate that changing parameters have a measur-
able effect on the safety performance of a given algorithm, the
value of for the Basic SSM was varied and evaluated for

to m in 0.2 m increments.
The Tri-Modal SSM algorithm functions identically to the

Basic SSM implementation, but utilizes a second distance
threshold, , to transition from clear to slow, in which
the robot is commanded to reduce its trajectory velocity by a set
percentage (in this case, 50%). Such functionality is modeled
after the 2D (e.g., [33]) and 3D (e.g., [34]) zone-monitoring
safety systems available commercially. In the Tri-Modal SSM
implementation, the robot transitions from slow to pause
when . An evaluation of the effects of parameter
modulation on the set of safety metrics was implemented for
the Tri-Modal SSM algorithm, where was varied between
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Fig. 5. System uncertainty driven by the measurement noise of the tracked
human’s position, .

Fig. 6. Performance of the Basic SSM for the hybrid simulation as a function
of (labeled).

Fig. 7. Performance of the Tri-Modal SSM for the simulated robot as a function
of (labeled), with m (solid) and m (outline).

1.0 and 2.4 m in increments of 0.2 m for two different values
of : and m.

D. SSM Performance

As can be inferred from Fig. 4, the tracked human data is
noisy, and, when run without any SSM, produces the system
uncertainty for m, shown in Fig. 5. However, these
values are still relatively low with a maximum of 8.9%, and av-
erage of 2.2%. The results for using the Basic SSM for the sim-
ulation are plotted in Fig. 6, and the Tri-Modal SSM in Fig. 7.
The measurements and safety values for the active robot at the
point of minimum separation distance are given in Table II. In
all trials, the robot stopped prior to any possible collision states,
so in each the collision severity .
From these results, it can be shown that changing the value

of for the Basic SSM has the expected result of improving
the safety of each algorithm, but also adversely affects the pro-
ductivity. From the Tri-Modal SSM evaluation, modifying the
value of also has an effect on the productivity and safety, but
the variance of the system’s safety is more fine resolution than
that seen with . For both algorithms, the minimum system
safety was greater than that of the robot without any SSM ac-
tive, as is seen in row 1 of Table II.

TABLE II
SEPARATION AND SAFETY MEASUREMENTS FOR THE SIMULATION AT

USING THE BASIC (B) AND TRI-MODAL (TM) SSM ALGORITHMS

A trend in the data also emerges based on the properties of
the simulation. Because the recorded human operator’s motions
do no deviate from their expected trajectory, only the robot’s
reactions affect the safety performance of the simulation. This
is illustrated when is increased from 1.8 m to 2.0 m in the
Basic SSM test. Recall that the robot pauses for 4.5 s at each
drop point. The closest approach of the recorded human to the
robot with m occurs when the robot is supposed to
emerge from this pause state and resume motion. At this time,

m/s, and is between 1.8 m and 2.0 m. If
m, the robot would have started moving, and would have had
a comparatively much lower safety rating than it actually did.
Instead, the robot remained idle until the recorded human track
moved away, thus resulting in a much larger separation distance
at the point of closest approach for the active robot.

V. CASE STUDY: PHYSICAL TRIALS

After the initial simulation trials, the two SSM algorithms
were ported to the robot controller described in Section IV-A
for physical system testing. The Basic SSMwas configured with
thresholds based on an analytical approximation of (2)

(14)

where m, m, and m/s is
the maximum acceleration of the robot, the human velocity was
set at the ISO 13855 worst-case value of m/s. The
reaction time, , is derived by the sum of the safety system’s
detection and reaction times, which were empirically calculated
to be 0.297 and 0.113 s, respectively. The Tri-Modal SSM al-
gorithm was set with , , , and

m. Given bounding circles for the robot and human of
0.25 and 0.9 m, respectively, the expected separation between
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Fig. 8. Instantaneous velocity profile of the robot without any SSM running.

Fig. 9. Sensor uncertainty estimate during the Basic SSM trials.

the center points of the robot and human is expected to be greater
than 1.15 m while the robot is moving. Failures to maintain this
center-to-center distance result in separation distances .
The safety laser scanner configuration used to generate the

tracked human data in Section IV was used as the basis for the
SSM. The physical trials reflected the simulation evaluation in
that the robot’s motions were a simple back-and-forth trajectory
using only the 7th axis linear rail for motion, but the range of
this motion was reduced to 1.5 m between the two zeniths, and
the number of repeats was reduced to two. Once again, the robot
was commanded to move between the two points at 0.5 m/s. A
velocity profile of the robot without any SSM running is shown
in Fig. 8, which illustrates the robot completing its program in
13.54 s.
A mannequin lower torso mounted on a wheeled base was

used as a surrogate human in the robot work zone. It was moved
manually toward and away from the robot along the principal
axis of the robot’s motions using an extended handle. Because
the mannequin’s motions were moved by hand, they were not
reproducible. As such, these trials are used here only as exam-
ples of the metrics’ capacity for comparing two SSM algorithms
for a given robot in an unstructured evaluation.
The motion capture system discussed in Section IV-A pro-

vided the ground truth for these tests via the targets located
on the robot’s TCP and at the centroid of the torso. The accu-
racy and speed of the camera system are much greater than the
tracker [in Fig. 9, it can be seen that the sensor uncertainty com-
puted using (7) is an order of magnitude lower than that of the
safety laser scanner system illustrated in Section IV].
The performance measurements and safety assessments re-

sulting from running the Basic SSM are shown in Figs. 10 and
11, respectively. According to the safety metrics described in
this paper, the Basic SSM algorithm was safe at all
time steps (Fig. 11). Indeed, the measurements confirm

Fig. 10. Measured velocity of the robot’s TCP and the relative separation dis-
tance of the TCP and the mannequin during the Basic SSM trial.

Fig. 11. Calculated safety of the robot implementation over time. At no time
does the safety fall to zero, indicating the robot was never in an explicitly unsafe
configuration with regard to the mannequin.

Fig. 12. Measured velocity of the robot’s TCP and the relative separation dis-
tance of the TCP and the mannequin during the Tri-Modal SSM trial.

for all times that . As can be seen in Fig. 10, the sepa-
ration distance falls below on four occasions. However, in
each instance, the TCP velocity was reduced to 0 m/s, and, as
a result, the safety of the system never fully approaches 0, and
any collision of the bounding regions was the consequence of
the mannequin approaching the stationary robot (i.e., at
all time steps). The robot was able to complete its program in
36.04 s (the time from the robot’s initial motion to the time it
came to a final stop), for a productivity value of %.
In contrast, when using the Tri-Modal SSM, the slow capacity

of the algorithm increased the productivity of the robot, which
completed its program in 28.24 s % as illustrated
in Fig. 12. However, as can be seen in Fig. 13, the robot also
demonstrated a minimum safety of 0 ( for some time
) based on the three collision events witnessed in Fig. 12. Be-
cause the area of the active TCP’s bounding region is only about
6% the area of the mannequin’s bounding region, the collision
severities shown in Fig. 14 indicate that the severity factor is
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Fig. 13. Calculated safety of the robot implementation over time. Again, the
safety falls to zero on three occasions, implying unsafe robot motions.

Fig. 14. Analysis of the collision severity shows the percentage of overlap of
the robot’s and human’s bounding regions.

dominated by the penetration distance. The degree of penetra-
tion is directly attributed to a combination of delay in the safety
laser scanner tracking system and setting equal to the sum
of the bounding regions’ radii. Because of the effects of latency
and sensor reliability, an amendment to the SSM algorithm ac-
counting for sensor uncertainty has been proposed for ISO TS
15066.

VI. DISCUSSION

A set of performance metrics for the comparison of the safety
of robotic systems has been described and demonstrated. Its im-
plementation is simple and intuitive, since the safety of a system
is a function of the robot’s mass, velocity, separation distance,
and probability of collision. Computationally, the overhead of
the safety metrics is low at given obstacles,
tracked links, and the probability of collision filteringwindow of
size . Initial trials have demonstrated that the metrics are mod-
ular in that they are applicable to either industrial robot arms or
mobile robot platforms.
From the initial trials, it is evident that even a relatively

simple SSM algorithm can readily improve the safety of a
robot so long as it reduces the speed of a robot while it is in
the vicinity of an obstacle. The difficulty lies in demonstrating
not only how much safer a given algorithm is over another, but
also identifying the point in time at which an algorithm was the
least safe. Such information allows researchers to isolate and
identify potential issues, and improve their systems as a result.
The analysis of simulated and physical robot implementations
in this report demonstrates the capacity of the proposed set of
metrics to address these issues.
Due to ISO 13855 providing the basis for robot safety stan-

dards such as the draft ISO TS 15066, the SSM distance thresh-
olds equations derived from ISO 13855 also provide bench-
marks for future algorithm development and comparison. By

providing a set of metrics that help define a baseline for per-
formance, it becomes possible to promote the growth and ac-
ceptance of novel and innovative approaches for maintaining
safety in industry. When compared with current standards, SSM
systems that have both higher productivity and safety ratings
for identical testing conditions are, naturally, superior. An ad-
ditional benefit is that an intelligent robot system may utilize
metrics such as these to identify when a given operational situa-
tion is unsafe based on either sensor uncertainty or declinations
in measured safety.
As the use of robotics in human-occupied spaces becomes

more prevalent, industry will inevitably witness more direct in-
teractions between robots and operators. Ongoing research fo-
cuses on integrating the metrics developed herein into proto-
typemanufacturingworkcells for collaborative task completion.
Current efforts seek to assimilate the Occupational Safety and
Health of the German Social Accident Insurance (IFA, formerly
BGIA) risk recommendations for tolerable injury values [36]
and these metrics into a combined SSM-PFL workcell solution.
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