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A global analysis is presented of solutions for Laplace’s equation on three-
dimensional Euclidean space in one of the most general orthogonal asymmetric
confocal cyclidic coordinate systems which admit solutions through separation of
variables. We refer to this coordinate system as five-cyclide coordinates since the co-
ordinate surfaces are given by two cyclides of genus zero which represent inversions of
each other with respect to the unit sphere, a cyclide of genus one, and two disconnected
cyclides of genus zero. This coordinate system is obtained by stereographic projection
of sphero-conal coordinates on four-dimensional Euclidean space. The harmonics in
this coordinate system are given by products of solutions of second-order Fuchsian
ordinary differential equations with five elementary singularities. The Dirichlet prob-
lem for the global harmonics in this coordinate system is solved using multiparameter
spectral theory in the regions bounded by the asymmetric confocal cyclidic coordinate
surfaces. C© 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4812321]

I. INTRODUCTION

In 1894, Maxime Bôcher’s book “Ueber die Reihenentwickelungen der Potentialtheorie” was
published.2 It took its origin from lectures given by Felix Klein in Göttingen (see for instance,
Refs. 7 and 8). In Bôcher’s book, the author gives a list of 17 inequivalent coordinate systems in
three dimensions in which the Laplace equation admits separated solutions of the form

U (x, y, z) = R(x, y, z)w1(s1)w2(s2)w3(s3), (1)

where the modulation factor R(x, y, z) (see p. 519 of Ref. 11) is a known and fixed function, and s1,
s2, s3 are curvilinear coordinates of x, y, z. The functions w1, w2, w3 are solutions of second order
ordinary differential equations. The symmetry group of Laplace’s equation is the conformal group
and equivalence between various separable coordinate systems is established by the existence of a
conformal transformation which maps one separable coordinate system to another.

In general, the coordinate surfaces (called confocal cyclides) are given by the zero sets of
polynomials in x, y, z of degree at most four which can be broken up into several different subclasses.
For instance, eleven of these coordinate systems have coordinate surfaces which are given by confocal
quadrics (Systems 1–11 on p. 164 of Ref. 9), nine are rotationally-invariant (Systems 2, 5–8 on p.
164 and Systems 14–17 on p. 210 of Ref. 9), four are cylindrical (Systems 1–4 of Ref. 9), and the
five most general are of the asymmetric type, namely confocal ellipsoidal, paraboloidal, sphero-
conal, and two cyclidic coordinate systems (Systems 9–11 on p. 164 and Systems 12 and 13 on
p. 210 of Ref. 9). Bôcher2 showed how to solve the Dirichlet problem for harmonic functions on
regions bounded by such confocal cyclides. However, it is stated repeatedly in Bôcher’s book that
the presentation lacked convergence proofs, for instance, this is mentioned in the preface written by
Felix Klein.

It is the purpose of this paper to supply the missing proofs for one of the asymmetric cyclidic
coordinate systems which is listed as number 12 in Miller’s list (see p. 210 of Ref. 9) (see also
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FIG. 1. Surfaces s1, 2, 3 = const for ai = i, where only the component of the cyclide s1 = const inside the ball x2 + y2 +
z2 < 1 is shown.

Table II of Ref. 3 and Ref. 4 for a more general setting). For lack of a better name we call it
5-cyclide coordinates. This asymmetric orthogonal curvilinear coordinate system has coordinates
si ∈ R (i = 1, 2, 3) with si in (a0, a1), (a1, a2) or (a2, a3), respectively, where a0 < a1 < a2 < a3

are given numbers. This coordinate system is described by coordinate surfaces si = const which
are five compact cyclides. The surfaces s1 = const for s1 ∈ (a0, a1) are two cyclides of genus zero
representing inversions of each other with respect to the unit sphere. The surface s2 = const for
s2 ∈ (a1, a2) represents a ring cyclide of genus one and the surfaces s3 = const for s3 ∈ (a2, a3)
represent two disconnected cyclides of genus zero with reflection symmetry about the x, y-plane.
The asymptotic behavior of this coordinate system as the size of these compact cyclides increases
without limit is 6-sphere coordinates (see p. 122 of Ref. 10), the inversion of Cartesian coordinates.

In our notation, the coordinate surfaces of this system are given by the variety

(x2 + y2 + z2 − 1)2

s − a0
+ 4x2

s − a1
+ 4y2

s − a2
+ 4z2

s − a3
= 0, (2)

where s = si is either in (a0, a1), (a1, a2), or (a2, a3), respectively.
See Figures 1(a) and 1(b) for a graphical illustration of these triply orthogonal coordinate

surfaces, where we have selected one of the confocal cyclides for s1 = const. This is a very general
coordinate system containing the parameters a0, a1, a2, a3 which generates many other coordinate
systems by limiting processes. For example, rotationally invariant flat-ring coordinates (System 15
on p. 210 of Ref. 9) are obtained by setting s3 = a2sin 2φ + a3cos 2φ and letting a3 → a2, and
rotationally invariant bicyclidic coordinates (System 14 on p. 210 of Ref. 9) are obtained by setting
s2 = a1sin 2φ + a2cos 2φ and letting a2 → a1. Since the book by Bôcher is quite old and uses
very geometrical methods, we will present our results independently of Bôcher’s book. We supply
convergence proofs based on general multiparameter spectral theory1, 13 which was created with
such applications in mind. As far as we know this general theory has never before been applied to
the Dirichlet problems considered by Bôcher.

We start with the observation that 5-cyclide coordinates are the stereographic image of sphero-
conal coordinates in four dimensions (or, expressed in another way, of ellipsoidal coordinates on the
hypersphere S3). We take the sphero-conal coordinate system as known but we present the needed
facts in Sec. II. The well-known stereographic projection is dealt with in Sec. III which also explains
the appearance of the factor R in (1). The 5-cyclide coordinate system is introduced in Sec. IV. The
solution of the Dirichlet problem on regions bounded by surfaces (2) with s ∈ (a1, a2) is presented
in Sec. VI. Section V provides the needed convergence proofs based on multiparameter spectral
theory. The remaining Secs. VII–X treat the Dirichlet problem on regions bounded by the surfaces
(2) when s ∈ (a1, a2) (ring cyclides) and s ∈ (a2, a3).
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II. SPHERO-CONAL COORDINATES ON Rk + 1

Let k ∈ N. In order to introduce sphero-conal coordinates on Rk + 1, fix real numbers

a0 < a1 < a2 < · · · < ak . (3)

Let (x0, x1, . . . , xk) be in the positive cone of Rk + 1

x0 > 0, . . . , xk > 0. (4)

Its sphero-conal coordinates r, s1, . . . , sk are determined in the intervals

r > 0, ai−1 < si < ai , i = 1, . . . , k (5)

by the equations

r2 =
k∑

j=0

x2
j (6)

and
k∑

j=0

x2
j

si − a j
= 0 for i = 1, . . . , k. (7)

The latter equation determines s1, s2, . . . , sk as the zeros of a polynomial of degree k with coefficients
which are polynomials in x2

0 , . . . , x2
k .

In this way, we obtain a bijective (real-)analytic map from the positive cone in Rk + 1 to the set
of points (r, s1, . . . , sk) satisfying (5). The inverse map is found by solving a linear system. It is also
analytic, and it is given by

x2
j = r2

∏k
i=1(si − a j )∏k

j �=i=0(ai − a j )
. (8)

Sphero-conal coordinates are orthogonal, and its scale factors (metric coefficients) are given by
Hr = 1, and

H 2
si

= 1

4

k∑
j=0

x2
j

(si − a j )2
= −1

4
r2

∏k
i �= j=1(si − s j )∏k

j=0(si − a j )
, i = 1, 2, . . . , k. (9)

Consider the Laplace equation

�U =
k∑

i=0

∂2U

∂x2
i

= 0 (10)

for a function U(x0, x1, . . . , xk). Using (9) we transform this equation to sphero-conal coordinates,
and then we apply the method of separation of variables12

U (x0, x1, . . . , xk) = w0(r )w1(s1)w2(s2) . . . wk(sk). (11)

For the variable r we obtain the Euler equation

w′′
0 + k

r
w′

0 + 4λ0

r2
w0 = 0, (12)

while for each of the variables s1, s2, . . . , sk, we obtain the Fuchsian equation

k∏
j=0

(s − a j )

⎡
⎣w′′ + 1

2

k∑
j=0

1

s − a j
w′

⎤
⎦ +

[
k−1∑
i=0

λi s
k−1−i

]
w = 0. (13)

More precisely, if λ0, . . . , λk − 1 are any given numbers (separation constants), and if w0(r ), r > 0,
solves (12) and wi (si ), ai − 1 < si < ai, solve (13) for each i = 1, . . . , k, then U defined by (11)
solves (10) in the positive cone of Rk + 1 (4).



063513-4 H. S. Cohl and H. Volkmer J. Math. Phys. 54, 063513 (2013)

Equation (13) has only regular points except for k + 2 regular singular points at s = a0, a1, . . . ,
ak and s = ∞. The exponents at each finite singularity s = aj are 0 and 1

2 . Therefore, for each choice
of parameters λ0, . . . , λk − 1, there is a nontrivial analytic solution at s = aj and another one of the
form w(s) = (s − a j )1/2v(s), where v is analytic at aj. If ν, μ denote the exponents at s = ∞, then

μν = λ0, μ + ν = k − 1

2
. (14)

The polynomial
∑k−1

i=0 λi sk−1−i appearing in (13) is known as van Vleck polynomial. If k = 1, then
(13) is the hypergeometric differential equation (up to a linear substitution). If k = 2, then (13) is
the Heun equation. We will use this equation for k = 3. According to Miller (see p. 209 of Ref. 9)
(see also p. 71 of Ref. 3) in reference to the k = 3 case, “Very little is known about the solutions.”

III. STEREOGRAPHIC PROJECTION

We consider the stereographic projection P : S3 \ {(1, 0, 0, 0)} → R3 given by

P(x0, x1, x2, x3) = 1

1 − x0
(x1, x2, x3).

The inverse map is

P−1(x, y, z) = 1

x2 + y2 + z2 + 1
(x2 + y2 + z2 − 1, 2x, 2y, 2z).

We extend P− 1 to a bijective map

Q : (0,∞) × R3 → R4 \ {(x0, 0, 0, 0) : x0 ≥ 0}
by defining

Q(r, x, y, z) := r P−1(x, y, z).

If we set (x0, x1, x2, x3) = Q(r, x, y, z), we may consider r, x, y, z as curvilinear coordinates on
R4 with Cartesian coordinates x0, x1, x2, x3. We note that x2

0 + x2
1 + x2

2 + x2
3 = r2 so r is just the

distance between (x0, x1, x2, x3) and the origin. Moreover, (x, y, z) is the stereographic projection of
the point (x0/r, x1/r, x2/r, x3/r ) ∈ S3. It is easy to check that the coordinate system is orthogonal
and scale factors are

hr = 1, hx = hy = hz = 2rh, where h := 1

x2 + y2 + z2 + 1
.

Let U (x0, x1, x2, x3) = V (r, x, y, z). Then

�U = 1

8r3h3

(
(2rhVx )x + (2rhVy)y + (2rhVz)z + (8r3h3Vr )r

)
. (15)

Suppose that U is homogeneous of degree α:

U (t x0, t x1, t x2, t x3) = tαU (x0, x1, x2, x3), t > 0.

Then V can be written in the form

V (r, x, y, z) = rαw(x, y, z),

and (15) implies

�U = rα−2

4h3

(
(hwx )x + (hwy)y + (hwz)z + 4α(α + 2)h3w

)
. (16)

We now introduce the function

u(x, y, z) = w(x, y, z)(x2 + y2 + z2 + 1)−1/2.
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Then a direct calculation changes (16) to

�U = rα−2

4h5/2

(
uxx + uyy + uzz + (3 + 4α(α + 2))h2u

)
. (17)

If 3 + 4α(α + 2) = 0, then U is harmonic if and only if u is harmonic. Noting that 3 + 4α(α +
2) = (2α + 1)(2α + 3), we obtain the following theorem.

Theorem 3.1. Let D be an open subset of S3 not containing (1, 0, 0, 0), let E = {(rx0, rx1, rx2,
rx3): r > 0, (x0, x1, x2, x3) ∈ D}, and let F = P(D) be the stereographic image of D. Let the function
U: E → R be homogeneous of degree − 1

2 or − 3
2 , and let w : F → R satisfy U = w ◦ P on D. Then

U is harmonic on E if and only if w(x, y, z)(x2 + y2 + z2 + 1)−1/2 is harmonic on F.

IV. FIVE-CYCLIDE COORDINATE SYSTEM ON R3

We introduce sphero-conal coordinates

r > 0, a0 < s1 < a1 < s2 < a2 < s3 < a3,

on R4 as explained in Sec. II with k = 3. Then s1, s2, s3 form a coordinate system for the intersection
of the hypersphere S3 with the positive cone in R4. Using the stereographic projection P from
Sec. III, we project these coordinates to R3. We obtain a coordinate system for the set

T = {(x, y, z) : x, y, z > 0, x2 + y2 + z2 > 1}. (18)

Explicitly,

x = x1

1 − x0
, y = x2

1 − x0
, z = x3

1 − x0
, (19)

where

x2
j =

∏3
i=1(si − a j )∏3

j �=i=0(ai − a j )
, j = 0, 1, 2, 3. (20)

Conversely, the coordinates s1, s2, s3 of a point (x, y, z) ∈ T are the solutions of

(x2 + y2 + z2 − 1)2

s − a0
+ 4x2

s − a1
+ 4y2

s − a2
+ 4z2

s − a3
= 0. (21)

Since sphero-conal coordinates are orthogonal and the stereographic projection preserves angles,
5-cyclide coordinates are orthogonal, too. This is the twelfth coordinate system in Miller (see p. 210
of Ref. 9). Miller uses a slightly different notation: a0 = 0, a1 = 1, a2 = b, a3 = a, and s1 = ρ,
s2 = ν, s3 = μ. Also, x, z are interchanged.

In order to calculate the scale factors for the 5-cyclide coordinate system, we proceed as follows.
We start with

∂x

∂si
= 1

1 − x0

∂x1

∂si
+ x1

(1 − x0)2

∂x0

∂si
,

and similar formulas for the derivatives of y and z. Then using

x2
0 + x2

1 + x2
2 + x2

3 = 1, x0
∂x0

∂si
+ x1

∂x1

∂si
+ x2

∂x2

∂si
+ x3

∂x3

∂si
= 0,

a short calculation gives

∂x

∂si

∂x

∂s j
+ ∂y

∂si

∂y

∂s j
+ ∂z

∂si

∂z

∂s j
= 1

(1 − x0)2

3∑
	=0

∂x	

∂si

∂x	

∂s j
.

This confirms that 5-cyclide coordinates are orthogonal and from (9) we obtain the squares of their
scale factors

h2
i = 1

16

(
(ρ2 − 1)2

(si − a0)2
+ 4x2

(si − a1)2
+ 4y2

(si − a2)2
+ 4z2

(si − a3)2

)
, (22)
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where ρ2 = x2 + y2 + z2, or, equivalently,

h2
1 = 1

16
(ρ2 + 1)2 (s3 − s1)(s2 − s1)

(s1 − a0)(a1 − s1)(a2 − s1)(a3 − s1)
, (23)

h2
2 = 1

16
(ρ2 + 1)2 (s2 − s1)(s3 − s2)

(s2 − a0)(s2 − a1)(a2 − s2)(a3 − s2)
, (24)

h2
3 = 1

16
(ρ2 + 1)2 (s3 − s1)(s3 − s2)

(s3 − a0)(s3 − a1)(s3 − a2)(a3 − s3)
. (25)

We find harmonic functions by separation of variables in 5-cyclide coordinates as follows.

Theorem 4.1. Let w1 : (a0, a1) → C, w2 : (a1, a2) → C, w3 : (a2, a3) → C be solutions of the
Fuchsian equation

3∏
j=0

(s − a j )

⎡
⎣w′′ + 1

2

3∑
j=0

1

s − a j
w′

⎤
⎦ +

(
3

16
s2 + λ1s + λ2

)
w = 0, (26)

where λ1, λ2 are given (separation) constants. Then the function

u(x, y, z) = (x2 + y2 + z2 + 1)−1/2w1(s1)w2(s2)w3(s3) (27)

is a harmonic function on the set (18).

Proof. Using sphero-conal coordinates r, s1, s2, s3 on R4, we define a function U in the positive
cone of R4 by

U (x0, x1, x2, x3) = r−1/2w1(s1)w2(s2)w3(s3).

The function r− 1/2 is a solution of (12) when k = 3, λ0 = 3
16 . The results from Sec. II imply that

U is harmonic, and, of course, U is homogeneous of degree − 1
2 . The function w defined on the set

(18) by U = w ◦ P is given in 5-cyclide coordinates by

w(x, y, z) = w1(s1)w2(s2)w3(s3).

Therefore, Theorem 3.1 gives the statement of the theorem. �
Equation (26) has five regular singularities at s = a0, a1, a2, a3, ∞. The exponents at the finite

singularities are 0 and 1
2 . Using (14), we find that the exponents at infinity are 1

4 and 3
4 . So all five

singularities are elementary in the sense of Ince.5 Equation (26) is one of the standard equations in
the classification of Ince (see p. 500 of Ref. 5).

We define the 5-cyclide coordinates s1, s2, s3 for an arbitrary point (x, y, z) ∈ R3 as the zeros s1

≤ s2 ≤ s3 of the cubic equation

3∏
j=0

(s − a j )

[
(x2 + y2 + z2 − 1)2

s − a0
+ 4x2

s − a1
+ 4y2

s − a2
+ 4z2

s − a3

]
= 0. (28)

For example, sj(0, 0, 0) = aj for j = 1, 2, 3. Each function sj: R3 → [aj − 1, aj] is continuous. We
observe that, in general, there are 16 different points in R3 which have the same coordinates s1, s2,
s3. If (x, y, z) is one of these points, the other ones are obtained by applying the group generated by
inversion at S2

σ0(x, y, z) = ρ−2(x, y, z) (29)

and reflections at the coordinate planes

σ1(x, y, z) = (−x, y, z), σ2(x, y, z) = (x,−y, z), σ3(x, y, z) = (x, y,−z). (30)

It is of interest to determine the sets where sj = aj − 1 or sj = aj. We obtain

s1 = a0 iff x2 + y2 + z2 = 1, (31)
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s1 = a1 iff x = 0 and
(ρ2 − 1)2

a1 − a0
+ 4y2

a1 − a2
+ 4z2

a1 − a3
≥ 0, (32)

s2 = a1 iff x = 0 and
(ρ2 − 1)2

a1 − a0
+ 4y2

a1 − a2
+ 4z2

a1 − a3
≤ 0, (33)

s2 = a2 iff y = 0 and
(ρ2 − 1)2

a2 − a0
+ 4x2

a2 − a1
+ 4z2

a2 − a3
≥ 0, (34)

s3 = a2 iff y = 0 and
(ρ2 − 1)2

a2 − a0
+ 4x2

a2 − a1
+ 4z2

a2 − a3
≤ 0, (35)

s3 = a3 iff z = 0. (36)

We define the sets (consisting each of two closed curves)

A1 := {(x, y, z) ∈ R3 : s1 = s2 = a1} (37)

= {(x, y, z) : x = 0,
(ρ2 − 1)2

a1 − a0
+ 4y2

a1 − a2
+ 4z2

a1 − a3
= 0},

see Figure 2, and

A2 := {(x, y, z) ∈ R3 : s2 = s3 = a2} (38)

= {(x, y, z) : y = 0,
(ρ2 − 1)2

a2 − a0
+ 4x2

a2 − a1
+ 4z2

a2 − a3
= 0},

see Figure 3. Clearly, sj is analytic at all points (x, y, z) at which sj is a simple zero of the cubic
equation (28). Therefore, s1 is analytic on R3\A1, s2 is analytic on R3\(A1∪A2), and s3 is analytic
on R3\A2.

We may use (27) to define u(x, y, z) for all (x, y, z) ∈ R3. Since the solutions w1, w2, w3 of
(26) have limits at the end points of their intervals of definition (because the exponents are 0 and 1

2
there), we see that u is a continuous function on R3. The function (x2 + y2 + z2 + 1)1/2u(x, y, z)

z

y
0

1

2

FIG. 2. The set A1 in the y, z-plane for ai = i.
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z

x
0

1

2

3

FIG. 3. The set A2 in the x, z-plane for ai = i.

is invariant under σ i, i = 0, 1, 2, 3. In general, u is harmonic only away from the coordinate planes
and the unit sphere. In fact, we observe that u is a bounded function which converges to 0 at infinity,
so, by Liouville’s theorem, u cannot be harmonic on all of R3 unless it is identically zero.

V. FIRST TWO-PARAMETER STURM-LIOUVILLE PROBLEM

We consider equation (26) on the intervals (a1, a2) and (a2, a3) and write it in formally self-
adjoint form. Setting

ω(s) := |(s − a0)(s − a1)(s − a2)(s − a3)|1/2 , (39)
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we obtain two Sturm-Liouville equations involving two parameters

(ω(s2)w′
2)′ + 1

ω(s2)

(
3

16
s2

2 + λ1s2 + λ2

)
w2 = 0, a1 < s2 < a2, (40)

(ω(s3)w′
3)′ − 1

ω(s3)

(
3

16
s2

3 + λ1s3 + λ2

)
w3 = 0, a2 < s3 < a3. (41)

In (40), w2 is a function of s2 and the derivatives are taken with respect to s2. In (41), w3 is a function
of s3 and the derivatives are taken with respect to s3. We simplify the equations by substituting tj =
�(sj), u j (t j ) = w j (s j ), where �(s) is the elliptic integral (see, for instance, Ref. 8)

�(s) :=
∫ s

a0

dσ

ω(σ )
. (42)

This is an increasing absolutely continuous function �: [a0, a3] → [0, b3], where bj := �(aj). Let
φ: [0, b3] → [a0, a3] be the inverse function of �. Then (40) and (41) become

u′′
2 +

(
3

16
{φ(t2)}2 + λ1φ(t2) + λ2

)
u2 = 0, b1 ≤ t2 ≤ b2, (43)

u′′
3 −

(
3

16
{φ(t3)}2 + λ1φ(t3) + λ2

)
u3 = 0, b2 ≤ t3 ≤ b3. (44)

We add the boundary conditions

u′
2(b1) = u′

2(b2) = u′
3(b2) = u′

3(b3) = 0. (45)

Differential equations (43) and (44) together with boundary conditions (45) pose a two-
parameter Sturm-Liouville eigenvalue problem. For the theory of such multiparameter problems, we
refer to the studies1, 13 and the references therein. A pair (λ1, λ2) is called an eigenvalue if there exist
(nontrivial) eigenfunctions u2(t2) and u3(t3) which satisfy (43)–(45). The two-parameter problem is
right-definite in the sense that∣∣∣∣ φ(t2) 1

−φ(t3) −1

∣∣∣∣ = φ(t3) − φ(t2) > 0 for b1 < t2 < b2 < t3 < b3.

However, this determinant is not positive on the closed rectangle [b1, b2] × [b2, b3]. This lack
of uniform right-definiteness make some proofs in this section a little longer than they would be
otherwise.

We have the following Klein oscillation theorem (see Theorem 5.5.1 of Ref. 1).

Theorem 5.1. For every n = (n2, n3) ∈ N2
0, there exists a uniquely determined eigenvalue

(λ1,n, λ2,n) ∈ R2 admitting an eigenfunction u2 with exactly n2 zeros in (b1, b2) and an eigenfunction
u3 with exactly n3 zeros in (b2, b3).

We state a result on the distribution of eigenvalues (compare with Chap. 8 of Ref. 1).

Theorem 5.2. There are positive constants A1, A2, A3, A4 such that, for all n ∈ N2
0,

−A1(n2
2 + n2

3 + 1) ≤ λ1,n ≤ −A2(n2
2 + n2

3) + A3, (46)

|λ2,n| ≤ A4(n2
2 + n2

3 + 1). (47)

Proof. If a differential equation u′′ + q(t)u = 0 with continuous q: [a, b] → R admits a
solution u satisfying u′(a) = u′(b) = 0 and having exactly m zeros in (a, b), then there is t ∈ (a, b)
such that q(t) = π2m2

(b−a)2 . This is shown by comparing with the eigenvalue problem u′′ + λu = 0,
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u′(a) = u′(b) = 0. Applying this fact, we find t2 ∈ (b1, b2) and t3 ∈ (b2, b3) such that

3

16
{φ(t2)}2 + λ1φ(t2) + λ2 = π2n2

2

(b2 − b1)2
, (48)

3

16
{φ(t3)}2 + λ1φ(t3) + λ2 = − π2n2

3

(b3 − b2)2
, (49)

where we abbreviated λ j = λ j,n. By subtracting (48) from (49), we obtain

3

16

({φ(t3)}2 − {φ(t2)}2
) + λ1(φ(t3) − φ(t2)) = − π2n2

2

(b2 − b1)2
− π2n2

3

(b3 − b2)2
≤ 0.

Dividing by φ(t3) − φ(t2) and using 0 < φ(t3) − φ(t2) ≤ a3 − a1, we obtain the second inequality
in (46).

To prove the first inequality in (46), suppose that λ1 < − 3
8 a3. Then the van Vleck polynomial

Q(s) := 3

16
s2 + λ1s + λ2 (50)

satisfies Q′(s) = 3
8 s + λ1 < 0 for s ≤ a3. Let c ∈ (b1, b2) be determined by φ(c) = 1

2 (a1 + a2). If
Q(a2) ≥ 0 then, for t ∈ [b1, c],

Q(φ(t)) ≥ Q(
1

2
(a1 + a2)) ≥ 1

2
(a2 − a1)

(
−λ1 − 3

8
a3

)
.

By Sturm’s comparison theorem applied to Eq. (43), we get

(c − b1)2(a2 − a1)

(
−λ1 − 3

8
a3

)
≤ 4π2(n2 + 1)2,

which gives the desired inequality. If Q(a2) < 0, we argue similarly working with (44) instead.
Finally, (47) follows from (46) and (48). �
Let u2,n and u3,n denote real-valued eigenfunctions corresponding to the eigenvalue (λ1,n, λ2,n).

It is known (see Sec. 3.5 of Ref. 1) (and easy to prove) that the system of products u2,n(t2)u3,n(t3),
n ∈ N2

0, is orthogonal in the Hilbert space H1 consisting of measurable functions f : (b1, b2) ×
(b2, b3) → C satisfying ∫ b3

b2

∫ b2

b1

(φ(t3) − φ(t2)) | f (t2, t3)|2 dt2 dt3 < ∞

with inner product ∫ b3

b2

∫ b2

b1

(φ(t3) − φ(t2)) f (t2, t3)g(t2, t3) dt2 dt3.

We normalize the eigenfunctions so that∫ b3

b2

∫ b2

b1

(φ(t3) − φ(t2))
{
u2,n(t2)

}2 {
u3,n(t3)

}2
dt2 dt3 = 1. (51)

We have the following completeness theorem (see Theorem 6.8.3 of Ref. 13).

Theorem 5.3. The double sequence of functions

u2,n(t2)u3,n(t3), n ∈ N2
0,

forms an orthonormal basis in the Hilbert space H1.

The normalization (51) leads to a bound on the values of eigenfunctions.
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Theorem 5.4. There is a constant B > 0 such that, for all n ∈ N2
0 and all t2 ∈ [b1, b2], t3 ∈ [b2,

b3],

|u2,n(t2)u3,n(t3)| ≤ B(n2
2 + n2

3 + 1).

Proof. We abbreviate u j = u j,n, λ j = λ j,n. Condition (51) is a normalization for the product
u2(t2)u3(t3) but not for each factor separately, so we may assume that, additionally,∫ b2

b1

{u2(t2)}2 dt2 = 1. (52)

Now (51) and (52) imply that ∫ b3

b2

(φ(t3) − φ(b2)) {u3(t3)}2 dt3 ≤ 1. (53)

We multiply Eqs. (43) and (44) by u2 and u3, respectively, and integrate by parts to obtain∫ b2

b1

u′2
2 = 3

16

∫ b2

b1

φ2u2
2 + λ1

∫ b2

b1

φu2
2 + λ2

∫ b2

b1

u2
2, (54)

∫ b3

b2

u′2
3 = − 3

16

∫ b3

b2

φ2u2
3 − λ1

∫ b3

b2

φu2
3 − λ2

∫ b3

b2

u2
3. (55)

It follows from (52) and (54) and Theorem 5.2 that there is a constant B1 > 0 such that, for all
n ∈ N2

0, ∫ b2

b1

u′2
2 ≤ B1(n2

2 + n2
3 + 1). (56)

Unfortunately, we cannot argue the same way for u3 because we do not have an upper bound for∫ b3

b2
u2

3. Instead, we multiply (54) by
∫

u2
3 and (55) by

∫
u2

2 and add the equations. Then, noting (51),
we find ∫ b2

b1

u′2
2

∫ b3

b2

u2
3 +

∫ b2

b1

u2
2

∫ b3

b2

u′2
3 ≤ −λ1 + 3

8
max

t∈[b1,b3]
|φ(t)|.

Using Theorem 5.2 and (52), we find a constant B2 > 0 such that, for all n ∈ N2
0,∫ b3

b2

u′2
3 ≤ B2(n2

2 + n2
3 + 1). (57)

We apply the following Lemma 5.5 (noting (52), (53), (56), (57)) and obtain the desired result. �
Lemma 5.5. Let u: [a, b] → R be a continuously differentiable function, and let a ≤ c < d ≤ b.

Then, for all t ∈ [a, b],

(d − c) |u(t)|2 ≤ 2
∫ d

c
|u(r )|2 dr + 2(b − a)(d − c)

∫ b

a

∣∣u′(r )
∣∣2

dr.

Proof. For s, t ∈ [a, b], we have

|u(t) − u(s)| =
∣∣∣∣
∫ t

s
u′(r ) dr

∣∣∣∣ ≤ |t − s|1/2

(∫ b

a

∣∣u′(r )
∣∣2

dr

)1/2

.

This implies

|u(t)|2 ≤ 2|u(s)|2 + 2|t − s|
∫ b

a

∣∣u′(r )
∣∣2

dr.

We integrate from s = c to s = d and obtain the desired inequality. �
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Let u1,n be the solution of

u′′
1 −

(
3

16
{φ(t1)}2 + λ1,nφ(t1) + λ2,n

)
u1 = 0, b0 ≤ t1 ≤ b1, (58)

determined by the initial conditions

u1(b1) = 1, u′
1(b1) = 0.

The following estimate on u1,n will be useful in Sec. VI.

Theorem 5.6. We have u1,n(t1) > 0 for all t1 ∈ [b0, b1]. If 0 = b0 ≤ c1 < c2 < b1, then there
are constants C > 0 and 0 < r < 1 such that, for all n ∈ N2

0 and t1 ∈ [c2, b1],

u1,n(t1)

u1,n(c1)
≤ Crn2+n3 .

Proof. We abbreviate u1 = u1,n and λ j = λ j,n. By definition, u1 satisfies the differential equation

u′′
1 = Q(φ(t1))u1, t1 ∈ [b0, b1],

where Q is given by (50). According to (48) and (49), there are s2 ∈ (a1, a2) and s3 ∈ (a2, a3) such
that

Q(s2) = π2n2
2

(b2 − b1)2
, Q(s3) = − π2n2

3

(b3 − b2)2
.

If s ≤ s2 then Q(s) ≥ L(s), where L(s) is the linear function with L(sj) = Q(sj), j = 2, 3. It follows
that Q(s) ≥ 0 for s ∈ [a0, a1] and

Q(φ(t1)) ≥ C1(n2 + n3)2 for t1 ∈ [b0, c2], (59)

where C1 is a positive constant independent of n. We now apply the following Lemma 5.7 (with a
= c1, b = b1, c = c2) to complete the proof. �

Lemma 5.7. Let u: [a, b] → R be a solution of the differential equation

u′′(t) = q(t)u(t), t ∈ [a, b],

determined by the initial conditions u(b) = 1, u′(b) = 0, where q: [a, b] → R is a continuous function.
Suppose that q(t) ≥ 0 on [a, b] and q(t) ≥ λ2 on [a, c] for some λ > 0 and c ∈ (a, b]. Then u(t) > 0
for all t ∈ [a, b], and

u(t)

u(a)
≤ 2e−λ(c−a) for all t ∈ [c, b].

Proof. Since q(t) ≥ 0, u(t) > 0 and u′(t) ≤ 0 for t ∈ [a, b]. The function z = u′/u satisfies the
Riccati equation

z′ + z2 = q(t),

and the initial condition z(b) = 0. It follows that

z(t) ≤ λ tanh(λ(t − c)) for t ∈ [a, c].

Integrating from t = a to t = c gives

ln
u(c)

u(a)
≤ − ln cosh λ(c − a) ≤ ln(2e−λ(c−a))

which yields the claim since u is nonincreasing. �
We now introduce a systematic notation for our eigenvalues and eigenfunctions. First of all, we

note that the results of this section remain valid for other sets of boundary conditions. We will need
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eight sets of boundary conditions labeled by p = (p1, p2, p3) ∈ {0, 1}3. These boundary conditions
are

u′
2(b1) = 0 if p1 = 0, u2(b1) = 0 if p1 = 1,

u′
2(b2) = u′

3(b2) = 0 if p2 = 0, u2(b2) = u3(b2) = 0 if p2 = 1,

u′
3(b3) = 0 if p3 = 0, u3(b3) = 0 if p3 = 1.

(60)

The initial conditions for u1 are

u1(b1) = 1, u′
1(b1) = 0 if p1 = 0, u1(b1) = 0, u′

1(b1) = 1 if p1 = 1. (61)

We denote the corresponding eigenvalues by (λ(1)
1,n,p, λ

(1)
2,n,p). For the notation of eigenfunctions,

we return to the si-variable connected to ti by ti = �(si). The eigenfunctions will be denoted by
E (1)

i,n,p(si ) = ui,n(ti ), i = 1, 2, 3. The superscript (1) is used to distinguish from eigenvalues and
eigenfunctions introduced in Secs. VII and IX. The subscript n = (n2, n3) indicates the number
of zeros of E (1)

2,n,p(s2), E (1)
3,n,p(s3) in (a1, a2), (a2, a3), respectively. The subscript p indicates the

boundary conditions used to determine eigenvalues and eigenfunctions. By using the letter E for
eigenfunctions, we follow Bôcher.2 In our notation, we suppressed the dependence of eigenvalues
and eigenfunctions on a0, a1, a2, a3.

Summarizing, for i = 1, 2, 3, E (1)
i,n,p is a solution of (26) on (ai − 1, ai) with (λ1, λ2) =

(λ(1)
1,n,p, λ

(2)
2,n,p). The solution E (1)

1,n,p(s1) has exponent 1
2 p1 at a1 and it has no zeros in (a0, a1).

The solution E (1)
2,n,p(s2) has exponent 1

2 p1 at a1, exponent 1
2 p2 at a2, and its has n2 zeros in (a1, a2).

The solution E (1)
3,n,p(s3) has exponent 1

2 p2 at a2, exponent 1
2 p3 at a3, and it has n3 zeros in (a2, a3).

VI. FIRST DIRICHLET PROBLEM

Consider the coordinate surface (21) for fixed s = d1 ∈ (a0, a1). See Figure 4 for a graphical
depiction of the shape of this surface. Let (x ′, y′, z′) ∈ S2. The ray (x, y, z) = t(x′, y′, z′), t > 0,
intersects the surface if

(t2 − 1)2

d1 − a0
= ct2, (62)

FIG. 4. Coordinate surfaces s1 = const for ai = i with (a), (b) inside B1(0); (d)–(f) outside B1(0); and (c) the unit sphere.
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where

c = 4x ′2

a1 − d1
+ 4y′2

a2 − d1
+ 4z′2

a3 − d1
> 0.

Equation (62) has two positive solutions t = t1, t2 such that 0 < t1 < 1 < t2 and t1t2 = 1. Therefore,
the coordinate surface s1 = d1 consists of two disjoint closed surfaces of genus zero. One lies inside
the unit ball B1(0) centered at the origin and the other one is the image of it under the inversion (29).
Let D1 be the region interior to the first surface, that is,

D1 = {(x, y, z) ∈ B1(0) : s1 > d1}, (63)

or, equivalently,

D1 = {(x, y, z) ∈ B1(0) :
(ρ2 − 1)2

d1 − a0
+ 4x2

d1 − a1
+ 4y2

d1 − a2
+ 4z2

d1 − a3
> 0}.

We showed that D1 is star-shaped with respect to the origin. We now solve the Dirichlet problem for
harmonic functions in D1 by the method of separation of variables.

Let p = (p1, p2, p3) ∈ {0, 1}3 and n = (n2, n3) ∈ N2
0. Using the functions E (1)

i,n,p introduced in
Sec. V, we define the internal 5-cyclidic harmonic of the first kind

G(1)
n,p(x, y, z) = (x2 + y2 + z2 + 1)−1/2 E (1)

1,n,p(s1)E (1)
2,n,p(s2)E (1)

3,n,p(s3) (64)

for x, y, z ∈ B1(0) with x, y, z ≥ 0. We extend this function to B1(0) as a function of parity p. We
call a function f of parity p if

f (σi (x, y, z)) = (−1)pi f (x, y, z), for i = 1, 2, 3 (65)

using the reflections (30).

Lemma 6.1. The function G(1)
n,p is harmonic on B1(0).

Proof. By Theorem 4.1, G(1)
n,p is harmonic on B1(0) away from the coordinate planes. Therefore,

it is enough to show that G(1)
n,p is analytic on B1(0).

Consider first p = (0, 0, 0). Then (64) holds on B1(0). Since s1 �= a0 on B1(0), G(1)
n,p is analytic

on B1(0) \ (A1 ∪ A2) as a composition of analytic functions. In order to show that G(1)
n,p is also

analytic at the points of A1∪A2, one may refer to a classical result on “singular curves” of harmonic
functions (see Theorem XIII, p. 271 of Ref. 6), but we will argue more directly. Since A1 and A2

are disjoint sets, it is clear that E (1)
3,n,p(s3) is analytic at every point in B1(0) ∩ A1. In order to show

that E (1)
1,n,p(s1)E (1)

2,n,p(s2) is analytic at (x ′, y′, z′) ∈ B1(0) ∩ A1, we argue as follows. We may assume

that there is an analytic function w : (a1, a3) → R such that E (1)
1,n,p and E (1)

2,n,p are restrictions of
this function to (a1, a2) and (a2, a3), respectively. Now (s1 − a1) + (s2 − a1) and (s1 − a1)(s2

− a1) are analytic functions of (x, y, z) in a neighborhood of (x′, y′, z′). Lemma 6.2 implies that
E (1)

1,n,p(s1)E (1)
2,n,p(s2) as a function of (x, y, z) is analytic at (x′, y′, z′). It follows that G(1)

n,p is analytic

at every point in B1(0) ∩ A1. In the same way, we show that G(1)
n,p is analytic at every point in

B1(0) ∩ A2.
If p = (0, 0, 1), then we introduce the function

χ :=
{√

a3 − s3 if z ≥ 0

−√
a3 − s3 otherwise.

It follows from (19) and (20) that χ is analytic on R3\A2. Then

G(1)
n,p(x, y, z) = (x2 + y2 + z2 + 1)−1/2 E (1)

1,n,p(s1)E (1)
2,n,p(s2)χ (x, y, z)w3(s3)

on B1(0), where w3 is analytic at s3 = a3. We then argue as above.
The other parity vectors p are treated similarly. �
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Lemma 6.2. Let f : (Bε)2 → C, Bε = {s ∈ C : |s| < ε}, be an analytic function which is sym-
metric: f(s, t) = f(t, s). Let g, h: (Bδ)3 → Bε be functions such that g + h and gh are analytic. Then
the function f(g(x, y, z), h(x, y, z)) is analytic on (Bδ)3.

Substituting tj = �(sj), j = 2, 3, the Hilbert space H1 from Sec. V transforms to the Hilbert
space H̃1 consisting of measurable functions g : (a1, a2) × (a2, a3) → C for which

‖g‖2 :=
∫ a3

a2

∫ a2

a1

s3 − s2

ω(s2)ω(s3)
|g(s2, s3)|2 ds2 ds3 < ∞. (66)

By Theorem 5.3, for g ∈ H̃1 and fixed p, we have the Fourier expansion

g(s2, s3) ∼
∑

n

cn,p E (1)
2,n,p(s2)E (1)

3,n,p(s3), (67)

where the Fourier coefficients are given by

cn,p =
∫ a3

a2

∫ a2

a1

s3 − s2

ω(s2)ω(s3)
g(s2, s3)E (1)

2,n,p(s2)E (1)
3,n,p(s3) ds2 ds3. (68)

We are now ready to solve the Dirichlet problem �u = 0 in D1, u = e on ∂D1 for D1 given
in (63). We will interpret the equation u = e on ∂D1 in the following weak sense: if u and e are
expressed in terms of 5-cyclide coordinates s1, s2, s3, and s2, s3, respectively, then u evaluated at s1

∈ (d1, a1) converges to e in the Hilbert space H̃1 as s1 → d1.

Theorem 6.3. Consider the region D1 defined by (63) for some fixed d1 ∈ (a0, a1). Let e be a
function defined on its boundary ∂D1 of parity p ∈ {0, 1}3, and let g(s2, s3) be the representation of

f (x, y, z) := (x2 + y2 + z2 + 1)1/2e(x, y, z) (69)

in 5-cyclide coordinates for (x, y, z) ∈ ∂D1 with x, y, z > 0. Suppose g ∈ H̃1 and expand g in the
series (67). Then the function u(x, y, z) given by

u(x, y, z) =
∑

n

cn,p

E (1)
1,n,p(d1)

G(1)
n,p(x, y, z) (70)

is harmonic in D1 and assumes the values e on the boundary of D1 in the weak sense.

Proof. Let d1 < d < a1 and s1 ∈ [d, a1]. Using Theorems 5.4, 5.6, we estimate∣∣∣∣∣cn,p
E (1)

1,n,p(s1)

E (1)
1,n,p(d1)

E (1)
2,n,p(s2)E (1)

3,n,p(s3)

∣∣∣∣∣ ≤ |cn,p|Crn2+n3 B(n2
2 + n2

3 + 1),

where the constants B, C > 0 and r ∈ (0, 1) are independent of n and s1 ∈ [d, a1], s2 ∈ [a1, a2], s3 ∈
[a2, a3]. Since cn,p is a bounded double sequence, this proves that the series in (70) is absolutely and
uniformly convergent on compact subsets of D1. Consequently, by Lemma 6.1, u(x, y, z) is harmonic
in D1. If we consider u for fixed s1 ∈ (d1, a1) and compute the norm ‖u − e‖ in the Hilbert space
H̃1 by the Parseval equality, we obtain

‖u − e‖2 ≤
∑

n

|cn,p|2
(

1 − E (1)
1,n,p(s1)

E (1)
1,n,p(d1)

)2

.

It is easy to see that the right-hand side converges to 0 as s1 → d1. Taking into account that e and u
have the same parity, it follows that u assumes the boundary values e in the weak sense. �

If e is a function on ∂D1 without parity, we write the function f from (69) as a sum of eight
functions

f =
∑

p

fp,
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where fp is of parity p. Then the solution of the corresponding Dirichlet problem is given by

u(x, y, z) =
∑
n,p

cn,p

E (1)
1,n,p(d1)

G(1)
n,p(x, y, z), (71)

where

cn,p =
∫ a3

a2

∫ a2

a1

s3 − s2

ω(s2)ω(s3)
gp(s2, s3)E (1)

2,n,p(s2)E (1)
3,n,p(s3) ds2 ds3 (72)

and gp(s2, s3) is the representation of fp in 5-cyclide coordinates.
We may write the coefficient cn,p as an integral over the surface ∂D1 itself. The surface element

is dS = h2h3 ds2 ds3 with the scale factors h2, h3 given in (24) and (25). Using

h2h3

h1
= 1

4
(x2 + y2 + z2 + 1)

ω(s1)

ω(s2)ω(s3)
(s3 − s2),

we obtain from (72)

cn,p = 1

2ω(d1)E (1)
1,n,p(d1)

∫
∂ D1

e

h1
G(1)

n,p d S, (73)

where

h2
1 = 1

16

(
(x2 + y2 + z2 − 1)2

(d1 − a0)2
+ 4x2

(d1 − a1)2
+ 4y2

(d1 − a2)2
+ 4z2

(d1 − a3)2

)
.

VII. SECOND TWO-PARAMETER STURM-LIOUVILLE PROBLEM

We treat the two-parameter eigenvalue problem that appears when we wish to solve the Dirichlet
problem in asymmetric ring cyclides. It is quite similar to the one considered in Sec. V; however,
there are also some interesting differences. Consider Eq. (26) on the intervals (a0, a1) and (a2, a3).
We obtain two Sturm-Liouville equations involving two parameters

(ω(s1)w′
1)′ − 1

ω(s1)

(
3

16
s2

1 + λ1s1 + λ2

)
w1 = 0, a0 < s1 < a1, (74)

(ω(s3)w′
3)′ − 1

ω(s3)

(
3

16
s2

3 + λ1s3 + λ2

)
w3 = 0, a2 < s3 < a3. (75)

We again simplify by substituting tj = �(sj), u j (t j ) = w j (s j ). Then (74) and (75) become

u′′
1 −

(
3

16
{φ(t1)}2 + λ1φ(t1) + λ2

)
u1 = 0, b0 ≤ t1 ≤ b1, (76)

u′′
3 −

(
3

16
{φ(t3)}2 + λ1φ(t3) + λ2

)
u3 = 0, b2 ≤ t3 ≤ b3. (77)

We add boundary conditions

u′
1(b0) = u′

1(b1) = u′
3(b2) = u′

3(b3) = 0. (78)

Differential equations (76) and (77) together with boundary conditions (78) pose a two-parameter
Sturm-Liouville eigenvalue problem. In contrast to Sec. V, we now have a uniformly right-definite
problem:

−
∣∣∣∣φ(t1) 1
φ(t3) 1

∣∣∣∣ = φ(t3) − φ(t1) ≥ a2 − a1 > 0 for b0 ≤ t1 ≤ b1 ≤ t3 ≤ b3.
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We again have Klein’s oscillation theorem.

Theorem 7.1. For every n = (n1, n3) ∈ N2
0, there exists a uniquely determined eigenvalue

(λ1,n, λ2,n) ∈ R2 admitting an eigenfunction u1 with exactly n1 zeros in (b0, b1) and an eigenfunction
u3 with exactly n3 zeros in (b2, b3).

We state a result on the distribution of eigenvalues.

Theorem 7.2. There are constants A1, A2, A3 > 0 such that, for all n ∈ N2
0,

−A1(n2
3 + 1) ≤ λ1,n ≤ A2(n2

1 + 1), (79)

|λ2,n| ≤ A3(n2
1 + n2

3 + 1). (80)

Proof. We abbreviate λ j = λ j,n. Arguing as in the proof of Theorem 5.2, there are t1 ∈ [b0, b1]
and t3 ∈ [b2, b3] such that

3

16
{φ(t1)}2 + λ1φ(t1) + λ2 = − π2n2

1

(b1 − b0)2
, (81)

3

16
{φ(t3)}2 + λ1φ(t3) + λ2 = − π2n2

3

(b3 − b2)2
. (82)

By subtracting (81) from (82), we obtain

3

16

({φ(t3)}2 − {φ(t1)}2) + λ1(φ(t3) − φ(t1)) = π2n2
1

(b1 − b0)2
− π2n2

3

(b3 − b2)2
,

which implies (79). Now (80) follows from (79) and (81). �
Let u1,n and u3,n denote eigenfunctions corresponding to the eigenvalue (λ1,n, λ2,n). The system

of products u1,n(t1)u3,n(t3), n ∈ N2
0, is orthogonal in the Hilbert space H2 consisting of measurable

functions f : (b0, b1) × (b2, b3) → C satisfying∫ b3

b2

∫ b1

b0

(φ(t3) − φ(t1)) | f (t1, t3)|2 dt1 dt3 < ∞

with inner product ∫ b3

b2

∫ b1

b0

(φ(t3) − φ(t1)) f (t1, t3)g(t1, t3) dt1 dt3.

We normalize the eigenfunctions so that∫ b3

b2

∫ b1

b0

(φ(t3) − φ(t1))
{
u1,n(t1)

}2 {
u3,n(t3)

}2
dt1 dt3 = 1. (83)

We have the following completeness theorem.

Theorem 7.3. The double sequence of functions

u1,n(t1)u3,n(t3), n ∈ N2
0,

forms an orthonormal basis in the Hilbert space H2.

The normalization (83) leads to a bound on the values of eigenfunctions. Since we have uniform
right-definiteness, the proof is simpler than the proof of Theorem 5.4.
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Theorem 7.4. There is a constant B > 0 such that, for all n ∈ N2
0 and all t1 ∈ [b0, b1], t3 ∈ [b2,

b3],

|u1,n(t1)u3,n(t3)| ≤ B(n2
1 + n2

3 + 1).

Let u2,n be the solution of

u′′
2 +

(
3

16
{φ(t2)}2 + λ1,nφ(t2) + λ2,n

)
u2 = 0, b1 ≤ t2 ≤ b2 (84)

determined by initial conditions

u2(b1) = 1, u′
2(b1) = 0.

Theorem 7.5. We have u2,n(t2) > 0 for all t2 ∈ [b1, b2]. If b1 < c1 < c2 < b2, then there are
constants C > 0 and 0 < r < 1 such that, for all n ∈ N2

0 and t2 ∈ [b1, c1],∣∣∣∣ u2,n(t2)

u2,n(c2)

∣∣∣∣ ≤ Crn1+n3 .

Proof. We abbreviate u2 = u2,n and λ j = λ j,n. We write (84) in the form

u′′
2 + Q(φ(t2))u2 = 0, t2 ∈ [b1, b2],

where Q is given by (50). According to (81) and (82), there are s1 ∈ (a0, a1) and s3 ∈ (a2, a3) such
that

Q(s1) = − π2n2
1

(b1 − b0)2
, Q(s3) = − π2n2

3

(b3 − b2)2
.

If s ∈ [s1, s3], then Q(s) ≤ L(s), where L(s) is the linear function with L(sj) = Q(sj), j = 1, 3. It
follows that

Q(φ(t2)) ≤ −C(n1 + n3)2 for t2 ∈ [c1, c2]. (85)

We use a modification of Lemma 5.7 to complete the proof. �
The results of this section remain valid for other boundary conditions. This time we will

need sixteen sets of boundary conditions labeled by p = (p0, p1, p2, p3) ∈ {0, 1}4. These boundary
conditions are

u′
1(b0) = 0 if p0 = 0, u1(b0) = 0 if p0 = 1,

u′
1(b1) = 0 if p1 = 0, u1(b1) = 0 if p1 = 1,

u′
3(b2) = 0 if p2 = 0, u3(b2) = 0 if p2 = 1,

u′
3(b3) = 0 if p3 = 0, u3(b3) = 0 if p3 = 1.

(86)

The initial conditions for u2 are

u2(b1) = 1, u′
2(b1) = 0 if p1 = 0, u2(b1) = 0, u′

2(b1) = 1 if p1 = 1. (87)

We denote the corresponding eigenvalues by (λ(2)
1,n,p, λ

(2)
2,n,p). The eigenfunctions will be denoted by

E (2)
i,n,p(si ) = ui,n(ti ), i = 1, 2, 3.

Summarizing, for i = 1, 2, 3, E (2)
i,n,p is a solution of (26) on (ai − 1, ai) with (λ1, λ2) =

(λ(2)
1,n,p, λ

(2)
2,n,p). The solution E (2)

1,n,p(s1) has exponent 1
2 p0 at a0, exponent 1

2 p1 at a1, and it has

n1 zeros in (a0, a1). The solution E (2)
2,n,p(s2) has exponent 1

2 p1 at a1, and its has no zeros in (a1, a2).

The solution E (2)
3,n,p(s3) has exponent 1

2 p2 at a2, exponent 1
2 p3 at a3, and it has n3 zeros in (a2, a3).
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FIG. 5. Coordinate surfaces s2, 3 = const for ai = i.

VIII. SECOND DIRICHLET PROBLEM

Consider the coordinate surface (21) for fixed s = d2 ∈ (a1, a2). See Figures 5(a)–5(c) for a
graphical depiction of the shape of this surface. If (x ′, y′, z′) ∈ S2 then the ray (x, y, z) = t(x′, y′,
z′) , t > 0, is tangent to the surface if and only if (x′, y′, z′) is on the surface. If (x′, y′, z′) is in the
elliptical cone

4x ′2

d2 − a1
+ 4y′2

d2 − a2
+ 4z′2

d2 − a3
> 0,

then the ray does not intersect the surface. Otherwise we have two intersections t = t1, t2 and t1t2 = 1.
It follows from these considerations that s2 = d2 describes a connected surface of genus one. The
region interior to this surface is

D2 = {(x, y, z) ∈ R3 : s2 < d2}, (88)

or, equivalently,

D2 = {(x, y, z) :
(x2 + y2 + z2 − 1)2

d2 − a0
+ 4x2

d2 − a1
+ 4y2

d2 − a2
+ 4z2

d2 − a3
< 0}.

In this section, we solve the Dirichlet problem for harmonic functions in D2 by the method of
separation of variables.

Let p = (p0, p1, p2, p3) ∈ {0, 1}4 and n = (n1, n3) ∈ N2
0. Using the functions E (2)

i,n,p introduced
in Sec. VII, we define the internal 5-cyclidic harmonic of the second kind

G(2)
n,p(x, y, z) = (x2 + y2 + z2 + 1)−1/2 E (2)

1,n,p(s1)E (2)
2,n,p(s2)E (2)

3,n,p(s3) (89)

for x, y, z ∈ B1(0) with x, y, z ≥ 0. We extend the function

(x2 + y2 + z2 + 1)1/2G(2)
n,p(x, y, z)

to R3 as a function of parity p. We call a function f of parity p = (p0, p1, p2, p3) if

f (σi (x, y, z)) = (−1)pi f (x, y, z), for i = 0, 1, 2, 3, (90)

using inversion (29) and reflections (30).
We omit the proof of the following lemma which is similar to the proof of Lemma 6.1.
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Lemma 8.1. The function G(2)
n,p is harmonic at all points (x, y, z) ∈ R3 at which s2 �= a2; see (34).

Note that s2 < d2 < a2 in D2. Therefore, G(2)
n,p is harmonic in an open set containing the closure

of D2. Geometrically speaking, the set s2 = a2 consists of the part of the plane y = 0 “outside” the
two closed curves in Figure 3. The asymmetric ring cyclides D2 passes through the y = 0 plane
inside those two closed curves.

Substituting tj = �(sj), j = 1, 3, the Hilbert space H2 from Sec. VII transforms to the Hilbert
space H̃2 consisting of measurable functions g : (a0, a1) × (a2, a3) → C for which

‖g‖2 :=
∫ a3

a2

∫ a1

a0

s3 − s1

ω(s1)ω(s3)
|g(s1, s3)|2 ds1 ds3 < ∞. (91)

By Theorem 7.3, for g ∈ H̃2 and fixed p, we have the Fourier expansion

g(s1, s3) ∼
∑

n

cn,p E (2)
1,n,p(s1)E (2)

3,n,p(s3), (92)

where the Fourier coefficients are given by

cn,p =
∫ a3

a2

∫ a1

a0

s3 − s1

ω(s1)ω(s3)
g(s1, s3)E (2)

1,n,p(s1)E (2)
3,n,p(s3) ds1 ds3.

Theorem 8.2. Consider the region D2 defined by (88) for some fixed d2 ∈ (a1, a2). Let e be a
function defined on its boundary ∂D2, and set

f (x, y, z) := (x2 + y2 + z2 + 1)1/2e(x, y, z). (93)

Suppose that f has parity p ∈ {0, 1}4, and its representation g(s1, s3) in 5-cyclide coordinates is in
H̃2. Expand g in the series (92). Then the function u(x, y, z) given by

u(x, y, z) =
∑

n

cn,p

E (2)
2,n,p(d2)

G(2)
n,p(x, y, z) (94)

is harmonic in D2 and assumes the values e on the boundary of D2 in the weak sense.

Proof. The proof is similar to the proof of Theorem 6.3. It uses Theorems 7.4 and 7.5 to show that
the series in (94) is absolutely and uniformly convergent on compact subsets of D2. Consequently,
by Lemma 8.1, u(x, y, z) is harmonic in D2. If we consider u for fixed s2 ∈ (a1, d2) and compute the
norm ‖u − e‖ in the Hilbert space H̃2, we obtain

‖u − e‖2 ≤
∑

n

|cn,p|2
(

1 − E (2)
2,n,p(s2)

E (2)
2,n,p(d2)

)2

.

The right-hand side converges to 0 as s2 → d2. Hence u assumes the boundary values e in the weak
sense. �

If f is a function without parity, we write f as a sum of 16 functions

f =
∑

p∈{0,1}4

fp,

where fp is of parity p. Then the solution of the corresponding Dirichlet problem is given by

u(x, y, z) =
∑
n,p

cn,p

E (2)
2,n,p(d2)

G(2)
n,p(x, y, z), (95)

where

cn,p =
∫ a3

a2

∫ a1

a0

s3 − s1

ω(s1)ω(s3)
gp(s1, s3)E (2)

1,n,p(s1)E (2)
3,n,p(s3) ds1 ds3 (96)
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and gp(s1, s3) is the representation of fp in 5-cyclide coordinates. We may also write cn,p as a surface
integral

cn,p = 1

4ω(d2)E (2)
2,n,p(d2)

∫
∂ D2

e

h2
G(2)

n,p d S, (97)

where

h2
2 = 1

16

(
(x2 + y2 + z2 − 1)2

(d2 − a0)2
+ 4x2

(d2 − a1)2
+ 4y2

(d2 − a2)2
+ 4z2

(d2 − a3)2

)
.

IX. THIRD TWO-PARAMETER STURM-LIOUVILLE PROBLEM

If we write (26) on the intervals (a0, a1) and (a1, a2) in formally self-adjoint form, we obtain

(ω(s1)w′
1)′ − 1

ω(s1)

(
3

16
s2

1 + λ1s1 + λ2

)
w1 = 0, a0 < s1 < a1, (98)

(ω(s2)w′
2)′ + 1

ω(s2)

(
3

16
s2

2 + λ1s2 + λ2

)
w2 = 0, a1 < s2 < a2. (99)

We simplify the equations by substituting tj = �(sj), u j (t j ) = w j (s j ), where �(s) is the elliptic
integral (42). Then (98) and (99) become

u′′
1 −

(
3

16
{φ(t1)}2 + λ1φ(t1) + λ2

)
u1 = 0, b0 ≤ t1 ≤ b1, (100)

u′′
2 +

(
3

16
{φ(t2)}2 + λ1φ(t2) + λ2

)
u2 = 0, b1 ≤ t2 ≤ b2. (101)

Of course, this system is very similar to the one considered in Sec. V. Therefore, we will be brief.
For a given p = (p0, p1, p2) ∈ {0, 1}3, we consider the boundary conditions

u′
1(b0) = 0 if p0 = 0, u1(b0) = 0 if p0 = 1,

u′
1(b1) = u′

2(b1) = 0 if p1 = 0, u1(b1) = u2(b1) = 0 if p1 = 1,

u′
2(b2) = 0 if p2 = 0, u2(b2) = 0 if p2 = 1.

(102)

The initial conditions for u3 are

u3(b2) = 1, u′
3(b2) = 0 if p2 = 0, u3(b2) = 0, u′

3(b2) = 1 if p2 = 1. (103)

We denote the corresponding eigenvalues by (λ(3)
1,n,p, λ

(3)
2,n,p), where n = (n1, n2) ∈ N2

0. The eigen-

functions will be denoted by E (3)
i,n,p(si ) = ui,n(ti ), i = 1, 2, 3.

Summarizing, for i = 1, 2, 3, E (3)
i,n,p is a solution of (26) on (ai − 1, ai) with (λ1, λ2)

= (λ(3)
1,n,p, λ

(3)
2,n,p). The solution E (3)

1,n,p(s1) has exponent 1
2 p0 at a0, exponent 1

2 p1 at a1, and it has n1

zeros in (a0, a1). The solution E (3)
2,n,p(s2) has exponent 1

2 p1 at a1, exponent 1
2 p2 at a2, and it has n2

zeros in (a1, a2). The solution E (3)
3,n,p(s3) has exponent 1

2 p2 at a2, and it has no zeros in (a2, a3).

X. THIRD DIRICHLET PROBLEM

Consider the coordinate surface (21) for fixed s = d3 ∈ (a2, a3). See Figures 5(d)–5(f) for a
graphical depiction of the shape of this surface. If (x ′, y′, z′) ∈ S2, then the ray (x, y, z) = t(x′, y′,
z′) , t > 0, is tangent to the surface if and only if (x′, y′, z′) is on the surface. If (x′, y′, z′) is in the
elliptical cone

4x ′2

d2 − a1
+ 4y′2

d2 − a2
+ 4z′2

d2 − a3
< 0,
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then the ray intersects the surface twice at t = t1, t2 with t1t2 = 1. Otherwise, there is no intersection.
Therefore, the coordinate surface s3 = d3 consists of two disjoint closed asymmetric surfaces of
genus one separated by the plane z = 0, and they are mirror images of each other under the
reflection σ 3.

We consider the region inside the surface s3 = d3 with z > 0

D3 = {(x, y, z) : z > 0, s3 < d3}, (104)

or, equivalently,

D3 = {(x, y, z) : z > 0,
(x2 + y2 + z2 − 1)2

d3 − a0
+ 4x2

d3 − a1
+ 4y2

d3 − a2
+ 4z2

d3 − a3
< 0}.

Next, we solve the Dirichlet problem for harmonic functions in D3 by the method of separation of
variables.

Let p = (p0, p1, p2) ∈ {0, 1}3 and n = (n1, n2) ∈ N2
0. Using the functions E (3)

i,n,p introduced in
Sec. IX, we define the internal 5-cyclidic harmonic of the third kind

G(3)
n,p(x, y, z) = (x2 + y2 + z2 + 1)−1/2 E (3)

1,n,p(s1)E (3)
2,n,p(s2)E (3)

3,n,p(s3) (105)

for (x, y, z) ∈ B1(0) with x, y, z ≥ 0. We extend the function

(x2 + y2 + z2 + 1)1/2G(3)
n,p(x, y, z)

to the half-space {(x, y, z): z > 0} as a function of parity p. We call a function f of parity p =
(p0, p1, p2), if

f (σi (x, y, z)) = (−1)pi f (x, y, z), for i = 0, 1, 2 (106)

using the inversion σ 0 and the reflections σ 1, σ 2. As before we have the following lemma.

Lemma 10.1. The function G(3)
n,p is harmonic on {(x, y, z): z > 0}.

We have the Hilbert space H̃3 consisting of measurable functions g : (a0, a1) × (a1, a2) → C
for which

‖g‖2 :=
∫ a2

a1

∫ a1

a0

s2 − s1

ω(s1)ω(s1)
|g(s1, s2)|2 ds1 ds2 < ∞. (107)

For g ∈ H̃3 and fixed p, we have the Fourier expansion

g(s1, s2) ∼
∑

n

cn,p E (3)
1,n,p(s1)E (3)

2,n,p(s2), (108)

where the Fourier coefficients are given by

cn,p =
∫ a2

a1

∫ a1

a0

s2 − s1

ω(s1)ω(s2)
g(s1, s2)E (3)

1,n,p(s1)E (3)
2,n,p(s2) ds1 ds2. (109)

Theorem 10.2. Consider the region D3 defined by (104) for some fixed d3 ∈ (a2, a3). Let e be a
function defined on its boundary ∂D3, and set

f (x, y, z) := (x2 + y2 + z2 + 1)1/2e(x, y, z). (110)

Suppose that f has parity p ∈ {0, 1}3, and its representation g(s1, s2) in 5-cyclide coordinates is in
H̃3. Expand g in the series (108). Then the function u(x, y, z) given by

u(x, y, z) =
∑

n

cn,p

E (3)
3,n,p(d3)

G(3)
n,p(x, y, z) (111)

is harmonic in D3 and assumes the values e on the boundary of D3 in the weak sense.
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If f is a function without parity, we write f as a sum of eight functions

f =
∑

p∈{0,1}3

fp,

where fp is of parity p. Then the solution of the corresponding Dirichlet problem is given by

u(x, y, z) =
∑
n,p

cn,p

E (3)
3,n,p(d3)

G(3)
n,p(x, y, z), (112)

where

cn,p =
∫ a2

a1

∫ a1

a0

s2 − s1

ω(s1)ω(s2)
gp(s1, s2)E (3)

1,n,p(s1)E (3)
2,n,p(s2) ds1 ds2 (113)

and gp(s1, s2) is the representation of fp in 5-cyclide coordinates. Alternatively, we have

cn,p = 1

2ω(d3)E (3)
3,n,p(d3)

∫
∂ D3

e

h3
G(3)

n,p d S, (114)

where

h2
3 = 1

16

(
(x2 + y2 + z2 − 1)2

(d3 − a0)2
+ 4x2

(d3 − a1)2
+ 4y2

(d3 − a2)2
+ 4z2

(d3 − a3)2

)
.
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