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Abstract

We propose a novel dictionary-based learning method
for ambiguously labeled multiclass classification, where
each training sample has multiple labels and only one of
them is the correct label. The dictionary learning prob-
lem is solved using an iterative alternating algorithm. At
each iteration of the algorithm, two alternating steps are
performed: a confidence update and a dictionary update.
The confidence of each sample is defined as the probabil-
ity distribution on its ambiguous labels. The dictionaries
are updated using either soft (EM-based) or hard decision
rules. Extensive evaluations on existing datasets demon-
strate that the proposed method performs significantly bet-
ter than state-of-the-art ambiguously labeled learning ap-
proaches.

1. Introduction
In many practical image and video applications, one has

access only to ambiguously labeled data. For example,
given a picture with multiple faces and a caption specify-
ing who are in the picture, the reader may not know which
face goes with the names in the caption. The problem of
learning identities where each example is associated with
multiple labels, when only one of which is correct is often
known as ambiguously labeled learning.

Several papers have been published in the literature that
address the ambiguous label problem. In [13], a discrim-
inative framework was proposed based on the Expectation
Maximization (EM) algorithm [8], with a maximum likeli-
hood approach to disambiguate the correct labels from in-
correct ones. A semi-supervised dictionary-based learning
method was proposed in [18] under the formulation where
there are either labeled samples or totally unlabeled sam-
ples available for training. The method iteratively estimates
the confidence of unlabeled samples belonging to each class
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and uses it to refine the learned dictionaries. In [5] and [6], a
method was presented to determine the label using a multi-
linear classifier that minimizes a convex loss function. The
loss function used in [5] and [6] was shown to be a tighter
convex upper bound on the 0/1 loss function when com-
pared to an un-normalized ‘naive’ method that treats each
example as if it took on multiple correct labels. Several
non-parametric, instance-based algorithms for partially la-
beled learning were proposed in [12].

In recent years, sparse and redundant signal represen-
tations have generated interest in image processing, vision
and machine learning communities. This is due in part to
the fact that objects and images of interest can be repre-
sented sparsely in an appropriately chosen dictionary. We
say a signal x is sparse in dictionary D if it can be approxi-
mated by x = Dt, where t is a sparse vector and D is a dic-
tionary that contains atoms as its columns. The dictionary
D can be analytic such as a redundant Gabor dictionary or
it can be trained directly from data. It has been observed
that learning a dictionary directly from training data rather
than using a predetermined dictionary usually leads to bet-
ter representation. Thus, learned dictionaries generally have
superior results in many practical image processing applica-
tions such as restoration and classification. This has moti-
vated researchers to develop dictionary learning algorithms
for supervised [15], [11], [17], [14], [16], semi-supervised
[18] and unsupervised [20], [4], [9] learning. In this paper,
we consider a dictionary learning problem where each train-
ing sample is provided with a set of possible labels and only
one label among them is the true one. We develop dictio-
nary learning algorithms that process ambiguously labeled
data.

Fig. 1(a) shows the block diagram of the proposed dic-
tionary learning method. Given ambiguously labeled train-
ing samples (e.g. faces), the algorithm consists of two main
steps: confidence update and dictionary update. The con-
fidence for each sample is defined as the probability distri-
bution on its ambiguous labels. In the confidence update
phase, the confidence is updated for each sample according
to its residuals when the sample is projected onto different
class dictionaries. Then, the dictionary is updated using a
fixed confidence. In the testing stage, a novel test image is
projected onto the span of the atoms in each learned dictio-
nary. The resulting residual is then used for classification.
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Figure 1. The proposed dictionary learning method. (a) Block diagram. (b) An illustration of how common label samples are collected to
learn intermediate dictionaries, which are used to update the confidence for sample xi.

Our paper makes the following contributions:
1. We propose a dictionary-based learning method when
ambiguously labeled data are provided for training.
2. We present two effective approaches for updating the
dictionary.
3. We show that our dictionary learning with soft decision
rule is an EM-based dictionary learning method.
4. We propose a weighted K-SVD [1] algorithm to weigh
the importance of samples according to their confidences
during the learning process.

2. Dictionary Learning from Ambiguously La-
beled Data

Let L = {(xi, Li), i = 1, . . . , N} be the training
data. Here xi denotes the ith training sample, Li ⊂
{1, 2, . . . ,K} the corresponding multiple label set, and N
the number of training samples. There are a total of K
classes. The true label zi of the ith training sample is in
the multi-label set Li. Let xi ∈ Rd denote the lexicograph-
ically ordered vector representing the sample xi. For each
feature vector xi and for each class j, we define a latent
variable pi,j , which represents the confidence of xi belong-
ing to the jth class. By definition, we have

∑
j pi,j = 1,

and

pi,j = 0 if j ̸∈ Li, i = 1, . . . , N,

pi,j ∈ (0, 1] if j ∈ Li, i = 1, . . . , N. (1)

Let P be the confidence matrix with entry pi,j in the i-
th row and j-th column. Define Cj to be the collection
of samples in class j represented as a matrix and C =
[C1,C2, · · · ,CK ] be the concatenation of all samples from
different classes. Similarly, let Dj be the dictionary that is

learned from the data in Cj and D = [D1,D2, · · · ,DK ]
be the concatenation of all dictionaries. Equipped with the
above notation, the problem we study can be formally stated
as follows:

For each feature vector available during training, we are
given a set of labels, only one of which is correct. Given this
ambiguously labeled data, how can one learn dictionaries
to represent each class?

We solve the dictionary learning problem using an iter-
ative alternating algorithm. At each iteration, two major
steps are performed: confidence update and dictionary up-
date. We demonstrate that both soft and hard decision rules
produce robust dictionaries.

2.1. The Dictionary Learning Hard Decision ap­
proach

The dictionary learning hard decision (DLHD) approach
learns dictionaries directly from class matrices1, {Ci}Ki=1,
that are determined using a hard decision for class labels for
each sample xi by selecting the classes with the maximum
pi,c among all c’s belonging to Li. One iteration of the
algorithm consists of the following stages.

Confidence Update: We use the notation D(t),P(t) to de-
note the dictionary matrix and confidence matrix respec-
tively, in the tth iteration. Keeping the dictionary D(t)

fixed, the confidence of a feature vector belonging to classes
outside its label set is fixed at 0 and is not updated. To
update the confidence of a sample belonging to classes in
its label set, we first make the observation that a sample

1We refer to class matrices and clusters interchangeably.



xi which is well represented by the dictionary of class j,
should have high confidence. In other words, the confidence
of a sample xi belonging to a class j should be inversely
proportional to the reconstruction error that results when xi

is projected onto Dj . This can be done by updating the
confidence matrix P(t) as follows

p
(t)
i,j =

β
(t)
j exp

(
− e

(t)
ij

2σ
(t)
j

)
∑

k∈Li
β
(t)
k exp

(
− e

(t)
ik

2σ
(t)
k

) , (2)

where β
(t)
j and σ

(t)
j are parameters (given in section 2.3),

and
e
(t)
ij = ∥xi −D

(t)
j D

(t)
j xi∥22 (3)

is the reconstruction error, when xi is projected onto

D
(t)
j , ∀j ∈ Li and D

(t)
j , ((D

(t)
j )TD

(t)
j )−1(D

(t)
j )T is the

pseudo-inverse of D(t)
j . As shown in section 2.3, we derive

(2) under the assumption that the likelihood of each sample
xi is a mixture of Gaussian densities, and β

(t)
j is the weight

associated with the density of label j.

Cluster Update:2 Once the confidence matrix P(t) is up-
dated, we use it to update the class matrix C(t+1). For each
training sample xi, we assign it to the class ji which gives
the maximum confidence. That is,

ji = argmax
k∈Li

p
(t)
i,k. (4)

Dictionary Update: The updated class matrices C(t+1) are
then used to train class-specific dictionaries. Given a class
matrix C

(t+1)
j , we seek a dictionary D

(t+1)
j that provides

the sparsest representation for each example feature in this
matrix, by solving the following optimization problem

(D
(t+1)
j ,Γ

(t+1)
j ) = argmin

D,Γ
∥C(t+1)

j −DΓ∥2F ,

subject to ∥γi∥0 ≤ T0, ∀i, (5)

where γi represents the ith column of Γ, C(t+1)
j has a ma-

trix representation whose columns are feature vectors as-
signed to the j-th class at iteration (t + 1), and T0 is the
sparsity parameter. Here, ∥·∥F denotes the Frobenius norm.
Many approaches have been proposed in the literature for
solving such optimization problem. In this paper, we adapt
the K-SVD algorithm [1] for solving (5) due to its simplic-
ity and fast convergence. The K-SVD algorithm alternates
between sparse-coding and dictionary update steps. In the
sparse-coding step, D is fixed and the representation vec-
tors γis are found for the i-th column in C

(t+1)
j . Then, the

2This step is necessary only for the DLHD approach.

dictionary is updated atom-by-atom in an efficient way. The
entire approach for learning dictionaries from ambiguously
labeled data using hard decisions is summarized in Algo-
rithm 1.

Algorithm 1: Iteratively learning dictionaries using hard
decision and updating confidence.

Input: Training samples L = {(xi, Li)} and initial dictionaries
D(0) = [D

(0)
1 |D

(0)
2 | . . . |D

(0)
K ].

Output: Dictionary D∗ = [D∗
1|D∗

2| . . . |D∗
K ].

Algorithm:
1. Repeat the following steps to refine the confidence until the
maximum iteration number Tc is reached:

1.1 Confidence Update: For each feature vector xi, calculate the
residuals e(t)ij using (3). Then use e

(t)
ij to update confidence

p
(t)
i,j using (2).

1.2 Cluster Update: Assign each feature vector xi to C
(t+1)

ji

according to (4).

1.3 Dictionary Update: When the class assignment for all xi’s
is completed, build dictionary D

(t+1)
j from

C
(t+1)
j , ∀j ∈ {1, 2, . . . ,K} using the K-SVD algorithm

and obtain D(t+1) = [D
(t+1)
1 |D(t+1)

2 | . . . |D(t+1)
K ].

2. Return D∗ = D(Tc), where Tc is the iteration number at
which the learning algorithm converges.

2.2. The Dictionary Learning Soft Decision ap­
proach

The dictionary learning soft decision (DLSD) approach
learns dictionaries that are used to update the confidence for
each sample xi, based on the weighted distribution of other
samples that share the same candidate label belonging to
Li. The weighted distribution of other samples sharing a
given candidate label c is computed through the normaliza-
tion of all pl,c’s with l ̸= i. In what follows, we describe the
different steps of the algorithm.

Confidence Update: In this step, given the intermediate
dictionary D(t),i learned from the previous iteration for
each sample xi, we calculate the residuals e(t),iijl

using D
(t),i
jl

for all jl in Li as

e
(t),i
ijl

= ∥xi −D
(t),i
jl

D
(t),i
jl

xi∥22. (6)

We then use (2) to update the confidence p
(t)
i,jl

, with e
(t)
ij

replaced by e
(t),i
ijl

.

Dictionary Update: In this step, the confidence matrix P(t)

is given. For each xi, we build the intermediate dictionar-
ies for all labels in Li = {j1, j2, . . . j|Li|}. In particular, we
learn D(t+1),i = [D

(t+1),i
j1

|D(t+1),i
j2

| . . . |D(t+1),i
j|Li|

], where



each D
(t+1),i
jl

is built using the soft decision rules and sam-

ples xl’s, where l ̸= i and p
(t+1)
l,jl

> 0. Fig. 1(b) shows an
example of how these common ambiguous label samples
are collected to learn the intermediate dictionaries D(t+1),i

jl
.

The cell marked with ‘×’ at the (i, j) entry indicates a non-
zero p

(t)
i,j . All the other empty cells indicate zero confidence.

As shown in this example, only samples corresponding to
green and blue cells are used to learn D

(t+1),i
j1

and D
(t+1),i
j2

,
respectively. To learn the intermediate dictionaries for xi,
exclusion of xi (corresponding to red cells) is necessary to
enhance discriminative learning. Let {xim}N(i,jl)

m=1 be the
collection of these samples. Its matrix form is denoted by
Y = [y1 y2... yN(i,jl)], where ym, m ∈ {1, . . . , N(i, jl)},
is a column vectorized form of some collected sample xim .
Let w = [w1 w2... wN(i,jl)] = [p

(t)
i1,jl

p
(t)
i2,jl

... p
(t)
iN(i,jl)

,jl
],

where the weight wm reflects the relative amount of contri-
bution from xim when learning the dictionary. The objec-
tive of the weighted K-SVD algorithm can then be formu-
lated as

[D
(t+1),i
jl

Γ
(t+1),i
jl

] = argmin
D,Γ

N(i,jl)∑
m=1

wm∥ym −Dγm∥22,

subject to ∥γm∥0 ≤ T0, ∀m,

= argmin
D,Γ

∥(Y −DΓ)W∥2F ,

subject to ∥γm∥0 ≤ T0, ∀m, (7)

where W is a square weighting matrix with its diagonal
filled with {√wm}N(i,jl)

m=1 , and zeros elsewhere. One can
solve the above weighted optimization problem by modify-
ing the K-SVD algorithm as follows:

• Sparse Coding Stage: For m = 1, 2, . . . , N(i, jl),
compute γm for ym by solving

min
γ

∥(ym −Dγ)
√
wm∥22, subject to ∥γ∥0 ≤ T0.

• Codebook Update Stage: This step remains the same
as the original K-SVD algorithm except that the over-
all error representation matrix Ek is changed to Ek =
(Y−

∑
j ̸=k djγ

j
T )W, where dj is the j-th column of

D and γj
T is the j-th row of Γ found in the previous

sparse coding stage.

After Tc soft decision iterations, for each training sam-
ple, we assign the label with the maximum confidence. The
labeled class matrices are used to learn the final dictionary
D∗ = D(Tc) = [D

(Tc)
1 |D(Tc)

2 | . . . |D(Tc)
K ] via the K-SVD

algorithm. This step is the same as 1.2 and 1.3 in Algo-
rithm 1 with t set equal to Tc. The entire DLSD approach
is summarized in Algorithm 2.

Algorithm 2: Iteratively learning dictionaries using soft de-
cision and updating confidence.

Input: Training samples L = {(xi, Li)}.
Output: Dictionary D∗ = [D∗

1|D∗
2| . . . |D∗

K ].
Algorithm:

1. Repeat the following iterations to refine confidence until the
maximum iteration number Tc is reached:

1.1 Confidence Update: Use (6) to calculate residuals
e
(t),i
ijl

, ∀jl ∈ Li. Then, use e
(t)
ijl

to update confidence

p
(t)
i,jl

by (2) to obtain the confidence matrix P(t+1).

1.2 Dictionary Update: Based on P(t), do the following for
each xi with Li = {j1, j2, . . . j|Li|}: Construct the

weighting matrix W and use (7) to build D
(t+1),i
jl

from
which the dictionary

D(t+1),i = [D
(t+1),i
j1

|D(t+1),i
j2

| . . . |D(t+1),i
j|Li|

]

is obtained.

2. When t = Tc, follow 1.2 and 1.3 in Algorithm 1 to build the
final dictionary D∗ = D

(Tc)
c .

2.3. DLSD is an EM­based approach

The proposed DLSD is indeed an EM [2][7][3] dictio-
nary learning approach. In particular, to find D(t+1),i given
xi and D(t),i, in the E-step we first compute the following
conditional expectation

E
[
log p({xl}Nl=1,l ̸=i, {Zl}Nl=1,l ̸=i|Di)|xi,D(t),i

]
, (8)

where Zl is the random variable that corresponds to the
true label zl of the observed sample xl. We assume the
likelihood of sample xl given Di is a mixture of Gaussian
densities expressed by p(xl|Di) =

∑K
j=1 αjpj(xl|Di

j),
where α′

js are normalized weights associated with the den-
sity of label j′s with

∑K
j=1 αj = 1, and pj(xl|Di

j) =

1√
2πσj

exp
(
−∥xl−Di

jγl∥
2
2

2σj

)
for some σj . Moreover, γl is

a coefficient vector for representing xl using Di
j . For inde-

pendent x′
ls, it can be shown that (8) equals

K∑
j=1

N∑
l=1,l ̸=i

p
(t)
l,j

(
log(αj) + log(pj(xl|Di

j))
)
, (9)

where

p
(t)
l,j , p(Zl = j|xl,D

(t),i) =
αjpj(xl|D(t),i

j )∑K
k=1 αkpk(xl|D(t),i

k )
.

(10)
In the M-step, we maximize (9) by finding α(t+1) ,

[α
(t+1)
1 , ..., α

(t+1)
K ] and D(t+1),i = [D

(t+1),i
1 |...|D(t+1),i

K ]



such that

α(t+1) = argmax
α=[α1,α2,...,αK ]

K∑
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l,j log(αj),
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N∑
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(t)
l,j log(αj), ∀j, (11)

D(t+1),i = argmax
D=[Di

1|Di
2|...|Di

K ]

K∑
j=1

N∑
l=1,l ̸=i
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jγl∥22, ∀j ∈ {1, ...,K},

= argmin
Di
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N(i,jl)∑
m=1

wm∥ym −Di
jl
γm∥22, ∀jl ∈ Li.

(12)

The optimization problem in (12) can be solved by the
weighted K-SVD algorithm in (7). σ

(t+1)
jl

can be approx-

imated by the average residual over {ym}N(i,jl)
m=1 . That is,

σ
(t+1)
jl

= 1
η(i,jl)

∑N(i,jl)
m=1 wm∥ym−D

(t+1),i
jl

γm∥22, ∀jl ∈ Li,

where η(i, jl) =
∑N(i,jl)

m=1 wm. Moreover, as αjl sums to
one over jl, (11) leads to α

(t+1)
jl

= η(i,jl)
N(i,jl)

. We then com-

pute β
(t+1)
jl

=
α

(t+1)
jl√

2πσ
(t+1)
jl

, and update p
(t+1)
i,jl

by (2).

2.4. Determining initial dictionaries

The performance of both DLSD and DLHD will depend
on the initial dictionaries as they determine how well the
final dictionaries are learned through successive alternating
iterations. As a result, initializing our method with proper
dictionaries is critical. In this section, we propose an algo-
rithm that uses both ambiguous labels and features to deter-
mine the initial dictionaries.

For the i-th sample, we initialize the corresponding row
of P uniformly for all j ∈ Li. Hence,

P(0) ,
[
p
(0)
i,j

]
, where p

(0)
i,j =

1

|Li|
, if j ∈ Li, i = 1, . . . , N.

At iteration t = 0, we build dictionaries for the sample xi,
denoted by D(0),i = [D

(0),i
j1

|D(0),i
j2

| . . . |D(0),i
j|Li|

], where the

intermediate dictionary D
(0),i
jk

is learned from samples other

than xi with ambiguous label jk ∈ Li. These samples are
collected in the same way as described in section 2.2. Next,
xi is assigned to class ĵi such that it gives the lowest resid-
ual. In other words,

ĵi = argmin
jk∈Li

∥xi −D
(0),i
jk

D
(0),i
jk

xi∥22. (13)

Initial clusters are obtained after the class assignment for
all samples is completed. Each initial dictionary is then
learned from the corresponding cluster using the K-SVD
algorithm [1]. We summarize this initialization approach in
Algorithm 3.

Algorithm 3: Using initial confidence to learn initial dic-
tionaries.

Input: Training samples L = {(xi, Li)} and the initial confidence,
P(0).

Output: Initial dictionaries D(0) = [D
(0)
1 |D

(0)
2 | . . . |D

(0)
K ].

Algorithm:
1. Initialization: i← 1; C(0)

j ←{}, ∀j ∈ {1, 2, . . . ,K}.
2. Repeat the following for every xi:

2.1 Construct D(0),i = [D
(0),i
j1
|D(0),i

j2
| . . . |D(0),i

j|Li|
], where

D
(0),i
jk

is built from xl’s such that l ̸= i.

2.2 Augment C(0)

ĵi
with xi, where ĵi is obtained from (13).

3. Establish initial dictionaries
D(0) = [D

(0)
1 |D

(0)
2 | . . . |D

(0)
K ], where D

(0)
j is learned from

C
(0)
j using the K-SVD algorithm.

Note that our method is very different from the approach
of learning dictionaries from partially labeled data [18]. The
work in [18] learns class discriminative dictionaries while
our work learns class reconstructive dictionaries. In addi-
tion, from the formulation in [18] we see there are either
labeled samples or totally unlabeled samples available for
training. In contrast, in our formulation, all samples are am-
biguously labeled according to three controlled parameters.
In fact, formulations in [18] and [20] (for totally unlabeled
samples) are special cases of the ambiguously labeled for-
mulation presented in this paper.

3. Experiments
To evaluate the performance of our dictionary method,

we performed two sets of experiments defined in [5][6]: in-
ductive experiments and transductive experiments. We re-
port the average test error rates (for inductive experiments)
and the average labeling error rates (for transductive exper-
iments), which were computed over 5 trials.

In an inductive experiment, samples are split in half into
a training set and a test set. Each sample in the training set
is ambiguously labeled according to controlled parameters,
while each sample in the test set is unlabeled. In each trial,
using the learned dictionaries from the training set, the test



error rate is calculated as the ratio of the number of test
samples that are erroneously labeled, to the total number of
test samples. In a transductive experiment, all samples with
ambiguous labels are used to train the dictionaries. In each
trial, the labeling error rate is calculated as the ratio of the
number of training samples that are erroneously labeled, to
the total number of training samples.

Following the notations in [6], the controlled parameters
are: p (proportion of ambiguously labeled samples), q (the
number of extra labels for each ambiguously labeled sam-
ple) and ϵ (the degree of ambiguity - the maximum proba-
bility of an extra label co-occurring with a true label, over
all labels and inputs [6]). We selected the following three
datasets for the performance evaluations: Labeled Faces in
the Wild (LFW) [10], CMU PIE dataset [19] and TV series
‘LOST’ dataset [6].

3.1. Labeled Faces in the Wild dataset

The LFW database [10] was originally designed to ad-
dress pairwise matching problems. Cropped and resized im-
ages of the LFW database were provided by the authors of
[6]. In our experiment, we use one of the resulting subsets,
FIW(10b), a balanced subset which contains the first 50 im-
ages for each of the top 10 most frequent subjects [6]. Fig.
2(a) shows this dataset, where faces of the same subject are
shown in one row. We resized each image to 55×45 pixels,
and took the histogram equalized column-vector (2475×1)
as input features. Figures 3(a) and (b) show average test
error rates (for inductive experiments) of the proposed dic-
tionary method (DLHD and DLSD) versus p and ϵ, respec-
tively. For comparison, in the same figure we show the av-
erage test error rates of the other existing baseline methods
3 reported in [5], [6]. Both dictionary methods are compa-
rable to the Convex Learning from Partial Labels (CLPL)
method (denoted as ‘mean’) [6]. Fig. 3(c) shows the aver-
age labeling error rates (for transductive experiments) ver-
sus q curves. The DLHD method outperforms the other
compared methods when the number of extra labels is less
than or equal to 5. The DLSD approach gives slightly better
performance than the DLHD approach.

3.2. CMU PIE dataset

The PIE dataset was designed for addressing illumina-
tion and pose challenges. The dataset contains 21 images
under varying illumination conditions of 68 subjects. We
took the first 18 subjects for our experiments and the result-
ing dataset is shown in Fig. 2(b), where each row presents
images of the same subject under various illumination con-
ditions. All images are resized to 48×40 and projected onto
a 181-dimension subspace that is spanned by the 5th to the

3As definitions of these baselines can be found in [5], [6], these defini-
tions are not described again here due to space limitation.

185th eigenvectors obtained through the principle compo-
nent analysis (PCA). Figures 4(a) and (b) show the average
labeling error rates versus p and q in transductive experi-
ments. We compare the proposed method with the CLPL
method (denoted as (‘mean’) and ‘naive’ methods) [5], [6]
4. Clearly, when either p or q is zero in transductive ex-
periments, there exist no ambiguous labels and hence the
labeling errors are zero. In Fig. 4(a), all compared meth-
ods provides good labeling performances. When 95% of
samples are ambiguously labeled, the lowest average error
labeling rate, 0.05%, is achieved by the DLSD approach.
As shown in Fig. 4(b), both DLHD and DLSD outperform
other compared methods for all values of extra labels.

3.3. TV series ‘LOST’ dataset

We obtained the cropped face images of TV series
‘LOST’ provided by the authors of [6]. The original dataset
contains 1122 registered face images across 14 subjects,
and each subject contains from 18 up to 204 face images.
In our experiment, we chose 12 subjects with at least 25
faces images per subject and for each chosen subject, we
collected his/her first 25 face images. We resized each im-
age to 30 × 30 pixels, and took the histogram equalized
column-vector (900 × 1) as input features. Fig. 4(c) show
the average labeling error rates versus p curves in transduc-
tive experiments. It is observed that when 95% of samples
are ambiguously labeled, DLSD achieves the lowest error
labeling rate, of 14.33%.

3.4. Discussions

To explain the performance gain of our dictionary learn-
ing approach, in Fig. 4, we show curves of two addi-
tional baseline methods: ‘no dictionary learning (DL)’ and
‘equally-weighted K-SVD’. The ‘no DL’ method utilizes
features and ambiguous labels only, without learning dictio-
naries. This baseline collects for each class c, all its possible
samples (i.e, xi’s with p

(t)
i,c > 0) at each iteration t, and uses

them directly as a set of basis atoms. The ‘equally-weighted
K-SVD’ method contrasts the DLSD method by simply us-
ing equal weights among possible samples of each label for
dictionary learning. In other words, it ignores the weight
matrix W in (7) and learns dictionaries by the standard
K-SVD algorithm. Reconstruction errors for both baseline
methods are computed using the same ℓ2 norm as in (6)
to update the confidence. These figures show that the ‘no
DL’ method was not able to obtain satisfactory results. The
‘equally-weighted K-SVD’ method did not perform as well
as DLHD and DLSD. In particular, the performance degra-
dation of the ‘equally-weighted K-SVD’ method highlights
the importance of W computed from the DLSD method.

4We obtained the code for CLPL (‘mean’) and ‘naive’ methods from
http://www.timotheecour.com/. Both the ‘naive’ method and
the normalized ‘naive’ method [13] give very similar results [6].



(a)

(b)
Figure 2. (a) FIW(10b) 10-class dataset. (b) CMU PIE 18-class dataset - left: first 9 classes, right: second 9 classes. In each dataset, face
images belonging to the same class are shown in a row.
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(a) (b) (c)
Figure 3. Performance of the proposed dictionary methods and other baselines [5], [6] on the LFW dataset. (a) Average test error rates
versus the proportion of ambiguously labeled samples (p ∈ [0, 0.95], q = 2, inductive). (b) Average test error rates versus the degree of
ambiguity for each ambiguously labeled sample (p = 1, q = 1, ϵ ∈ [1/(L− 1), 1], inductive). (c) Average labeling error rates versus the
number of extra labels for each ambiguously labeled sample (p = 1, q ∈ [0, 1, ..., 9], transductive). The proposed dictionary methods are
comparable to the CLPL method (‘mean’).
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Figure 4. Performance of the proposed dictionary methods, two baseline methods (no dictionary learning - ‘no DL’, and standard K-SVD -
‘equally-weighted K-SVD’), CLPL (‘mean’) and ‘naive’ methods [5], [6] on transductive experiments. (a) and (c) Average labeling error
rates versus the proportion of ambiguously labeled samples (p ∈ [0, 0.95], q = 2) on the PIE and LOST datasets, respectively. (b) Average
labeling error rates versus the number of extra labels for each ambiguously labeled sample (p = 1, q ∈ [0, 1, ..., 9]) on the PIE dataset.



Comparing DLHD and DLSD, we observe that DLHD per-
forms not as well as the DLSD in that the hard-threshold
confidence in DLHD is locally constrained, and hence it
may not give the global optimal W for the dictionary learn-
ing. In addition, while the state-of-the-art CLPL (‘mean’)
method may be sensitive to face images with certain within-
class variation due to illumination changes (e.g., in Fig.
2(b), (c)) and noise, the learned dictionary atoms in our
method are able to account for these variations to some de-
gree. Therefore, the performance of our dictionary-based
approach is better than those of the CLPL (‘mean’) and
other compared baseline methods.

Moreover, in order to examine the updates of the con-
fidence matrices, in Fig. 5, we further show the initial (at
t = 0) and updated (using DLSD at t = 20) confidence ma-
trices corresponding to this experiment, where samples and
labels are indexed vertically and horizontally, respectively.
Without any prior knowledge, ambiguously labeled samples
have equally probable initial confidences. At t = 20, we
observe that the updated confidences for most samples tend
to converge as they become impulse-shape where the confi-
dence value is 1 for one label, and zero for the other labels.
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Figure 5. Initial and updated confidence matrices on the TV series
‘LOST’ (12-class) dataset. (a) Initial confidence, P(0). (b) P(20)

(using DLSD at t = 20).

4. Conclusion
We have extended the dictionary learning to the case of

ambiguously labeled learning, where each example is sup-
plied with multiple labels, only one of which is correct.
The proposed method iteratively estimates the confidence of
samples belonging to each of the classes and uses it to refine
the learned dictionaries. Experiments using three publicly
available datasets demonstrate the improved accuracy of the
proposed method compared to state-of-the-art ambiguously
labeled learning techniques.
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