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Abstract 
	
  

Domain adaptation algorithms that handle shifts in 
the distribution between training and testing data are 
receiving much attention in computer vision. Recently, 
a Grassmann manifold-based domain adaptation algo- 
rithm that models the domain shift using intermediate 
subspaces along the geodesic connecting the source and 
target domains was presented in [6].  We build upon 
this work and propose replacing the step of concate- 
nating feature projections on a very few sampled inter- 
mediate subspaces by directly integrating the distance 
between feature projections along the geodesic.   The 
proposed approach considers all the intermediate sub- 
spaces along the geodesic.  Thus, it is a more prin- 
cipled way of quantifying the cross-domain distance. 
We present the results of experiments on two standard 
datasets and show that the proposed algorithm yields 
favorable performance over previous approaches. 

	
  
	
  
	
  
1 Introduction 

Traditional visual object recognition methods as- 
sume that the testing and training data are sampled from 
the same distribution.  However, in practice, the train- 
ing and testing data are captured under different con- 
ditions and exhibit different distributions.  Failing to 
model this shift often leads to inferior results. Methods 
that can handle domain shift are essential for improving 
the recognition performance. This is referred to as the 
domain adaptation problem. 

Several methods have been proposed to handle do- 
main shift for support vector machines [13, 7, 3].  In 
the field of visual object recognition, [9, 8] computed 
domain-invariant metrics to quantify the similarity be- 
tween objects of different domains. Recently, Gopalan 
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et al. modeled the domain shift using the geodesic con- 
necting the source and target domains on a Grassmann 
manifold [6]. The key idea was to synthesize interme- 
diate domains using intermediate subspaces along the 
geodesic and represent an object by concatenating its 
projections on these subspaces. 

In this paper, we propose an alternative Grassmann 
manifold-based approach to address the domain adap- 
tation problem.  Specifically, we replace the step that 
concatenates a few intermediate subspace projections as 
done in [6] by integrating the distance between feature 
projections on all the intermediate subspaces along the 
geodesic. Our approach has two major advantages. 
	
  

•   It avoids ad-hoc sampling of intermediate sub- 
spaces in [6]. 

•   It is more expressive because it implicitly projects 
data onto all the subspaces along the geodesic and 
smoothly accumulates the distance between data 
projections along the geodesic. In addition, it does 
not suffer from information loss that occurs in [6] 
due to discrete sampling. 

Fig. 1 illustrates the difference between our approach 
and that of [6]. 

The paper is organized as follow. We review the cal- 
culation of geodesics on the Grassmann manifold in §  2 
and present our approach in §  3.  Experimental results 
are discussed in §  4. The paper is concluded in §  5. 

2   Geodesic on the Grassman Manifold 
A Grassmann manifold Gn,d  is the set of all the d- 

dimensional subspaces of the vector space Rn . In this 
paper, we denote a subspace S  ∈  Gn,d  using a matrix 
S  in Rn×d whose columns are orthogonal and form a 
basis for this subspace. Note that if S is right-multiplied 
by a d-dimensional orthogonal matrix, it still denotes 
S  because the subspace spanned by the columns of S 
remains the same. 
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Figure 1. Finite sampling versus continuous integration. (a) Gopalan et al. [6] samples several intermediate subspaces
along the geodesic connecting two domains on the Grassmann manifold. Here samples are represented by concatenating
data projections on the sampled subspaces, and cross-domain class analysis is performed on the concatenated representation.
(b) In our approach, we measure the similarity between two data points from different domains by integrating the distance of
their projections through all the intermediate subspaces along the geodesic. Since we consider all the intermediate subspaces,
this produces a more accuracte metric.

Let S0 and S1 be two matrices in Rn⇥d whose
columns are orthogonal bases for the d-dimensional
subspaces S0 and S1 respectively. Let U1�V

T
1 be a sin-

gular value decomposition (SVD) of the d ⇥ d matrix
ST
0 S1. The geodesic  (t) on the Grassmann manifold

Gn,d starting from S0 to S1 is given by

 (t) = Qexp(tB)J s.t.
⇢
 (0) = S0

 (1) = S1
(1)

where J =


Id

On�d,d

�
, Id is a d ⇥ d identity matrix,

and On�d,d is a matrix with all zeros [11]. Here, Q is
an orthogonal matrix with determinant +1 and is given
by

Q =


S01 � Id

S02

�
[Id � ST

01]
�1

[ST
01 � IdS

T
02]. (2)

The matrices S01 2 Rd⇥d and S02 2 R(n�d)⇥d are
the upper and lower parts of S0 respectively, i.e., S0 =

S01

S02

�
, and the matrix B in Eq. (1) is asymmetric and

block-diagonal given by B =


Od,d AT

�A Od,d

�
where

A 2 R(n�d)⇥d.
Instead of directly calculating  (t), we use the ap-

proach proposed by Gallivan et al. [4] which calculates
the equivalent geodesic ¯ (t) =  (t)U1 connecting S0

and S1 such that ¯ (0) = S0U1 and ¯ (1) = S1V1. The
intuition behind this is that the subspaces represented by
 (t), S0, and S1 remains the same when these matrices
are right multiplied by an orthogonal matrix.

Now the geodesic ¯ (t) connecting S0 and S1 is
given by

¯ (t) = Q exp(tB)JU1 s.t.
⇢

¯ (0) = S0U1
¯ (1) = S1V1

(3)

Using the results pertaining to the geodisc on Grass-
mann manifold [4], the geodesic ¯ (t) can be further
simplified as

¯ (t) = Q


U1�(t)

�

˜U2⌃(t)

�
, (4)

where ˜U2 2 R(n�d)⇥d is made up of d orthogonal
columns. The derivation of ˜U2 makes use of the bound-
ary condition ¯ (1) = S1V1 and will be given in § 3.
The matrices �(t),⌃(t) 2 Rd⇥d are diagonal with di-
agonal elements being �i = cos(t✓i) and �i = sin(t✓i)
respectively where 0  ✓1  ...  ✓d  ⇡/2. Note that
{✓i}

d
i=1 form the rotation angles from S0 to S1. We use

⇥ to denote the diagonal matrix with diagonal elements
given by {✓i}

d
i=1. Further details of the derivation can

be found in [4].
Later on in the paper, we use the derived geodesic

form to construct a measure that quantifies the distance
between samples of different domains.

3 Domain Adaptation

Let Xs
2 Rn⇥ms and Xt

2 Rn⇥mt denote the fea-
ture representation of ms and mt samples in source and
target domains respectively where each column xi 2

Rn denotes a sample and n is the feature dimension.
In [6], Gopalan et al. propose an approach which

performs cross-domain class analysis using intermedi-
ate subspace along the geodesic on the Grassmann man-
ifold. Specifically, they first apply the principle compo-
nent analysis (PCA) on Xs and Xt respectively, which
generates two d-dimensional subspaces denoted by two
matrices S0, S1 2 Rn⇥d. The geodesic path ¯ (t) from
S0 to S1 is then given by Eq. (3). Since each point on
the geodesic is a subspace, the intermediate subspaces



can be obtained by sampling the geodesic ¯ (t) at dif-
ferent time points ti. Let ˆS = {St}

tk
t=t1 denote the col-

lection of the k sampled intermediate subspaces, where
0 = t1  ...  tk = 1. They then project each sam-
ple from both domains onto k subspaces in ˆS and con-
catenate all the k projections to form a long vector of
size d ⇥ k. A discriminative classifier is then trained
to classify samples of unknown labels based on the
high-dimensional vector representation using the sam-
ples whose labels are known. Note that in the semi-
supervised classification task, labels of some samples
in the target domain are also known.

The sampling based approach of [6] has two main
disadvantages. First, it is not clear which sampling
method should be used since different sampling meth-
ods result in different intermediate subspace representa-
tions and the final classification recognition degrades if
an inferior sampling method is used. Second, the num-
ber of sampled points is limited because a large num-
ber of sampled points along the geodesic results in a
very high dimensional feature vector which increases
computational complexity. In order to overcome these
disadvantages, we propose an alternative approach. In-
stead of sampling some points along the geodesic, we
integrate the distance of data projections onto the sub-
spaces along the geodesic. This yields a cross-domain
distance metric which can be used for cross-domain
class analysis. Our approach consists of the following
three steps.

Calculate the ⇥: Given S0 and S1, the matrix Q
in Eq. (4) can be computed according to Eq. (2) and

QTS1 is given by QTS1 =


ST
0 S1

S12 � S02Z
T

�
where

Z 2 Rd⇥d satisfies Z(Id � ST
01) = (ST

1 S0 � ST
11).

Since

 (1) = Q


U1�(t)

�

˜U2⌃(t)

�
=

¯S1 = S1V1, (5)

we have

QTS1 =


U1�(1)V

T
1

�

˜U2⌃(1)V
T
1

�

=


U1 0

0

˜U2

� 
�(1)

�⌃(1)

�
V T
1

(6)

Note that ˜U2 and ⇥ can be obtained by computing the
thin CS decomposition of QTS1 [4].

Calculate geodesic ¯ (t): With the matrix ⇥ and ˜U2,
one can obtain �(t) and ⌃(t) using their definitions. By
substituting �(t) and ⌃(t) in (4), we obtain the geodesic
starting from the source domain S0 to the target domain
S1:

¯ (t) = Q


U1�(t)

�

˜U2⌃(t)

�
(7)

Calculate domain-invariant distances: For a given
pair of examples (x1,x2) where x1 and x2 come from
the source and target domain respectively, we project
them onto the subspace ¯ (t) indexed by t on the
geodesic to obtain ˜

x1 =

¯ (t)Tx1 and ˜

x2 =

¯ (t)Tx2.
The final distance between ˜

x1 and ˜

x2 is calculated by
integration given by

d(˜x1, ˜x2) =

Z 1

0
(

˜

x1 � ˜

x2)
T
(

˜

x1 � ˜

x2)dt (8)

= (x1 � x2)
T

✓Z 1

0

¯ (t) ¯ (t)T dt

◆
(x1 � x2) (9)

= Q


U1 0

0

˜U2

�
P


UT
1 0

0

˜UT
2

�
QT . (10)

where the matrix P can be easily determined using the
subspace angles between S0 and S1. Note that (10) is an
analytical form and can be computed in constant time.
Finally, we calculate the distance between a test sample
and all the labeled samples from both domains and use
a nearest neighbor algorithm for classification.

4 Experiments

We conducted experiments on cross-domain object
category recognition and face recognition. We com-
pared our approach with the state-of-the-art algorithms
in [6] and [9].

4.1 Object Recognition
We evaluated the proposed algorithm on the cross-

domain object category classification task using the
benchmark dataset from [9], which contains images
from 31 object categories. Based on the acquisition
condition, the dataset images are divided into three do-
mains: amazon, dslr and webcam. The amazon domain
includes an average of 90 product images for each cat-
egory downloaded from Amazon’s website. Both the
dslr and webcam domains have about 30 images per cat-
egory; they are captured by a digital single lens reflex
camera and a webcam respectively. We show example
images in Fig 2. One can see that domain shift in the
dataset is primarily due to changes in image resolution,
object pose, background clutters, and scene lighting.

Image representation is based on SURF [1] features
that are similar to those in [9, 6]. Specifically, we ex-
tracted SURF features for all the images in the ama-

zon domain and used a random subset of the features to
learn a codebook of 800 codewords. The codebook was
used to encode the SURF features and each image in the
dataset was presented by a histogram of the 800 code-
words. We further normalized the histograms so that it



(a) amazon (b) dslr (c)webcam

Figure 2. Sample images from the benchmark dataset [9]. We show several images from the object categories of bike
helmet, keyboard, and mug in the three domains of amazon, dslr, and webcam. Domain shift in the dataset is mainly due to
changes in image resolution, object pose, and scene lighting.

Settings source domain target domain [9] (asymm) [9] (symm) [6] proposed

same-category
webcam dslr 25 27 37 66

dslr webcam 30 31 36 61
amazon webcam 48 44 57 45

new-category webcam dslr 53 49 59 66

Table 1. Comparison of classification accuracy. We reported classification accuracy (in percentage) for the state-of-the
art algorithms in [9] (asymm and symm variants), [6] and our approach.

sums up to one. To obtain the final representation, the
histograms of images in the same domain were further
normalized so that each dimension have a zero mean
and unit deviation. Then PCA is performed on the final
representation.

There were two evaluation settings on the bench-
mark: same-category and new-category. In the same-
category setting, there were labeled images for all the
categories for both domains. In the new-category set-
ting, there were labeled images for all the categories in
the source domain, but only half of the categories in the
target domain contained labeled images.

We compared the classification accuracy of the pro-
posed algorithm with the state-of-the-art in Table 1. For
our results, accuracy was obtained by averaging over
20 experiment trials; each trail contained a random set
of labeled images in both the source and target do-
mains. We observed that the proposed algorithm yields
a better performance for two out of three tasks in the
same-category setting. In addition, the proposed algo-
rithm significantly improved the performance for the
task in the new-category setting—by a margin of more
than 10%. This showed the benefit of the integration-
based approach which accumulated the distance along
the geodesic over the previous approach [6]. However,
we noted that the proposed algorithm is not effective
for the adaptation from amazon to webcam. We believe
this may be due to the fact that the proposed algorithm
uses a simple nearest neighbor classification technique,
while [9] and [6] classifiers are based on powerful ma-
chine learning algorithms of information theoretic met-

ric learning [2] and partial least squares method [12].

4.2 Face recognition across blur and illumina-
tion

We conducted face recognition experiments using
the CMU-PIE dataset [10]. This dataset consists of im-
ages from 68 subjects captured under 21 different illu-
mination conditions. We randomly selected 11 illumi-
nation conditions. All the images captured under these
11 conditions constituted the source domain data, while
the remaining ones formed the target domain data. The
images in the source domain were labeled, but not those
in the target domain.

We synthesized domain shifts by applying two dif-
ferent types of blur kernels to the target domain data: 1)
Gaussian blur kernel, and 2) motion blur kernel. For the
two types of kernels, we gradually increased the kernel
sizes to synthesize different degrees of domain shifts.
For the Gaussian blur, we varied the standard deviation
from 1 to 5. For the motion blur, we varied the motion
speed, from 1 to 17 pixels. (The motion angle was set to
30 degrees.) Some of the target images were presented
in Fig. 3. In summary, the domain shift consisted of
two components. The first was a change in illumination
direction, 11 illumination directs in the source domain
and 10 directs in the target. The second component was
a blur.

In Tables 2 and 3, we compared the proposed algo-
rithm to [6] (without applying the partial least square
analysis) for the Gaussian and motion blurs respec-
tively. It can be seen that the closed-set identifica-
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Gaussian blur Motion blur 

Figure 3. Target image samples. We illustrate several synthesized target images under different Gaussian blur and
motion blur. The variable � denotes the standard deviation, while L denotes the motion speed.

Gaussian blur �=1.0 �=1.5 �=2.0 �=2.5 �=3.0 �=3.5 �=4.0 �=4.5 �=5.0
[6] 93.8 86.8 86.3 70.9 57.5 43.7 28.4 21.5 17.7

Proposed 94.9 88.7 88.2 74.6 62.7 47.4 31.9 24.3 19.4

Table 2. Comparison of identification accuracy in percent under different Gaussian blur in the target domain. We
vary the standard deviation of the Gaussian blur in the target domain from 1 to 5 and compare our recognition performance
with [6].

Motion blur L=1 L=3 L=5 L=7 L=9 L=11 L=13 L=15 L=17
[6] 95.0 93.4 90.4 86.0 77.5 65.2 53.2 43.4 36.8

Proposed 95.2 94.0 92.1 88.2 82.8 70.3 58.8 53.8 42.7

Table 3. Comparison of identification accuracy under different motion blur in the target domain. We vary the motion
speed in the target domain from 1 to 17 pixels per sensor integration time and compare our recognition performance with [6].

tion accuracy of both methods decreases as the amount
of blur in the target domain increases. However, our
proposed algorithm consistently yielded better perfor-
mance than [6].

5 Conclusion

We presented a cross-domain classification approach
based on integrating the distance between data projec-
tions on the subspaces along the geodesic on a Grass-
mann manifold. We showed that the integration-based
approach yields a better performance as compared to
the previous approach that only samples few interme-
diate subspaces along the geodesic. In future, we plan
to extend proposed approach by incorporating powerful
machine learning methods.
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