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Abstract—Empirical data demonstrate the value of t-way 
coverage, but in some testing situations, it is not practical to 
use covering arrays. However any set of tests covers at least 
some proportion of t-way combinations. This paper describes a 
variety of measures of combinatorial coverage that can be used 
in evaluating aspects of t-way coverage of a test suite. We also 
provide lower bounds on t-way coverage of several widely-used 
testing strategies, and describe a tool that analyzes test suites 
using the measures discussed in the paper. 

Keywords-component; combinatorial testing; factor covering 
array; state-space coverage; verification and validation (V&V); t-
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I. INTRODUCTION 

It is not always practical to re-design an 
organization’s testing procedures to use tests based on 
covering arrays. Testing practices often develop over time, 
and employees have extensive experience with a particular 
approach. Units of the organization may be structured 
around established, documented test methods. This is 
particularly true in organizations that must test according to 
contractual requirements or regulatory standards. And 
because much software assurance involves testing 
applications that have been modified to meet new 
specifications, an extensive library of legacy tests may exist. 
The organization can save time and money by re-using 
existing tests, which may not have been developed as factor 
covering arrays. 

Short of creating new test suites from scratch, one 
approach to obtaining the advantages of combinatorial 
testing is to measure the combinatorial coverage of existing 
tests, then supplement as needed. Depending on the budget 
and criticality of the software, 2-way through 5-way or 6
way testing may be appropriate. Building covering arrays 
for some specified level of t is one way to provide t-way 
coverage. However, many large test suites naturally cover a 
high percentage of t-way combinations. If an existing test 
suite covers almost all 3-way combinations, for example, 
then it may be sufficient for the level of assurance that is 
required. Determining the level of input or configuration 
state space coverage can also help in understanding the 
degree of risk that remains after testing. (In the remainder 
of the paper, the term “state space” may refer to either input 
or configuration space, since coverage measures apply to 
both.) If 90% - 100% of the relevant state space has been 

covered, then risk is likely to be smaller than would remain 
after testing that covers a much smaller portion of the state 
space. 

This paper describes a set of measures of combinatorial 
coverage [1][2] and illustrates how these measures can be 
used in evaluating and comparing test suites or test 
strategies. We prove certain properties of coverage for 
various test strategies in the case where all parameters have 
the same number of values, and show how the measurement 
tool can be used to analyze test sets with mixed level 
parameters and constraints. 

II. COMBINATORIAL COVERAGE 

Of the total number of t-way combinations for a given 
collection of variables, what percentage will be covered by 
the test set? If the test set is a covering array, then coverage 
is 100%, by definition, but many test sets not based on 
covering arrays may still provide significant t-way 
coverage. If the test set is large, but not designed as a 
covering array, it is possible that it provides 2-way coverage 
or better. For example, random input generation may 
produce tests covering a high proportion of combinations 
[3]. In addition to evaluating structural metrics such as 
statement or branch coverage, for software assurance it 
would be helpful to know what percentage of 2-way, 3-way, 
etc. coverage has been obtained. The fault detection 
effectiveness of combinatorial testing clearly depends on 
tests covering t-way combinations [4][5], but not necessarily 
on the method of producing the tests. 

Definition. Variable-value configuration: For a set of t 
variables, a variable-value configuration is a set of t valid 
values, one for each of the variables. 

Example. Given four binary variables a, b, c, and d, for a 
selection of three variables a, c, and d the set {a=0, c=1, 
d=0} is a variable-value configuration, and the set {a=1, 
c=1, d=0} is a different variable-value configuration. 

Definition. Simple t-way combination coverage: For a 
given test set for n variables, simple t-way combination 
coverage is the proportion of t-way combinations of n 
variables for which all valid variable-values configurations 
are fully covered. In this and related definitions, “valid” 
configurations are those which are determined by user



          
          

         
         

   
 

          
           

          
              

          
            

         
            

        
            

          
        

   

         

    
    
    
    
    

 
        

        
       

          
              

          
          

        
        

       
   

             
         

           
         

       
       

          
        

        
        

 
      

         
       
            

             
  

           
           

          
            
          

          
          
          

        
       

            
        

 
       

 
          

        
         

  

          

     
     
      
       
     
       
       

 
           

           
                   
                   
                   

 
             

          
        

            
         
          

             
           

         
       
            

         
            

           
            

              
          

         
       

         
  

defined constraints to be relevant to the test problem, i.e., 
those that are not excluded by constraints. Not considered 
in this paper are mixed-strength arrays, where some subsets 
of variables may be covered to different strengths than 
others. 

Example. Table I shows an example with four binary 
variables, a, b, c, and d, where each row represents a 
test. Of the six possible 2-way variable combinations, ab, 
ac, ad, bc, bd, cd, only bd and cd have all four binary values 
covered, so simple 2-way coverage for the four tests in 
Table 1 is 1/3 = 33.3%. There are four 3-way variable 
combinations, abc, abd, acd, bcd, each with eight possible 
configurations: 000, 001, 010, 011, 100, 101, 110, 111. Of 
the four combinations, none has all eight configurations 
covered, so simple 3-way coverage for this test set is 0%. 
As shown later, test sets may provide strong coverage for 
some measures even if simple combinatorial coverage is 
very low. 

TABLE I. TEST ARRAY WITH FOUR BINARY COMPONENTS 

a b c d 
0 0 0 0 
0 1 1 0 
1 0 0 1 
0 1 1 1 

A test set that provides 100% simple combinatorial 
coverage for t-way combinations will also provide some 
degree of coverage for (t+1)-way combinations, (t+2)-way 
combinations, etc. For some applications, it may be useful 
to break out the coverage for t+k, for a particular level of k. 

Definition. (t + k)-way simple combination coverage: For a 
given test set that provides 100% simple t-way coverage for 
n variables, (t+k)-way simple combination coverage is the 
proportion of valid (t+k)-way combinations of n variables 
for which all variable-value configurations are fully 
covered. 

Simple t-way coverage measures the proportion of 
combinations of variables for which all configurations of t 
variables are fully covered. But when t variables with v 
values each are considered, each t-tuple has v t possible 
variable-value configurations. For example, in pairwise (2
way) coverage of binary variables, every 2-way 
combination has four configurations: 00, 01, 10, 11. We 
can define some measures with respect to such variable-
value configurations. These measures may be more 
significant for fault detection than simple coverage. 

Definition. Total variable-value configuration coverage: 
For a given combination of t variables, total variable-value 
configuration coverage is the proportion of variable-value 
configurations that are covered by at least one test case in a 
test set. This measure may also be referred to as total t-way 
coverage. 

For total (t+k)-way coverage where k = 1, Chen and Zhang 
[6] have proposed the tuple density metric. A special 
metric for (t+1)-way coverage is useful because (1) the 
coverage of higher strength tuples for t’ > t+1 is much lower 
(because the number of t-way combinations to be covered 
grows exponentially with t), (2) the coverage at t+1 provides 
some information for coverage at t’ > t+1 because (t+1)-way 
tuples are subsumed by higher strength tuples, and (3) the 
number of additional faults triggered by t-way combinations 
drops rapidly with t > 2 [4]. 

Definition. Tuple Density: Sum of t and the fraction of the 
covered (t+1)-tuples out of all possible (t+1)-tuples [6]. 

A related measure is (p,t)-completeness: 

Definition. (p, t)-completeness: For a given set of n 
variables, (p, t)-completeness is the proportion of valid 
combinations that have configuration coverage of at least p 
[7]. 

TABLE II. COVERAGE OF TEST SET IN TABLE I. 

Vars Configurations covered Config coverage 
a b 00, 01,10 .75 
a c 00, 01, 10 .75 
a d 00, 01, 11 .75 
b c 00, 11 .50 
b d 00, 01, 10, 11 1.0 
c d 00, 01, 10, 11 1.0 

simple 2-way coverage = 2/6 = 0.333 
total 2-way coverage = 19/24 = 0.791 
(.50, 2)-completeness = 6/6 = 1.0 
(.75, 2)-completeness = 5/6 = 0.833 
(1.0, 2)-completeness = 2/6 = 0.333 

Example. For Table 1 above, there are C(4, 2) = 6 possible 
variable combinations and C(4, 2) × 22 = 24 possible 
variable-value configurations, where C(n,t) is the number of 
combinations of n things taken t at a time, or “n choose 
t”. Of these, 19 variable-value configurations are covered 
and the only ones missing are ab=11, ac=11, ad=10, bc=01, 
bc=10. But only two, bd and cd, are covered with all 4 
value pairs. So for the basic definition of simple t-way 
coverage, we have only 33% (2/6) coverage, but 79% 
(19/24) for the total variable-value configuration coverage 
metric. For a better understanding of this test set, we can 
compute the configuration coverage for each of the six 
variable combinations, as shown in Table 1. So for this test 
set, one of the combinations (bc) is covered at the 50% 
level, three (ab, ac, ad) are covered at the 75% level, and 
two (bd, cd) are covered at the 100% level. And, as noted 
above, for the whole set of tests, 79% of variable-value 
configurations are covered. All 2-way combinations have at 
least 50% configuration coverage, so (.50, 2)-completeness 
for this set of tests is 100%. 



               
          

         
         
    

 
                

             
         

           
            

             
          

        
         

          

 
         

               
       

         
           

       
          

               
          

            
         
       

            
            
      

       
  

 
         

        
              

   
 

        
            

             
         

               
               

 
         
         
           

            
           
           

          
        

           
           

           
                                                                                                        
 

 
         

         
         

          
        
            

         
          

       
          

          
            

         
         
       

          
      

 
 

Although the example in Table 1 uses variables with the 
same number of values, this is not essential for the 
measurement, and the same approach can be used to 
compute coverage for test sets in which parameters have 
differing numbers of values. 

The graph in Figure 1 shows a graphical display of the 
coverage data for the tests in Table 1. Coverage is given as 
the Y axis (ordinate), with the percentage of combinations 
reaching a particular coverage level as the X axis (abscissa). 
Note from Fig. 1 that all of the six 2-way combinations are 
covered to at least the .50 level, 83% are covered to the .75 
level or higher, and a third have 100% of value 
configurations covered. Thus the rightmost horizontal line 
on the graph corresponds to the smallest coverage value 
from the test set, in this case 50%. 

Figure 1. Graph of coverage from test data 

The symbol Φ in Figure 1 indicates the proportion of 
combinations with 100% variable-value coverage, and Μ 
indicates the minimum proportion of coverage for all t-way 
variable combinations. In this case 33% (Φ) of the variable 
combinations have full variable-value coverage, and all 
variable combinations are covered to at least the 50% level 
(Μ). Note that Φ is the level of simple t-way coverage. 
Since all variable combinations are covered to at least the 
level of Μ, we will refer to Μ as the “t-way minimum 
coverage”, keeping in mind that “coverage” refers to a 
proportion of variable-value configuration values. Where 
the value of t is not clear from the context, these measures 
are designated Φt and Μt. Using these terms we can analyze 
the relationship between total variable-value configuration 
coverage, t-way minimum coverage and simple t-way 
coverage. 

Let St = total variable-value coverage, the proportion of 
variable-value configurations that are covered by at least 
one test. If the area of the entire graph is 1(i.e., 100% of 
combinations), then 

St ≥ 1 - (1- Φt)(1- Μt) 
St ≥ Φt + Μt – Φt Μt 

If a test suite has only one test, then it covers C(n, t) 
combinations. The total number of combinations that must 
be covered is C(n,t) × v t, so the coverage of one test is 1/v t . 

tThus, Μt ≥ 1/v > 0. 

Example. The methods described in this paper were 
originally developed to analyze the input space coverage of 
spacecraft software [7]. A very thorough set of over 7,000 
tests had been developed for each of three systems. At that 
time combinatorial coverage was not the goal. With such a 
large test suite, it seemed likely that a huge number of 
combinations had been covered, but how many? Did these 
tests provide 2-way, 3-way, or even higher degree 
coverage? If an existing test suite is relatively thorough, it 
may be practical to supplement it with a few additional tests 
to bring coverage up to the desired level. 

(1) (2) 

Figure 2. Configuration coverage for 132754262 inputs. 

The original test suites had been developed to 
verify correct system behavior in normal operation as well 
as a variety of fault scenarios, and performance tests were 
also included. Careful analysis and engineering judgment 
were used to prepare the original tests, but the test suite was 
not designed according to criteria such as statement or 
branch coverage. The system was relatively large, with the 

13275426282 variable configuration (three 1-value, 75 
binary, two 4-value, and two 6-value). Figure 2. shows 
combinatorial coverage for this system (red = 2-way, blue = 
3-way, green = 4-way). This particular test set was not a 
covering array, but pairwise coverage is still relatively good, 
because 82% of the 2-way combinations have 100% of 
possible variable-value configurations covered (1) and about 
98% of the 2-way combinations have at least 75% of 
possible variable-value configurations covered (2). 



     

 
               

       
          

           
          

         
            
             

          
         

        
           

           
          

            
        

         
      

   

           
        
           

           
             

             
           

              
     

 
             

        
            
      

           
         

  

       

   

   

 
         

           
            

         
        

           
         

         

 
           

 

  

      
            

          
           

           
          

         
            

               
           

            
      

         

     
     

      
      
      
      

 
          

           
          

        
            

            
       

          
           

           
          

             
            
             

            
         

        

III. ANALYSIS OF TEST STRATEGIES 

These coverage metrics can be used to analyze various 
testing strategies by measuring the combinatorial coverage 
they provide. To illustrate this type of analysis, some 
examples are discussed in this section. The objective here is 
to understand the coverage aspects of test strategies, to aid 
testers in choosing among them or in determining additional 
tests that may be needed. For example, if no errors have 
been found with testing up to a certain level of t, how likely 
is it that (t+1)-way combinations will detect a fault? 
Measuring the level of total variable-value coverage for t+1 
will show what proportion of (t+1)-way combinations have 
been covered so far, which may help in deciding whether to 
run a full (t+1)-way covering array. For example, if we 
have already covered more than 75% of the combinations at 
the next level of t, it may not be cost-effective to do 
additional testing. In addition to these practical 
considerations, this type of analysis helps to explain why 
some test strategies are effective. 

A. All Values 

Consider the t-way coverage from one of the most basic test 
criteria, all-values, also called “each-choice”. This strategy 
requires that every parameter value be covered at least once. 
If all parameters have the same number of values, v, then 
only v tests are needed to cover all. Test 1 has all parameters 
set to their first values, Test 2 to their second values, and so 
on. If parameters have different numbers of values, where 
p1 .. pn have vi values each, the number of tests required is at 
least Maxi=1,n vi. 

Example: If there are three values, 0, 1, and 2, for five 
parameters, then 0,0,0,0,0; 1,1,1,1,1; and 2,2,2,2,2 will test 
all values once. As shown above, each test covers 1/v t of 
the variable-value configurations, and no combination 
appears in more than one test, so with v values per 
parameter and thus v tests, we have 

Μt (all-values) ≥ v 1 = 1 
t t−1v v 

Therefore, for the all-values criterion, where all values are 
t-1covered at least once, minimum coverage Μ ≥ 1/v . We 

can also reach this result by noting that each test covers C(n, 
t) combinations, so with v values the proportion of 

t t-1 combinations covered is vC(n,t)/C(n,t)v = 1/v . This 
relationship can be seen in Figure 3. which shows coverage 
for two tests with ten binary variables; 2-way minimum 
coverage = .5, and 3-way coverage = .25. 

Figure 3. t-way coverage, 2 tests with binary values. 

Base Choice 

Base-choice testing [8] requires that every 
parameter value be covered at least once and in a test in 
which all the other values are held constant. Each parameter 
has one or more values designated as base choices. The base 
choices can be arbitrary, but can also be selected as “special 
interest” values, e.g., default values, or values that are used 
most often in operation. If parameters have different 
numbers of values, where p1 .. pn have vi values each, the 
number of tests required is at least 1 + Σ i=1,n (vi -1), or where 
all n parameters have the same number of values v, the 
number of tests is 1+n(v-1). An example is shown below in 
Table III, with four binary parameters. 

TABLE III. BASE CHOICE TESTS FOR 24 CONFIGURATION 

a b c d 
base: 0 0 0 0 
test 2 1 0 0 0 
test 3 0 1 0 0 
test 4 0 0 1 0 
test 5 0 0 0 1 

The base choice strategy can be highly effective, despite its 
simplicity. In one study of five programs seeded with 128 
faults [10], it was found that “although the Base Choice 
strategy requires fewer test cases than Orthogonal Arrays 
and AETG, it found as many faults.” In that study, AETG 
[9] was used to generate 2-way (pairwise) test arrays. We 
can use combinatorial coverage measurement to help 
understand this finding. For this example of analyzing base 
choice, we will consider n parameters with 2 values each. 
First, note that the base test in which each parameter takes 
its base choice covers C(n, t) combinations, so for pairwise 
testing this is C(n, 2) = n(n-1)/2. Changing a single value of 
the base test to something else will cover n-1 new pairs (in 
our example, ab, ac, and ad have new values in test 2, while 
bc and bd are unchanged). This must be done for each 
parameter, so we will have the original base test 
combinations plus n(n-1) additional combinations. The total 



            
  

    

  

   
 

 
            

              
           

    
 

        
        

              
  

   

 
    

  

     

        
       

           
         

            
          

           
         

           
        

    
 

   
          
           

          
          

          

           
         

          
         

         
         
         

 
         

          
               
           

           
           

             
                  

          
          

          
          

     
 

           
         

        
             

           
             

           
    

     

      

      

      

      

      

      

 
      

 
           

       
 

             
          
          

              
           

          
            

           
         

number of 2-way combinations is C(n, 2) × 22, so for n 
binary parameters: 

Μt = n(n −1) / 2 + n(n −1) 

C(n,2)22 

C(n,2) + 2C(n,2)= 
C(n,2)22
 

= 3/4.
 

Figure 4. 2-way coverage for test set in Table III. 

This can be seen in the graph in Figure 4. of coverage for 
Table III. Note that the 75% coverage level is independent 
of n. 

This equation can be generalized to higher interaction 
strengths. Base choice testing requires n(v-1) additional 
tests beyond the initial one, so for any n, t with n ≥ t 

C(n,t) + n(v −1)C(n −1,t −1)Μt (base-choice) = 
C(n,t)vt 

1+ t(v −1)= 
tv 

B. Modified condition decision coverage 

Modified condition decision coverage (MCDC) is a test 
strategy required by the US Federal Aviation 
Administration for life critical software [11]. It is 
important to emphasize that MCDC is a coverage criterion 
for test suites normally applied to an entire program. In the 
analysis below, we analyze test sets with respect to one 
expression at a time. This analysis helps to explain why 
MCDC is effective. In practical applications, an MCDC test 
set applied to an entire program would be likely to have 
better combinatorial coverage than the results for individual 
expressions shown below. 

MCDC Lower Bounds 
An exhaustive analysis of all Boolean expressions of up to 
six variables has shown [11] that of n+1 tests can provide 
MCDC coverage for nearly all expressions, where n is the 
number of variables involved in a Boolean expression. A 
natural question to ask is then, what level of combinatorial 

coverage is provided by MCDC tests? This question can be 
addressed in two ways, by empirical data on combinatorial 
coverage for MCDC test sets, and by evaluating the MCDC 
test construction using methods described in NISTIR 7878. 
Shown below is one result on minimum coverage from 
MCDC tests, followed by data on combinatorial coverage of 
MCDC test sets for various numbers of variables. 

An MCDC test set is constructed with independence pairs, 
where the boolean expression being tested evaluates to 0 for 
one test in the pair and to 1 for the other test. Because there 
are n+1 tests in the test set, the independence pairs overlap, 
such that each test belongs to an independence pair for two 
variables. An example is shown in Table IV [12]. Tests 0 
and 1 are the pair showing independent effect of a, 1 and 2 
for b, 2 and 3 for d, and 3 and 4 for c. Note that only the 
variable concerned changes value between the two tests of a 
pair, which changes the value of the expression and thus 
shows the effect of that particular variable or condition. 
(MCDC can be applied either to boolean variables or to 
conditions that evaluate to true/false.) 

In the unique-cause form of MCDC, it must be shown that 
the expression changes value as one variable value is 
switched while others remain fixed. For example, 
(a+b)(c+d) = 1 for the first test. Changing the value of a 
from 1 to 0 while other values remain fixed causes the 
expression to evaluate to 0. In this manner, one of the n 
variables is changed with each additional test, for a total of 
n+1 tests. 

TABLE IV. (A+B)(C+D) 

a b c d (a+b)(c+d) 

Test0 1 0 0 1 1 

Test1 0 0 0 1 0 

Test2 0 1 0 1 1 

Test3 0 1 0 0 0 

Test4 0 1 1 0 1 

We can now show the following: 

Theorem 1. If an MCDC test set exists for an expression, 
1+ ttotal combinatorial coverage for unique-cause tests = 
2 t 

. 
Proof: Choose one test arbitrarily as the base test. The base 
test, test0, contains n variables with Boolean values v01..v0n. 
The base test, test0, covers C(n,t) t-way combinations. With 
a total of n+1 tests, there are n tests in addition to the base 
test. Because MCDC requires that all variables take on both 
values, the negation of the base test values, v̅ ̅0n01..v must 
appear in one other of the additional tests, of which there are 
n. To construct test 1, MCDC requires that one variable 
value is changed while others held fixed, which will 



          
        

           
         

    

 
    

 
 

      
           

           
         

           
          

            
            

          
            

          
          

       
          

            
           
              

           
              

             
               

             
            

 

      

      

   

       

   

       

    

      

         
         

    
  

          
        
          

        

           
  

 
    

         
        

         
     

 

 
             

               

       

 
    

 
       

          
          

         
            

          
          

           
      

          
         

            
      
              

            
            
          

            
         

         
       

 
        

             
             

           
            

          
          

            
              

               
             

           
      

          
 

increase the number of covered combinations by n-1 pairs or 
C(n-1,t-1) t-way combinations. Continuing in this manner 
for each of the n variables adds a total of n×C(n-1,t-1) 
combinations covered to the initial coverage of C(n,t), so 

C(n, t) + nC (n −1, t −1)coverage St = 
C(n, t)2t 

1+ t= 
2t 

□ 

Another definition of MCDC, masking MCDC, 
“allows any number of conditions to change so long as only 
the condition of interest has influence on the outcome of the 
expression” [11]. Masking MCDC is easier to satisfy, 
because there is more flexibility in the choice of values for 
the variables or conditions. For example, consider values in 
columns of an MCDC test set (see Figure 5. ), where each 
row is a test and each column gives values for a particular 
variable. For each t-way combination of variables, test 0 
has one set of values, v01..v0t. An independence pair of tests 
must exist for each parameter to show that changing that 
value of the parameter also changes the value of the 
expression, and that the particular parameter has 
independent effect on the expression value. Thus if the 
expression has value z for test0, there must be another test, i, 
such that parameter p1 has value v01 and the expression has 
value z̅ . Similarly for p2 there must be a third test, j, such 
that p2 has value vi2 and the expression value switches back 
to z. Thus for any pair of parameters there are at least three 
distinct value pairs on at least three rows: v01, v02 in test 0, 
v01,vi2 in test i, and vi2, vi* in some other row j, where * is 
any of the other parameters ≠ p2. Similarly there are at least 
t+1 t-way combinations on t+1 rows for any t parameters. 

p1 p2 . . . 

Test0 v01 v02 . . . 

.. . . 

Testi v̅ 01 vi2 . . . 

. . . 

Testj vj1 v̅ i2 . . . 

. . . 

Figure 5. MCDC tests. 

Theorem 2. With the masking form of MCDC, coverage 
may exceed that for unique-cause form, so in general, 

1+ t
MCDC total coverage ≥ 

2t 
. 

Proof: Because masking MCDC does not require all values 
other than the parameter under consideration to remain 
fixed, there may be more than t+1 distinct combinations. 
Therefore because there are 2t possible combination settings 

for t parameters, the proportion of total coverage is at least 
1+ t . □ 
2t 

MCDC Coverage Upper Bound 
We can easily derive an upper bound on combinatorial 
coverage by noting that each test covers C(n,t) 
combinations, so with n+1 tests the proportion of covered 
combinations is at most 

(n +1)C(n,t) n +1 
=
 

2t C(n,t) 2t 

Note that if n+1 < 2t, then the number of tests is insufficient 
to cover all 2t values for any t parameters, so Φt = 0. So for 

t +1 n +1MCDC total combinatorial coverage St, .≤ S ≤
t t t2 2 

C. (t+1)-way Coverage 

A t-way covering array by definition provides 
100% coverage at strength t, but it also covers some (t+1)
way combinations (assuming n ≥ t+1). Given a t-way 
covering array, we know that any combination of t 
parameters is fully covered in some set of tests. Joining 
any other parameter with any combination of t parameters in 
the tests will give a (t+1)-way combination, which has v t+1 

possible settings. For any set of tests covering all t-way 
combinations, the proportion of (t+1)-way combinations 
covered is thus v t/v t+1, so if we designate total (t+1)-way 
variable-value configuration coverage as St+1, then St+1 ≥ 
1/v, for any t-way covering array with n ≥ t+1. 

For practical testing, this observation means that when v 
is small, we may gain a lot of efficiency by extending a t-
way test suite to t+1, rather than re-run a (t+1)-way test suite 
from scratch. For example, with binary variables, if we have 
run a 3-way covering array then we have tested half of the 
4-way combinations as well. With a mixed-level array, a 
coverage measurement tool will be needed to identify the 
level of t-way coverage achieved. 

Clearly, where Φ t+1 = (t+1)-way full variable-value 
configuration coverage, if N < v t+1, then Φ t+1 = 0, for any t-
way covering array with n ≥ t+1 where N = number of tests. 
For many levels of t and v encountered in practical testing, 
this condition will hold. For example, if v=3, then a 2-way 
covering array with less than 33=27 tests can be computed 
(using IPOG-F) for any test problem with less than 60 
parameters. So Φ = 0 for 3-way coverage for this example. 
Alternatively, note that if N > v t+1 then Φ t+1 may exceed 0. 
For example, with n = 360 parameters, t = 2, Φ t+1 = 0.002, 
for a covering array of 39 tests computed by ACTS. In this 
case, Φt+1 is low despite 360 parameters, but with 39 tests, 
13,233 of C(360,3)=7,711,320 3-way variable combinations 
are covered with all 27 values purely by chance. 



     

 
       

          
      

        
       
            

       
      

         
           

        
        

         
           

         
     

 

 
 

 
          

    

        
     

          
         

           
         

           
       
         
           

          
           

            
           

        

         
         

          
            

          
  

  

          
            

 
 

            
             

          
          

          
           

              
         

          
             

           
       

        
           

       
          

         
           

 

 
      

 

D. Very Large Covering Arrays 

Covering array construction is a difficult problem 
[13], but good algorithms are available now for many or 
most practical testing applications [14][15][16][17][18]. 
However, for applications with hundreds of parameters, the 
most commonly used algorithms require long computation 
times, or may not complete at all. This is particularly true 
for higher-strength coverage, above 3-way. The 
Combinatorial Coverage Measurement (CCM) tool is 
currently being used to evaluate coverage for a problem 
with 358 factors, in a 2352324152141 design. Test arrays are 
generated randomly, then evaluated using CCM and tests 
supplemented to provide an adequate level of coverage 
(generally exceeding 98%) up to 6-way. Random test 
generation is trivial and completes in less than 1 second, and 
CCM evaluation times range from seconds to several hours 
for higher strength levels. 

Figure 6. Coverage for 70 tests, 2352324152141 design 

IV. COVERAGE MEASUREMENT TOOL 

Measures described above have been implemented in a 
feature-rich tool, Combinatorial Coverage Measurement 
(CCM), which is designed to handle large files with mixed 
level parameters and constraints. The input file is a comma-
separated values (CSV) file where each row is a test and 
each column represents a parameter. Constraints can be 
specified at the beginning of the input file, or through a 
graphical user interface. Coverage measurements can be 
displayed as graphs or heat maps, and detailed reports 
generated. An option allows for test sets to be automatically 
supplemented with additional tests to bring coverage up to a 
specified level (may be less than 100% if desired to reduce 
test set size). Combinations that are not covered in the input 
test set can be exported for post-processing. CCM has the 
ability to automatically detect parameter values for discrete 

values, or the user may define equivalence classes for 
continuous-value parameters. Input test files can be very 
large, limited only by system resources, and the tool has 
been applied to test sets with up to 625 binary parameters on 
a basic laptop with dual-core processor and 8 GB of 
memory. 

A. Features 

The main screen contains controls to load the file containing 
the set test; it will show the result of the measurement and 
charts. 

If all tests and parameters in the input file should be loaded, 
just click on “Load input file” and select the test file to be 
analyzed. If just some tests or parameters are needed, before 
loading the input file, the number of tests and parameters 
should be specified using the numeric fields above on the 
left and pressing “Set number of tests and parameters”. 
Note that if all tests are to be loaded, it is not necessary to 
set the number of tests and parameters, provided that 
parameters have values (no more than as indicated by the 
“Max values per parameter” field). The tool will read in all 
tests and discover parameter values that will be used in the 
measurement process. The tool can also process continuous-
valued parameters such as account balances, distances, or 
others with a large range of possible values. See the 
“Specifying boundaries” discussion below. The parameters 
and their values are shown; they can be modified specifying 
boundaries, and adding or removing values. Clicking in a 
column will show the values below in order to be modified. 

Figure 7. CCM main screen 



 
        

 
      

            
         

  
 

 
        

 
       

     
 

     
          

        
          

              
       

 

 
 

        

 
       

  

          
         

          
           

          
 

 
 

Figure 8. CCM parameter data screen. 

Charts display coverage measurements described previously 
and may be saved to an image file. After the file loads, 
coverage measures may be computed by clicking on the 
appropriate button. 

Figure 9. CCM coverage report screen. 

B. Boundaries and continuous-value parameters 

For continuous-valued parameters, equivalence classes 
are specified by indicating the number of value classes and 
boundaries between the classes. Boundaries may include 
decimal values. Where the boundary between two classes c1 

and c2 is x, the system places input values < x into c1 and 
values ≥ x in c2. 

Figure 11. CCM range variable boundaries. 

Figure 10. CCM coverage chart. 

Figure 12. CCM constraint screen. 

C. Constraints 

Constraints may be included in the input file or entered 
interactively. Each line will be considered a separated 
constraint. The image below shows an example of an input 
file with constraints. The first two lines are the constraints; 
followed by the tests, where each column corresponds to a 
parameter. 



 
        

 
           

           
         

           
       

           
         

 
       

           
          

   
 

     
     

      
   

            
                       

          
              

          
       

       

 
        

  
          

           
           
        

 
              

           
   

 
             

          
         

  

       
          

          
        

        
         

         
           
    

 

    

        
        

        
         
         
            

           
      

 

 
        

 
          

 
        

       
  

         
       

 

   

        
           

         
           

         

Figure 13. CCM input file layout. 

The constraints are shown in the main window, if no 
constraints are specified in the input file, they can be added 
interactively either by typing or selecting operators from the 
tool bar. Three types of operators can be used: (1) 
Boolean operators including &&, ||, =>; (2) 
Relational operators including =, !=, >, <, >=, <=; and (3) 
Arithmetic operators including +, -, *, /, %. 

In addition to incorporating constraints in computing 
measures, the tool will identify any tests that do not satisfy 
the specified constriants. The following syntax can be used 
to specify constraints: 

<Constraint> ::= <Simple_Constraint> 
| <Constraint> <Boolean_Op> <Constraint> 

<Simple_Constraint> ::= <Term> <Relational_Op> <Term> 
<Term> := <Parameter> 

| <Parameter> <Arithmetic_Op> <Parameter> 
| <Parameter> <Arithmetic_Op> <Value> 

<Boolean_Op> := “!” | “&&” | “||” | “=>” 
<Relational_Op> := “=” | “!=” | “>” | “<” | “>=” | “<=” 
<Arithmetic_Op>:= “+” | “-” | “*” | “/” | “%” 

<Value> := <Integer_Value> | <Boolean_Value> | <Enum_Value> 

Constraint handling is implemented using an open 
source constraint solver called Choco [19]. Choco is used to 
determine if a test satisfies all constraints by converting this 
check to a constraint satisfaction problem. Choco is 
designed to handle arbitrary constraint objects, so test 
parameters are encoded into this form before invoking the 
constraint solver. The Choco solver is an independent 
module as used in CCM, and could be replaced by a 
different constraint solver. 

D. Invalid Combinations 

The invalid combinations will be shown if constraints 
are specified. If any coverage measurement has been 
specified, the invalid combinations will be generated. When 
all the invalid combinations have been generated they will 
be shown in a CCM window. Combinations determined to 
be invalid by constraints should not appear in the test set, so 
these are identified by marking in the leftmost column of the 
display as shown below. 

Figure 14. CCM constraint syntax. 

Examples of constraints that can be specified include: 

•	 (P1 = “Windows”)=>(P2 = “IE” || P2 = “FireFox” 

|| P2 = “Netscape”) , where P1 is a parameter for OS 
and P2 is a parameter for Browser. If OS is Windows, 
then Browser must be IE, FireFox, or Netscape. 

•	 (P1 > 100) || (P2 > 100) , where P1 and P2 are two 
parameters of type Number or Range. P1 or P2 must be 
greater than 100. 

•	 (P1 > P2)=>(P3 > P4) , where P1, P2, P3, and P4 are 
parameters of type Number or Range. If P1 is greater 
than P2, then P3 must be greater than P4. 

Figure 15. CCM invalid combinations screen. 

A report may be produced that will include the following 
quantities: 
•	 Total invalid combinations: Number of all invalid 

combinations based on possible parameter values and 
constraints specified. 

•	 Invalid combinations in set test: Number of invalid 
combinations that occur in the set test. 

V. RELATED WORK 

Although relatively new, combinatorial coverage 
has been discussed in some earlier papers. Some of the 
concepts discussed in this paper were introduced in [7], 
which also included an application of an early version of the 
tool to the analysis of large test suites; additional 



          
         

            
         

         
        

        
            
       

        
          

           
       

  

  

        
         

        
         

            
         

         
        

        
            
           

           
          

      
     
        

         
            

          
          
           
         

          
        

         
        

        
     

 
         

      
  

             
      

           
        

        
 

           
         

    

           
         

      
  

             
         

         
       

            
        

       
    

             
         

      
     

               
          

       

           
         

  

            
      

     

              
        

       
   

         

 

             
        

           

          
        
   

           
        

        
    

             
         

       

           
         

      

      

     
 

           
     

          
         

        
    

 

         
            

         
 

 

measurement concepts were covered in [2]. A NIST tech 
report [1] extended this work to include the measures 
described in Sect. II. Tuple density is described by [6]. 

Also relevant are methods and tools for extending an 
array to provide t-way coverage. This problem was 
considered in [20], and several currently available covering 
array generators provide the capability, including PICT [21] 
and ACTS [13]. A significant difference with these tools is 
that they evaluate only whether all variable-value 
configurations are covered for each combination, which we 
have referred to as simple t-way coverage. The measures 
introduced in this paper can thus be considered to provide a 
more “fine grained” set of combinatorial coverage 
measures. 

VI. CONCLUSIONS 

An extensive body of empirical work shows that 
combinatorial testing can be a very efficient component of 
software assurance. The key aspect of combinatorial 
methods is to cover t-way combinations sufficiently well to 
detect faults, but it is not essential that tests be generated as 
covering arrays. Although covering arrays are generally the 
most compact way of achieving t-way coverage, they are 
not always practical. For example, regulations or 
contractual requirements may specify a particular type of 
testing, such as MCDC, or existing test sets may be used to 
reduce cost. In such circumstances, it may be desirable to 
compute the t-way coverage provided by the test set. CCM 
is an easy to use, practical tool to compute combinatorial 
coverage, which accommodates parameter constraints and 
mixed level variables. 

The most basic measure is simple combinatorial coverage 
– the proportion of combinations for which t-way coverage 
is achieved. A more useful measure is total coverage – the 
proportion of t-way combination settings covered. A test set 
may have a relatively low level of simple coverage despite 
good total coverage, such as the example in Table I, in 
which only 33% of the 2-way combinations were covered 
but total coverage exceeded 79%. Using CCM to measure 
total combinatorial coverage for a test set, then 
supplementing tests to achieve a desired level of coverage, 
can provide strong interaction testing in situations where 
practical considerations rule out construction of tests from 
scratch using covering arrays. 
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