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Abstract:	 Computer systems are vulnerable to both known and zero-day attacks. Although known attack patterns can 
be easily modeled, thus enabling the development of suitable hardening strategies, handling zero-day vulner­
abilities is inherently difficult due to their unpredictable nature. Previous research has attempted to assess the 
risk associated with unknown attack patterns, and a suitable metric to quantify such risk, the k-zero-day safety 
metric, has been defined. However, existing algorithms for computing this metric are not scalable, and as­
sume that complete zero-day attack graphs have been generated, which may be unfeasible in practice for large 
networks. In this paper, we propose a set of polynomial algorithms for estimating the k-zero-day safety of 
possibly large networks efficiently, without pre-computing the entire attack graph. We validate our approach 
through experiments, and show that the proposed algorithms are computationally efficient and accurate. 

1 INTRODUCTION 

In today’s networked systems, attackers can lever­
age complex interdependencies among network con­
figurations and vulnerabilities to penetrate seemingly 
well-guarded networks. Besides well-known weak­
nesses, attackers may leverage unknown (zero-day) 
vulnerabilities, which even developers are not aware 
of. In-depth analysis of network vulnerabilities must 
consider attacker exploits not merely in isolation, but 
in combination. Attack graphs reveal such threats by 
enumerating potential paths that attackers can take to 
penetrate networks (Sheyner et al., 2002; Ammann 
et al., 2002). This helps determine whether a given 
set of network hardening measures provides safety 
of given critical assets. However, attack graphs can 
only provide qualitative results (i.e., secure or inse­
cure), and this renders resulting hardening recommen­
dations ineffective or far from optimal, as illustrated 
by the example discussed in Section 3.1. 

∗The work presented in this paper is supported in part 
by the National Institutes of Standard and Technology un­
der grant number 70NANB12H236, by the Army Research 
Office under MURI award number W911NF-09-1-0525, 
and by the Office of Naval Research under award number 
N000141210461. 

To address these limitations, traditional efforts 
on network security metrics typically assign numeric 
scores to vulnerabilities as their relative exploitabil­
ity or likelihood, based on known facts about each 
vulnerability. However, this approach is clearly not 
applicable to zero-day vulnerabilities due to the lack 
of prior knowledge or experience. In fact, a major 
criticism of existing efforts on security metrics is that 
zero-day vulnerabilities are unmeasurable due to the 
less predictable nature of both the process of introduc­
ing software flaws and that of discovering and exploit­
ing vulnerabilities (McHugh, 2006). Recent work ad­
dresses the above limitations by proposing a security 
metric for zero-day vulnerabilities, namely, k-zero­
day safety (Wang et al., 2010). Intuitively, the metric 
is based on the number of distinct zero-day vulner­
abilities that are needed to compromise a given net­
work asset. A larger such number indicates relatively 
more security, because it will be less likely to have 
a larger number of different unknown vulnerabilities 
all available at the same time, applicable to the same 
network, and exploitable by the same attacker. How­
ever, as shown in (Wang et al., 2010), the problem of 
computing the exact value of k is intractable. More­
over, (Wang et al., 2010) assumes the existence of a 
complete attack graph, but, unfortunately, generating 
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attack graphs for large networks is usually infeasible 
in practice (Noel and Jajodia, 2004). These facts com­
prise a major limitation in applying this metric or any 
other similar metric based on attack graphs. 

In this paper, we propose a set of efficient solu­
tions to address this limitation and thus enable zero-
day analysis of practical importance to be applied to 
networks of realistic sizes. Therefore, the major con­
tribution of this work is to provide a practical solution 
to a problem which was previously considered impos­
sible. We start from the problem of deciding whether 
a given network asset is at least k-zero-day safe for a 
given value of k (Wang et al., 2010), but then we go 
beyond this basic problem and provide a more com­
plete analysis. First, we drop the assumption that the 
zero-day vulnerability graph has been precomputed, 
and combine on-demand attack graph generation with 
the evaluation of k-zero-day safety. Second, we iden­
tify an upper bound on the value of k using a heuristic 
algorithm that integrates attack graph generation and 
zero-day analysis. Third, when the upper bound on 
k is below an admissible threshold, we compute the 
exact value of k by reusing the computed partial at­
tack graph. Section 4 formally states the three related 
problems we are addressing in this paper, and shows 
their role in the overall process of assessing the risk 
of zero-day vulnerabilities. To the best of our knowl­
edge, this is the first attempt to define a comprehen­
sive and efficient approach to zero-day analysis. 

The paper is organized as follows. Section 2 dis­
cusses related work. Section 3 recalls some prelim­
inary definitions and provides a motivating example. 
Then Section 4 discusses the limitations of previous 
approaches and provides a formal statement of the 
problems addressed in our work. Section 5 describes 
in detail our approach to efficient evaluation of k zero-
day safety. Finally, Section 6 reports experimental re­
sults, and Section 7 gives some concluding remarks 
and indicates further research directions. 

2 RELATED WORK 

Existing standardization efforts, such as the Com­
mon Vulnerability Scoring System (CVSS) (Mell 
et al., 2006) and the Common Weakness Scoring Sys­
tem (CWSS) (The MITRE Corporation, 2011), pro­
vide standard ways for security analysts and ven­
dors to rank known vulnerabilities or software weak­
nesses using numerical scores. These efforts provide 
a practical foundation for research on security met­
rics, but are designed for individual vulnerabilities 
and do not address the combined effect of multiple 
vulnerabilities. Early work on security metrics in­

clude a Markov model-based metric for estimating 
the time and efforts required by adversaries (Dacier, 
1994), and a metric based on lengths of shortest at­
tack paths (Phillips and Swiler, 1998). The main lim­
itation of these approaches is that they do not consider 
the relative severity or likelihood of different vulner­
abilities. Anther line of work adapts the PageRank al­
gorithm to rank states in an attack graph based on the 
relative likelihood of attackers’ reaching these states 
when they progress along different paths in a random 
fashion (Mehta et al., 2006). Other recent work uses 
specially marked attack trees (Balzarotti et al., 2005) 
or more expressive attack graphs (Pamula et al., 2006) 
in order to find the easiest attack paths. A Mean 
Time-to-Compromise metric based on the predator 
state-space model (SSM) captures the average time 
required to compromise network assets (Leversage 
and Byres, 2008). A probabilistic approach defines 
a network security metric as attack probabilities and 
derives such probabilities from CVSS scores (Wang 
et al., 2008). Several important issues in calculating 
probabilistic security metrics, such as dependencies 
between attack sequences and cyclic structures, are 
addressed in (Homer et al., 2009). 

Most existing work on network security met­
rics has focused on previously known vulnerabilities 
(McHugh, 2006). A few exceptions include an em­
pirical study on the total number of zero-day vulner­
abilities available on a single day (McQueen et al., 
2009), a study on the popularity of zero-day vulnera­
bilities (Greenberg, 2012), and an empirical study on 
software vulnerabilities’ life cycles (Shahzad et al., 
2012). Another recent effort ranks different applica­
tions by the relative severity of having one zero-day 
vulnerability in each application (Ingols et al., 2009), 
which has a different focus than our work. Closest 
to our work, recent work on k-zero-day safety defines 
a metric based on the number of potential unknown 
vulnerabilities in a network (Wang et al., 2010). 

In this paper, we address the complexity issues 
associated with the metric proposed in (Wang et al., 
2010), and propose a set of polynomial algorithms for 
estimating the k-zero-day safety of possibly large net­
works efficiently. The proposed zero-day attack graph 
model borrows the compact model given in (Ammann 
et al., 2002) – based on the monotonicity assumption 
– while incorporating zero-day vulnerabilities. 

3 PRELIMINARIES 

Attack graphs represent prior knowledge about 
vulnerabilities, their dependencies, and network con­
nectivity. With a monotonicity assumption, an attack 



graph can record the dependencies among vulnerabil­
ities and keep attack paths implicitly without losing 
any information. The resulting attack graph has no 
duplicate vertices and hence has a polynomial size in 
the number of vulnerabilities multiplied by the num­
ber of connected pairs of hosts. 
Definition 1 (Attack graph). Given a set of exploits E , 
a set of security conditions C, a require relation Rr ⊆ 
C × E , and an imply relation Ri ⊆ E × C, an attack 
graph G is the directed graph G = (E ∪ C,Rr ∪ Ri), 
where E ∪C is the vertex set and Rr ∪ Ri the edge set. 
For an exploit e, we call the conditions related to e 
by Rr and Ri as its pre- and post-conditions, denoted 
using functions pre : E → 2C and post : E → 2C, re­
spectively. 

We denote an exploit as a triple (v, hs,hd ), indi­
cating an exploitation of vulnerability v on the desti­
nation host hd , initiated from the source host hs. A 
security condition is a pair (c,hd ) – that indicates a 
satisfied security-related condition c on host hd , such 
as the existence of a vulnerability – or a pair (hs,hd ) 
– that indicates connectivity between hosts hs and hd . 
Initial conditions are a special subset of security con­
ditions that are initially satisfied, whereas intermedi­
ate conditions are those that can only be satisfied as 
post-conditions of some exploits. 
Definition 2 (Initial conditions). Given an attack 
graph G = (E ∪ C,Rr ∪ Ri), initial conditions refer 
to the subset of conditions Ci = {c ∈ C|�e ∈ E s.t. 
(e, c) ∈ Ri}, whereas intermediate conditions refer to 
the subset C \Ci. 

3.1 Zero-Day Attack Model 

The very notion of unknown zero-day vulnerability 
means we cannot assume any vulnerability-specific 
property, such as the likelihood or severity. There­
fore, our zero-day vulnerability model is based on fol­
lowing generic properties that are common to most 
vulnerabilities. Specifically, a zero-day vulnerability 
is a vulnerability whose details are unknown except 
that its exploitation requires a network connection be­
tween the source and destination hosts, a remotely ac­
cessible service on the destination host, and that the 
attacker already has a privilege on the source host. 
In addition, we assume that the exploitation can po­
tentially yield any privilege on the destination host. 
These assumptions intend to depict a worst-case sce­
nario about the pre- and post-conditions of a zero-day 
exploit, and are formalized as the first type of zero-
day exploit in Definition 3, whereas the second type 
represents subsequent privilege escalation. 
Definition 3 (Zero-Day Exploit). We define two types 
of zero-day exploits, 

•	 for each remote service s, we define a zero-day 
vulnerability vs such that the zero-day exploit 
(vs,h, h') has three pre-conditions, (s,h') (exis­
tence of service), (h, h') (connectivity), and (p,h) 
(attacker’s existing privilege); this zero-day ex­
ploit has one post-condition (p',h') where p' is 
the privilege of service s on h'. 
•	 for each privilege p, we define a zero-day vulner­

ability v p such that the zero-day exploit (vp,h,h) 
has its pre-conditions to include all privileges of 
remote services on h, and its post-condition to be 
p on h. 

We use E0 and C0 to denote the set of all zero-day ex­
ploits and the set of all their pre- and post-conditions 
respectively, and we extend the functions pre() and 
post () accordingly. 

We are now ready to assemble all known and 
zero-day exploits via their common pre- and post-
conditions into a zero-day attack graph. 

Definition 4 (Zero-Day Attack graph). Given an at­
tack graph G = (E ∪C,Rr ∪ Ri), a set E0 of zero-day 
exploits, a set C0 of pre and post-conditions of ex­
ploits in E0, a zero-day attack graph G∗ is the directed 
graph G∗ = (E∗ ∪ C∗ ,R∗ ∪ Ri 

∗), where E ∗ = E ∪ E0,r 
C∗ = C ∪C0, R∗ = Rr ∪ {(c,e) | e ∈ E0 ∧ c ∈ pre(e)},r 
and R∗ = Ri ∪ {(e, c) | e ∈ E0 ∧ c ∈ post (e)}.i 

Figure 1 shows a simple network configuration in­
cluding three hosts. Host 0 is the user’s machine used 
to launch attacks, whereas host 1 and host 2 are ma­
chines within the perimeter of the enterprise network 
we are seeking to protect. Host 1 provides an HTTP 
service (http) and a secure shell service (ssh), whereas 
host 2 provides only ssh. The firewall allows traffic to 
and from host 1, but only connections originated from 
host 2. In this example, we assume the main security 
concern is over the root privilege on host 2. Clearly, 
if all the services are free of known vulnerabilities, 
a vulnerability scanner or attack graph will both lead 
to the same conclusion, that is, the network is secure 
(an attacker on host 0 can never obtain the root privi­
lege on host 2), and no additional network hardening 
effort is necessary. However, we may reach a differ­
ent conclusion by hypothesizing the presence of zero-
day vulnerabilities and considering how many distinct 
zero-day exploits the network can resist. 

Specifically, the zero-day attack graph of this ex­
ample is depicted in Figure 2, where each triple in­
side an oval denotes a zero-day exploit and a pair de­
notes a condition. In this attack graph, we can ob­
serve three sequences of zero-day exploits leading to 
root (2). First, an attacker on host 0 can exploit a zero-
day vulnerability in the firewall (e.g., a weak pass­
word in its Web-base remote administration interface) 
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Figure 1: Example of network configuration 
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Figure 2: Example of zero-day attack graph 

to re-establish the blocked connection to host 2 and 
then exploit ssh on host 2, or the attacker can exploit 
a zero-day vulnerability in either http or ssh on host 1 
to obtain the user privilege and then, using host 1 as a 
stepping stone, the attacker can further exploit a zero-
day vulnerability in ssh on host 2 to reach root (2). 
Since this last sequence (ssh on host 1 and then ssh on 
host 2) involves one zero-day vulnerability in the ssh 
service on both hosts, this network can resist at most 
one zero-day attack. Contrary to the previous belief 
that further hardening this network is not necessary, 
this zero-day attack graph shows that further harden­
ing may indeed improve the security. For example, 
suppose we limit accesses to the ssh service on host 1 
using a personal firewall or iptables rules, such that an 
arbitrary host 0 cannot reach this service from the In­
ternet. We can then imagine that the new attack graph 
will only include sequences of at least two different 
zero-day vulnerabilities (e.g., the attacker must first 
exploit the personal firewall or iptables rules before 
exploiting ssh on host 1). This seemingly unneces­
sary hardening effort thus can help the network resist 
one more zero-day attack. 

4 PROBLEM STATEMENT 

The exact algorithm for computing the k-zero-day 
safety metric presented in (Wang et al., 2010) first de­
rives a logic proposition of each asset in terms of ex­
ploits by traversing the attack graph backwards. Each 
conjunctive clause in the disjunctive normal form 
(DNF) of the derived proposition corresponds to a 
minimal set of exploits that jointly compromise the 

asset. The value of k can then be decided by apply­
ing the metric k0d() – which counts the number of 
distinct zero-day vulnerabilities – to each such con­
junctive clause. Although the logic proposition can 
be derived efficiently, converting it to its DNF may 
incur an exponential explosion. In fact, the authors of 
(Wang et al., 2010) show that the problem of comput­
ing the k-zero day safety metrics is NP-hard in gen­
eral, and then focus on the solution of a more prac­
tical problem. They claim that, for many practical 
purposes, it may suffice to know that every asset in a 
network is k-zero-day safe for a given value of k, even 
though the network may in reality be k'-zero-day safe 
for some unknown k' > k (note that determining k' 

is intractable). Then, they describe a solution whose 
complexity is polynomial in the size of a zero-day at­
tack graph if k is a constant compared to this size. 
However, there are cases in which it is not satisfac­
tory to just know k' > k, but more accurate estima­
tions or exact calculation of the value of k is desired. 
Moreover, those analyses are all based on complete 
zero-day attack graphs, but for really large networks, 
it may even be infeasible to generate the zero-day at­
tack graph in the first place. The metric then becomes 
impractical in such cases since there is little we can 
say about the value of k. 

The aforementioned intractability result means no 
polynomial algorithm will likely exist for computing 
the exact value of k. However, in this section we 
show that a decision process may still allow secu­
rity administrators to obtain good estimations about 
k, and to calculate the exact value of k when it is 
practically feasible. Our main objectives are three­
fold. First, all the algorithms involved in the decision 
process will be efficient and have polynomial com­
plexity. Second, all the algorithms will adopt an on-
demand approach to attack graph generation, which 
will only generate partial attack graphs necessary for 
the analysis. Third, subsequent algorithms will reuse 
the partial attack graph already generated earlier in 
the decision process, thus further improving the over­
all efficiency. With those optimizations, we can pro­
vide a better understanding of zero-day vulnerabili­
ties even for relatively large networks. Specifically, in 
most practical scenarios, security administrators may 
simply want to assess whether the network or specific 
assets are secure enough. In such cases, knowing that 
k is larger than or equal to a given lower bound l may 
be sufficient. However, once it has been confirmed 
that k > l, a security administrator may want to know 
whether it is possible to compute the exact value of k. 
Since the problem of computing the exact value of k 
is intractable, this may only be possible for relatively 
small values of k. Therefore, we need to estimate 
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Figure 3: Flowchart of the decision process 

whether k is less than a practical upper bound that 
represents available computational power. Finally, if 
this is true, then we can proceed to calculate the ac­
tual value of k in an efficient way. In the following, 
we formalize the three related problems that form the 
basis of the above decision process. We describe a 
solution to each of these problem in the next section. 
Problem 1 (Lower bound). Given a network N , a 
goal condition cg, and a small integer l, determine 
whether k ≥ l is true for N with respect to cg. 

Our goal is to identify a lower bound on the value 
of k. This problem is analogous to the practical prob­
lem addressed in (Wang et al., 2010), but we do not 
assume the entire attack graph is available. We simply 
assume that the network is defined in terms of initial 
conditions Ci and known and unknown exploits E∗ . 
Problem 2 (Upper bound). Given a network N , a 
goal condition cg, and an integer u, find an upper 
bound u on the value of k with respect to cg. 

Our goal is to identify an upper bound on the value 
of k. We show that, using a heuristic approach, it is 
feasible to compute a good upper bound in polyno­
mial time. If the value of u is below a threshold u ∗, it 
may then be feasible to compute the exact value of k. 
Problem 3 (Exact value). Given a network N , and a 
goal condition cg such that l ≤ k ≤ u ≤ u ∗ is true for 
N with respect to cg, find the exact value of k. 

In other words, when the value of k is known to 
be bounded and the upper bound is small enough, we 
will compute the exact value of k, leveraging the up­
per bound u for pruning, and reusing the partial attack 
graph generated during previous steps of the decision 
process. Figure 3 shows the role of these three prob­
lems in the overall decision process. 

5 PROPOSED SOLUTION 

5.1 Solution for Problem 1 

The existing solution for this problem assumes that 
the entire zero-day attack graph is available (Wang 

et al., 2010), which is impractical since generating 
such an attack graph may be infeasible for large net­
works. The idea behind our solution is to combine an 
exhaustive forward search of limited depth with par­
tial attack graph generation, so that only attack paths 
with up to l zero-day vulnerabilities are generated and 
evaluated using the metric. We use connectivity infor­
mation to hypothesize zero-day exploits (see Defini­
tion 3) and guide the generation of the graph. 

Algorithm k0dLowerBound (Algorithm 1) takes 
as input a set Ci of initial conditions on hosts, the set 
E∗ of known and zero-day exploits, an integer l ∈ N 
representing the desired lower bound on the value of 
k, and a goal condition cg ∈ C∗ . It returns a partial 
zero-day attack graph G = (E ∪C,Rr ∪Ri), and a truth 
value indicating whether k ≥ l. 

For ease of presentation, we consider problems 
with a single goal condition. The generalization to 
the case where multiple target conditions need to be 
considered at the same time is straightforward and is 
discussed below. Given a set Cg of goal conditions, 
we can add a dummy exploit eg, such that eg has each 
ci ∈ Cg as a precondition. Then, we can add a dummy 
goal condition cg as the only postcondition of eg. It is 
clear that the minimum number of zero-day exploits 
needed to reach all the conditions in Cg corresponds 
to the minimum number of zero-day exploits needed 
to reach the dummy goal condition cg. In fact, as cg 
is reachable only from the dummy exploit eg, all the 
preconditions of eg must be satisfied, therefore all the 
actual goal conditions in Cg must be reached. 

Lines 1-6 of algorithm k0dLowerBound simply 
initialize the sets of conditions and exploits in the 
partial attack graph, the set Cnew of newly satisfied 
conditions, and the mapping π : E ∪ C → 22E 

which 
associates each exploit or condition with a set of at­
tack paths leading to it, where an attack path is a set 
of exploits. By default, π(c) = 0/ for all c ∈ Ci. The 
set Cnew will initially contain all the initial conditions, 
whereas in each subsequent iteration of the algorithm 
it will contain the conditions implied by exploit vis­
ited in that iteration. The main loop at Lines 7-30 
iterates until the goal condition is reached (Lines 22­
24) or the set of newly satisfied conditions becomes 
empty – which means that no path with fewer than 
l distinct zero-day vulnerabilities can reach the goal 
condition. In the first case the algorithm returns f al se 
(i.e., k < l), otherwise it returns t rue (i.e., k ≥ l). 

Line 8 defines the set Enew of unvisited exploits 
reachable from C. An exploit is unvisited if at least 
one of its preconditions is in Cnew . For each e ∈ Enew , 
Lines 10-12 add edges from all preconditions of e to 
e itself, and Lines 13-14 compute partial attack paths 
leading to and including e. Finally, Line 15 prunes 



Algorithm 1 k0d LowerBound(Ci,E∗ , l,cg) 
Input: Set Ci of initial conditions, set E∗ of known and zero-day exploits, integer l ∈ N representing the desired lower bound on k, and goal condition cg ∈ C∗ . 
Output: Partial zero-day attack graph G = (E ∪C, Rr ∪ Ri), and a truth value indicating whether k ≥ l. 
1: C ← Ci 

2: E ← 0/ 

3: Cnew ← Ci 

4: for all c ∈ Ci do 
5: π(c) ← 0/ 

6: end for 
7: while Cnew  = 0/ do 
8: Enew ← {e ∈ E | pre(e) ⊆ C ∧ pre(e) ∩Cnew  = 0/} // Unvisited exploits reachable from C 
9: for all e ∈ Enew do 
10: for all c ∈ pre(e) do 
11: Rr ← Rr ∪ {(c,e)} // Add an edge from c to e 
12: end for 
13: {c1 , . . . , cm} ← {c ∈ C | (c, e) ∈ Rr }
14: π(e) ← {P1 ∪ . . . ∪ Pm ∪ {e} | Pi ∈ π(ci)}
15: π(e) ← {P ∈ π(e) | k0d(P) < l) // Prune paths with l or more zero-day vulnerabilities 
16: end for 
17: Cnew ← 0/

18: for all e ∈ Enew s.t. π(e)  = 0/ do 
19: for all c ∈ post (e) do 
20: Ri ← Ri ∪ {(e,c)} // Add an edge from e to c 
21: Cnew ← Cnew ∪ {c}
22: if c ≡ cg then 
23: return G, f alse 
24: end if �25: π(c) ← e∈E|(e,c)∈Ri 

π(e) 
26: end for 
27: end for 
28: C ← C ∪Cnew 

29: E ← E ∪ Enew 

30: end while 
31: return G, t rue 

all attack paths with l or more distinct zero-day vul­
nerabilities. As an exploit needs all the preconditions 
to be satisfied, an attack path for e is constructed by 
combining an attack path to each precondition. 

Once all the newly visited exploits have been pro­
cessed and added to the attack graph, the algorithm 
considers the new conditions that are implied by such 
exploits. For each e ∈ Enew such that at least one par­
tial path reaching e has k0d(P) < l, and each condi­
tion c in post (e), Lines 20-21 add an edge from e to 
c to the graph and update Cnew (which was reset on 
Line 17), and Line 25 computes the set π(c) of attack 
paths leading to c as the union of the sets of attack 
paths leading to each of the exploit implying c, unless 
c is the goal condition, in which case the algorithm 
terminates. 

Example 1. When applied to the example shown in 
Figure 2, Algorithm k0dLowerBound (Algorithm 1) 
will basically proceed by each horizontal level of 
conditions and exploits, from top to bottom, until it 
reaches the second level of exploits (i.e., (vssh,0, 2), 
(vssh,1,2), and (vroot , 1,1)). Suppose l is given to 

be 2, then obviously all the paths up to now will be 
pruned by Line 15 (since each of them includes two 
distinct zero-day vulnerabilities, failing the condition 
k0d(P) < l), except the path (vssh,0,1), (vssh,1,2)
(which includes only one vulnerability vssh). There­
fore, the next loop on Lines 18-27 will be skipped for 
exploit (vssh,0,2) and (vroot ,1,1) (meaning the par­
tial attack graph generation stops at those exploits), 
but it continues from exploit (vssh,1,2) (the final result 
will depend on whether we assume (vssh,1,2) directly 
yields (root ,2)). 

The complexity of Algorithm k0dLowerBound 
(Algorithm 1) is clearly dominated by the steps for 
extending the paths on Lines 13-15. Specifically, the 
loop at Line 7 will run at most | C | times; the nested 
loop at Line 9 will run | E | times; steps 13-15 will in­
volve at most | E |l paths each of which has maximum 
possible length of | E |. Therefore, the overall com­
plexity is O(| C | · | E | · | E |l · | E |) = O(| C | · | E |l ), 
which is polynomial when l is given as a constant 
(compared to attack graph size). 



5.2 Solution for Problem 2 

In this section, we propose a solution to Problem 2. 
As we did for the previous algorithm, instead of build­
ing the entire attack graph, we only build the portions 
of the attack graph that are most promising for find­
ing an upper bound on the value of k. In order to 
avoid the exponential explosion of the search space – 
which includes all the sets of exploits leading to the 
goal condition – we design an heuristic algorithm that 
maintains only the best partial paths with respect to 
the k0d metric. 

Algorithm k0dU p perBound (Algorithm 2) builds 
the attack graph forward, starting from initial con­
ditions. A key advantage of building the attack 
graph forward is that intermediate solutions are in­
deed estimates of the upper bound on k for interme­
diate conditions. In fact, in a single pass, algorithm 
k0dU p perBound can estimate an upper bound on k 
with respect to any condition in C. To limit the ex­
ponential explosion of the search space, intermedi­
ate solutions can be pruned – based on some pruning 
strategy – whereas this would not be possible for an 
algorithm building the attack graph backwards. 

The algorithm takes as input the set Ci of initial 
conditions on hosts, the set E∗ of known and zero-
day exploits, and a goal condition cg ∈ C∗ . The al­
gorithm returns an upper bound u on the value of 
k, and also computes a partial zero-day attack graph 
G = (E ∪C,Rr ∪Ri), a mapping π : C∪E → 22E 

which 
associates each node in the partial attack graph with 
attack paths leading to it, and a mapping zd u : C → N 
which associates each node in the partial attack graph 
with an estimate of the upper bound on k. In this sec­
tion, we assume that Algorithm 2 starts from initial 
conditions, but modifying the algorithm to reuse par­
tial attack graphs generated by previous execution of 
Algorithm 1 is straightforward, and can be done as 
shown for algorithm k0dValue (Algorithm 5). 

Lines 1-8 simply initialize all the components of 
the partial attack graph. Line 1 adds the initial condi­
tions to the set C of security conditions in the partial 
attack graph. As the algorithm builds the attack graph, 
new conditions will be added to C. Lines 2-3 initial­
ize the require and imply relationships as empty sets. 
For each c ∈ Ci, Lines 5-6 set π(c) to 0/ – meaning 
that no exploit is needed to reach initial conditions, 
as they are satisfied by default – and zd u(c) to 0 – 
meaning that no zero-day exploit is needed to reach 
initial conditions. Finally, Line 8 sets E to the set of 
exploits reachable from conditions in C. For each ex­
ploit e ∈ E, Lines 10-12 add edges to e from each of 
its preconditions, Line 13 associates e with the only 
set of exploits leading to it, that is {e}, and Line 14 

computes zdu(e) as the number of distinct zero-day 
vulnerabilities in {e}, that is k0d({e})2 . 

Line 16-21 try to find an attack path reaching 
the goal condition with the lowest possible number 
of distinct zero-day vulnerabilities. Since we use an 
heuristic approach to prune the search space, the num­
ber of distinct zero-day vulnerabilities in such path 
is naturally an upper bound on the minimum num­
ber k of zero-day vulnerabilities needed to reach the 
goal. Line 16 uses Algorithm rankedPart it ion (Algo­
rithm 3) to rank exploits in E by increasing value of 
zdu(e) and partition the set into ranked subsets. Then, 
Lines 18-21 iteratively explore the partial attack graph 
in a depth-first manner, by using the recursive algo­
rithm DF S (Algorithm 4), starting from the set of ex­
ploits E1 with the smallest values of zdu(). 

Algorithm ranked Part it ion (Algorithm 3) takes as 
input a set of exploits E ' and returns a partition PE 
of E. Line 1 sorts exploits in E by increasing value 
of zd u(e). Then, Line 2 partitions E into an ordered 
set of sets E1, . . . , En, such that for each i ≤ j ≤ n all 
exploits in Ei have smaller values of zd u() than any 
exploit in E j. 

Algorithm DF S (Algorithm 4) takes as input a set 
Est art of exploits and a goal condition cg ∈ C∗, and re­
turns an upper bound u on the value of k. We assume 
that the partial attack graph and the two mappings π() 
and zd u() are global variables. 

For each e ∈ Est art and each c ∈ post (e), (i) 
Lines 4-5 add an edge from e to c, and update the 
set Cnew of newly reached conditions, (ii) Line 6 com­
putes the set π(c) of attack paths leading to c as the 
union of the sets of attack paths leading to each ex­
ploit implying it, and (iii) Line 7 computes an esti­
mate zdu(c) of the upper bound on k with respect to c 
as the smallest zdu(P) over all paths P in π(c). If c is 
the goal condition, then the algorithm returns zdu(c). 

If none of the conditions in Cnew is the goal condi­
tion, then Line 14 defines a new set Enew of unvisited 
exploits reachable from C, which has been updated to 
include all conditions reached from Est art . An exploit 
is unvisited if at least one of its preconditions is in 
Cnew . If no new exploit is enabled, then the algorithm 
return +∞ (Line 16), meaning that the goal condition 
cannot be reached from the branch of the attack graph 
explored in the current iteration of the algorithm. Oth­
erwise, for each e ∈ Enew , (i) Lines 19-22 add e and 
edges to e from each of its preconditions to the partial 
attack graph, (ii) Lines 23-24 compute the set π(e) of 
partial attack paths ending with e in the same way we 
have described for algorithm k0d LowerBound, (iii) 
Line 25 prunes π(e) by maintaining only the top b 

2For exploits directly reachable from initial conditions, 
zdu(e) is either 1, if e is a zero-day exploit, or 0, otherwise. 



Algorithm 2 k0dU p perBound(Ci,E∗ , cg) 

Input: Set Ci of initial conditions, set E∗ of known and zero-day exploits, and goal condition cg ∈ C∗ .
 
Output: Partial zero-day attack graph G = (E ∪C,Rr ∪ Ri), mapping π : C ∪ E → 22E 

, mapping zdu : C → N, and upper bound u on the value of k.
 
1: C ← Ci 

2: Rr ← 0/

3: Ri ← 0/

4: for all c ∈ Ci do 
5: π(c) ← 0/ 

6: zdu(c) ← 0 
7: end for 
8: E ← {e ∈ E∗ | pre(e) ⊆ C}
9: for all e ∈ E do 

10: for all c ∈ pre(e) do 
11: Rr ← Rr ∪ {(c, e)}
12: end for 
13: π(e) ← {{e}}
14: zdu(e) ← k0d({e}) 
15: end for 
16: (E1, . . . , En) ← rankedPart it ion(E) 
17: i ← 0 
18: while cg ∈/ C ∧ i ≤ n do 
19: i ← i + 1 
20: u ← DF S(Ei) 

21: end while 

22: return G,π(),zdu(),u 

Algorithm 3 rankedPart it ion(E ' ) 
Input: Set E ' of exploits. 
Output: Partition PE of E 

1: Er ← (e1, . . . , e|E' |) s.t. (∀i, j ∈ [1, |E ' |])(i ≤ j ⇒ zdu(ei) ≤ zdu(e j )) 
2: PE ← (E1, . . . , En ) s.t. (∀i, j ∈ [1, n])(i ≤ j ⇒ (∀e ' ∈ Ei, e '' ∈ E j )(zdu(e ' ) ≤ zd u(e '' ))) 

3: return PE 

partial attack paths with respect to the k0d() metric, 
and (iv) Line 26 computes an estimate zd u(e) of the 
upper bound on k with respect to e as the smallest 
zdu(P) over all paths P in π(e). 

Finally, Line 28 uses algorithm ranked Part it ion 
(Algorithm 3) to rank exploits in E by increasing 
value of zdu(e) and partition the set. Then, Lines 30­
33 iteratively explore the partial attack graph in a 
depth-first manner, by recursively calling algorithm 
DF S, starting from the set of exploits E1 with the 
smallest values of zdu(). 

Example 2. When applied to the example shown in 
Figure 2, algorithm k0dU p perBound (Algorithm 2) 
will first consider exploits E reachable from the ini­
tial conditions (i.e., the first level of exploits, namely 
(v f irewall ,0,F), (vhtt p ,0,1), (vssh,0,1)), and will rank 
them by increasing value of zdu(). Then, assume 
that algorithm ranked Part it ion (Algorithm 3) parti­
tions the set of exploits into subsets of size 1. As 
each exploit e on the first level has zdu(e) = 1, al­
gorithm k0dU p perBound will continue building the 
graph starting from any such exploit. If we assume it 

will start from (v f irewall ,0, F), then its post-condition 
(0,2) will be added to the graph. Subsequent re­
cursive calls of algorithm DF S will add (vssh, 0,1), 
(user,2), (vroot ,2,2), and (root ,2), thus reaching the 
goal condition and returning u = 2. As seen in the 
previous example, the actual value of k in this sce­
nario is 1, so u = 2 is a reasonable upper bound, 
which we were able to compute efficiently by build­
ing only a partial attack graph. 

The complexity of Algorithm k0dU p perBound 
(Algorithm 2) is clearly dominated by the recursive 
execution of algorithm DF S (Algorithm 4), which in 
the worst case – due to the adopted pruning strategy 
– has to process t partial attack paths for each node in 
the partial attack graph. Therefore, the complexity is 
O(t · (| C | + | E |)), which is linear in the size of the 
graph when t is constant. 

5.3 Solution for Problem 3 

When the upper bound on the value of k is below 
a practical threshold u ∗, we would like to compute 



 

Algorithm 4 DF S(Est art , cg) 

Input: Set Est art of exploits and goal condition cg ∈ C∗ 

Output: Upper bound u on the value of k. 
1: Cnew ← 0/ 

2: for all e ∈ Est art do 
3: for all c ∈ post (e) do 
4: Ri ← Ri ∪ {(e,c)}
5: Cnew ← Cnew ∪ {c}�6: π(c) ← e∈E|(e,c)∈Ri 

π(e) 
7: zdu(c) ← minP∈π(c) k0d(P) 
8: if c = cg then 
9: return zdu(c) 

10: end if 
11: end for 
12: end for 
13: C ← C ∪Cnew 

14: Enew ← {e ∈ E | pre(e) ⊆ C ∧ pre(e) ∩Cnew = 0/ }
15: if Enew = 0/ then 
16: return +∞ 

17: end if 
18: for all e ∈ Enew do 
19: E ← E ∪ {e}
20: for all c ∈ pre(e) do 
21: Rr ← Rr ∪ {(c, e)}
22: end for 
23: {c1, . . . , cm} ← {c ∈ C | (c,e) ∈ Rr }
24: π(e) ← {P1 ∪ . . . ∪ Pm ∪ {e} | Pi ∈ π(ci)}
25: π(e) ← t o p(π(e), t) 
26: zdu(e) ← minP∈π(e) k0d(P) 
27: end for 
28: (E1, . . . , En) ← rankedPart it ion(Enew ) 

29: i ← 0 
30: while cg ∈/ C ∧ i ≤ n do 
31: i ← i + 1 
32: u ← DF S(Ei) 

33: end while 

34: return u 

the exact value of k, which is intractable in general. 
Our solution consists in performing a forward search, 
similarly to algorithm k0dLowerBound, starting from 
the partial attack graphs computed in previous steps 
of the decision process discussed in Section 4. To 
limit the search space, compared to a traditional for­
ward search, and avoid the generation of the entire at­
tack graph, we leverage the upper bound computed by 
algorithm k0dU p perBound to prune paths not lead­
ing to the solution. In fact, although the value of k 
is known to be no larger than u, there still may be 
many paths with more the u distinct zero-day vulner­
abilities, and we want to avoid adding such paths to 
the attack graph. Algorithm k0dVal ue (Algorithm 5) 
is indeed very similar to algorithm k0d LowerBound. 
Therefore, for reasons of space, we only highlight the 
main differences in our discussion. First, the algo­
rithm takes as input partial attack graphs, instead of 
starting from initial conditions. Thus, Line 1 com­

putes Cnew as the set of pre-conditions of unvisited ex­
ploits (i.e., exploits not added yet to the attack graph). 
Second, Line 10 prunes all attack paths with more 
than u distinct zero-day vulnerabilities. Finally, when 
the goal condition is reached, the algorithm computes 
the exact value of k as the smallest k0d(P) over all 
paths P in π(cg). 

6 EXPERIMENTAL RESULTS 

In this section, we present the results of experi­
ments we conducted to validate our approach. Specif­
ically, our objective is three-fold. First, we evaluated 
the performance of the proposed algorithms in terms 
of processing time in order to confirm that they are 
efficient enough to be practical. Second, we evalu­
ated the percentage of nodes included in the generated 
partial attack graph compared to the full attack graph, 



 
 

 

Algorithm 5 k0dValue(G,E∗ ,u,cg) 

Input: Partial zero-day attack graph G = (E ∪C,Rr ∪ Ri), set E∗ of known and zero-day exploits, integer u ∈ N representing the upper bound on the value of k 
computed by algorithm k0dU p perBound, and goal condition cg ∈ C∗ . 

Output: Updated Partial zero-day attack graph G = (E ∪C,Rr ∪ Ri), and the exact value of k. 
1: Cnew ← {c ∈ C | $e ∈ E,(c, e) ∈ Rr }
2: while Cnew = 0/ do 
3: Enew ← {e ∈ E | pre(e) ⊆ C ∧ pre(e) ∩Cnew = 0/ } // Unvisited exploits reachable from C 
4: for all e ∈ Enew do 
5: for all c ∈ pre(e) do 
6: Rr ← Rr ∪ {(c, e)} // Add an edge from c to e 
7: end for 
8: {c1, . . . , cm} ← {c ∈ C | (c,e) ∈ Rr }
9: π(e) ← {P1 ∪ . . . ∪ Pm ∪ {e} | Pi ∈ π(ci)}

10: π(e) ← {P ∈ π(e) | k0d(P) ≤ u) // Prune paths with more than u zero-day vulnerabilities 
11: end for 
12: Cnew ← 0/ 

13: for all e ∈ Enew s.t. π(e) = 0/ do 
14: for all c ∈ post (e) do 
15: Ri ← Ri ∪ {(e,c)} // Add an edge from e to c 
16: Cnew ← Cnew ∪ {c}�17: π(c) ← e∈E|(e,c)∈Ri 

π(e) 
18: if c ≡ cg then 
19: return G,minP∈π(c)k0d(P) 
20: end if 
21: end for 
22: end for 
23: C ← C ∪Cnew 

24: E ← E ∪ Enew 

25: end while 

which shows the degree of savings, in terms of both 
time and storage, that may be achieved through our 
on-demand generation of attack graphs. Third, we 
also evaluated the accuracy of estimations made us­
ing algorithm k0dU p perBound compared to the real 
results obtained using a brute force approach. 

First, we show that, as expected, algorithm 
k0d LowerBound is polynomial for given small val­
ues of l. Specifically, Figure 4 (a) shows that the 
running time of algorithm k0d LowerBound grows al­
most quadratically in the size of attack graphs. It is 
also clear that the actual running time is quite rea­
sonable even for relatively large graphs (e.g., it only 
takes about 20 seconds to determine k > 3 for a graph 
with 80,000 nodes). We can also observe that, al­
though the value of l affects the average running time 
of the algorithm, such effect is not dramatic for such 
small values of l (which may be sufficient in most 
practical cases). This experiment confirms that algo­
rithm k0dLowerBound is efficient enough for realis­
tic applications. Next, we show how generating par­
tial attack graphs may lead to savings in both time 
and storage cost. Specifically, Figure 4 (b) shows 
the percentage of nodes that are generated by algo­
rithm k0dLowerBound in performing the analysis. 
We can see that such a percentage will decrease while 

the size of attack graphs increases, which is desirable 
since this reflects higher amount of savings for larger 
graphs. It is also clear that although a higher value 
of l will imply less savings (more nodes need to be 
generated), in most cases the savings are significant 
(e.g., less than half of the nodes are generated in most 
cases). This experiment confirms the effectiveness of 
our on-demand approach to generating attack graphs. 

Similarly, we now show that algorithm 
k0dU p perBound is polynomial for given small 
parameters. Specifically, Figure 5 (a) shows that the 
running time of algorithm k0dU p perBound grows 
linearly in the size of attack graphs. The value of t 
represents the number of partial solutions maintained 
at each step (i.e., the degree of approximation). It is 
clear that the actual running time is very reasonable 
even for large graphs (e.g., it only takes less than 
20 seconds for a graph with almost 90,000 nodes). 
However, we can also observe that the degree of 
approximation (the value of t) will significantly 
affect the growth of the average running time of 
the algorithm, which shows a natural trade-off 
between accuracy and cost. Next, we also show 
how generating partial attack graphs may lead to 
savings for this algorithm. Specifically, Figure 5 (b) 
shows the percentage of nodes that are generated 
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Figure 4: Processing time and percentage of nodes for algorithm k0dLowerBound vs. number of nodes in the full attack graph 
for different values of l 

by algorithm k0dU p perBound in performing the 
analysis. We can see that such a percentage remains 
relatively stable across different graph sizes. That 
is, although the absolute number of generated nodes 
increases for larger graphs, the ratio remains almost 
constant, which partially justifies the linear running 
time of the algorithm. It is also clear that in most 
cases the savings are significant (less than half of the 
nodes are generated in most cases). This experiment 
again confirms the effectiveness of our on-demand 
attack graph generation. 

Finally, we show the accuracy of algorithm 
k0dU p perBound. Specifically, Figure 6 shows the 
approximation ratio (i.e., the result u obtained using 
the algorithm divided by the real value of k obtained 
using a brute force method) in the approximation pa­
rameter t. We can see that, as expected, such a ratio 
decreases when more partial results are kept at each 
step, resulting in higher accuracy (and higher cost as 
well). Overall, the approximation ratio is acceptably 
low even for a small t (e.g., the result is only about 
1.4 times the real value of k when t = 1). We can 
also observe that larger graphs tend to have more ac­
curate results, which is desirable since the analysis 
actually becomes relevant for larger graphs. Since 
algorithm k0dVal ue(G,E∗ ,u,cg) is similar to algo­
rithm k0d LowerBound except that it reuses, instead of 
generating, attack graphs, we expect its running time 
to be similar to (lower than) that of the latter and thus 
experiments are omitted here for reasons of space. 

7 CONCLUSIONS 

In this paper, we have studied the problem of 
efficiently estimating and calculating the k-zero-day 
safety of networks. We presented a decision process 
consisting of three polynomial algorithms for estab-

0.9

1

1.1

1.2

1.3

1.4

1.5

0 2 4 6 8 10 12

Ap
pr

ox
im

at
io

n 
ra

tio
 

t 

7 nodes 21 nodes 121 nodes 341 nodes

Figure 6: Approximation ratio of k0dU p perBound vs. t 

lishing lower and upper bounds of k and for calculat­
ing the actual value of k, while generating only partial 
attack graphs in an on-demand manner. Experimental 
results confirm the efficiency and effectiveness of our 
algorithms. Although we have focused on the k-zero­
day safety metric in this paper, we believe our tech­
niques can be easily extended to other useful analyses 
related to attack graphs. Other future work include 
fine-tuning the approximation algorithm through var­
ious ways for ranking the partial solutions and evalu­
ating the solution on diverse network scenarios. 
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