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1. Introduction

Overall, humans are the most accurate face recognition systems.
People recognize faces as part of social interactions, at a distance, in
y a select rotating 12member
nded for acceptance by Ioannis
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.

still and video imagery, and under a wide variety of poses, expressions,
and illuminations. A holy grail in automatic face recognition is develop-
ing an algorithm that has performance equivalent to humans—this is
equivalent to solving the general face recognition problem. While it is
easy to state the problem, accuracy equivalent to humans, it is not obvi-
ous how to determine if an algorithm's recognition accuracy is better
than a human. One of the key challenges is establishing a measurable
goal line and knowing when the goal line is crossed.

Since 2005, human and computer performance has been systemati-
cally compared as part of face recognition competitions conducted by
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Table 1
Camera size measured in megapixels and average face-size measured in pixels between
centers of the eyes broken out by competition and illumination condition.

Illumination Competition Camera size
(megapixels)

Average face size
(pixels)

Studio FRGC 4 261
Ambient FRGC 4 144
Studio FRVT—Notre Dame 6 400
Ambient FRVT—Notre Dame 6 190
Studio FRVT—Sandia 4 350
Ambient FRVT—Sandia 4 110
Ambient GBU 6 175
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the National Institute of Standards and Technology (NIST) [1–4]. The
comparisons provided an assessment of accuracy for both humans and
machines for each competition. However, there has not been a system-
atic analysis of these results across the competitions.

To analyze the results across experiments, we introduce the cross-
modal performance analysis (CMPA) framework, which is demonstrat-
ed on the NIST competitions. CMPA was adapted from techniques in
neuroscience that were developed to compare output from different
sensing modalities of brain activity; e.g., functional magnetic resonance
imaging (fMRI) and human perceptual judgments [5,6]. These tech-
niques can measure concordance between experimental data and com-
putational models. In our study, the modalities compared are human
and algorithm performance. In the psychology and neuroscience litera-
ture, face recognition algorithms can be referred to as computational
models. The computational model can be designed to optimize perfor-
mance or to model the human face recognition processes. The frame-
work is sufficiently general that it provides a goal line for determining
when machine performance reaches human levels.

On frontal faces in high quality still images, our analysis shows that
machine performance is superior to humans. For these images, ma-
chines represent a person's identity primarily by encoding information
extracted from the face; information from the body, hair, and head is
generally ignored. For video and extremely difficult-to-recognize face
pairs, experiments show that humans take advantage of all available
identity cues when recognizing people [7,8]. CMPA quantifies the po-
tential for improvingmachine performance if all possible identity infor-
mation is encoded by algorithms.

Comparingmachine and human performance started with indepen-
dent experiments in NIST competitions. The synthesis of the results
Fig. 1. Example of a pair of images used in experiments comparing identities in im
across experiments gives a greater understanding of the relative
strengths of machines and humans. The CMPA framework provides a
goal line for determining if algorithm and human performance is com-
parable on the general face recognition problem.

2. Review of human and machine comparisons

We examine the relative performance of humans and machines for
both still and video imagery. This review section presents the key details
and conclusion for each study. The key details and conclusions were se-
lected to lay the groundwork for the cross-experiment analysis in
Section 3. The summary includes an overview of the images in the ex-
periment, how the images were selected for measuring human perfor-
mance, the key receiver operating characteristics (ROCs) comparing
machine and humans, and the headline conclusions for each experi-
ment. References are provided for full details on each experiment and
the associated competitions.

2.1. Methods

To encourage the development of face recognition technology and to
provide an independent assessment of algorithm performance, since
1993 the U.S. Government has sponsored a series of competitions [9].
The competitions came in two varieties: challenge problems and evalu-
ations. A challenge problem can be considered a homework assignment
meant to assist developers in improving algorithm performance. An
evaluation is considered a final exam that takes the form of an objective
test of face recognition technology with sequestered images (i.e.,
images not available in the challenge problem).

The goal of challenge problems is to encourage and facilitate the
development of new face recognition technology. In a challenge prob-
lem, participants were providedwith a large set of face images, a proto-
col for performing a set of experiments, and the code for scoring
algorithm performance. The experiments were designed so that multi-
ple algorithms could be compared on exactly the same images. In addi-
tion, participants were given the answers, also known as ground truth.
By providing the answers, it allowedparticipants in a challenge problem
to improve their algorithms or develop new algorithms. Participants
could submit their raw results from matching images in an experiment
to NIST for analysis. From the raw results, NIST performed analysis
across participants on a common set of images. The analyses were in-
cluded in summaries, presentations, and papers on a challenge problem.
ages captured in a studio environment (a) and an ambient environment (b).
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The goal of an evaluation is to provide an independent assessment of
algorithmperformance. For evaluations, participants submitted their al-
gorithms to NIST, and the algorithms were tested in the NIST Biometric
Testing Laboratory. Performance of algorithms was measured on se-
questered data. In the statistical learning domains, this is the standard
methodology to measure the ability of an algorithm to generalize to
novel data and mitigate the effects of over-tuning to the development
data.

Although the NIST competitions measured algorithm performance
on a number of recognition tasks, the analysis in this paper is limited
to a verification task. In the perception community, this is known as
face-identity matching of unfamiliar faces. In our verification task,
humans and machines were given a pair of images or videos, with
each image or video containing one face. The humans and machines
had to respond how likely the two faces were of the same person. For
machines, the response is a number called a similarity score. Each algo-
rithm has its own similarity score distribution. From the similarity
scores, receiver operating characteristics (ROCs) can be computed.

Human performance wasmeasured on normal (i.e., untrained) peo-
ple who had no professional experience with face recognition. Perfor-
mance was measured by presenting two face images or videos on a
computer screen. They were asked to judge the similarity between a
face pair on the following scale:

• 1.) You are sure they are the same person;
• 2.) You think they are the same person;
• 3.) You don't know;
• 4.) You think they are different people;
• 5.) You are sure they are different people.

From the human generated ratings, ROCs were computed. For con-
sistency, in our analysis of still image experiments, all face pairs were
presented on the computer screen for 2 s. The presentation time of 2 s
was chosen based on experiments in O'Toole et al. [1] showing that
human accuracy was stable between 2 s and unlimited time. However,
subsequent experiments showed that a slight improvement in perfor-
mance is possible when a subject has unlimited time tomake a decision
[8]. The number of subjects judging the similarity between face pairs
varied by experiment. Because this is a review article, we provide cita-
tions to the original papers that have the full experimental details in-
cluding the number of subjects.

Because one of the main goals of an evaluation was to test the ability
of algorithms to generalize to novel faces, faces in evaluations were se-
questered; e.g., images of the faces in an evaluation were not released
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Fig. 2. Human and machine performance on the FRGC data set. (a) Performan
to the face recognition community. Thus, the faces in evaluations were
“unfamiliar” to the algorithms. This kind of sequestering is likely to be
comparable to the humans tested, who have general experience with
faces, but no experience with the faces used as test stimuli in the experi-
ments. Moreover, the unfamiliar face matching task is comparable for
machines and humans operating in situations typical of security applica-
tions, where face recognition for previously unfamiliar people is required.

The main difference between measuring performance of humans
and machines is the number of face pairs that can be compared. In the
NIST competitions, machines compare millions of face pairs. Because it
was impossible for human subjects to rate millions of face pairs, the
human–machine comparison focused on a subset of the face pairs com-
pared inmachine experiments. Themaximumnumber of face pairs that
a subject can rate in an experiment is about 250. One of the factors dif-
ferentiating the experiments is themethod for selecting the face pairs in
an experiment.
2.2. Still frontal face images

Over the last twenty years themost active research area in automatic
face recognition has beendeveloping algorithms to recognize faces from
frontal still images. In the last ten years, one emphasis of the NIST com-
petitions has been recognition from frontal face images acquired with a
digital single lens reflex camera. The majority of these images are con-
sidered high quality to humans. The images were collected under two
illumination conditions. One was in a studio environment with con-
trolled lighting. The other was under ambient lighting indoors and
outdoors.

Progress on recognizing images under these conditions has been
measured through a series of US Government sponsored competitions
[9]. Three recent competitions included comparing of human and ma-
chine performance: the Face Recognition Grand Challenge (FRGC) [10],
the Face Recognition Vendor Test (FRVT) 2006 [3], and the Good, Bad,
& Ugly face challenge problem (GBU) [11]. The FRGC study reports algo-
rithm results from 2005. The GBU algorithm challenge has been ongoing
since 2011; however, the best reported results are from the FRVT 2006.

Human and machines were compared for two categories of experi-
ments. In the first category, one image in a face pair was taken in studio
lighting and the other was taken in ambient lighting. In the second cat-
egory, both images were images taken under ambient illumination.

The demographics and size of the face varied by experiment. The
face size is measured by the number of pixels between the centers of
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Fig. 3. Human and machine performance on the Notre Dame and Sandia data sets.
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the eyes. Table 1 specifies face size by experiment, data set, and imaging
condition. The experiment is labeled by the associated competition.

The data for the still face experiments came from two sources: Uni-
versity of Notre Dame and Sandia National Laboratory. For the data col-
lected at Notre Dame, the overall demographic composition was 59%
male and 41% female; 71% Caucasian and 10% East Asian; and 92%
were 18 to 29 years old. The demographics varied slightly by experi-
mentwith precise numbers provided in the references. For data collect-
ed at Sandia the demographic composition was 55% female and 45%
male; 64% Caucasian and 21% Hispanic; and 35% were 50 to 59 years
old, the age range for the remaining 65% was roughly spread evenly
over the 18 to 59 and 60 to 65 age ranges.
1 An overview of the creation of the GBU partitions is presented in this Section, details
are given in Phillips et al. [11].
2.2.1. Benchmark on matching studio against ambient illumination images
In thefirst two studies comparinghuman andmachineperformance,

one image was acquired in a studio environment and the second was
captured in ambient indoor lighting, see Fig. 1.

In thefirst studywe review, results were reported for two categories
of face pairs: easy and difficult. The two categories allowed for the com-
parison of human and machine results at both ends of the performance
range, see O'Toole et al. [1] for details. This baseline is an implementa-
tion of an algorithm based on principal components analysis (PCA)
[12–14]. This algorithm achieved good recognition performance for
the easy category and poor recognition performance for the difficult
face pairs. The seven algorithms in the experiment were participants
in the FRGC. Human and algorithm performance is reported for the
same set of image pairs. The human andmachine ROC curves for the dif-
ficult face pairs (Fig. 2(b)) show that three algorithms were more accu-
rate than humans [15–17] and four algorithms were less accurate. For
the easy face pairs (Fig. 2(a)), the algorithms andmachines were highly
accurate, with all but one algorithm performing more accurately than
humans.

The previous experiment examined performance for easy and diffi-
cult face pairs; the second experiment measures performance on face
pairs of average difficulty. In this study, humanswere compared to algo-
rithms submitted to the FRVT 2006 [2,3]. Average difficulty is defined
relative to algorithms in the FRVT 2006 competition. A face pair had av-
erage difficulty if approximately half of the algorithms performed cor-
rectly (i.e., in a face pair with images of the same person, then
approximately half of the algorithms reported that the images were of
the same person). Experiments were performed on images from two
data sets, one collected at the U. of Notre Dame and the second at the
Sandia National Laboratory.
ROCs for both data sets are presented in Fig. 3. There are two key
conclusions. First, the results on both data sets are consistent with the
difficult portion of the FRGC (previous experiment) comparison; ma-
chine performance is in the range of human performance, with the
best algorithms surpassing humans. Second, human performance is sta-
ble across the two data sets.

2.2.2. Benchmark on matching ambient illumination images only
Thenext experiment relaxed the photometric constraints. Both faces

in a pair were acquired in ambient lighting conditions. The images were
taken outdoors or indoors in atriums and hallways. To better under-
stand the range of performance under general illumination conditions,
three partitions were created based on difficulty of matching.1 To arrive
at theperformance-based partitions, three top-performing face recogni-
tion algorithms from the FRVT 2006 test were fused to produce a single
algorithm. Based on performance of the fusion algorithm, images were
divided into three partitions with high (the Good), challenging (the
Bad), and very challenging (the Ugly) accuracy, hence the name Good,
Bad, and Ugly (GBU) Face Challenge Problem. On the Good partition,
the base verification rate (VR) was set to 0.98 at a false accept rate
(FAR) of 0.001. For the challenging partition, the VR was set to 0.80 at
a FAR of 0.001, and on the very challenging partition the VR was set to
0.15 at a FAR of 0.001.

In the GBU, the effects of natural variations in a person's day-to-day
appearance (hair, facial expression, etc.) and variations in illumination
across both indoor and outdoor settings were considered. All of these
images were nominally frontal. Because all images were collected be-
tween August 2004 and May 2005, aging cannot be a factor. There is
the same number of images of each person in all three partitions.
Thus, only the images, not the individual identities, changed across
the three partitions. This provides an assurance that the accuracy differ-
ences were due to factors other than the particular set of face identities
tested. Human performance on the GBU is reported in O'Toole et al. [4].
Fig. 4 shows three face pairs of the same person, sampled from the good
(left column), challenging (middle column), and very challenging (right
column) performance conditions. This figure illustrates the wide varia-
tion in the appearance of a person across frontal images. It also high-
lights the difficulties that may occur in matching identity in faces that
are taken in different settings and which include variations in expres-
sion and appearance-based features such as hairstyle. These factors be-
come even more salient in combination (cf., Fig. 4 right column).



2 Information on obtaining the FOCS can be found at http://face.nist.gov.
3 The video challenge was originally included in the Multiple Biometrics Grand Chal-

lenge (MBGC) [19].

Fig. 4. Examples of face pairs of the same person from each of the GBU partitions: (a) good, (b) challenging, and (c) very challenging.
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ROCs comparing human andmachine performance are presented in
Fig. 5. For humans, performance on the Good partition is superior to the
challenging and very challenging partitions, see Fig. 5(a). The difference
in human performance on the challenging and very challenging parti-
tions is not statistically significant (cf. O'Toole et al. [4]). For all three
partitions, performance on the fusion algorithm is superior to humans,
see Fig. 5(b, c, d).

To gain better understanding of the relative strengths of human
performance, Rice et al. [8] examined human performance when algo-
rithms completely fail. From the very-challenging partition in the GBU,
50 same-identity face pairs and 50 different-identity face pairs were se-
lected so that the similarity score for all same-identity pairs was lower
than all different-identity pairs. A higher similarity score implies a
greater likelihood that the face pairs consist of two images of the same
face. Thus, performance of the FRVT 2006 fusion algorithmwas 100% in-
correct. Thus, we refer to these as extremely-difficult face pairs.

To understand the reason for algorithm failure, Rice et al. [8] mea-
sured the contribution of face and body, face only, and body only to rec-
ognition by humans. To measure the contribution of these three
conditions, three versions of the face images were created, see Fig. 6.
In the first experiment, human observers were presented with the orig-
inal images, see Fig. 6(a). In the second experiment, humans were pre-
sented with images where the face was masked, see Fig. 6(b). In the
third experiment, the images consisted of only the face, see Fig. 6(c).
The ROCs for all three human viewing conditions and the fusion algo-
rithm are shown in Fig. 7.

Performance between the body only and original images was indis-
tinguishable. Performance on the face only images was remarkably in-
accurate, but greater than chance. The results indicate that the body,
rather than the face, accounts for human accuracy at identifying people
in the original unedited images.

2.3. Video challenge

In our daily lives, faces are recognized as we interact with people.
This allows the incorporation of motion and non-face identity cues
into the recognition process. The equivalentmodel for algorithms is rec-
ognition from video.

O'Toole et al. [7] extensively studied human performance on video
sequences. The data set in the study consisted of two categories of
video sequence [18]. The videos were captured in standard-definition
progressive-scan format by a digital video camera. In the first, a person
walked towards the camera; in the second, a person was engaged in a
conversation, see Fig. 8. O'Toole et al. [7] measured effect of face, body,
and motion on performance. The analysis in this paper is restricted to
two key cases. The first was recognition from the entire video sequence.
The secondwas recognitionwhen only the head and facewere visible in
the video sequence; the background and the person's body were
masked, see Fig. 8(c). The original video sequence case reports perfor-
mance when information about the head, face, body, and motion is
available. The videoswith only the head and facewere designed tomea-
sure the performance when information about the body was not
present.

The video sequences in the above study were included in the Video
Challenge of the Face andOcular Challenge Series (FOCS).2,3 The current
paradigm in automated video recognition is to first detect frontal faces
and then feed the frontal faces into a recognition algorithm. In video al-
gorithms, a key challenge is recognizing people in sequences that do not
contain frontal faces. In the Video Challenge, this challenge is represent-
ed by the conversation sequences. The video dictionary algorithm of
Chen et al. [20] reports performance on the conversation video se-
quences in Video Challenge. The video dictionary algorithm extracts
the face from each frame. The extracted faces are then grouped by
pose. From each group a dictionary is learned. Non-frontal faces are rec-
ognized by comparing similar pose groups. Since features are only ex-
tracted from the face, the video dictionary algorithm does not
incorporate body information in the recognition process.

http://face.nist.gov)
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Human and machine performance is shown in Fig. 9. Results are re-
ported for comparing walking-vs-walking videos, conversation-vs-
conversation videos, and conversation-vs-walking videos. For humans,
performance is reported for both original and face only sequences. For
humans, comparing walking-vs-walking videos is superior to the
other two cases, Fig. 9(a). On the original video sequences, humans
are superior to the algorithm in all three cases, Fig. 9(b, c, d). On the
face only sequences, the algorithm is roughly equivalent to humans on
the walk-vs-walking and conversation-vs-conversation cases, Fig. 9(b,
d). Since the algorithm only encodes identity from the face, comparing
human performance on the face only sequences is meaningful. In the
cross pose case, conversation-vs-walking, humans are better, Fig. 9(c).
3. Cross experiment comparison

The next step is to take the experiments reviewed in the previous
section and to analyze them as a group. The analysis is performed by
using the cross-modal performance analysis (CMPA) framework,
which we introduce.
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Fig. 5.Humanandmachine performance on theGBUpartitions. (a) Humanperformance on all th
challenging, and (d) very challenging.
3.1. Analysis

Traditionally, the performance of humans and machines is com-
pared by plotting their ROCs on a single plot. ROCs are a standardmeth-
od for reporting performance on a small number of experiments.
However, they do not allow for a concise summary across a large num-
ber of experiments. Comparing performance across experiments is ac-
complished by placing ROCs side-by-side; e.g., Figs. 2, 3, 5, and 9.
Ideally, to compare results across experiments, each ROC needs to be
summarized by a single number. For our analysis, we summarize a
ROC by the area under the curve (AUC) [21,22]. The range of values
for AUC is [0,1]. An AUC value of 1 is perfect performance and a value
of 0.5 is random performance. An AUC value of 0 corresponds to no cor-
rect answers; e.g., algorithm performance on the extremely hard face
pairs.

In the CMPA framework, the relative performance of humans and al-
gorithms is characterized by their AUC statistics on the same experi-
ment. In the experiments reviewed in this paper, the AUCs are
computed from responses to stimuli from the same data set. This tech-
nique is extensible to analysis were the two underlying ROCs do not
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Fig. 6. Example of one set of images from the extremely hard face pair study. (a) Original
image. (b) Image with the face masked. (c) Image with only the face visible, where the
background, body, and hair have been masked.
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need to be responses to stimuli from the same data set. We graphically
show this relationship on a scatter plot, see Fig. 10. The x-axis is AUC for
human performance and the y-axis is AUC for algorithm performance. If
the AUC for both human and machine performance are approximately
equal, then performance for humans and machines is comparable. In
Fig. 10 this is the diagonal line. Points in the region above the diagonal
line correspond to experiments where machines perform better than
humans (as measured by AUCs). Likewise, points in the region below
the diagonal line correspond to experiments where humans are better.
For algorithm developers, in the ideal case, all points would be on hori-
zontal line with machine AUC equal to 1.0. For those modeling the
human face recognition system, in the ideal case, all points will lie
along the diagonal line.

Our CMPA analysis builds on the work on DiCarlo [5], where human
and machine performance on object recognition is characterized by the
statistic d′ [21,22]. A related technique is representational similarity
analysis for comparing different brain imaging modalities with human
perceptual similarity judgments [6].

To assess the relative capabilities of humans andmachines,we apply
our CMPA analysis to all the experiments reviewed in Section 2. Fig. 11
shows the results of this analysis. In Fig. 11, experiments are grouped
into three categories.

Thefirst category consists of the still image experimentswith the ex-
ception of the difficult-face pairs. For the first two experiments
reviewed, see Section 2.2, performance is reported for multiple algo-
rithms. For the analysis in this section, machine performance is repre-
sented by one of the top performers. This is because of multiple
experiments in each competition, there is not a clear top performer.
For the two FRGC experiments, machine performance was reported
for the New Jersey Institute of Technology (NJIT) algorithm [15]. Like-
wise, for the FRVT 2006 results, performance is reported for the
Viisage-norm submission to the FRVT 2006. For the GBU experiments
results are for the FRVT 2006 fusion algorithm in Phillips et al. [11].
For these seven experiments, a regression line has been plotted in
Fig. 11.

In this category, the imageswere acquiredwith digital single lens re-
flex cameras and the majority of the images are considered “high qual-
ity” by the face recognition community. The face-image pairs are
selected by different criteria and cover a range of imaging conditions.
For these experiments, performance of machines is superior to humans
and the regression line suggests that there is a linear relationship be-
tween the difficulty of the experiments for humans and algorithms.

On the video challenge, performance is compared on six experi-
ments. The experiments are organized into three experimental condi-
tions that characterize the pairs of video that are compared. For each
condition, there are two viewing conditions: the original sequences
and face only video sequences. The machine results on the video exper-
iments is for a video-dictionary based algorithm [20].

For the extremely difficult face pairs, AUCs for three experiments,
face only, face masked, and original image, are presented. For all three
experiments, machine performance is the FRVT 2006 fusion algorithm.
By the design of the selection process, the AUC for the fusion algorithm
is 0.



Fig. 8. Example imagery from the video experiments. (a) Frames from a sequence of a personwalking towards the camera. (b) Frames from a sequence of two people talking. The goal is to
recognize the person facing the camera. (c) One frame from a floating head sequence that only contains the head and face of a person.
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3.2. Conclusions

The most studied area of face recognition is recognition from high
quality still frontal face images. In our studies these are represented by
images taken with a digital single lens reflex camera. For the seven ex-
periments described in Section 2.2, our analysis shows that machines
are superior to normal humans. For these experiments, the faces contain
significant identity cues.

The results on the video and extremely-difficult face pairs show con-
ditions where human performance is superior to machines. In the video
experiment, human and machines are at near parity when pose is the
same in both video sequences and only face identity cues are considered.
When there was a change in pose, human performance was superior to
machine performance. On both the video and extremely-difficult face
pair experiments, human performance is superior when non-face identi-
ty cues are dominant. These results suggest that humans effectively inte-
grate non-face identity cues into the recognition process and that
humans take advantage of the head and body in identifying someone.
Because the automatic face recognition community has developed algo-
rithms that compensate for changes in pose, future experiments should
directly compare human and machine performance on changes in pose.

The CMPA provides a high level summary across multiple experi-
ments. One direction for future analysis is developing statistical models
of both human and machine performance. One example is generalized
linear models that allow for analysis that explicitly models the effect
of covariates [23,24]. This class of analysis has been restricted to algo-
rithm performance on a single data set. To extend this technique to
the problem described in this paper, the models need to be able to ana-
lyze results on multiple data sets and incorporate human matching
results.

4. Insights from structural comparisons

The analysis in Section 3 directly compared human and machine
performance. There is more to learn from the interplay of machines
and humans than what can be learned from relative performance com-
parisons. We will examine this interplay in the context of three topics.
The first is the other-race effect, where algorithms have contributed to
understanding the human face processing systems andhuman face pro-
cessing has contributed to understanding machine performance. Sec-
ond, it has been possible to improve techniques for the analysis of
machine performance based on the design of human experiments. Fi-
nally, the effect of fusing machine and humans is reviewed and can re-
veal strategy differences in the way humans and machines perform
the tasks.

The other-race effect is a classic property of human face recognition.
Our ability to recognize the identity of faces from our own race is better
than our ability to recognize the identity of faces of other-races. The
other-race effect for face recognition has been established in numerous
human memory studies [25] and in meta-analyses of these studies
[26–28].

Phillips et al. [29] looked for an other-race effect in algorithms sub-
mitted to the FRVT 2006. They compared the performance of a fusion
of East Asian algorithms and a fusion of Western algorithms matching
identity in pairs of Caucasian and East Asian faces. The East Asian algo-
rithm was a fusion of five algorithms submitted from East Asian coun-
tries, and the Western algorithm was a fusion of eight algorithms from
Western countries.

The study showed an other-race effect for the algorithms. Specifical-
ly, performance of face recognition algorithms varies as a function of the
demographic origin of the algorithm and the demographic contents of
the test population. The mechanisms underlying the other-race effect
for humans are reasonablywell understood and are based in early expe-
rience with faces of different races. Because the algorithms tested were
black boxes, conclusions about the mechanisms underlying the algo-
rithm effects are tentative, but the effects reportedwere not. The results
point to an important performance variable combination that has not
received much attention. The results also suggest a need to understand
how the ethnic composition of a training set impacts the robustness of
algorithm performance. From a practical perspective, algorithms need
to be evaluated on face sets whose demographicsmatch those at the lo-
cation(s) where they will be used.

Furl et al. [30] used computational models to investigate two com-
peting hypotheses to account for the other-race effect in humans. First,
the generic contact hypothesis links the magnitude of the other-race ef-
fect in individuals to the relative amount of contact they have with own
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versus other race faces. Thus, peoplewho seemany individuals of anoth-
er race on a daily basis should have a smaller other-race effect than those
who rarely see other-race individuals. This effect is modeled using a
principal components analysis (PAC)-based face recognition algorithm,
where the proportion of faces in the training set from two raceswas var-
ied [31,14,13]. Second, the developmental contact hypothesis assumes
also that experience is the cause of the other-race effect, but that expe-
rience early in life (up to about 5 years of age) with other-race faces is
the critical factor. The rationale for this hypothesis is that the neural sys-
tem early in life tunes itself to the statistical structure of the environ-
ment as it selects a feature set that will optimally represent the stimuli
encounteredmost frequently. Consistentwith the predictions of a devel-
opmental contact hypothesis, experience-based models demonstrated
an other-race effect only when the representational system was devel-
oped through experience that warped the perceptual space in a way
that was sensitive to the overall structure of the model's experience
with faces of different races. These models were based on combinations
of PCA and Fisher discriminant analysis (FDA) applied as the system ac-
quired features for representing faces [32–34]. The results from this
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Fig. 9.Human andmachine performance on the video challenge. (a) Human performance on all
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study supported a developmental contact hypothesis for the formation
of the other-race effect in humans.

Traditionally, attempts to improve algorithmperformance have em-
phasized methods that increase the degree of similarity between two
images of the same person; i.e., by modeling the effects of changes in il-
lumination between two images of the same face. Less consideration
has been given to the effects of the composition of the different-
identity distributions in producing stable estimates of algorithmperfor-
mance. In human experiments, the faces in different-identity pairs al-
ways have the same sex, race, and approximate age. The reason for
this condition is that humans rarely confuse faces of different sexes,
races, or age groups. However, in the majority of face recognition algo-
rithm competitions, different-identity pairs are cross demographic. In
fact, in many cases, the majority of different-identity pairs are cross-
demographic. Inspired by the design of human experiments, O'Toole
et al. [35,36] looked at the effect of algorithm performance as cross-
demographic face pairs were limited. Experiments were performed on
the GBU face challenge. Performance was measured in four cases. First,
performance was measured when there was no pruning of the
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three conditions on the original video sequences. Comparison of human andmachine per-
n vs conversation.Humanperformance is reported for both the original and face only video
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different-identity face pairs. This is the control case. Second, the faces in
all different-identity pairs were of the same sex. Third, the faces in all
different-identity pairs were of the same race. Fourth, the faces in all
different-identity pairs were of both the same race and sex. On the
Bad partition, at a false accept rate of 1 in 1000, the verification rate
was 0.79 for the control case, 0.74 and 0.74 for demographic matching
on sex or race, and 0.69 for different-identity pairs with the same race
and sex. In these experiments, performance was measured for the fu-
sion algorithm [11]. A similar reduction in performance, measured as
verification rate, was observed for face pairs in the Ugly partition.

The simulations over the four cases showed that differences in the
demographic composition of the different-identity distribution can sig-
nificantly alter the estimates of algorithmperformance. These estimates
are important for predicting how algorithms will perform in real-world
environments. Furthermore, these results pose a newand pressing chal-
lenge for the biometric community to find a method for tuning
algorithm performance to the constantly changing demographic envi-
ronments in which systems must operate reliably.

We end this review with two related questions. “Is an algorithm a
reasonable model for human face recognition?” and “Does fusing
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human and machines improve performance?” Fusion is an effective
tool for improving performance when the models encode complemen-
tary features. In otherwords, there is qualitative diversity in theway the
models (human and machine) encode and recognize faces. If an algo-
rithm is a good model for human face recognition, then there will be
similar approaches to recognizingpeople. Thus, fusing themwill not sig-
nificantly improve performance. O'Toole et al. [37] looked at fusing
human and machine results. Experiments were performed on the diffi-
culty set of images in the FRGC experiments, see Section 2.2.1 and
Fig. 2(b). The fusion algorithmwas based on least partial squares regres-
sion [38,39]. Fig. 12 shows the key results from the study and the total
error rate that was reported. The first two cases are controls, perfor-
mance on humans and the FRGC submission from NJIT algorithm. The
third case is fusing all seven algorithms from the FRGC. The best results
were achieved by fusing humans and all seven algorithms in the study,
with an error rate of 0.003.

That study demonstrated that fusing algorithms and humans can
substantially reduce the error rate. For the data set and algorithms in
the study, the fused error rate was almost zero. Because of the large re-
duction in the error rate, the results support two significant conclusions.
First, designing systems to effectively fuse humans and machines can
significantly improve overall performance. Second, themechanisms un-
derlying the recognition process in machines and humans are qualita-
tively different.

The three structural studies reviewed in this section demonstrate
the potential for a broad interaction between human andmachine stud-
ies. This has led to improvement in experiment design, deeper under-
standing of the principles of face processing, and the ability to
effectively combine humans and machines.
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5. Future directions

The cross-modal performance analysis framework was designed to
compare human and machine performance across a series of experi-
ments. Although this framework is useful in its own right, we apply
this technique to establish goals for advancing face recognition
technology.

Over the last two decades, phenomenal progress has been made in
automated face recognition from frontal images taken in mobile studio
or mugshot environments. Results from theMBE 2010 report a false re-
ject rates of 27 in 10,000 at a false accept rate of 1 in a 1000; and an iden-
tification rate of 0.93 from a gallery of 1.6 million faces [40]. Between
1993 and 2010, the false reject rate at a false accept rate of 1 in a 1000
has decreased by a factor of two every two years [9].

Clearly, this level of performance cannot be achieved for faces ac-
quired under all conditions. The question then becomes: What is a rea-
sonable performance bound or goal? We propose a goal based on
human performance. Establishing a goal based on one set of images
will not adequately characterize a problem. To provide the needed
benchmarking data, performance should be characterized by a set of ex-
periments, where each experiment focuses on a different aspect of the
challenge. For example, the analysis in Section 3 is conducted on a set
of 16 experiments. We formalize this concept as a Face Performance
Index. The goal in designing a face performance index is to select a set
of experiments that adequately characterize performance under the
range of conditions that are relevant to a problem.

Howdoes the CMPA framework and a face performance index estab-
lish a performance benchmark relative to humans? The first step is to
create a face performance index that consists of a set of experiments
that adequately characterizes human performance. Initially, this face
performance index could be a first order approximation. Later iterations
of this index would provide better approximations.

For each experiment, human andmachineperformance ismeasured,
the appropriate performance statistic is computed, and plotted on a
CMPA scatterplot. In our analysis the performance statistic was the
AUC. The goal of combining CMPA and a face performance index is to
spur progress. This is illustrated in Fig. 13, which is adapted from
Fig. 11. The green region in the upper left region of the figure is the
‘goal box.’ The goal box is the region of the plot where algorithms per-
form better than humans and algorithm performance is better than
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Fig. 13. The CMPA framework and a face performance index for setting goals for machine
performance.
random. When all of the experiments are in the goal box, then within
the CMPA framework, the performance of an algorithmon a face perfor-
mance index is better than humans. The fraction of experiments that are
in the goal box is a measure of the success of an algorithm.

To illustrate the process, we create a notational challenge problem.
Here a face performance index is created by augmenting the 16 experi-
ments fromSection 3with additional notational experiments,which are
annotatedwith blue+s. The position of the+s represents performance
at the start of a challenge problem, which assumes that performance of
humans is superior. The goal of the challenge is to improve algorithm
performance so the experiments represented by the +s are in the
goal box, which is illustrated by the yellow arrows.

In the analysis in this paper, performance is measured for average-
recognizers who have not received training. One common assumption
is that trained law enforcement officers and forensic examiners are bet-
ter face recognizers. Russell et al. [41] reported the existence of four
super-recognizers. However, there are few published papers that report
the performance of law enforcement officers or forensic examiners and
their results are mixed [42–44].

The goal could be updated to have machines match the abilities of
super-recognizers, trained law enforcement professionals, or forensic
face examiners. The goal of the notational challenge is absolute, better
than humans. Bymodifying the goal-box region, the goal can be relative,
with machine performance better than humans by a fixed factor. These
two modifications illustrate the flexibility of the CMPA and face perfor-
mance index for formulating challenge problems.

The discussions in this paper have focused on the recognition accu-
racy of machines and humans on a verification task. This ignores
many other aspects of performance of a face recognition system. Face
recognition systems can searchmillions ofmugshots, adjust to changing
watch lists on demand, and process face imagery work 24 h a day.
Humans are substantially better at recognizing familiar faces than unfa-
miliar faces. The algorithm development community has focused on
recognition of unfamiliar faces. A challenge for the algorithm communi-
ty is developing techniques that achieve human-level performance for
familiar faces. Thiswillmost likely includedeveloping an understanding
of when this accuracy can be achieved.

Accepted conventional wisdom in the face recognition community is
that humans are the most robust face recognition system. Humans per-
form face recognition across numerous imaging conditions; i.e., changes
in natural illumination, pose, expression, imaging artifacts, etc. Like algo-
rithms, human performance varies greatly under natural imaging condi-
tions [45]. Also, human recognition of a person improves as a face
transition from unfamiliar to familiar, and humans intuitively integrate
all identify cues during recognition. The CMPA and face performance
index has the potential to assist in developing algorithms that have
these human capabilities. In turn, algorithms have the potential to serve
as computational models that assist in explaining human face processing.
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