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The purpose of this paper is to introduce an effective and structured methodology for carrying out a bio-
metric system sensitivity analysis. The goal of sensitivity analysis is to provide the researcher/developer
with insight and understanding of the key factors—algorithmic, subject-based, procedural, image quality,
environmental, among others—that affect the matching performance of the biometric system under
study. This proposed methodology consists of two steps: (1) the design and execution of orthogonal frac-
tional factorial experiment designs which allow the scientist to efficiently investigate the effect of a large
number of factors—and interactions—simultaneously, and (2) the use of a select set of statistical data
analysis graphical procedures which are fine-tuned to unambiguously highlight important factors, impor-
tant interactions, and locally-optimal settings. We illustrate this methodology by application to a study of
VASIR (Video-based Automated System for Iris Recognition)—NIST iris-based biometric system. In partic-
ular, we investigated k = 8 algorithmic factors from the VASIR system by constructing a (26�1 � 31 � 41)
orthogonal fractional factorial design, generating the corresponding performance data, and applying an
appropriate set of analysis graphics to determine the relative importance of the eight factors, the relative
importance of the 28 two-term interactions, and the local best settings of the eight algorithms. The
results showed that VASIR’s performance was primarily driven by six factors out of the eight, along with
four two-term interactions. A virtue of our two-step methodology is that it is systematic and general, and
hence may be applied with equal rigor and effectiveness to other biometric systems, such as fingerprints,
face, voice, and DNA.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

Biometrics is the automated recognition of individuals based on
their biological and behavioral characteristics [1]. The characteris-
tics can include fingerprints, face, iris, ocular area, retina, ear, voice,
DNA, signature, gait, and hand geometry among others. The use of
biometrics has many advantages—especially as an alternative to
keys, passwords, smartcards, and other artifacts for physical entry.
In this regard, biometric-based technologies are increasingly being
incorporated into specific security fields and applications, such as
industrial access control, law-enforcement, military, border con-
trol, and forensics [2].

A significant problem in biometric studies is that researchers/
developers often present results that lack an assessment of intrin-
sic system uncertainty. A high degree of input and output numer-
ical precision often gives the impression of great accuracy, but
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neglects to give attention to the critical questions of the sensitivity
of the final results to different algorithms, environments, subject
characteristics, and biometric sample conditions [3]. Hornberger
and Spear [4] made the following paraphrased statement about
simulation models: Most such models are complex, with many
parameters, state-variables and underlying non-linear relations;
under optimal circumstances, such systems have many degrees
of freedom and—with judicious adjustments—are susceptible to
over-fitting with both plausible structure and ‘‘reasonable’’ param-
eter values. We believe that the above statement applies equally
well for biometric systems, especially for iris recognition system.

Sensitivity analysis has been successfully conducted in areas
such as computer vision and computer network [5–7]. Sensitivity
analysis is the study of how the output of a system is affected by
different inputs to the system [8]. In essence, a biometric system
is a data monitoring and decision-making ‘‘machine.’’ A good bio-
metric system has a high proportion of correct decisions. All bio-
metric systems are susceptible to incorrect decisions—especially
in the presence of less-than-optimal conditions.

In practice, the performance of many biometric systems is fre-
quently examined and optimized via a series of one-factor-at-a-
time experiment designs in which most factors in the system are

http://dx.doi.org/10.1016/j.cviu.2013.01.003
mailto:yooyoung@nist.gov
mailto:filliben@nist.gov
mailto:rossm@nist.gov
mailto:jonathon@nist.gov
http://dx.doi.org/10.1016/j.cviu.2013.01.003
http://www.sciencedirect.com/science/journal/10773142
http://www.elsevier.com/locate/cviu


Y. Lee et al. / Computer Vision and Image Understanding 117 (2013) 532–550 533
held constant while one factor is focused on and varied to exam-
ine its effect. This design, though popular [9,10] has the disadvan-
tage that it can yield grossly biased (incorrect) estimates of
factor effects. Further, this design has no capacity to estimate
factor interactions—which are intrinsic to many biometric
systems.

The motivation for this paper is thus to introduce to the biomet-
rics community an alternative method for conducting a sensitivity
analysis with the advantage that:

(1) The system will be better understood.
(2) The system will be better characterized.
(3) The system will be better optimized—with the net effect that

system performance is significantly improved in a computa-
tionally efficient fashion.

Thus, in short, the objective of this paper is to introduce and
apply a structured ‘‘Sensitivity Analysis’’ approach for gaining
insight and understanding about the system’s key components—
those which most affect the quality and performance of a
biometric system—and to optimize the settings of these key
components.

Sensitivity analysis as we describe it has two separate and dis-
tinct steps:

(1) Experiment Design (the structured plan for collecting the
data), and

(2) Statistical Analysis (the structured methodology for analyzing
the data).

Both parts are critical, and when optimally used in concert yield
enhanced insight into the relative importance and effect of the var-
ious computational components (and interactions) affecting bio-
metric system performance. The experiment design and data
analysis are demonstrated by a particular iris-based biometric sys-
tem, VASIR (Video-based Automated System for Iris Recognition),
which has verification capability for both traditional still iris
images and video sequences captured at a distance while a person
walks through a portal [11].

The general structure of this paper is threefold:

(1) Orthogonal fractional factorial design: Introduce to the bio-
metrics community a structured orthogonal fractional facto-
rial experiment design methodology to efficiently gain
insight and understanding (‘‘sensitivity analysis’’) of critical
system parameters, interactions, and their optimal set-
tings—this introduces and applies an established method
within the statistical community [12,13].

(2) Statistical analysis: Present effective and insightful statistical
analysis methodologies for carrying out sensitivity studies.

(3) Demonstration with VASIR: Demonstrate our experiment
design and analysis methodologies for VASIR, with potential
application to the broader biometrics field.

This sensitivity analysis approach provides a tool for under-
standing the computational components affecting the overall per-
formance of a biometric system. Based on such understanding, the
logical follow-up is to carry out an optimization analysis (identify-
ing the optimal global settings of the components), and a robust-
ness analysis (assessing the range of validity for our sensitivity
and optimization conclusions). Our current paper focuses on the
details of the sensitivity analysis only. To demonstrate the ele-
ments of the sensitivity analysis approach, we restrict our focus
to a fixed setting for two robustness factors: (1) eye position (left
eye only), and (2) image type (video matching: non-ideal to non-
ideal image only).
2. Sensitivity analysis methodology

Sensitivity analysis is the experimental process by which we
determine the relative importance of the various factors of a sys-
tem. Suppose a system has k factors (input parameters) which
potentially affect its performance. The minimal deliverable of a
sensitivity analysis is to produce a ranked list of those k factors—
ordered most to least important. For complicated systems (e.g.,
biometrics), a more desirable deliverable is to produce a ranked list
which contains not only the k main factors, but also includes the
various interactions of a system. To generate such a list implicitly
means that each factor effect must be estimative, and such esti-
mates should have as minimal bias and uncertainty.

As it turns out, such bias and uncertainty is driven primarily by
the choice of experiment design that the analyst employs—some
designs yield noisy effect estimates, while others yield very accu-
rate estimates.

A good experiment design is important—it assures that the
resulting data from the design has the capacity to answer the scien-
tific question at hand—in particular, the data must have the capacity
to yield a valid and rigorous ranking of the factors under study.
Important as the experiment design component is, a complementary
component is also important, namely, the statistical analysis meth-
odology employed to analyze the data resulting from the design—
what techniques must be brought to bear on the data so as to opti-
mally estimate, order, and highlight the various factor effects. Hence
sensitivity analysis consists of two separate and distinct steps:

(1) Experiment Design (the structured plan for collecting the
data), and

(2) Statistical Analysis (the structured methodology for analyzing
the data).

The detailed elements of the two components for our sensitivity
analysis are illustrated by application to a particular iris-based bio-
metric system: VASIR (Video-based Automated System for Iris Rec-
ognition), which has verification capabilities not only for
traditional still iris images but also for video sequences taken at
a distance with moving subject (see the details in Section 3).

2.1. Experiment design

Experiment design as a discipline is a systematic and rigorous
approach for scientific and engineering problem-solving. The gen-
eral goal of experiment design is threefold:

(1) To produce insight and understanding into the factorial
dependencies of a system.

(2) To produce unambiguous, valid, and defensible conclusions.
(3) To achieve both of the above with as small a sample size

(time and cost) as possible [14].

Sensitivity Analysis offers to the biometric scientist the under-
standing and insight as to what is important and what is not in a
system—and where the scientist should focus near-term and
long-term research efforts. In this regard we shall briefly review
and compare four commonly used experiment designs for sensitiv-
ity analysis: (1) Randomization Designs (Monte Carlo), (2) One-
Factor-at-a-time (1FAT) Designs, (3) Full Factorial Designs, and
(4) Orthogonal Fractional Factorial Designs.

(1) Randomization Designs (Monte Carlo).

Monte Carlo is a common methodology for many scientific sen-
sitivity analysis studies. In essence, it considers the entire popula-
tion space of factors and settings and then randomly samples a
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user-specified number from that population space (see details in
Kleijnen [15]). The advantage of Monte Carlo is that ‘‘on the aver-
age’’ the estimated main effects and the interactions will be unbi-
ased. The primary disadvantage with Monte Carlo is that it tends to
be expensive; the required sample size to estimate factor effect of
the desired precision frequently exceeds an affordable sample size.

(2) One-Factor–at-a-Time (1FAT) Designs.

1FAT is an extremely common and popular sensitivity analysis
methodology in both the biometric community and the larger sci-
entific community. In the 1FAT design, an initial run is made where
all k factors are set at a baseline value, and k subsequent runs are
made whereby each factor is changed in succession to an alterna-
tive value. 1FAT designs are simple, intuitive, and inexpensive
(costing as little as n = 1 + k runs). On the other hand, such designs
routinely produce effect estimates (and hence the subsequent
ranked list of factors) which are frequently significantly biased
and imprecise (see Box et al. [16] and Saltelli et al. [8]). Further,
1FAT designs have no ability whatsoever to estimate interac-
tions—which are commonly existent in biometric systems.

(3) Full Factorial Designs.

Full factorial designs consist of running all possible combina-
tions of all levels of all factors (see details in the NIST website
[14]). The advantage of a full factorial design is that it provides rig-
orous information (estimates) about the relative importance of all
k main factors, and all interactions (2-term, 3-term, . . ., k-term). Gi-
ven these estimates, it is thus an easy step to generate the ideal
ranked list, which includes all main effects and all interactions of
all orders. On the other hand, the significant disadvantage of full
factorial designs is that such designs are frequently too expensive.
For example, if all k factors have li = 2 levels, the total cost is n = 2k;
if all k factors have li = 3 levels, the total cost is n = 3k, and hence
even for modest values of k, the resulting n can quickly become
unaffordable/expensive.

(4) Orthogonal Fractional Factorial Designs.

Orthogonal Fractional Factorial Designs are a viable alternative to
full factorial designs because they use only a fraction of the runs
needed for a full factorial design, while still yielding good effect esti-
mates (see details on the NIST website [14]). Orthogonal designs in
this context refer to designs with both 1- and 2-dimensional bal-
ance, which is balanced for every single factor in the design and bal-
anced for every pair of factors in the design, respectively. Balanced
for a single factor means that every setting in that factor occurs
the same number of times over the n runs. Balanced for a pair of fac-
tors means that every possible pair of settings across the two factors
occurs the same number of times over the n runs.

As an example, for the simplest case in which each of k factors has
only two levels, then for an n-run experiment, a factor is singly-bal-
anced if the two levels (here coded as �1 and + 1) occur the same
number of times (= n/2) across the n runs. Similarly, two factors with
two levels are doubly-balanced if the four combinations: (�1,�1),
(+1, �1), (�1, +1), and (+1, +1) occur the same number of times
(= n/4) across the n runs. The primary virtue of orthogonal designs
is that their balance yields excellent (small bias and high precision)
statistical estimates for the main effects and interactions.

We note in passing that full factorial designs—though typically
expensive—are inherently orthogonal. This is because if the factor
Xi of a full factorial design has li levels, then each level of Xi will oc-
cur the same number of times, namely, n/li. Similarly, if two factors
Xi and Xj have li and lj levels, respectively, then each pair of levels of
Xi and Xj will occur the same number of times, namely, n=ðli � ljÞ. To
retain the estimation virtues of orthogonality while avoiding the
run-expense of full factorial designs, leads one to consider the
use of these orthogonal fractional factorial designs.

Note that since a fractional factorial design is any design whose
total number of runs n is less than the corresponding full factorial
design, then by definition the 1FAT design qualifies as a fractional
design—but a decidedly non-orthogonal fractional design and so
has poor estimation properties.

In a scientific/biometric experimental situation, if the perfor-
mance response function has any interactions, then orthogonal
fractional factorial designs typically yield excellent, trusted sensi-
tivity analysis conclusions. Our proposed sensitivity analysis ap-
proach acknowledges this superiority, and thus uses orthogonal
fractional factorial designs as the centerpiece for our experiment
design component.

2.2. Data analysis

For the analysis of data drawn from orthogonal fractional facto-
rial designs, the available statistical methods fall into two broad
categories: (1) quantitative and (2) graphical. For quantitative
methods, there are a variety of tools that could be employed (see
Box et al. [16]), with the classical ANOVA (Analysis of Variance)
method being the most common quantitative tool for sensitivity
analysis. On the other hand, these quantitative methods are not al-
ways the best practical choice for the analysis of sensitivity exper-
iments for a variety of reasons, namely, too much of a ‘‘black box’’
of statistical procedures, too much of a removal from the raw data,
too many assumptions which must be adhered to (and tested for),
and too much of a disconnect as to whether the resulting conclu-
sions are consistent with the data.

For this reason, the approach that we apply to the analysis of
data from our sensitivity experiments is via graphical data analysis
methods—in particular EDA (Exploratory Data Analysis) graphical
methods. Such methods take the approach of keeping ‘‘close to’’
the data, and judiciously displaying the data in such a fashion that
the relative importance of the factors (and interactions) becomes
evident from the (carefully constructed and augmented) plots. In
this regard, we have assembled a battery of graphical procedures
fine-tuned for sensitivity studies conducted via orthogonal (full
or fractional) experiment designs. This battery of procedures was
developed at NIST [12–14] and is an integral part of the NIST-
developed analysis software tool Dataplot [17,18].

We will demonstrate the power of the sensitivity analysis
methodology by using three graphical tools, in particular: (1) the
Main Effects plot; (2) the Ordered Data plot; and (3) the Interaction
Effects Matrix. These graphical data analysis methods serve as an
important post-data component which complements the pre-data
orthogonal experiment design component.

3. VASIR (Video-based Automatic System for Iris Recognition)

Iris recognition is a popular biometric system approach whose
effectiveness is due to the highly distinctive features of the human
iris. Most commercial systems for iris recognition are relatively
expensive and are computational black boxes that run proprietary
algorithms. In this light, to advance iris-based biometrics technol-
ogy—IrisBEE (Iris Biometric Evaluation Environment) [19] algo-
rithm—was implemented in the C programming language from
Masek’s Matlab code [9]. IrisBEE was developed as a baseline for
traditional still-based iris recognition, and hence there is still a
need to overcome a number of challenges for images taken under
more flexible acquisition and environmental condition (e.g., video
taken at a distance).

In contrast to IrisBEE, VASIR [11,20] was developed with Near-
Infrared (NIR) face-visible video-based iris recognition as part of its
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domain scope. VASIR is a fully automated system for video-based
iris recognition, capable of handling videos that were captured un-
der less-constrained environmental conditions, such as a person
walking through a portal at a distance. The VASIR system was de-
signed, developed, and optimized to be robust—to address the
challenge of recognizing a person in less-than-optimal environ-
ments, while coping with both high and low image/video quality.
Unlike commercial iris recognition software (expensive and black
box), VASIR provides an opportunity for the biometrics research
community to examine the effect of algorithmic component
changes, to extract and re-use its freely available source code,
and to otherwise advance the state-of-the art of iris recognition
technology.

VASIR has the capacity to automatically detect and extract the
eye region, and subsequently to automatically assess and select
the best quality iris image from NIR face-visible video. After this
process, VASIR carries out a comprehensive image comparison
analysis that in turn yields a verification result. As shown in
Fig. 1, the VASIR system can principally be categorized into three
modules: (1) image acquisition, (2) video processing, and (3) iris
recognition.

Each module consists of several components that have all been
designed, developed, and optimized to achieve high verification
performance. In the Image Acquisition module, VASIR loads a still
image or video sequence. In the Video Processing module, VASIR
automatically detects the eye region from face/hair/shoulder visi-
ble frames in a video sequence and extracts the left/right iris
images. VASIR then calculates automatically the image quality
score of the extracted iris image from each frame. Based on the
score calculated by the automatic image quality measurement
(AIQM) method—a metric based on Skewness and Laplacian of
Fig. 1. VASIR system
Gaussian (LoG) as developed in [11], the best quality iris
images—one for left and one for right—are automatically chosen
from all available frames. The Iris Recognition module is fed either
the resulting iris images from the Video Processing module or the
still iris image. For both video and still iris images, VASIR localizes
the iris region based on the results of the segmentation algorithm.
The segmented iris regions are then extracted and normalized
based on polar coordinates and interpolation. Next, VASIR extracts
the iris features—defined as a unique texture within the annular
region between the sclera and the pupil—from the normalized iris
images and encodes the extracted features as binary strings along
with a noise-mask. In the matching stage, VASIR matches the ex-
tracted biometric template to existing templates. Note that all pro-
cedures are fully automatic—see Lee’s paper [11] for detailed
methods and procedures.

4. Experiment design: VASIR case

The purpose of a Sensitivity Analysis is first and foremost to
gain insight into the important factors (and interactions) which
drive the biometrics system. In this regard, the primary Sensitivity
Analysis output is a ranked list of factors and interactions along
with estimates of the magnitude of their effects. To achieve that,
the biometrics researcher needs to provide information about the
following:

(1) model;
(2) factors;
(3) responses;
(4) max affordable number of runs; and
(5) choice of design.
architecture.
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4.1. Model

The starting point for a formal experiment design is to represent
a model for the system response. For many scientific applications, a
generic response model can be expressed as:

Y ¼ f ðX1;X2; . . . ;XkÞ

where Y represents a general response and k represents the number
of factors that affect the response.

In the case where we have multiple responses, as in VASIR, the
model can be generalized to

Yi ¼ fiðX1;X2; . . . ;XkÞ

to indicate that the different factors may affect each individual re-
sponse Yi in its own and separate way.

4.2. Factors

For a biometric system in general, there are many factors
(parameters or variables) that can affect a system’s response (or
performance)—the VASIR system is no exception. The VASIR factors
naturally fall into four categories:

(1) environmental conditions;
(2) image conditions;
(3) subject characteristics; and
(4) algorithmic components.

Factors described in Table 1 are a representative—but partial—
list of such potential factors from the three categories, which could
be further examined unto themselves to assess the robustness of
our conclusions about our fourth category (algorithmic
components).

At a minimum, an experiment design is characterized by two
numbers (k,n) where k is the number of factors in our study and n
is the affordable number of runs. If we chose to examine and vary
all of the factors listed in Tables 1 and 2, k would equal 71
(=33 + 38). In general, the number of runs n in an experiment must
exceed the number of factors k; hence to obtain estimates for
all k = 71 factors would require n > 71. Further, to estimate the k

2

� �

two-term interactions, this would require n > 2500. This is too
expensive for our time and cost constraints. Inasmuch as the pur-
pose of our study is to demonstrate the efficiency of our experiment
design technique and to understand and optimize the algorithmic
Table 1
Potential robustness factors (33) that can affect a biometric system.

Environmental
conditions

Image conditions Subject characteristics

(1) Indoor/outdoor (7) Focus or sharpness (18) Contact lenses
(2) Lighting (8) Contrast (19) Glasses
(3) Background (9) Brightness (20) Left/right
(4) Weather (10) Motion blur (21) Gender
(5) Camera (11) Resolution (22) Age
(6) Day/night (12) Noise (23) Cosmetics (e.g. mascara)

(13) Color (24) Hair color
(14) Distortion (25) Race
(15) Artifacts (26) Movement
(16) Reflections (27) Distance from camera
(17) Video/still (scenarios) (28) Skin color

(29) Eye color
(30) Eyelashes
(31) Eyebrows
(32) Pupil dilation
(33) Usability (e.g., behavior,

training, perception)
factors of VASIR, we thus choose to focus primarily on the algorith-
mic category only.

An important early step in the structured experiment design
process was to collect and construct the superset of possible vari-
ables (‘‘factors’’) that may affect the quality and performance of the
VASIR algorithm. For this study, if we analyzed all 38 algorithmic
factors, this would require >750 observations—still too expensive.

To accommodate affordability, the next step is to reduce the num-
ber of factors k. We hence choose to limit ourselves to only k = 8 algo-
rithmic factors; we highlighted these eight algorithmic factors in
Table 2 with gray. The reason why we have chosen these particular
eight algorithmic factors is so that at least one factor was drawn from
each of VASIR’s eight key components (excepting the Best Image
Quality Selection component whose setting is dictated by the choice
utilized for preceding Image Quality Assessment component). Other
reasons for our choice of these eight algorithmic factors were to ana-
lyze the sensitivity of new methods being considered for VASIR, to fo-
cus on those methods of greatest research interest, and to concentrate
on those specific algorithms for recent upgrades for VASIR.

As a next step, we reduced the number of settings (levels) of the
eight algorithmic factors. In particular, if each factor could (judi-
ciously) be represented by l = 2 levels, then n will be reduced mark-
edly. Table 3 summarizes the eight chosen algorithmic factors and
their setting levels.

The detailed description for each factor and its levels are as
follows:

(1) X1 (EyeAlg): Eye position alignment.

A tilted head or subject movement results in a larger angular
difference between the target and the query iris image—causing
rotational inconsistency; i.e., the matching point within the two
iris templates is different. In VASIR, to compensate for the angular
difference, the positions of the left and right eyes were automati-
cally and angularly aligned according to the estimated degree of
the distance difference of the left and right pupil center. We ana-
lyzed whether the eye position alignment approach (ON) was actu-
ally better than without eye position alignment (OFF).

(2) X2 (IQMetr): Image quality metrics.

The iris image quality assessment can help to predict whether
an image is usable or recognizable, and it can also help to deter-
mine which image out of a set of frames in a video sequence has
the best quality. VASIR developed multiple quality metrics for
measuring iris image quality automatically for images (or videos)
captured in different environments. VASIR automatically selects
the best quality iris frame out of a video on the quality assessment
metric. Although 16 metrics [11] were introduced to measure one
or another aspect of image quality, we focused on the following
l = 3 metrics (SOB, LoG, CON) for our sensitivity analysis:

A. Sobel (SOB) filter.
The Sobel operator has been used extensively for image edge
detection and for measuring the focus level of an image[21–
23]. The gradient at each point and the orientation of that gra-
dient magnitude G(x,y) can be measured by:
Gðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDhðx; yÞÞ2 þ ðDvðx; yÞÞ2

q

SOB ¼
Pn

1Gðx; yÞ
N

The Sobel operator consists of a pair of 3 � 3 filters defined as Dh

and Dv and these filters are designed to respond to edges run-
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ning horizontally and vertically relative to the pixel grid. N is the
total number of input image pixels and the SOB value is calcu-
lated by averaging the gradient value.
B. Laplacian of Gaussian (LoG) filter.
LoG is an important filter with much attention given to it [24].
LoG is defined as;

LoG ¼ x2 þ y2 � 2r2

r4 e�ðx
2þy2=2r2Þ

We used a 9 � 9 filter with r = 1.4 in our experiment. To mea-
sure the quality score, the LoGED (Edge Density) is computed as;

M�1N�1
LoGED ¼ 1
MN

X
x¼0

X
y¼0

jLoGðx; yÞj
where M � N is the number of pixels in the search area, and LoG
(x,y) is the calculated value at location (x,y).
C. Contrast (CON).
Contrast is a measure of the intensity differences between a
pixel and its neighbor over the whole image [25,26].

CON ¼
XG�1

i¼0

XG�1

j¼0

ði� jÞ2Pði; jjd; hÞ

where G is the number of gray levels. The matrix element P
(i, jjd,h) contains the second order statistical probability values
for changes between gray levels i and j at a particular displace-
ment distance d and at a particular angle h (see details written



Table 3
The eight algorithmic factors and their setting levels (see detailed procedures in the paper [11]).

 Eight algorithmic factors Number of setting levels 

 X1 (EyeAlg): Eye position alignment    -1 (OFF)    +1 (ON)  

 X2 (IQMetr): Image quality metrics    -1 (SOB)   0 (LoG)   +1 (CON)  

 X3 (SegEye):Eyelids segmentation    -1 (Lines)    +1 (Curves)  

 X4 (NorRes): Radial resolution    -1 (20px)    +1 (32px)  

 X5 (FXWL): Wavelength    -1 (18px)    +1 (16px)  

 X6 (FXMask): Wavelet magnitude    -1 (0.8)    +1 (0.9)  

 X7 (SMAlg): Similarity metrics   -2 (HD)   -1 (COR)    +1 (COS)   +2  (WED) 

 X8 (SMSh): Horizontal shifting    -1 (10)    +1 (5)  
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by Albregtsen [25]). A higher contrast is considered as an indica-
tor of better quality iris image in our study.
(3) X3 (SegEye): Eyelids segmentation.

Although many methods for iris segmentation has been sug-
gested in the literature [27–29], we first compare IrisBEE segmen-
tation approach with VASIR’s approach. In the IrisBEE algorithm
[9], the eyelids were removed by inserting horizontal flat lines to
delimit the upper and lower eyelids. It is important to understand
that human eyes are known to have different curvatures for the
upper and lower eyelids. In addition, the shape of the eye can be
significantly different depending on the person; e.g., race: cauca-
sian, asian, etc. VASIR therefore developed two different curves
to segment the actual upper and lower eyelid shape. We examined
how the l = 2 eyelids segmentation approaches (Lines, Curves)
influence VASIR performance.

(4) X4 (NorRes): Radial resolution for normalization.

VASIR involves the comparison of two biometric iris samples.
Even for multiple images of the same subject, a complication
arises in such a comparison due to pupil dilation, non-concen-
tric pupil displacement, or varying eye distance to the capture
device. To facilitate the comparison, the multiple images
must be stretched or compressed to a standardized scale
(normalization).

For the normalization step, a standardized 2D image of the
iris region is generated by a polar coordinate-based method (pro-
posed by Daugman [30]) based on two circular constraints (pupil
and iris). The Daugman’s rubber sheet model assigns to each
point within the iris region a pair of real coordinates (r,h) where
the radius r lies on the unit interval [0,1] and h is the angle over
[0,2p]. The remapping of the iris image I(x,y) from Cartesian
coordinates (x,y) to polar coordinates (r,h) is classically repre-
sented as:

Iðxðr; hÞ; yðr; hÞÞ ! Iðr; hÞ
xðr; hÞ ¼ ð1� rÞxpðhÞ þ rxsðhÞ
yðr; hÞ ¼ ð1� rÞypðhÞ þ rysðhÞ

where (xP(h), yP(h)) and (xs(h), ys (h)) are the coordinates of the pupil
and iris boundaries respectively along the h direction. As in IrisBEE’s
algorithm, an iris pattern image was generated by normalizing the
angular size (h = 240 pixels) and the radial size (r = 20 pixels).

For our experiment, to determine the relative importance of r,
its potential interactions, and its optimal values, we examined
the effect of l ¼ 2 settings for radial size: 20 and 32 pixels.
(5) X5 (FXWL): Wavelength (Gabor filter parameter).

Some different approaches [31,32] have been suggested to rep-
resent the patterns from the iris region. The IrisBEE algorithm em-
ployed a 1D Log-Gabor filter—introduced by Yao et al. [33]—to
process the feature extraction from normalized iris images. The
frequency response of a Log-Gabor filter is given as:

GðwÞ ¼ e
� log w

w0

� �2

=2 log r
w0

� �2

where w0 represents the filter’s center frequency (wavelength) and
r gives the filter bandwidth. We used l = 2 different wavelengths
(18 px, 16 px) to determine the relative importance of w0, its inter-
actions, and its optimal settings.

(6) X6 (FXMask): Wavelet magnitude.

To encode coefficients (complex value) with the binary iris code
[0,1], VASIR employed the phase information with four quadrants
proposed by Daugman [30]. To determine each bit of the iris code
for the coefficient, if the real part of the coefficient is negative, the
iris code is mapped to ‘‘0’’, otherwise it is mapped to ‘‘1’’. If the
imaginary part is negative, the iris code is mapped to ‘‘0’’, other-
wise it is mapped to ‘‘1’’. This is to assure that unimportant bits
would not be included when measuring the similarity between
two biometric templates [34]. The paper written by Lee [11] sug-
gested that VASIR’s approach based on the distance (magnitude)
of the coefficient from the origin is superior than the Hollings-
worth’s fragile bit approach [34] based on filter responses near
the axes of the real or imaginary part. We then examined what lev-
els of small/large magnitude values affect VASIR performance. For
this, we varied the masking of significant bits based on larger mag-
nitudes (0.8,0.9)—that is the effect of keeping l = 2 80% (vs. 90%) of
the bits before computing the similarity distance.

(7) X7 (SMAlg): Similarity metrics.

Similarity metrics provide a quantitative measure for the degree
that the two templates match. A wide variety of similarity metrics
have been proposed in the iris-based biometrics community [35–
37]. For this case when we are comparing different iris images
(from the same or from different person), this section examines
l = 4 metrics for comparison scores (HD, COR, COS, WED):

A. Hamming Distance (HD).
HD can be used to decide whether two iris templates are of the
same person. In VASIR, a fractional HD was applied to its iris
recognition system—initially proposed by Daugman [35] and
later re-implemented by Masek [9]. A noise mask helps to
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exclude insignificant bits (e.g., eyelashes, eyelids, reflections) of
a template. The fractional HD is given by:

HDðT;QÞ ¼
PN

i¼1ðTi � Q iÞ \ ðTmi \ QmiÞ
N �

PN
k¼1ðTmk [ QmkÞ

where target (T) and query (Q) are two bit-wise templates and
Tm and Qm are the corresponding noise masks. N is the total bits
of a template.
B. Normalized Cross-Correlation (COR).
COR is a measure of similarity between two templates for image
processing. The images are normalized by subtracting the mean
value and dividing by the standard deviation as follows:

CORðT;QÞ ¼
PN

i2fTmi\QmigðTi � lTÞ � ðQ i � lQÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i2fTmi\QmigðTi � lTÞ2 �

PN
i¼1ðQ i � lQÞ2

q

where lT and lQ are the means of T and Q.
C. Cosine similarity (COS).
COS is a measure of similarity between two vectors by measur-
ing the cosine of the angle; the angular separation is [�1,1].
COSðT;QÞ ¼
PN

i2fTmi\QmigTi � Q iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i2fTmi\QmigT

2
i �
PN

i2fTmi\QmigQ
2
i

q

D. Weighted Euclidean Distance (WED).
WED can be used to determine similarity of an unknown sam-
ple set to a known one and is given as:

WEDðT;QÞ ¼
XN

i2fTmi\Qmig

1

rQ
i

� �2 ðTi � Q iÞ2

where ri is the standard deviation of the ith feature of the
template Q.

(8) X8 (SMSh): Horizontal shifting.

The starting point for normalizing the iris region of an iris image
varies due to the subject’s head tilt, movement, and when the sub-
ject looks in a different direction—we call this rotational inconsis-
tency. To overcome this rotational inconsistency between two iris
templates, one template is two bit-wise shifted left or right, and
the similarity score is selected from successive shifts [9,35]; e.g.,
the smallest value is a successive shift value for the Hamming Dis-
tance case.

VASIR developed a new shifting method in which the template
is shifted not only left and right (horizontal) bit-wise, but also up-
ward and downward (vertical); the values for these horizontal and
vertical direction shifts are indicated by X and Y, respectively. We
were interested in the effect of rotational inconsistency on VASIR
performance; such inconsistency is linked to horizontal (as op-
posed to vertical) bitwise shifting and so we varied such horizontal
bitwise shifting (by l = 2 levels: 5 and 10 bits) to determine the rel-
ative importance of a number of shifted bits, their potential inter-
action, and their optimal settings.

All remaining factors were fixed. We should note that our con-
clusions about the chosen eight algorithmic factors may be depen-
dent on the settings of the remaining 30 (=38–8) algorithmic
factors and the 33 robustness factors (see Appendix A and Table 1,
respectively).

It is a sobering reality that ‘‘nature’’ will propagate the effect of
these remaining algorithmic and robustness factors onto the per-
formance of our VASIR system and onto our conclusions about
the relative importance of these eight factors—regardless of
whether we identify such factors or not. For a good experiment de-
sign, it is critically important to pre-identify, control, or at least re-
cord the settings of these robustness factors during the entire
course of the experiment.

4.3. Responses (Yi)

Y refers to the response of interest for which we wish to evalu-
ate the effect of the various factors. In biometric systems, it is quite
common to have multiple responses of interest and these re-
sponses are frequently identical to various performance metrics.

Our study had three responses that were based on matching
and non-matching comparison scores: (1) the VR (Verification
Rate) when the FAR (False Accept Rate) was 0.01; (2) the VR when
the FAR was 0.10; and (3) the EER (Equal Error Rate)—detailed def-
inition is described in the papers [11,38] and note that VR is equal
to True Positives (TP) and FAR is equal to False Positives (FP). Sym-
bolically the three responses are.

Y1 = VRjFAR = .01 (or TPjFP = .01).
Y2 = VRjFAR = .10 (or TPjFP = .10).
Y3 = EER.

For a biometric system, higher values of VR and smaller values
of EER indicate superior system performance. Common alterna-
tives for VRjFAR are FAR = .001 and FAR = .0001. We chose not to
use these as our performance metrics because they would not have
been meaningful due to the relatively small number of different
subjects (�70—100) in the chosen MBGC dataset selected for our
study.

4.4. Max affordable number of runs

Our computing platform consisted of a dual core CPU
(3.33 GHz) and RAM (64 GB) with Windows Server 2008 as the
operating system. The practical constraint under which our study
was operating was that the total amount of CPU time for the exper-
iment in total would not exceed two weeks. This maximum two-
week time constraint was chosen to allow for design re-execution
due to possibility of ‘‘real world’’ negative events that many times
do occur in large scientific investigations; e.g., crashes (hardware/
software), memory leaks, debugging problems, dataset problems,
design access problems, anomalous (unusual) looking results, and
data analysis problems. In reality, in light of all of the above possi-
bilities, it did in fact take approximately six months to design, col-
lect data, and carry out a sensitivity analysis for the two-week run.
Hence, even in a parallel computing environment, this ideal two-
week time constraint translated into an upper limit of n = 500 runs
to examine the eight algorithmic factors.

4.5. Choice of design

Given the (k = 8 factor, n < 500 run) constraint with six factors
at two levels, factor X2 at three levels, and factor X7 at four levels,
full factorial is an excellent design, but too expensive—far exceed-
ing our n = 500 limit (n = 26 � 31 � 41 = 768 for all possible combi-
nations of all k = 8 factors). On the other hand, orthogonal
fractional factorial design is excellent with good main effects and
interaction estimation properties, and is highly efficient.

The question then arises as to how to fractionate and what fac-
tors to fractionate on. Since fractionating three- and four-level fac-
tors is more difficult and subtle, we choose to fractionate on the six
factors at two levels: this is referred to as a 26�1 design and is de-
scribed in Box et al. [16] (see p.276). In combination with the other
levels of the two factors, the design that we chose is a
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(26�1) � (31) � (41) orthogonal fractional factorial. This design
examines the eight algorithmic factors with n = 384 run—half the
runs of a full factorial and well below our 500-run limit. This de-
sign utilizes two levels for each of the six algorithmic factors (X1,
X3, X4, X5, X6, X8), three levels for X2, and four levels for X7; these
two levels will be coded as (�1,+1), three levels (�1,0,+1), and four
levels (�2,�1,+1,+2).

The (k = 8 factor, n = 384 run) (26�1) � (31) � (41) orthogonal
design matrix that we employed is shown in Appendix B—note that
since some of the eight factors are more time-consuming to change
than others, the run order of the design was optimized to minimize
execution time (a 4� speed-up was achieved).

Note that this design matrix has 8 columns (factors) and 384
rows (runs); since the design is orthogonal, each of six two-level
factors (X1, X3, X4, X5, X6, X8) has the same number (384/
2 = 192) of �1’s and +1’s. X2 factor has three settings (384/
3 = 128) of �1’s, 0’s, and +1’s while X7 has four settings (each
occurring 384/4 = 96) of �2’s, �1’s, +1’s, and +2’s—this equality
property is referred to as 1-dimensional balance. Due to orthogo-
nality, each and every one of the 6

2

� �
¼ 15 pairs of the six factors

at two levels has the same number of (�1,�1), (�1,+1), (+1,�1),
and (+1,+1) combinations—namely, 384/4 = 96; this is referred to
as 2-dimensional balance.
5. Data

5.1. Dataset

For the purpose of this sensitivity analysis study, we evaluated
the VASIR system performance using datasets collected by MBGC
(Multiple Biometric Grand Challenge) [39]. These MBGC datasets
include iris images of varying illumination conditions, low quality,
and off-angle or occluded images in both still and video imagery.
One of the challenges for the MBGC dataset is to recognize a person
using an iris from the NIR and high definition video as the person
walks through a portal. In this experiment, we therefore use the
NIR face-visible video dataset, which we will call ‘‘distant-video’’;
Fig. 2. Sub-images extracted from M
the distant-video samples were captured with a video camera by
the Sarnoff IOM system in 2048 � 2048 resolutions; with face/
hair/neck visible in the screen.

For the MBGC distant-video dataset, the number of video se-
quences captured by IOM system is 628.

A small number (<50) of the subjects appeared in only one vi-
deo sequence—and so these subjects were excluded because we
wanted to have replication over at least two videos at a different
time. Other subjects existed in multiple video sequences, some ap-
peared in as many as 10 sequences. For parsimony, if a subject hap-
pened to appear in three or more video sequences, we extracted for
our study two such video sequences—each sequence representing a
different session. In summary, out of the 628 videos, we thus used
204 videos involving 102 subjects.

Fig. 2 shows an example of distant-video within the MBGC
dataset.

Fig. 2a and b show the face-visible frame from a video and the
sub-image (eye region) extracted from that frame. Distant-video
data is normally considered to be a poor-quality image source
since the video was taken with moving subjects, having motion
blur, poor contrast, off-angle, poor illumination, and other
deficiencies.

5.2. Data collection procedure

This section describes the procedure of collecting data for our
focus in this paper: the left eye position and the face-visible dis-
tant-video to distant video (VV) matching scenario. For this VV
matching scenario, we used 204 videos (102 subjects) whereby
each subject appeared in two different video sequences and each
taken in different sessions.

The VASIR system then proceeds as follows:

(1) VASIR automatically adjudges, identifies, and extracts all
admissible/visible left iris images (=565 in this case) out of
these 204 video sequences (face-visible) based on criteria
related to factor X1 (Eye region detection/extraction with
pupil position alignment).
BGC distant-video taken by IOM.
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(2) VASIR then selects—automatically—the best 204 iris images
based on quality score criteria associated with factor X2
(Image quality metrics for quality assessment and the best
image selection).

(3) VASIR then takes the resulting 204 images and segments the
iris region based on segmentation algorithms that included
factor X3 (eyelid segmentation algorithm).

(4) The segmented iris regions are extracted using polar-coordi-
nates and then normalized based on the resolution related to
factor X4 (Radial resolution).

(5) VASIR extracts features from the normalized iris images
based on the feature extraction algorithm associated with
factor X5 (wavelength).

(6) Then VASIR encodes the extracted features and masks out
noise based on factor X6 (masking with wavelet magnitude).

(7) The encoded results are then used for carrying out the pair-
wise biometric templates matching based on factor X7 (sim-
ilarity metrics).

(8) Finally to correct rotational inconsistencies between two bio-
metric templates, VASIR applies factor X8 (horizontal shifting).

The above VASIR procedure is executed for all n = 384 runs of
the k = 8 factors as specified by the 26�1 � (31) � (41) experiment
design. For a given run, we obtain a set of match scores and a set
of non-match scores. Based on the set of match and non-match
scores, VASIR automatically produces similarity scores which in
turn yields the three performance responses (VRjFAR = .01,
VRjFAR = .10, and EER). The sensitivity analysis was then initiated
to determine the effect of the eight algorithmic factors on the
above three responses.

6. Data analysis

This section describes the details of the sensitivity analysis car-
ried out on the k = 8 algorithmic factors for the VASIR system. This
analysis is carried out and presented for the fixed settings of the
remaining algorithmic factors (see Appendix A) and robustness
factors (see Table 1). In particular, the results presented in the
remainder of this section are for the VV matching scenario and
the left eye position.

The specific deliverables from the sensitivity analysis of the VA-
SIR system are as follows:

(1) A ranked list of all eight algorithmic factors—ordered by rel-
ative importance.

(2) Inclusion of the relevant two-term interactions within that
ranked list.

(3) Estimates of the magnitude and the direction of factor
effects and interactions.

(4) Determination of the most important factor(s) and
interaction(s).

(5) Specification of the optimal (local) settings for the eight factors.

As we discussed in Section 2.2, to fulfill the goals in our study,
we demonstrate three especially important plots of the 10 graphi-
cal procedures from [14]: (1) Main Effects plot, (2) Interaction
Effects Matrix plot, and (3) Ordered Data plot.

6.1. Main Effects plot

The Main Effects plot is the most important graphical data anal-
ysis technique to identify the influential and statistically signifi-
cant factors affecting performance responses. This plot provides
the mean response for each setting of each factor and highlights
their difference to show the effect of changes on the response(s)
due to that factor [7].
Fig. 3 shows the Main Effects plot of VASIR’s k = 8 factors on the
VV Left case with the VRjFAR = .01 performance response.

The horizontal axis is the eight factors (X1 to X8) and the coded
factor settings (e.g., ‘‘�1’’, ‘‘0’’, or ‘‘+1’’) within each factor—the four
coded factor settings for X7 (1, 2, 3, and 4) are equivalently referred
to as ‘‘�2’’, ‘‘�1’’, ‘‘+1’’, and ‘‘+2’’. The vertical axis is the mean re-
sponse for each setting of each factor. For each factor, a line con-
nects the mean values for that factor. The magnitude of the line
is the factor effect; longer lines indicate the factor has effects while
shorter lines indicate the factor has no effect. The slope of the line
indicates whether the factor has an increasing or decreasing effect
on VASIR’s responses.

The number of runs (n) in the design was originally
384 = 26�1 � 31 � 41. Some of the runs are ignored if the response
value does not exist (due to a small number of subjects) for the rel-
evant run, therefore, n may be less than 384. For example, the leg-
end box of the Fig. 3 plot has n = 383 because one value out of the
384 does not exist for this VRjFAR = .01 response.

On the inside of the plot above the horizontal axis, the top num-
ber gives the percentage from a one-way ANOVA f-test; two aster-
isks (⁄⁄) signifies that a factor effect is statistically significant at the
1% level (>0.99) and one asterisk (⁄) signifies significance at the 5%
level (>0.956 0.99). The second number is the estimated factor ef-
fect in raw response units. In case of factors with two-level settings
(coded as � and +, and with corresponding mean values �y� and �yþÞ,
the effect is uniquely defined as �yþ � �y�. For three-level settings (�,
0, and +, and with corresponding mean values �y�; �y0, and �yþ), we
define the factor effect as the largest in magnitude out of given
three differences: �yþ � �y�; �yþ � �y0, and �y0 � �y�. For four-levels, we
also define the factor effect as the largest out of 4

2

� �
¼ 6 possible dif-

ferences. The bottom number is the estimated percentage change
(‘‘relative effect’’ = 100 � effect/global mean). Note that since the
design is orthogonal, such effect estimates are identically the least
squares estimates that would result from a multi-linear regression.

For the response VRjFAR = .01 of the VV Left eye case, the impor-
tant factors influencing VASIR’s performance are ordered (most
important to least important) as follows:

X2 (IQMetr): Image quality metrics (effect = .041),
X7 (SMAlg): Similarity metrics (effect = .038),
X3 (SegEye): Eyelids segmentation (effect = .026),
X1 (EyeAlg): Eye position alignment (effect = .020),
X8 (SMSh): Horizontal shifting (effect = .017), and then
X4 (NorRes): Radial resolution for normalization (effect = .011),
X6 (FXMask): Wavelet magnitude (effect = .006), and
X5 (FXWLBW): Wavelength (effect = .003).

Six factors (X2, X7, X3, X1, X8, and X4) are statistically signifi-
cant (⁄⁄ or ⁄) and are highlighted in red in Fig. 3; two factors (X5
and X6) are not statistically significant.

The Main Effects plot is also useful for determining optimal set-
tings on the average—i.e., based on actual settings utilized in the
experiment design. From Fig. 3, those settings for each factor which
yield a large value (closer to 1.0) of VR would be the preferred opti-
mal setting. The optimal settings are (+1, �1, +1, +1, +2, +1), where
‘‘�’’ indicates both settings are equivalent or the mean difference is
not statistically significant.

From the Main Effects plots, a summary of the factor effects and
optimal settings for all three responses is given in Table 4.

For all three responses, the most important factor out of these
eight algorithmic factors in VASIR is X2 (IQMetr) and the second
important factor X3 (SegEye) and X7 (SMAlg). The statistically sig-
nificant factors having an influence on the VASIR system are (X2,
X7, X3, X1, X8, and X4) in order from most to least important.
The least important factors are X5 (FXWL) and X6 (FXMask) for
all responses.



Fig. 3. Main Effects plot with the VRjFAR = .01 response for VV Left—note that the four coded settings (1,2,3,4) for X7 are equal to (�2,�1,+1,+2). The importance of factors
X2, X7, X3, X1, X8, and X4 in order.
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6.2. Ordered Data plot

The Ordered Data plot yields the settings that correspond to
each response value. The plot is generated by ordering all nre-
sponses—worst to best—and carrying along the corresponding set-
tings for the k = 8 factors. If a factor has one setting for the best and
near-best response values and the opposite setting for the worst
and near-worst response values, then that factor is usually a rela-
tively important factor [14]. Ordered Data plots can reconfirm the
results from Main Effects plots.

Fig. 4 illustrates the Ordered Data plot for the VRjFAR = .01 re-
sponse for the VV Left case. In our sensitivity analysis, we used a
total of 384 runs from the eight algorithmic factors and so the plot
potentially contains a maximum of 384 data points; for example,
the Ordered Data plot in Fig. 4 has only 383 runs for the
VRjFAR = .01 response.

Presenting all data points and their settings make the plot too
crowded and difficult to interpret. So we illustrated only the 60
most extreme points—the best and near-best response values (30
points) on the right-side and the worst and near-worst response
Table 4
VASIR’s most important (IMP) factors and optimal settings with three responses for VV Le

Responses 
1st Most 

IMP 

2nd Most 

IMP 

Least 

IMP X1 X2 

VR|FAR=.01 X2** X7** X5, X6 +1 (ON) −1 (SOB) +1 

VR|FAR=.10 X2** X3** X5, X6 +1 (ON) −1 (SOB) +1 

EER X2** X3** X5, X6 +1 (ON) −1 (SOB) +1 

** represent statistical significance at the 1 % levels, respectively.  

• represents that the mean difference between settings is not statistically sign
values (30 points) on the left-side; the inserted blue vertical line
distinguishes between the best-side and worst-side points.

The upper left corner box of the plot shows the number of fac-
tors (k = 8) and the number of data points (60) followed by the to-
tal number of runs (383) that have the corresponding VRjFAR = .01
response. The horizontal axis shows the eight factor labels and
their settings for each of the 60 runs ordered from the smallest
to the largest response values. The vertical axis is the value of
the VRjFAR = .01 response.

The Ordered Data plot not only provides the best settings but
also reaffirms important factors. On the average, if a factor has
no effect then there should be a near even split of 15 + 1’s and
15 � 1’s, the more the divergence from 15/15, the greater the sig-
nificance of the factor. For 30 trials, based on the binomial distribu-
tion, it is statistically significant whenever the count is P20 or
610. For instance, we may pose the question as to whether factor
X1 (EyeAlg) is important? Out of the 30 best VRjFAR = .01 re-
sponses, 29 of them came with X1 = +1 (statistically significant).
For the 30 worst responses, 22 came from X1 = �1 (also statisti-
cally significant). Thus, X1 (EyeAlg) is an important factor.
ft—from Main Effects plots.

Optimal Setting 

X3 X4 X5 X6 X7 X8 

(Curves) +1 (32) • (−1) (18) • (+1) (.9) +2 (WED) +1 (5) 

(Curves) +1 (32) • (−1) (18) • (−1) (.8) −2 (HD) +1 (5) 

(Curves) +1 (32) • (−1) (18) • (−1) (.8) −2 (HD) +1 (5) 

ificant. 



Fig. 4. Ordered Data plot with VRjFAR = .01 response for VV Left. We illustrated only the 60 most important extreme points—30 (best) + 30 (worst).
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Table 5 summarizes the counting levels from the plot in Fig. 4.
Highlighted (by shading) are the counts of two levels P20 for the
best response and 610 for the worst response—note that since fac-
tor X7 has four levels, the criteria for this count is P12 and 62,
respectively, and for the three levels of factor X2, the criteria is
P15 and 65. Based on the above table, we thus conclude that
the important factors for VRjFAR = .01 are as follows: X1 (EyeAlg),
X2 (IQMetr), X3 (SegEye), X7 (SMAlg), and X8 (SMSh)—where both
worst and best responses were highlighted. From Fig. 4, the best
settings for the VRjFAR = .01 response are (+1,�1,+1,+1,�1,�1,
+2,+1)—which is exactly the same as the results from the Main Ef-
fects plot in Fig. 3.

Table 6 shows the summary of important factors and the best
settings—yielded from the Ordered Data plot—for the VV Left
case.

From the analysis of all responses for this VV Left case in Or-
dered Data plots, factors X1 (EyeAlg), X2 (IQMetr), X3 (EyeSeg),
X7 (SMAlg), and X8 (SMSh) are the important factors and the best
Table 5
Summary of counting levels for the VRjFAR = .01 worst/b
settings are (+1,�1,+1,+1,�1,�1,�2,+1)—which is relatively simi-
lar to the results derived from the Main Effects plots.
6.3. Interaction effects matrix

Knowledge of the main effects is an incomplete description of the
influence of factors because interactions exist among factors—com-
plex systems such as biometrics are frequently more complicated
than simple (linear/additive) models. When a factor effect changes
depending on the setting of another factor, the two factors are said
to interact, and those interaction effects must be considered.

We now address the problem as to whether two-term interac-
tion effects exist in the VASIR system and determine whether

those interaction effects are important. VASIR has 8
2

� �
¼ 28 such

two-term interactions among the eight algorithmic factors.
There are two methods to represent the interaction effects be-

tween the two factors:
est response.



Table 6
VASIR’s relative important factors and the best settings with three responses for VV Left—from Ordered Data plots.

Responses   Important Factors 
Best Setting 

X1 X2 X3 X4 X5 X6 X7 X8 

VR|FAR=.01   X1, X2, X3, X7, X8 +1 (ON) −1 (SOB) +1 (Curves) +1 (32) −1 (18) −1 (.8) +2 (WED) +1 (5) 

VR|FAR=.10   X1, X2, X3, X8 +1 (ON) −1 (SOB) +1 (Curves) −1 (24) +1 (16) −1 (.8) −2 (HD) +1 (5) 

EER   X2, X7, X8 +1 (ON) −1 (SOB) +1 (Curves) +1 (32) −1 (18) −1 (.8) −2 (HD) +1 (5) 
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(1) interaction effects when the factors have two-levels and
(2) interaction effects when the factors have three or more

levels.

For the first method, where the two factors have only two lev-
els, the representation becomes simpler. In such cases, the factor
cross products serve as a reasonable surrogate for the interactions.
In particular, if factor X1 takes on the coded values �1 and +1, and
if factor X2 takes on the coded values �1 and +1, then the cross
product X1 � X2 also takes on the coded values �1 and +1:

ð�1Þ � ð�1Þ ¼ þ1
ð�1Þ � ðþ1Þ ¼ �1
ðþ1Þ � ð�1Þ ¼ �1
ðþ1Þ � ðþ1Þ ¼ þ1

The advantage of this method is that the cross product X1 � X2 (and
for that matter any cross product) becomes just another �1 and +1
factor in the orthogonal system and so the interaction effects may
be directly estimated and compared with one another and with
the algorithmic factors.
Fig. 5. Interaction Effects Matrix plot with the VRjFAR = .01 response for VV Left. The blue
where effects appear significant. (For interpretation of the references to color in this fig
On the other hand, if the two factors have three or more levels
then the representation of such interactions is more complicated
and the cross product representation is of little help. For our case
with eight algorithmic factors, six factors have two levels, the fac-
tor X2 has three levels, and X7 four levels.

With this in mind, we make use of the Interaction Effects Matrix
plot (see Fig. 5 below) which is a multi-plot per page display of the
original main effects and all of the two-term interactions. In prac-
tice for an experiment with k factors, the total number of possible
two-term interactions is:

k

2

� �
¼ k!

2!ðk� 2Þ! ¼
kðk� 1Þ

2

In our experiment, we have 28 two-term interactions from a
(26�1 � 31 � 41) experiment (k = 8) for each response. Fig. 5 pre-
sents the interaction effects matrix—it consists of 64 plots (8 Main
Effects plots + 2 � 28 Interaction Effects plots)—two plots for each
two-term interaction.

The plots on the diagonal are identical to those seen on the
Main Effects plot; the horizontal axis is the factor levels and the
circles indicate significant factors and the red circles indicate two-term interactions
ure legend, the reader is referred to the web version of this article.)



Table 7
Summary of VASIR’s interaction effects with three responses for VV left.
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vertical axis is the mean response at each of those levels; the index
in the upper left corner identifies factors (e.g., X1) and the number
following the index is the (least squares) estimated effect due to
that factor (e.g., X1 (+1) effect b1 = .02). The plots off-diagonal are
the two-term interaction plots; the index in the upper left corner
of each plot identifies the two-term interaction (e.g., X1X2,
X1X3). For the X1X2 interaction (X1 with two levels and X2 with
three levels), the horizontal axis is the two levels of X1 and the ver-
tical axis is the mean response at each of those two levels; it is
computed three times—once for each level of X2—thus yielding
six (= 2 � 3) points and three traces. From each of the three traces,
we can compute an X1 effect—the steeper the trace, the larger the
X1 effect. When the three traces are parallel, then the resulting
three estimates of the X1 effect are identical—and so the factor
X1 effect is not dependent on the level of X2 (no interaction). When
the three traces are not parallel, then the X1 effect depends on the
setting of X2 (interaction).

In summary, the Interaction Effects plots are to be interpreted
as follows:

(1) If the lines within the plot are parallel, then this implies no
interaction.

(2) If the lines within the plot are not parallel, this implies
an interaction—the more divergent, the stronger the
interaction.

If there are no interactions among factors, we can conclude that
the system response is driven primarily by main effects. Otherwise,
the interactions can lead to unexpected effects on the responses.

For the VRjFAR = .01 response in the VV Left case, Fig. 5 shows
the relative importance of factors X2, X7, X3, X1, X8, and X4 in or-
der—see the blue circles on the diagonal. For the most important
factor X2, it is seen that there exists an interaction effect between
X1 (EyeAlg) and X2 (IQMetr)—see the non-parallel lines in the
X1X2 and X2X1. Similar cases are seen between X1 (EyeAlg) and
X3 (SegEye), and between X6 (FXMask) and X7 (SMsh)—see the
red circles on the off-diagonal.

The Interaction Effects Matrix plot for VRjFAR = .01 response
shows that almost all of the 2 � 28 plots have near-parallel traces
and hence do not interact—only three two-term interactions exist
with non-parallel lines out of 28:

(1) X1 and X2 (EyeAlg and IQMetr).
(2) X1 and X3 (EyeAlg and EyeSeg).
(3) X6 and X7 (FXMask and SMAlg).

Thus, only a few of the eight algorithmic factors are interacting
with one another to affect the VRjFAR = .01 VASIR matching perfor-
mance response.

Table 7 summarizes the results from all three responses interac-
tion effects analysis, one per response.
For this VV Left eye case, the X1X2 (EyeAlgIQMetr) interaction
occurred for all three responses and the X1X7 (EyeAlgSMAlg) inter-
action for only the VRjFAR = .10 and EER responses.

The most important interaction effects are between factor X1
(Eye position alignment) and X2 (Image quality metrics) for the
VASIR VV Left case. The interaction effects with factor X1 (EyeAlg)
appeared the most frequently, followed by X2 (IQMetr) and X7
(SMAlg). The results show that X3 (SegEye), X4 (NorRes), X5
(FXWLBW), X6 (FXMask), and X8 (SMsh) barely have any interac-
tion in the VASIR system.

Thus, we conclude that the VASIR system is a near-linear sys-
tem—driven by main effects with virtually little effect from interac-
tions. Such near-linearity suggests that algorithmic changes to
optimize a particular factor of interest are unlikely to influence the
effects of other algorithmic factors in the VASIR system (quasi-inde-
pendence)—note that this conclusion may change depending on
other remaining algorithmic factors and robustness conditions.

6.4. ROC (Receiver Operating Characteristic) curve

There are two common graphical procedures for assessing perfor-
mance of biometric systems; DET (Detection Error Tradeoff) and ROC
(Receiver Operating Characteristic). Because of its preponderance in
the biometrics literature, we choose to use the alternative ROC rep-
resentation for analyzing VASIR performance. ROC curve is a plot of
FAR (or FP) on the x-axis against VR (or TP) on the y-axis represented
parametrically as a function of the decision threshold [38]. In an
ideal system, the FAR should be low and the VR should be high.

We now address the question as to how good the optimal
settings are as compared to other possible settings for the VASIR
system. Fig. 6 illustrates the comparison between the best setting
(+1,�1,+1,+1,�1,�1,�2,+1) and the worst setting (�1,0,�1,�1,
+1,+1,+1,�1) (as obtained from the Main Effects plot analysis) by
plotting the corresponding ROC curves.

Based on the ROC curve, when the settings were changed from
worst (orange line) to best (green line), VR at FAR = .01 in VASIR’s
performance increased approximately 12.8%. EER decreased app-
roximately 9.2%.

These results show that factor settings do make a difference.
This also demonstrates the efficiency and the power of the orthog-
onal experiment design approach for setting, characterizing, and
optimizing multiple factors simultaneously.

7. Results

This section is a summary of the results for the factor effects,
most important to least important factors, optimal settings, and
performance improvement.

For this VV Left case, the ranked list of factors is (X2, X7, X3, X1,
X8, X4, X6, X5) of which six factors: X2 through X4 are statistically
significant; factors X6 and X5 are not statistically significant. Factor



Fig. 6. Comparisons of the VASIR’s best and worst settings for VV Left.
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X2 (IQMetr) is image quality metrics and factor X7 (SMAlg) is sim-
ilarity metrics—these are the two most important algorithmic fac-
tors affecting VASIR performance—this is robustly true over all
three responses. Factors X5 (FXWL: wavelength) and X6 (FXMask:
wavelet magnitude) are universally the least important factors for
the three responses. The overall improvement in the VRjFAR = .01
change from the worst to best settings of the eight factors was signif-
icant—VR at FAR = .01 in VASIR’s performance increased 12.8% and
EER decreased 9.2%. We demonstrated that the experiment design
we employed was very efficient and effective in determining which
factors are important, interaction effects, and optimal settings.

The eight algorithmic factors and our detailed findings that are
new and unexpected are as follows:

(1) X2 (IQMetr): Image quality metrics.

Out of the eight examined factors, factor X2 (IQMetr) was the
most important factor affecting VASIR performance for all three re-
sponses. Measuring image quality and then selecting the best qual-
ity image using quality metrics had a strong factor effect (e.g.,
effect = .041 at VRjFAR = .01) on VASIR’s performance responses,
and the effect was statistically significant. The three settings of IQ-
Metr consist of SOB (Sobel), CON (Contrast) and LoG (Laplacian of
Gaussian). SOB was introduced as a tool for face image quality
evaluation by Beveridge et al. [21,18], CON was first introduced
for general quality assessment by Albregtsen [25]; LoG was specif-
ically used for the iris image quality assessment by Wan et al. [40].
For this VV Left case, we found that the SOB setting led to the best
matching performance and was statistically different (better) than
the other two IQMetr settings: CON (second best) and LoG (worst).
The discrepancy between SOB and LoG is a bit surprising since both
the SOB and LoG approaches measure the focus based on edge-
based spatial domain metrics, while the CON approach measures
the contrast based on a GLCM (Gray Level Co-occurrence Matrix).
Hence, SOB gave the best results in our iris verification experi-
ments. Unexpectedly, contrast (CON) was (slightly) better than
the LoG operator. We also found that X2 (IQMetr) had significant
interactions with factor X1 (EyeAlg: Eye Position Alignment). As
expected, the best settings for the (EyeAlg, IQMetr) combination
was (ON, SOB) and the worst setting was (OFF, LoG).
(2) X7 (SMAlg): Similarity metrics.

The second most important factor affecting VASIR performance
was SMAlg (Similarity metric). The similarity metrics are impor-
tant (effect = .038 at VRjFAR = .01) and statistically significant.
The motivation for this factor is to identify one metric as best for
VASIR performance.

The four settings for SMAlg are HD (Hamming Distance), COR
(Correlation), COS (Cosine) and WED (Weighted Euclidean Dis-
tance). Interestingly, for the VRjFAR = .01 response, WED had
slightly better matching results than the other three metrics. On
the other hand, for both VRjFAR = .10 and EER responses, HD led
to much better matching performance than the other metrics. In
summary, HD had the best matching results, followed by COR,
WED, and COS. SMAlg had minor interactions with factor X1 (Eye-
Alg: Eye position alignment) and factor X6 (FXWL: Wavelet
magnitude).

(3) X3 (SegEye): Eyelids segmentation.

We found that the eyelids segmentation is an important factor
(effect = .026 at VRjFAR = .01) and statistically significant for all
three responses. This factor examines the effect of different algo-
rithms for eyelids segmentation. The two settings for SegEye are
‘‘Lines’’ and ‘‘Curves.’’ For all three responses, the use of two differ-
ent curves for segmenting the upper and lower eyelids led to a bet-
ter matching performance than the use of horizontal flat lines—this
was expected. This conclusion reaffirmed that VASIR’s eyelid seg-
mentation approach [11] has a significant improvement over Iris-
BEE’s approach [9,19]. The presence of parallel lines in the
Interaction Effect Matrix for factor SegEye with the other seven fac-
tors (apart from minor interaction with factor X1 [EyeAlg: Eye po-
sition alignment]) indicates no interaction effect; hence SegEye is
primarily driven by the main effect.

(4) X1 (EyeAlg): Eye position alignment.

Eye position alignment is also an important factor (effect = .020
at VRjFAR = .01) and statistically significant for all three responses.
This factor addresses the difficulty in iris recognition from rota-
tional differences between the target and query iris templates
caused by tilted/rotated head with various movements. The two
settings for EyeAlg are ON (correcting the inconsistency using an
eye position alignment algorithm) and OFF (not correcting the
inconsistency). VASIR had a better matching performance when
the system used the ON setting to correct the rotational inconsis-
tency between the two templates. EyeAlg had significant interac-
tions with factor X2 (IQMetr: Image quality metrics), X3 (EyeSeg:
Eyelids segmentation), and X7 (SMAlg: Similarity metrics). As ex-
pected, the best setting for the (EyeAlg, IQMetr, EyeSeg, SMAlg)
combination was (ON, SOB, Curves, HD) and the worst setting
was (OFF, LoG, Lines, COS).

(5) X8 (SMSh): Horizontal bit shifting for the HD_XorY
approach.

Horizontal bit shifting is important (effect = .017 at
VRjFAR = .01) and statistically significant. The motivation of this
factor is to correct rotational inconsistencies after normalizing
the target and query template. Masek [9] used 3 bits shifting for
left and right for the LEI [41] dataset and 8 bits for the CASIA
[42] dataset. IrisBEE used 10 bits shifting for the ICE2005 [19] data-
set. For VASIR, we examined the use of 5 and 10 bits shifting for the
MBGC video dataset. We found that 5 bits shifting had better
matching performance than 10 bits shifting across all three re-
sponses. Note that factor SMSh had no interaction with other fac-
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tors, hence this factor could be optimized independently without
adversely affecting other factors.

(6) X4 (NorRes): Radial resolution for normalization.

The last statistically significant factor is radial resolution (ef-
fect = .011 at VRjFAR = .01). This factor addresses the question as
to whether template size affects VASIR performance; the two set-
tings for NorRes are 20 px and 32 px. We found that the larger ra-
dius resolution (32 px) had a better matching performance than
the smaller resolution (20 px) across all three responses. NorRes
does not interact with other factors.

(7) X6 (FXMask): Wavelet magnitude.

Wavelet magnitude is unimportant (effect = .006 at
VRjFAR = .01) and statistically insignificant. This factor examines
the effect of declaring different levels (%) of important bits in the
iris template. The two settings of FXMask are 0.8 (80%) and 0.9
(90%). For the VV Left case, the 80% setting is slightly (but not sig-
nificantly) better than the setting 90% for all three VASIR’s re-
sponses. Note that FXMask has a minor interaction with X7
(SMAlg: Similarity metrics).

(8) X5 (FXWL): Wavelength.

The least important factor in our study is wavelength (ef-
fect = .003 at VRjFAR = .01)—it is statistically insignificant. This
factor examines the effect of varying the center frequency of the
Log-Gabor filter (for feature extraction) on VASIR performance.
The two settings of FXWL are 16 px and 18 px (the IrisBEE de-
fault). Our study found that 18px was slightly (but not signifi-
cantly) better than 16 px—the difference is negligible. Masek [9]
found that 18 px was also optimal for the CASIA dataset—
although the author stated that the optimal value can be attrib-
uted to the different imaging conditions of each dataset. On the
other hand, our orthogonal experiments showed that difference
in effect between 16 px and 18 px for MBGC video is insignificant.
In comparing our results to Masek’s results, two principal differ-
ences emerge: (1) the Masek experiment varied a few (one or
two) factors; the VASIR experiment varied k = 8 factors; and (2)
the VASIR experiment design allowed for the existence of interac-
tions. Both of these reasons support the contention that the VASIR
conclusions are more global and robust. FXWL had no interaction
effect with any other factors.
8. Conclusions

We introduced to the biometrics community a structured meth-
odology for sensitivity analysis to foster an understanding of the
key factors (parameters) in biometric systems.

This Sensitivity Analysis methodology consists of two compon-
ents:

(1) Experiment design in which we utilize efficient orthogonal
fractional factorial designs to estimate not only the k main

effects but also the k
2

� �
two-term interactions of a biometric

system.
(2) Graphical data analysis in which we utilize three proce-

dures: Main Effects plot, Ordered Data plot, and Interaction
Effects matrix to determine important factors, two-term
interactions, and optimal (local) settings.

To demonstrate the utility of this methodology, using the
MBGC distant-video dataset, we chose a (k = 8 factor, n = 384
run) (26�1) � (31) � (41) orthogonal fractional factorial experi-
ment design for our VASIR system—investigating eight algorithmic
factors (X1 to X8) to determine the most important, their optimal
settings, and the relative importance of the 28 two-term
interactions.

For this Video to Video (VV) Left eye case (the focus of this
paper), our experiments showed that the three most important
(see bold below) out of these eight algorithmic factors that we
studied in VASIR were X2 (IQMetr: Image quality metrics)
with factors X3 (SegEye: Eyelids segmentation) and X7 (SMAlg:
Similarity metrics) being next in importance. The least impor-
tant factors were X5 (FXWL: FX wavelength) and X6 (FXMask:
FX masking with magnitude). We found that the optimal
settings were (+1,�1,+1,+1,�1, +1,�2,+1) with details as
follows:

– X1 (EyeAlg): Eye position alignment (+1: ON),
– X2 (IQMetr): Image quality metrics (�1: Sobel operator [SOB]),
– X3 (SegEye): Eyelids segmentation (+1: Curves),
– X4 (NorRes): Radial resolution for normalization (+1: 32),
– X5 (FXWL): FX wavelength (�1: 18),
– X6 (FXMask): FX masking with magnitude (+1: 0.9),
– X7 (SMAlg): Similarity metrics (�2: Hamming distance [HD]),
– X8 (SMsh): Horizontal shifting number (+1: 5).

In order of decreasing importance, the statistically significant
factors that had an influence on VASIR performance were the six
factors (X2, X7, X3, X1, X8, and X4). On the other hand, factors
X5 and X6 were found to have barely any effect on VASIR’s overall
performance.

We found that some two-term interactions did in fact exist—
they involved factors X1 (EyeAlg) (primarily), X2 (IQMetr), and
X7 (SMAlg)—in particular, the X1 � X2 and X1 � X7 interactions
were found to be important. On the other hand, for our VV
Left eye case, we found that most of the interactions had minor ef-
fect on VASIR performance—hence the effect on performance of
VASIR’s algorithmic component was mostly additive and
independent. It is noteworthy that when the VASIR settings were
changed from worst to best, VASIR’s verification rate at FAR = .01
increased significantly (12.8%) and EER decreased significantly
(9.2%).

In summary, the choice of the image quality metric for select-
ing the best quality image in video had the strongest effect on
VASIR performance, followed by the choice of similarity metric.
Our data analysis also reaffirmed that eyelid segmentation was
important and that VASIR’s approach (Curves) had a significant
improvement over IrisBEE’s approach (Lines). Further, VASIR’s
two factors for correcting rotational difference due to head tilt
or subject movement (eye position alignment, Horizontal shift-
ing) were both important. It is of interest to note that comparing
across studies, we found that optimal value of bit shifting for
correcting inconsistency depended on the dataset (or the differ-
ent imaging conditions of the dataset). Finally, we found that the
larger radius size of the iris template had a better matching per-
formance than the smaller size. Given our eight algorithmic fac-
tors, we found that VASIR is a near-linear system; thus,
optimization of a particular factor is unlikely to influence the ef-
fects of the other algorithmic factors. We believe that the sensi-
tivity analysis methodology demonstrated herein can be applied
to other biometric systems.

Based on our study, opportunities for future research would
include as follows: (1) carrying out a follow-up experiment to
ascertain the robustness of our conclusions over other scenarios
(eye position (left/right), matching scenarios (VV: Video to Vi-
deo, VS: Video to Still, and SS: Still to Still); (2) replacement
of the two unimportant factors with other VASIR key algorithm
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factors; (3) reaffirming our conclusions by using larger datasets
(e.g., more videos and subjects); and (4) applying the same sen-
sitivity analysis methodology to simultaneously examine a con-
siderably larger (e.g., k = 20 factor) set of VASIR algorithmic
factors.

Disclaimer

The identification of any commercial product or trade name
does not imply endorsement or recommendation by the National
Institute of Standards and Technology (NIST).

Appendix A. The chosen eight algorithmic factors with their
multiple levels (marked with gray) and the remaining 30
factors with their fixed levels
Appendix B. (26�1) � (31) � (41) orthogonal fractional factorial
design matrix for eight algorithmic factors in VASIR
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