

Combinatorial Coverage Measurement Concepts and Applications

D. Richard Kuhn1, Itzel Dominguez Mendoza2, Raghu N. Kacker1, Yu Lei3

1 National Institute of 2Centro Nacional de Metrologia 3Computer Science and
Standards and Technology Santiago de Querétaro, Engineering

Gaithersburg, MD 20899, USA Mexico Univ. of Texas
{kuhn, raghu.kacker}@nist.gov itzel.dominguezmendoza@nist.gov Arlington, TX, USA

ylei@uta.edu

Abstract—Empirical data demonstrate the value of t-way
coverage, but in some testing situations, it is not practical to
use covering arrays. However any set of tests covers at least
some proportion of t-way combinations. This paper describes a
variety of measures of combinatorial coverage that can be used
in evaluating aspects of t-way coverage of a test suite. We also
provide lower bounds on t-way coverage of several widely-used
testing strategies, and describe a tool that analyzes test suites
using the measures discussed in the paper.

Keywords-component; combinatorial testing; factor covering
array; state-space coverage; verification and validation (V&V); t-
way testing; configuration model; t-way testing;

I. INTRODUCTION

It is not always practical to re-design an
organization’s testing procedures to use tests based on
covering arrays. Testing practices often develop over time,
and employees have extensive experience with a particular
approach. Units of the organization may be structured
around established, documented test methods. This is
particularly true in organizations that must test according to
contractual requirements or regulatory standards. And
because much software assurance involves testing
applications that have been modified to meet new
specifications, an extensive library of legacy tests may exist.
The organization can save time and money by re-using
existing tests, which may not have been developed as factor
covering arrays.

Short of creating new test suites from scratch, one
approach to obtaining the advantages of combinatorial
testing is to measure the combinatorial coverage of existing
tests, then supplement as needed. Depending on the budget
and criticality of the software, 2-way through 5-way or 6
way testing may be appropriate. Building covering arrays
for some specified level of t is one way to provide t-way
coverage. However, many large test suites naturally cover a
high percentage of t-way combinations. If an existing test
suite covers almost all 3-way combinations, for example,
then it may be sufficient for the level of assurance that is
required. Determining the level of input or configuration
state space coverage can also help in understanding the
degree of risk that remains after testing. (In the remainder
of the paper, the term “state space” may refer to either input
or configuration space, since coverage measures apply to
both.) If 90% - 100% of the relevant state space has been

covered, then risk is likely to be smaller than would remain
after testing that covers a much smaller portion of the state
space.

This paper describes a set of measures of combinatorial
coverage [1][2] and illustrates how these measures can be
used in evaluating and comparing test suites or test
strategies. We prove certain properties of coverage for
various test strategies in the case where all parameters have
the same number of values, and show how the measurement
tool can be used to analyze test sets with mixed level
parameters and constraints.

II. COMBINATORIAL COVERAGE

Of the total number of t-way combinations for a given
collection of variables, what percentage will be covered by
the test set? If the test set is a covering array, then coverage
is 100%, by definition, but many test sets not based on
covering arrays may still provide significant t-way
coverage. If the test set is large, but not designed as a
covering array, it is possible that it provides 2-way coverage
or better. For example, random input generation may
produce tests covering a high proportion of combinations
[3]. In addition to evaluating structural metrics such as
statement or branch coverage, for software assurance it
would be helpful to know what percentage of 2-way, 3-way,
etc. coverage has been obtained. The fault detection
effectiveness of combinatorial testing clearly depends on
tests covering t-way combinations [4][5], but not necessarily
on the method of producing the tests.

Definition. Variable-value configuration: For a set of t
variables, a variable-value configuration is a set of t valid
values, one for each of the variables.

Example. Given four binary variables a, b, c, and d, for a
selection of three variables a, c, and d the set {a=0, c=1,
d=0} is a variable-value configuration, and the set {a=1,
c=1, d=0} is a different variable-value configuration.

Definition. Simple t-way combination coverage: For a
given test set for n variables, simple t-way combination
coverage is the proportion of t-way combinations of n
variables for which all valid variable-values configurations
are fully covered. In this and related definitions, “valid”
configurations are those which are determined by user

defined constraints to be relevant to the test problem, i.e.,
those that are not excluded by constraints. Not considered
in this paper are mixed-strength arrays, where some subsets
of variables may be covered to different strengths than
others.

Example. Table I shows an example with four binary
variables, a, b, c, and d, where each row represents a
test. Of the six possible 2-way variable combinations, ab,
ac, ad, bc, bd, cd, only bd and cd have all four binary values
covered, so simple 2-way coverage for the four tests in
Table 1 is 1/3 = 33.3%. There are four 3-way variable
combinations, abc, abd, acd, bcd, each with eight possible
configurations: 000, 001, 010, 011, 100, 101, 110, 111. Of
the four combinations, none has all eight configurations
covered, so simple 3-way coverage for this test set is 0%.
As shown later, test sets may provide strong coverage for
some measures even if simple combinatorial coverage is
very low.

TABLE I. TEST ARRAY WITH FOUR BINARY COMPONENTS

a b c d
0 0 0 0
0 1 1 0
1 0 0 1
0 1 1 1

A test set that provides 100% simple combinatorial
coverage for t-way combinations will also provide some
degree of coverage for (t+1)-way combinations, (t+2)-way
combinations, etc. For some applications, it may be useful
to break out the coverage for t+k, for a particular level of k.

Definition. (t + k)-way simple combination coverage: For a
given test set that provides 100% simple t-way coverage for
n variables, (t+k)-way simple combination coverage is the
proportion of valid (t+k)-way combinations of n variables
for which all variable-value configurations are fully
covered.

Simple t-way coverage measures the proportion of
combinations of variables for which all configurations of t
variables are fully covered. But when t variables with v
values each are considered, each t-tuple has v t possible
variable-value configurations. For example, in pairwise (2
way) coverage of binary variables, every 2-way
combination has four configurations: 00, 01, 10, 11. We
can define some measures with respect to such variable-
value configurations. These measures may be more
significant for fault detection than simple coverage.

Definition. Total variable-value configuration coverage:
For a given combination of t variables, total variable-value
configuration coverage is the proportion of variable-value
configurations that are covered by at least one test case in a
test set. This measure may also be referred to as total t-way
coverage.

For total (t+k)-way coverage where k = 1, Chen and Zhang
[6] have proposed the tuple density metric. A special
metric for (t+1)-way coverage is useful because (1) the
coverage of higher strength tuples for t’ > t+1 is much lower
(because the number of t-way combinations to be covered
grows exponentially with t), (2) the coverage at t+1 provides
some information for coverage at t’ > t+1 because (t+1)-way
tuples are subsumed by higher strength tuples, and (3) the
number of additional faults triggered by t-way combinations
drops rapidly with t > 2 [4].

Definition. Tuple Density: Sum of t and the fraction of the
covered (t+1)-tuples out of all possible (t+1)-tuples [6].

A related measure is (p,t)-completeness:

Definition. (p, t)-completeness: For a given set of n
variables, (p, t)-completeness is the proportion of valid
combinations that have configuration coverage of at least p
[7].

TABLE II. COVERAGE OF TEST SET IN TABLE I.

Vars Configurations covered Config coverage
a b 00, 01,10 .75
a c 00, 01, 10 .75
a d 00, 01, 11 .75
b c 00, 11 .50
b d 00, 01, 10, 11 1.0
c d 00, 01, 10, 11 1.0

simple 2-way coverage = 2/6 = 0.333
total 2-way coverage = 19/24 = 0.791
(.50, 2)-completeness = 6/6 = 1.0
(.75, 2)-completeness = 5/6 = 0.833
(1.0, 2)-completeness = 2/6 = 0.333

Example. For Table 1 above, there are C(4, 2) = 6 possible
variable combinations and C(4, 2) × 22 = 24 possible
variable-value configurations, where C(n,t) is the number of
combinations of n things taken t at a time, or “n choose
t”. Of these, 19 variable-value configurations are covered
and the only ones missing are ab=11, ac=11, ad=10, bc=01,
bc=10. But only two, bd and cd, are covered with all 4
value pairs. So for the basic definition of simple t-way
coverage, we have only 33% (2/6) coverage, but 79%
(19/24) for the total variable-value configuration coverage
metric. For a better understanding of this test set, we can
compute the configuration coverage for each of the six
variable combinations, as shown in Table 1. So for this test
set, one of the combinations (bc) is covered at the 50%
level, three (ab, ac, ad) are covered at the 75% level, and
two (bd, cd) are covered at the 100% level. And, as noted
above, for the whole set of tests, 79% of variable-value
configurations are covered. All 2-way combinations have at
least 50% configuration coverage, so (.50, 2)-completeness
for this set of tests is 100%.

Although the example in Table 1 uses variables with the
same number of values, this is not essential for the
measurement, and the same approach can be used to
compute coverage for test sets in which parameters have
differing numbers of values.

The graph in Figure 1 shows a graphical display of the
coverage data for the tests in Table 1. Coverage is given as
the Y axis (ordinate), with the percentage of combinations
reaching a particular coverage level as the X axis (abscissa).
Note from Fig. 1 that all of the six 2-way combinations are
covered to at least the .50 level, 83% are covered to the .75
level or higher, and a third have 100% of value
configurations covered. Thus the rightmost horizontal line
on the graph corresponds to the smallest coverage value
from the test set, in this case 50%.

Figure 1. Graph of coverage from test data

The symbol Φ in Figure 1 indicates the proportion of
combinations with 100% variable-value coverage, and Μ
indicates the minimum proportion of coverage for all t-way
variable combinations. In this case 33% (Φ) of the variable
combinations have full variable-value coverage, and all
variable combinations are covered to at least the 50% level
(Μ). Note that Φ is the level of simple t-way coverage.
Since all variable combinations are covered to at least the
level of Μ, we will refer to Μ as the “t-way minimum
coverage”, keeping in mind that “coverage” refers to a
proportion of variable-value configuration values. Where
the value of t is not clear from the context, these measures
are designated Φt and Μt. Using these terms we can analyze
the relationship between total variable-value configuration
coverage, t-way minimum coverage and simple t-way
coverage.

Let St = total variable-value coverage, the proportion of
variable-value configurations that are covered by at least
one test. If the area of the entire graph is 1(i.e., 100% of
combinations), then

St ≥ 1 - (1- Φt)(1- Μt)
St ≥ Φt + Μt – Φt Μt

If a test suite has only one test, then it covers C(n, t)
combinations. The total number of combinations that must
be covered is C(n,t) × v t, so the coverage of one test is 1/v t .

tThus, Μt ≥ 1/v > 0.

Example. The methods described in this paper were
originally developed to analyze the input space coverage of
spacecraft software [7]. A very thorough set of over 7,000
tests had been developed for each of three systems. At that
time combinatorial coverage was not the goal. With such a
large test suite, it seemed likely that a huge number of
combinations had been covered, but how many? Did these
tests provide 2-way, 3-way, or even higher degree
coverage? If an existing test suite is relatively thorough, it
may be practical to supplement it with a few additional tests
to bring coverage up to the desired level.

(1) (2)

Figure 2. Configuration coverage for 132754262 inputs.

The original test suites had been developed to
verify correct system behavior in normal operation as well
as a variety of fault scenarios, and performance tests were
also included. Careful analysis and engineering judgment
were used to prepare the original tests, but the test suite was
not designed according to criteria such as statement or
branch coverage. The system was relatively large, with the

13275426282 variable configuration (three 1-value, 75
binary, two 4-value, and two 6-value). Figure 2. shows
combinatorial coverage for this system (red = 2-way, blue =
3-way, green = 4-way). This particular test set was not a
covering array, but pairwise coverage is still relatively good,
because 82% of the 2-way combinations have 100% of
possible variable-value configurations covered (1) and about
98% of the 2-way combinations have at least 75% of
possible variable-value configurations covered (2).

III. ANALYSIS OF TEST STRATEGIES

These coverage metrics can be used to analyze various
testing strategies by measuring the combinatorial coverage
they provide. To illustrate this type of analysis, some
examples are discussed in this section. The objective here is
to understand the coverage aspects of test strategies, to aid
testers in choosing among them or in determining additional
tests that may be needed. For example, if no errors have
been found with testing up to a certain level of t, how likely
is it that (t+1)-way combinations will detect a fault?
Measuring the level of total variable-value coverage for t+1
will show what proportion of (t+1)-way combinations have
been covered so far, which may help in deciding whether to
run a full (t+1)-way covering array. For example, if we
have already covered more than 75% of the combinations at
the next level of t, it may not be cost-effective to do
additional testing. In addition to these practical
considerations, this type of analysis helps to explain why
some test strategies are effective.

A. All Values

Consider the t-way coverage from one of the most basic test
criteria, all-values, also called “each-choice”. This strategy
requires that every parameter value be covered at least once.
If all parameters have the same number of values, v, then
only v tests are needed to cover all. Test 1 has all parameters
set to their first values, Test 2 to their second values, and so
on. If parameters have different numbers of values, where
p1 .. pn have vi values each, the number of tests required is at
least Maxi=1,n vi.

Example: If there are three values, 0, 1, and 2, for five
parameters, then 0,0,0,0,0; 1,1,1,1,1; and 2,2,2,2,2 will test
all values once. As shown above, each test covers 1/v t of
the variable-value configurations, and no combination
appears in more than one test, so with v values per
parameter and thus v tests, we have

Μt (all-values) ≥ v 1 = 1
t t−1v v

Therefore, for the all-values criterion, where all values are
t-1covered at least once, minimum coverage Μ ≥ 1/v . We

can also reach this result by noting that each test covers C(n,
t) combinations, so with v values the proportion of

t t-1 combinations covered is vC(n,t)/C(n,t)v = 1/v . This
relationship can be seen in Figure 3. which shows coverage
for two tests with ten binary variables; 2-way minimum
coverage = .5, and 3-way coverage = .25.

Figure 3. t-way coverage, 2 tests with binary values.

Base Choice

Base-choice testing [8] requires that every
parameter value be covered at least once and in a test in
which all the other values are held constant. Each parameter
has one or more values designated as base choices. The base
choices can be arbitrary, but can also be selected as “special
interest” values, e.g., default values, or values that are used
most often in operation. If parameters have different
numbers of values, where p1 .. pn have vi values each, the
number of tests required is at least 1 + Σ i=1,n (vi -1), or where
all n parameters have the same number of values v, the
number of tests is 1+n(v-1). An example is shown below in
Table III, with four binary parameters.

TABLE III. BASE CHOICE TESTS FOR 24 CONFIGURATION

a b c d
base: 0 0 0 0
test 2 1 0 0 0
test 3 0 1 0 0
test 4 0 0 1 0
test 5 0 0 0 1

The base choice strategy can be highly effective, despite its
simplicity. In one study of five programs seeded with 128
faults [10], it was found that “although the Base Choice
strategy requires fewer test cases than Orthogonal Arrays
and AETG, it found as many faults.” In that study, AETG
[9] was used to generate 2-way (pairwise) test arrays. We
can use combinatorial coverage measurement to help
understand this finding. For this example of analyzing base
choice, we will consider n parameters with 2 values each.
First, note that the base test in which each parameter takes
its base choice covers C(n, t) combinations, so for pairwise
testing this is C(n, 2) = n(n-1)/2. Changing a single value of
the base test to something else will cover n-1 new pairs (in
our example, ab, ac, and ad have new values in test 2, while
bc and bd are unchanged). This must be done for each
parameter, so we will have the original base test
combinations plus n(n-1) additional combinations. The total

number of 2-way combinations is C(n, 2) × 22, so for n
binary parameters:

Μt = n(n −1) / 2 + n(n −1)

C(n,2)22

C(n,2) + 2C(n,2)=
C(n,2)22

= 3/4.

Figure 4. 2-way coverage for test set in Table III.

This can be seen in the graph in Figure 4. of coverage for
Table III. Note that the 75% coverage level is independent
of n.

This equation can be generalized to higher interaction
strengths. Base choice testing requires n(v-1) additional
tests beyond the initial one, so for any n, t with n ≥ t

C(n,t) + n(v −1)C(n −1,t −1)Μt (base-choice) =
C(n,t)vt

1+ t(v −1)=
tv

B. Modified condition decision coverage

Modified condition decision coverage (MCDC) is a test
strategy required by the US Federal Aviation
Administration for life critical software [11]. It is
important to emphasize that MCDC is a coverage criterion
for test suites normally applied to an entire program. In the
analysis below, we analyze test sets with respect to one
expression at a time. This analysis helps to explain why
MCDC is effective. In practical applications, an MCDC test
set applied to an entire program would be likely to have
better combinatorial coverage than the results for individual
expressions shown below.

MCDC Lower Bounds
An exhaustive analysis of all Boolean expressions of up to
six variables has shown [11] that of n+1 tests can provide
MCDC coverage for nearly all expressions, where n is the
number of variables involved in a Boolean expression. A
natural question to ask is then, what level of combinatorial

coverage is provided by MCDC tests? This question can be
addressed in two ways, by empirical data on combinatorial
coverage for MCDC test sets, and by evaluating the MCDC
test construction using methods described in NISTIR 7878.
Shown below is one result on minimum coverage from
MCDC tests, followed by data on combinatorial coverage of
MCDC test sets for various numbers of variables.

An MCDC test set is constructed with independence pairs,
where the boolean expression being tested evaluates to 0 for
one test in the pair and to 1 for the other test. Because there
are n+1 tests in the test set, the independence pairs overlap,
such that each test belongs to an independence pair for two
variables. An example is shown in Table IV [12]. Tests 0
and 1 are the pair showing independent effect of a, 1 and 2
for b, 2 and 3 for d, and 3 and 4 for c. Note that only the
variable concerned changes value between the two tests of a
pair, which changes the value of the expression and thus
shows the effect of that particular variable or condition.
(MCDC can be applied either to boolean variables or to
conditions that evaluate to true/false.)

In the unique-cause form of MCDC, it must be shown that
the expression changes value as one variable value is
switched while others remain fixed. For example,
(a+b)(c+d) = 1 for the first test. Changing the value of a
from 1 to 0 while other values remain fixed causes the
expression to evaluate to 0. In this manner, one of the n
variables is changed with each additional test, for a total of
n+1 tests.

TABLE IV. (A+B)(C+D)

a b c d (a+b)(c+d)

Test0 1 0 0 1 1

Test1 0 0 0 1 0

Test2 0 1 0 1 1

Test3 0 1 0 0 0

Test4 0 1 1 0 1

We can now show the following:

Theorem 1. If an MCDC test set exists for an expression,
1+ ttotal combinatorial coverage for unique-cause tests =
2 t

.
Proof: Choose one test arbitrarily as the base test. The base
test, test0, contains n variables with Boolean values v01..v0n.
The base test, test0, covers C(n,t) t-way combinations. With
a total of n+1 tests, there are n tests in addition to the base
test. Because MCDC requires that all variables take on both
values, the negation of the base test values, v̅ ̅0n01..v must
appear in one other of the additional tests, of which there are
n. To construct test 1, MCDC requires that one variable
value is changed while others held fixed, which will

increase the number of covered combinations by n-1 pairs or
C(n-1,t-1) t-way combinations. Continuing in this manner
for each of the n variables adds a total of n×C(n-1,t-1)
combinations covered to the initial coverage of C(n,t), so

C(n, t) + nC (n −1, t −1)coverage St =
C(n, t)2t

1+ t=
2t

□

Another definition of MCDC, masking MCDC,
“allows any number of conditions to change so long as only
the condition of interest has influence on the outcome of the
expression” [11]. Masking MCDC is easier to satisfy,
because there is more flexibility in the choice of values for
the variables or conditions. For example, consider values in
columns of an MCDC test set (see Figure 5.), where each
row is a test and each column gives values for a particular
variable. For each t-way combination of variables, test 0
has one set of values, v01..v0t. An independence pair of tests
must exist for each parameter to show that changing that
value of the parameter also changes the value of the
expression, and that the particular parameter has
independent effect on the expression value. Thus if the
expression has value z for test0, there must be another test, i,
such that parameter p1 has value v01 and the expression has
value z̅ . Similarly for p2 there must be a third test, j, such
that p2 has value vi2 and the expression value switches back
to z. Thus for any pair of parameters there are at least three
distinct value pairs on at least three rows: v01, v02 in test 0,
v01,vi2 in test i, and vi2, vi* in some other row j, where * is
any of the other parameters ≠ p2. Similarly there are at least
t+1 t-way combinations on t+1 rows for any t parameters.

p1 p2 . . .

Test0 v01 v02 . . .

.. . .

Testi v̅ 01 vi2 . . .

. . .

Testj vj1 v̅ i2 . . .

. . .

Figure 5. MCDC tests.

Theorem 2. With the masking form of MCDC, coverage
may exceed that for unique-cause form, so in general,

1+ t
MCDC total coverage ≥

2t
.

Proof: Because masking MCDC does not require all values
other than the parameter under consideration to remain
fixed, there may be more than t+1 distinct combinations.
Therefore because there are 2t possible combination settings

for t parameters, the proportion of total coverage is at least
1+ t . □
2t

MCDC Coverage Upper Bound
We can easily derive an upper bound on combinatorial
coverage by noting that each test covers C(n,t)
combinations, so with n+1 tests the proportion of covered
combinations is at most

(n +1)C(n,t) n +1
=

2t C(n,t) 2t

Note that if n+1 < 2t, then the number of tests is insufficient
to cover all 2t values for any t parameters, so Φt = 0. So for

t +1 n +1MCDC total combinatorial coverage St, .≤ S ≤
t t t2 2

C. (t+1)-way Coverage

A t-way covering array by definition provides
100% coverage at strength t, but it also covers some (t+1)
way combinations (assuming n ≥ t+1). Given a t-way
covering array, we know that any combination of t
parameters is fully covered in some set of tests. Joining
any other parameter with any combination of t parameters in
the tests will give a (t+1)-way combination, which has v t+1

possible settings. For any set of tests covering all t-way
combinations, the proportion of (t+1)-way combinations
covered is thus v t/v t+1, so if we designate total (t+1)-way
variable-value configuration coverage as St+1, then St+1 ≥
1/v, for any t-way covering array with n ≥ t+1.

For practical testing, this observation means that when v
is small, we may gain a lot of efficiency by extending a t-
way test suite to t+1, rather than re-run a (t+1)-way test suite
from scratch. For example, with binary variables, if we have
run a 3-way covering array then we have tested half of the
4-way combinations as well. With a mixed-level array, a
coverage measurement tool will be needed to identify the
level of t-way coverage achieved.

Clearly, where Φ t+1 = (t+1)-way full variable-value
configuration coverage, if N < v t+1, then Φ t+1 = 0, for any t-
way covering array with n ≥ t+1 where N = number of tests.
For many levels of t and v encountered in practical testing,
this condition will hold. For example, if v=3, then a 2-way
covering array with less than 33=27 tests can be computed
(using IPOG-F) for any test problem with less than 60
parameters. So Φ = 0 for 3-way coverage for this example.
Alternatively, note that if N > v t+1 then Φ t+1 may exceed 0.
For example, with n = 360 parameters, t = 2, Φ t+1 = 0.002,
for a covering array of 39 tests computed by ACTS. In this
case, Φt+1 is low despite 360 parameters, but with 39 tests,
13,233 of C(360,3)=7,711,320 3-way variable combinations
are covered with all 27 values purely by chance.

D. Very Large Covering Arrays

Covering array construction is a difficult problem
[13], but good algorithms are available now for many or
most practical testing applications [14][15][16][17][18].
However, for applications with hundreds of parameters, the
most commonly used algorithms require long computation
times, or may not complete at all. This is particularly true
for higher-strength coverage, above 3-way. The
Combinatorial Coverage Measurement (CCM) tool is
currently being used to evaluate coverage for a problem
with 358 factors, in a 2352324152141 design. Test arrays are
generated randomly, then evaluated using CCM and tests
supplemented to provide an adequate level of coverage
(generally exceeding 98%) up to 6-way. Random test
generation is trivial and completes in less than 1 second, and
CCM evaluation times range from seconds to several hours
for higher strength levels.

Figure 6. Coverage for 70 tests, 2352324152141 design

IV. COVERAGE MEASUREMENT TOOL

Measures described above have been implemented in a
feature-rich tool, Combinatorial Coverage Measurement
(CCM), which is designed to handle large files with mixed
level parameters and constraints. The input file is a comma-
separated values (CSV) file where each row is a test and
each column represents a parameter. Constraints can be
specified at the beginning of the input file, or through a
graphical user interface. Coverage measurements can be
displayed as graphs or heat maps, and detailed reports
generated. An option allows for test sets to be automatically
supplemented with additional tests to bring coverage up to a
specified level (may be less than 100% if desired to reduce
test set size). Combinations that are not covered in the input
test set can be exported for post-processing. CCM has the
ability to automatically detect parameter values for discrete

values, or the user may define equivalence classes for
continuous-value parameters. Input test files can be very
large, limited only by system resources, and the tool has
been applied to test sets with up to 625 binary parameters on
a basic laptop with dual-core processor and 8 GB of
memory.

A. Features

The main screen contains controls to load the file containing
the set test; it will show the result of the measurement and
charts.

If all tests and parameters in the input file should be loaded,
just click on “Load input file” and select the test file to be
analyzed. If just some tests or parameters are needed, before
loading the input file, the number of tests and parameters
should be specified using the numeric fields above on the
left and pressing “Set number of tests and parameters”.
Note that if all tests are to be loaded, it is not necessary to
set the number of tests and parameters, provided that
parameters have values (no more than as indicated by the
“Max values per parameter” field). The tool will read in all
tests and discover parameter values that will be used in the
measurement process. The tool can also process continuous-
valued parameters such as account balances, distances, or
others with a large range of possible values. See the
“Specifying boundaries” discussion below. The parameters
and their values are shown; they can be modified specifying
boundaries, and adding or removing values. Clicking in a
column will show the values below in order to be modified.

Figure 7. CCM main screen

Figure 8. CCM parameter data screen.

Charts display coverage measurements described previously
and may be saved to an image file. After the file loads,
coverage measures may be computed by clicking on the
appropriate button.

Figure 9. CCM coverage report screen.

B. Boundaries and continuous-value parameters

For continuous-valued parameters, equivalence classes
are specified by indicating the number of value classes and
boundaries between the classes. Boundaries may include
decimal values. Where the boundary between two classes c1

and c2 is x, the system places input values < x into c1 and
values ≥ x in c2.

Figure 11. CCM range variable boundaries.

Figure 10. CCM coverage chart.

Figure 12. CCM constraint screen.

C. Constraints

Constraints may be included in the input file or entered
interactively. Each line will be considered a separated
constraint. The image below shows an example of an input
file with constraints. The first two lines are the constraints;
followed by the tests, where each column corresponds to a
parameter.

Figure 13. CCM input file layout.

The constraints are shown in the main window, if no
constraints are specified in the input file, they can be added
interactively either by typing or selecting operators from the
tool bar. Three types of operators can be used: (1)
Boolean operators including &&, ||, =>; (2)
Relational operators including =, !=, >, <, >=, <=; and (3)
Arithmetic operators including +, -, *, /, %.

In addition to incorporating constraints in computing
measures, the tool will identify any tests that do not satisfy
the specified constriants. The following syntax can be used
to specify constraints:

<Constraint> ::= <Simple_Constraint>
| <Constraint> <Boolean_Op> <Constraint>

<Simple_Constraint> ::= <Term> <Relational_Op> <Term>
<Term> := <Parameter>

| <Parameter> <Arithmetic_Op> <Parameter>
| <Parameter> <Arithmetic_Op> <Value>

<Boolean_Op> := “!” | “&&” | “||” | “=>”
<Relational_Op> := “=” | “!=” | “>” | “<” | “>=” | “<=”
<Arithmetic_Op>:= “+” | “-” | “*” | “/” | “%”

<Value> := <Integer_Value> | <Boolean_Value> | <Enum_Value>

Constraint handling is implemented using an open
source constraint solver called Choco [19]. Choco is used to
determine if a test satisfies all constraints by converting this
check to a constraint satisfaction problem. Choco is
designed to handle arbitrary constraint objects, so test
parameters are encoded into this form before invoking the
constraint solver. The Choco solver is an independent
module as used in CCM, and could be replaced by a
different constraint solver.

D. Invalid Combinations

The invalid combinations will be shown if constraints
are specified. If any coverage measurement has been
specified, the invalid combinations will be generated. When
all the invalid combinations have been generated they will
be shown in a CCM window. Combinations determined to
be invalid by constraints should not appear in the test set, so
these are identified by marking in the leftmost column of the
display as shown below.

Figure 14. CCM constraint syntax.

Examples of constraints that can be specified include:

•	 (P1 = “Windows”)=>(P2 = “IE” || P2 = “FireFox”

|| P2 = “Netscape”) , where P1 is a parameter for OS
and P2 is a parameter for Browser. If OS is Windows,
then Browser must be IE, FireFox, or Netscape.

•	 (P1 > 100) || (P2 > 100) , where P1 and P2 are two
parameters of type Number or Range. P1 or P2 must be
greater than 100.

•	 (P1 > P2)=>(P3 > P4) , where P1, P2, P3, and P4 are
parameters of type Number or Range. If P1 is greater
than P2, then P3 must be greater than P4.

Figure 15. CCM invalid combinations screen.

A report may be produced that will include the following
quantities:
•	 Total invalid combinations: Number of all invalid

combinations based on possible parameter values and
constraints specified.

•	 Invalid combinations in set test: Number of invalid
combinations that occur in the set test.

V. RELATED WORK

Although relatively new, combinatorial coverage
has been discussed in some earlier papers. Some of the
concepts discussed in this paper were introduced in [7],
which also included an application of an early version of the
tool to the analysis of large test suites; additional

measurement concepts were covered in [2]. A NIST tech
report [1] extended this work to include the measures
described in Sect. II. Tuple density is described by [6].

Also relevant are methods and tools for extending an
array to provide t-way coverage. This problem was
considered in [20], and several currently available covering
array generators provide the capability, including PICT [21]
and ACTS [13]. A significant difference with these tools is
that they evaluate only whether all variable-value
configurations are covered for each combination, which we
have referred to as simple t-way coverage. The measures
introduced in this paper can thus be considered to provide a
more “fine grained” set of combinatorial coverage
measures.

VI. CONCLUSIONS

An extensive body of empirical work shows that
combinatorial testing can be a very efficient component of
software assurance. The key aspect of combinatorial
methods is to cover t-way combinations sufficiently well to
detect faults, but it is not essential that tests be generated as
covering arrays. Although covering arrays are generally the
most compact way of achieving t-way coverage, they are
not always practical. For example, regulations or
contractual requirements may specify a particular type of
testing, such as MCDC, or existing test sets may be used to
reduce cost. In such circumstances, it may be desirable to
compute the t-way coverage provided by the test set. CCM
is an easy to use, practical tool to compute combinatorial
coverage, which accommodates parameter constraints and
mixed level variables.

The most basic measure is simple combinatorial coverage
– the proportion of combinations for which t-way coverage
is achieved. A more useful measure is total coverage – the
proportion of t-way combination settings covered. A test set
may have a relatively low level of simple coverage despite
good total coverage, such as the example in Table I, in
which only 33% of the 2-way combinations were covered
but total coverage exceeded 79%. Using CCM to measure
total combinatorial coverage for a test set, then
supplementing tests to achieve a desired level of coverage,
can provide strong interaction testing in situations where
practical considerations rule out construction of tests from
scratch using covering arrays.

REFERENCES

[1]	 D.R. Kuhn, R. Kacker, Y. Lei. Combinatorial Coverage
Measurement, NIST IR 7878, Sept. 2012.
http://dx.doi.org/10.6028/NIST.IR.7878

[2]	 Kuhn, D. R., Kacker, R. N., & Lei, Y. (2010). Practical combinatorial
testing. NIST Special Publication, 800, 142.

[3]	 A. Arcuri, L. Briand, "Formal Analysis of the Probability of
Interaction Fault Detection Using Random Testing," IEEE Trans.
Software Engineering, 18 Aug. 2011. IEEE Computer Society,
http://doi.ieeecomputersociety.org/10.1109/TSE.2011.85

[4]	 D.R. Kuhn, D.R. Wallace, Jr. A.M. Gallo, Software fault interactions
and implications for software testing, Software Engineering, IEEE
Transactions on, 2004

[5]	 D.R. Kuhn, M.J. Reilly. An investigation of the applicability of
design of experiments to software testing. Proceedings of 27th
NASA/IEEE Software Engineering Workshop, Greenbelt, Maryland,
2002; 91–95.

[6]	 B. Chen, J. Zhang, Tuple Density: A New Metric for Combinatorial
Test Suites, Proceedings of the 33rd International Conference on
Software Engineering, ICSE 2011, Waikiki, Honolulu , HI, USA,
May 21-28, 2011. ACM 2011, ISBN 978-1-4503-0445-0

[7]	 J.R. Maximoff, M.D. Trela, D.R. Kuhn, R. Kacker, “A Method for
Analyzing System State-space Coverage within a t-Wise Testing
Framework”, IEEE International Systems Conference 2010, Apr. 4
11, 2010, San Diego.

[8]	 Ammann, P. E. & Offutt, A. J. (1994). Using formal methods to
derive test frames in category-partition testing, Proc. Ninth Annual
Conf. Computer Assurance (COMPASS'94),Gaithersburg MD, IEEE
Computer Society Press, pp. 69-80.

[9]	 D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Patton. The
AETG system: An approach to testing based on combinatorial design.
IEEE Transactions On Software Engineering, 23(7):437–444, 1997.

[10] M. Grindal, J. Offutt, S.F. Andler, Combination Testing Strategies: a
Survey, Software Testing, Verification, and Reliability, v. 15, 2005,
pp. 167-199.

[11] J.	 J. Chilenski, An Investigation of Three Forms of the Modified
Condition Decision Coverage (MCDC) Criterion, Report
DOT/FAA/AR-01/18, April 2001, 214 pp.

[12] Hayhurst, K. J., Veerhusen, D. S., Chilenski, J. J., & Rierson, L. K.
(2001). A practical tutorial on modified condition/decision coverage.
National Aeronautics and Space Administration, Langley Research
Center, p. 74.

, p. , p. 74 74 [13] Y.	 Lei, R. Kacker, D.R. Kuhn, V. Okun, J. Lawrence, IPOG: a
General Strategy for t-way Software Testing, Proc., IEEE
Engineering of Computer Based Systems 2007, pp. 549 – 556.

[14] R.	 Bryce, C.J. Colbourn. The Density Algorithm for Pairwise
Interaction Testing, Journal of Software Testing, Verification and
Reliability, August 2007

[15] Bryce,	 R. C.J. Colbourn, M.B. Cohen. A Framework of Greedy
Methods for Constructing Interaction Tests. The 27th International
Conference on Software Engineering (ICSE), St. Louis, Missouri,
pages 146-155. (May 2005).

[16] M.	 B. Cohen, C. J. Colbourn, P. B. Gibbons, W. B. Mugridge,
Constructing test suites for interaction testing. Proceedings of 25th
IEEE International Conference on Software Engineering, 2003.

[17] Charles	 J. Colbourn , Myra B. Cohen, A Deterministic Density
Algorithm for Pairwise Interaction Coverage, Proc. of the IASTED
Intl. Conference on Software Engineering, 2004

[18] Pairwise Testing Home Page: http://pairwise.org

[19] The	 Choco Constraint Solver, http://www.emn.fr/z-info/choco
solver/index.html.

[20] A. Hartman and L. Raskin. Problems and Algorithms for Covering
Arrays. Discrete Mathematics, 284(1-3):149–156, 2004.

[21] J. Czerwonka, “Pairwise testing in real world: Practical extensions
to test case generator”, Proceedings of 24th Pacific Northwest
Software Quality Conference, October 9–11, 2006, Portland, Oregon,
USA, pp. 419–430, (2006).

Note: Identification of certain commercial products in this article
does not imply recommendation by NIST, nor does it imply that the
products identified are necessarily the best available for the
purpose.

http://www.emn.fr/z-info/choco
http:http://pairwise.org
http://doi.ieeecomputersociety.org/10.1109/TSE.2011.85
http://dx.doi.org/10.6028/NIST.IR.7878

