
Security Assurance Requirements for Hypervisor Deployment Features

Ramaswamy Chandramouli

Computer Security Division, Information Technology Laboratory

National Institute of Standards & Technology

Gaithersburg, MD, USA

mouli@nist.gov

Abstract-Virtualized hosts provide abstraction of the

hardware resources (i.e., CPU, Memory, etc.) enabling

multiple computing stacks to be run on a single physical

machine. The Hypervisor is the core software that enables this

virtualization and hence must be configured to ensure security

robustness for the entire virtualization infrastructure. Among

the various combination of hypervisor types and hypervisor

hardware platforms, we have chosen a reference architecture

as the basis for our set of deployment features. For each

deployment feature, this paper looks at the configuration

options and analyzes the security implications of the

options/deployment feature to derive a set of assurance

requirements that are either (a) provided by each of the

configuration options; or (b) required for that deployment

feature as a whole regardless of configuration options.

 Keywords-Virtual Machine; Virtual Network; Hypervisor;

Virtualized Host; Security Assurance Requirements

I. INTRODUCTION

 Virtualized hosts provide abstraction of the underlying

hardware resources to enable multiple computing stacks

(consisting of an O/S, Middleware and Applications) to be

run on a single physical host. Because of many beneficial

features such as efficient utilization of hardware resources,

elasticity, flexibility and in some instances better security,

virtualized hosts are being increasingly deployed in many

data centers built for in-house enterprise use or offering

cloud-based services.

 The core software that provides the virtualization

capabilities in a virtualized host is called the Hypervisor.

The hypervisor provides the following major functions: (a)

Abstraction of all underlying hardware resources (e.g.,

CPU, Memory, etc.). This enables multiple computing

stacks called Virtual Machines (VMs) (each with its own

different brand of O/S) to be run on a single physical

machine; (b) Isolation of run-time process stack in one VM

from another; (c) Selective connectivity or communication

among VMs through a suitable network configuration

inside the virtualized host (called Virtual Network); and (d)

Sharing of hardware resources statically through pre-

defined resource limits and dynamically through

multiplexing/scheduling features [1]. These functions

together with some associated housekeeping functions

could broadly be classified under two feature sets: (a)

Hardware Abstraction feature set and (b) Virtual Machine

Management feature set. The virtual machine management

feature encompasses all functions relating to the life cycle

of VMs – create, stop, suspend, activate etc.

 The hypervisor software as a software entity as well as

in combination with its hardware platform can have

different architectures. For example, both of the two major

feature sets could be provided by a monolithic software

module or they could be split between two modules – with

the first module called Hypervisor providing just the

hardware abstraction function while a separate module

called Virtual Machine Manager (VMM) provides the

virtual machine management function [2]. A further

variation in the case of those hypervisor architectures with

a separate VMM module is that the VMM module can be

run as a separate protected VM with higher privileges than

other VMs (usually called Guest VMs) [3]. Some of them

are directly installed on the hardware (or bare metal) (Type

1), while some need an operating system (called a host

operating system) on the physical host to be installed (Type

2) [2]. There could also be variation in terms of whether the

platform provides hardware assistance for virtualization or

not. Hardware-assisted features for virtualization include

the availability of two execution modes (i.e., root mode and

non-root mode) and multiple privilege rings (i.e., enabling

different commands to run at different privilege levels) in

addition to memory management features (e.g., nested page

table or extended page table, etc.). The consequence of the

hardware providing some virtualization functions is that the

corresponding hypervisor module can be thin (enabling

better security verification/attestation) and, at the same

time, be able to provide a feature called full virtualization

(enabling guest VMs to run unmodified versions of

120Copyright (c) The Government of USA, 2013. Used by permission to IARIA. ISBN: 978-1-61208-249-3

ICDS 2013 : The Seventh International Conference on Digital Society

commercial O/S offerings instead of a version that is

specially modified and ported to run on virtualized

platforms) [3].

 The reference hypervisor platform we have chosen for

security analysis in this paper consists of a Type 1

hypervisor that provides full virtualization with either a

monolithic or two-piece software module. For each

deployment feature pertaining to this architecture, we look

at the configuration options available for enabling that

feature. We then analyze the security implications of these

options/deployment features to derive a set of security

assurance requirements that are either (a) provided by each

of the configuration options, or (b) required for that

deployment feature as a whole regardless of configuration

options.

II. HYPERVISOR LOCAL USER MANAGEMENT AND

AUTHENTICATION

 All commercial hypervisor offerings come with a

Management server, almost eliminating the need for

creating local users and groups on each hypervisor

(virtualized) host. However, some tasks cannot be

accomplished through the management server [4] alone,

such as the need to troubleshoot the hypervisor boot and

configuration problems and the need to audit the hypervisor

host configuration and remote access. In spite of the need

for local users and groups, it is a good practice to restrict

the number of users to just two or three. A local user on a

hypervisor always performs only administrative functions

and is not a typical business application end-user.

 With respect to local user management and

authentication on a hypervisor, the two options are:

(a) Manage the users and groups associated with a

hypervisor locally;

(b) Manage the users and groups by integrating with a local

directory infrastructure (e.g., Active Directory) and using a

directory-based authentication mechanism (e.g., Kerberos).

The security analysis of these options is given below:

A. Managing the users and groups associated with a

hypervisor locally:

 Local users and groups for the hypervisor host are

usually created using a service console (if the hypervisor

architecture includes one) or through a dedicated client

interface. The programs for this usually include features to

set a password for the user account as well as options to set

basic access mode permissions (e.g., SSH, VPN, etc.) [4].

 Security issues associated with managing users and

groups locally through the manual process are:

 (a) When an administrative user having user accounts on

some hypervisor hosts, quits the organization or moves

over to a different division within the company, the user

account associated with him/her has to be manually deleted

in all hypervisor hosts. If not done properly, it can leave

zombie accounts which can be exploited resulting in a

security breach of the hypervisor host [5].

 (b) Any changes to organization policy such as the

password policy has to be enforced manually on each

hypervisor leaving room for some mismatches in some

hypervisor hosts.

B. Managing the users and groups through a Directory

Infrastructure

 In this option, the users and groups are still created

through either the service console command line interface

or through a dedicated hypervisor client but there are three

differences [4]:

 (a) The administrative user account names created here

match those already present in the enterprise directory.

 (b) No passwords are assigned while creating these user

accounts.

 (c) A suitable command modifies the configuration to

specify that the authentication will take place through a

mechanism appropriate for the directory infrastructure (e.g.,

through the domain controller in an Active Directory

infrastructure using an authentication mechanism such as

Kerberos).

 The advantages in managing the users of the hypervisor

host through the directory infrastructure are:

 (a) User account changes (such as deletion) can be done

centrally at the directory level. This way, an account for a

user no longer with the organization, though still present in

the hypervisor host, cannot be used for logging in, since

password and forms of authentication have to be done at

the directory infrastructure level. The latter will fail since

the user account no longer exists there [4];

 (b) Password policies such as complexity, expiration

times, etc., can be centrally defined and enforced; and

 (c) Robust Authentication mechanisms can be set up

because of integration of authentication function with the

directory infrastructure that is not available locally in the

hypervisor host.

III. HYPERVISOR CPU SCHEDULER

CONFIGURATION

 Most hypervisors provide the following configuration

options for sharing the physical CPU of the virtualized host

121Copyright (c) The Government of USA, 2013. Used by permission to IARIA. ISBN: 978-1-61208-249-3

ICDS 2013 : The Seventh International Conference on Digital Society

among the multiple virtual CPUs of the VMs: (a)

Guaranteed CPU time slots for VMs based on their

assigned weights and (b) Fair-share scheduling where a

VM gets physical CPU time based upon its weight but

subject to a cap for the amount of CPU.

 The proportional fair-share scheduling option is

recommended for most VM workloads from both a load

balancing and security point of view [6]. In scheduling

options with time guarantees, an errant process in a rogue

or compromised VM could hog all the CPU resources of

the virtualized host resulting in denial of service to other

VMs. However, for VMs running applications with critical

response times, (e.g., process control application), the only

scheduling option is the one that provides time guarantees.

IV. HYPERVISOR ACCESS CONTROL

CONFIGURATION

 There are two main classes of administrative operations

(no user operations) in a hypervisor (virtualized) host: (a)

Virtual Machine Management operations; and (b)

Configuration of Virtual Network involving the VMs.

These classes determine the overall deployment of the

entire virtualized infrastructure. The granularity at which

access control permissions can be set for these operations

contributes towards the security robustness of the

infrastructure. Our reference architecture for hypervisor

platform admits instances where these operations are either

performed by core hypervisor software (monolithic

hypervisor architecture) or through an interface provided by

a separate VMM module installed as a secure dedicated

VM (e.g., Dom0 in Xen hypervisor and Parent Partition in

Hyper-V hypervisor)[3].In both variations, the following

architectural options for performing access control

functions exist:

 (a) Built-in Access Control Module: In this approach,

there is a built-in access control module that is an integral

part of the hypervisor executable.

 (b) Pluggable Access Control Module: In this approach,

a pluggable, external, custom access control module can be

specified as a component of hypervisor kernel modules and

then it can be booted together during the hypervisor boot-

up. Using the interfaces provided by the module, policies

are then defined based on the set of access control models

(e.g., RBAC, MAC, Type Enforcement, etc.) supported by

that module. This approach has been adopted in hypervisors

such as Xen. Loading of custom access control modules

requires the implementation of a generic security

framework; the name of such a framework in the Xen

context is known as Xen Security Module (XSM) [3].

 Irrespective of the type of access control module, the

module should provide the following features in two

feature classes to obtain robust security for the virtual

infrastructure.

 (a) Feature Class – Aggregation: The access control

module should provide capabilities for defining artifacts

containing (i) arbitrary combination of users (Custom

Group); (ii) arbitrary combination of permissions (Custom

Role); (iii) combination of objects based on any

administrator-defined logic (Custom Objects - e.g., set of

VMs that house a Webserver, set of VMs that together form

all tiers of a multitiered application); and (iv) A parent-

child relationships using objects (Object Hierarchy).

 (b) Feature Class – Permission Assignment Granularity:

The access control module should provide the flexibility to

assign permissions at various levels of granularities. The

minimal requirements are: (i) All administrative

permissions on a single object or a custom object (e.g., all

life-cycle operations on a designated VM); (ii) A particular

type of permission (e.g., view) on all objects (e.g., view the

list of all VMs in the virtualized host but not exercise any

other operations on those VMs); (iii) Arbitrary combination

of permissions (contained in a Custom Role) on arbitrary

combination of objects (Custom Object); and (iv) Have a

set of permissions on an object at the top or middle of an

object hierarchy but negation of those permissions for a

specific child object (e.g., ability to take snapshots, start

and stop all VMs except a designated VM running a

sensitive application).

V. HYPERVISOR DEVICE DRIVERS

CONFIGURATION

 Device drivers are software pieces that provide access to

a physical device such as a hardware drive or network

interface card to guest VMs. Generally, these device drivers

are either supplied by physical device vendors or written by

third parties and hence are traditionally held as untrusted

code. They form one of the weakest links in the security

configuration of a virtualized host (hypervisor platform).

 The following device driver configuration options

depend upon the architecture of hypervisor platform [7]:

(a) In the monolithic hypervisor architecture, the device

driver module is an integral part of the code for the

hypervisor build; and (b) In a hypervisor architecture with a

separate VMM, the device drivers may be located either in

the parent partition that houses the VMM module or it may

122Copyright (c) The Government of USA, 2013. Used by permission to IARIA. ISBN: 978-1-61208-249-3

ICDS 2013 : The Seventh International Conference on Digital Society

be run in a dedicated guest VM (e.g., Driver Domain in

Xen hypervisor platform)[3].

 The security assurance requirement for each of the

above two device driver configuration options are:

 (a) Some hypervisor offerings provide a feature to pre-

define a secure configuration for the entire hypervisor

platform installation by what are known as “Host Image

Profiles” (e.g., VMware VSphere 4)[4]. Such a host image

profile can be used to specify acceptable drivers (based on

assessments by third-party certifiers) or specify an

acceptance level for the device driver that is part of the

hypervisor build.

 (b) When device drivers are run in a VM different from

the parent partition (VM that houses the VMM module),

that VM should contain just the barebones guest O/S, the

device driver software designated to run on it and any other

software required for that VM to share the device with

other domains. This configuration requirement is needed

since the VM that runs the driver code that enables other

VMs to share devices is theoretically part of the Trusted

Computing Base of the hypervisor platform.

VI. HYPERVISOR MANAGEMENT INTERFACE

CONFIGURATION

 The hypervisor should be accessible and configured

only through a dedicated management network. The

management interface (also called VMKernel interface) of

the hypervisor is accessed through a special port (or port

group) called the VMKernel portgroup in some offerings

[4]. By assigning this port or portgroup (with its associated

VLAN ID) to its own virtual switch and connecting this

virtual switch to a dedicated physical network interface

card (pNIC) of the virtualized host (with a redundant pNIC

standby), a dedicated management network can be created.

There should also be restrictions on services (e.g., DNS)

and network locations (e.g., IP addresses) that can interact

with the management interface [8]. These restrictions can

be defined and enforced through a firewall whose

configuration has the following options:

 (a) A firewall external to the virtualized host; or

 (b) A firewall built into the hypervisor module

 Irrespective of the firewall used, the following security

checklist should apply:

 (a)All incoming and outgoing traffic must be blocked,

except those that are needed for the hypervisor

management access. These include but are not limited to:

SSH (TCP port 22), DNS (UDP port 53) and DHCP (UDP

port 68).

 (b) The previous configuration setting merely specifies

the set of allowed services. It is also necessary to restrict

the clients that can avail of these services. It is a well-

understood practice that hypervisor management should be

limited to a restricted set of (preferably local) IP addresses

or range of IP addresses (subnet).

VII. HYPERVISOR VIRTUAL NETWORK

CONFIGURATION

 A virtual network is a network defined entirely within a

single physical (virtualized) host; a typical configuration is

given in Figure 1. It consists of software-defined virtual

network interface cards (vNIC) associated with VM that are

connected to software-defined virtual switches (vSwitch),

which in turn are connected to the physical network

interface cards (pNIC) of the virtualized host [9]. The

vNICs and vSwitches are defined using the hypervisor

management interface and they together with the network

traffic flowing between them reside entirely in the memory

of the virtualized host. Multiple portgroups (each with its

associated virtual LAN ID) can be defined on a single

vSwitch and each is connected to one or more vNICs on the

VMs. Network traffic between VMs connected to the same

vSwtich and portgroup never leaves the virtualized host.

The virtual network thus enables communication among the

VMs within the virtualized host as well as communication

with the enterprise network outside the virtualized host.

 The presence of this virtual network poses a threat to the

hypervisor in the following ways [10]:

 (a)A compromised application within a VM can attack

the hypervisor

 (b)An application within a VM can be used as a

launching pad to compromise applications in other VMs on

the same virtualized host.

 To protect the hypervisor, use one of the following

configuration options:

 (a)Install a firewall service virtual appliance as a

hypervisor module. This appliance uses the virtual machine

introspection API of the hypervisor [11] and hence has

visibility into all traffic flowing inside the virtual network,

including traffic that never leaves the virtualized host.

Specifically, this appliance sets up a firewall filter to

intercept all traffic flowing between a vNIC of a VM and

the vSwitch and thus provides a capability to control traffic

flowing into and out of every VM resident on the

virtualized host.

123Copyright (c) The Government of USA, 2013. Used by permission to IARIA. ISBN: 978-1-61208-249-3

ICDS 2013 : The Seventh International Conference on Digital Society

 VM VM VM

.

Figure 1. Typical Virtual Network Configuration

 (b) Isolate the network traffic flowing among VMs using

the concept of VLAN [4]. By this configuration approach,

different portgroups are defined in a vSwitch and each is

associated with a unique VLAN ID. A network packet

originating from a VM and landing on a portgroup in a

vSwitch is tagged with that associated VLAN ID. A

vSwitch is connected to one or more pNICs of the

virtualized host which in turn are connected to a physical

switch configured as a VLAN trunk. Access control

policies based on VLAN IDs are defined on this physical

switch. The physical switch serves to segment traffic

among the VMs resident on that host for monitoring and

controlling. The difficulty with this configuration option is

that the VLAN traffic inside each virtualized host must be

routed to the external physical switch where access control

policies are enforced on inter-VLAN traffic.

 The Security requirements for the virtual network traffic

isolation feature for the firewall option are:

 (a)The firewall appliance should be a stateful one

 (b) There must be flexibility in defining objects that will

participate in policy rules. The objects should be static or

dynamic. In terms of granularity of entities at the network

level, objects designating portgroups and vLAN Ids should

be supported. At the VM level, object definitions should

cover a single designated VM, all VMs in the virtualized

host or all VMs with similar connectivity or function (e.g.,

Web Server) [12].

 (c) Traffic filtering rules by themselves cannot provide

assurance against attacks on the virtual network. This

requires an IDS/IPS. Since IDS/IPS systems with robust

analytical capabilities are now found only in versions built

for physical networks, the firewall should support rules for

mirroring virtual network traffic to external network

devices to leverage this capability.

Virtual Machine

(vNIC)

vSwitch

pNIC pNIC
HYPERVISOR

Virtual Machine

 (vNIC) (vNIC)

VM Port Group

VLAN ID 2

VM Port Group

VLAN ID 3

Management Interface

(vNIC)

vSwitch

pNIC

VMKernel Port Group

VLAN ID 4

Physical Switch Physical Switch

vSwitch vSwitch

124Copyright (c) The Government of USA, 2013. Used by permission to IARIA. ISBN: 978-1-61208-249-3

ICDS 2013 : The Seventh International Conference on Digital Society

Table 1. Hypervisor Deployment Feature (Option) & Security Assurance

Deployment Feature (Configuration Option) Security Assurance Requirements

1. Local User Management and Authentication (using

Directory Infrastructure)

No Zombie Accounts, Enforcement of Password policies,

Robust Authentication Mechanism

2. CPU Scheduler Configuration (proportional fair-share) Situations that result in Denial of Service to VMs must be

minimized

3. Access Control Configuration (all options) Arbitrary combination of Users, Permissions & Objects and

Flexibility to assign Permissions at various granularity levels

4. Device Drivers Configuration (all options) Certified Drivers, Barebones/Secure Configuration of

domains running Device driver code

5. Management Interface Configuration (all options) Dedicated Management Network, Restricting the type of

Network traffic and IP address locations for Management

Interface Access

6. Virtual Network Configuration (Firewall & VLAN) Capability to define and enforce inter-VM network traffic

rules and IDS/IPS function support

VIII. CONCLUSIONS & ADVANTAGES

 The hypervisor is the central software that provides all

of the virtualization functions on a virtualized host. Apart

from the usual user account management and access control

configuration options encountered on any host, a

virtualized host presents a sophisticated management

interface which supports functions for multiple workloads

in the form of VMs and a software-defined network called

virtual network. This presents a rich set of deployment

features and associated with each deployment feature there

are multiple configuration options. In this paper, we

analyzed the security implications of these

options/deployment features to derive the security

assurance requirements that are either (a) provided by each

of the configuration options; or (b) required for that

deployment feature as a whole regardless of configuration

options. The security assurance requirements are

summarized in Table 1 above.

 The advantages of the deployment feature-driven

approach for deriving security assurance requirements are:

 (a) The security assurance requirements have direct

traceability to each deployment feature and hence provide

an automatic test of completeness.

 (b) Provides a true picture of the security posture of the

operational virtualization infrastructure as the security

guarantees of each deployed configuration is known in

advance.

REFERENCES

.

[1] J. Sahoo, S.Mohapatra, and R.Lath, “Virtualization: A Survey On

Concepts, Taxonomy And Associated Security Issues,” IEEE 2nd

International Conference on Computer and Network Technology,
Bangkok, Thailand, Apr 2010, pp. 222-226

[2] O.Agesen, A.Garthwaite, J. Sheldon, P.Subrahmanyam, “The

Evolution of an x86 Virtual Machine Monitor”
[3] J. N. Matthews, ‘et al.’“Running Xen – A Hands-On Guide to the Art

of Virtualization,” Prentice Hall, 2008

[4] S. Lowe “Mastering VMware vSphere 4,” Wiley Publishing, 2009.

[5] L. Garber, “The Challenges of Securing the Virtualized Environment”,
IEEE Computer, Volume 45 Issue 1, Jan 2012.

[6] P. Colp et al, “Breaking up is Hard to Do: Security and Functionality

in a Commodity Hypervisor”, ACM SOSP’11, Cascais, Portugal, Oct 23-
26, 2011, pp 189-202.

[7] A. Kadav and M.W.Swift, “Understanding Modern Device Drivers,”

ACM ASPLOS’12, London, England, March 3-7, 2012, pp 87-98.

[8] T. Garfinkel and M. Rosenblum, "When Virtual is harder than Real:

Security Challenges in Virtual Machine Based Computing

Environments" ,Stanford University Department of Computer Science.

http://xenon.stanford.edu/~talg/papers/HOTOS05/virtual-harder-

hotos05.pdf [Retrieved: July, 2012]

[9] Five exciting VMware networking features in vSphere 5

http://searchvmware.techtarget.com/tip/Five-exciting-VMware-

 networking-features-in-vSphere-5 [Retrieved: March, 2012]

[10] S. Jin, J.Ahn, S.Cha, and J.Huh, “Architectural Support for Secure

Virtualization under a Vulnerable Hypervisor, “ACM MICRO’11

 Conference, Porto Alegre, Brazil, Dec 2011, pp. 272-283.
[11] VMware Inc, “vShield Administration Guide – Version 5.1,”
http://www.vmware.com/pdf/vshield_51_admin.pdf, pp. 9-12.

[12] Juniper Networks, Inc ,”Alternatives for Securing Virtual Networks,”

http://www.juniper.net/us/en/local/pdf/whitepapers/2000382-en.pdf

125Copyright (c) The Government of USA, 2013. Used by permission to IARIA. ISBN: 978-1-61208-249-3

ICDS 2013 : The Seventh International Conference on Digital Society

http://xenon.stanford.edu/~talg/papers/HOTOS05/virtual-harder-hotos05.pdf
http://xenon.stanford.edu/~talg/papers/HOTOS05/virtual-harder-hotos05.pdf
http://searchvmware.techtarget.com/tip/Five-exciting-VMware-
http://www.vmware.com/pdf/vshield_51_admin.pdf
http://www.juniper.net/us/en/local/pdf/whitepapers/2000382-en.pdf

	Security Assurance Requirements for Hypervisor Deployment Features
	Keywords-Virtual Machine; Virtual Network; Hypervisor; Virtualized Host; Security Assurance Requirements

	I. INTRODUCTION
	II. HYPERVISOR LOCAL USER MANAGEMENT AND AUTHENTICATION
	REFERENCES

	[10] S. Jin, J.Ahn, S.Cha, and J.Huh, “Architectural Support for Secure Virtualization under a Vulnerable Hypervisor, “ACM MICRO’11

