
1

Related-Key Slide Attacks on Block Ciphers
with Secret Components

Meltem Sönmez Turan

National Institute of Standards and Technology, Gaithersburg, MD
meltem.turan@nist.gov

Abstract. Lightweight cryptography aims to provide sufficient security with low area/power/energy requirements
for constrained devices. In this paper, we focus on the lightweight encryption algorithm specified and approved in
NRS 009-6-7:2002 by Electricity Suppliers Liaison Committee to be used with tokens in prepayment electricity
dispensing systems in South Africa. The algorithm is a 16-round SP network with two 4-to-4 bit S-boxes and a
64-bit permutation. The S-boxes and the permutation are kept secret and provided only to the manufacturers
of the system under license conditions. We present related-key slide attacks to recover the secret key and secret
components using four scenarios; (i) known S-box and permutation with 248 time complexity using 216 + 1 chosen
plaintexts; (ii) unknown S-box and known permutation with 255 time complexity using 222.71 + 1 chosen plaintexts;
(iii) known S-box and unknown permutation with 248 time complexity using 216 + 1 chosen plaintexts and 212.28

adaptively chosen plaintexts; and finally, (iv) unknown S-box and permutation, with 248 time complexity using
222.71 + 1 chosen plaintexts and 231.29 adaptively chosen plaintexts. We also extend these attacks to recover the
secret components in a chosen-key setting with practical complexities.
Keywords: Lightweight Block Ciphers, Related-Key Slide Attacks, Secret Components

Introduction

Lightweight cryptography aims to provide sufficient security with low area/power/energy require­
ments for constrained devices; such as RFID tags, smart cards, tiny computing devices etc. Although
there have been constant efforts to improve the performance of AES[1, 2], the smallest AES im­
plementation requires 2400 GEs[3], mainly due to the large key and block sizes. This makes AES
implementations inappropriate for many devices with tight area constraints. Due to the limitations of
AES, several lightweight block ciphers with smaller key and block sizes have been proposed recently,
such as PRESENT[4], Hight[5], DESL[6], PRINTcipher[7] etc.

Security through obscurity is not a widely acceptable approach to provide security. Still, in some
of the schemes using small key sizes, it is common to find “obscurity” being used as a complementary
mean to achieve security. One famous example having security by obscurity is the stream cipher
A5/1 that is used in GSM applications. Although the algorithm was initially kept secret, it became
public by reverse engineering[8]. Another example is the block cipher C2[9], designed for digital rights
management, which uses secret 8-to-8 bit S-box that is available only through licensing. Borghoff et
al.[10] presented an attack on C2 that recovers the secret S-box and the key, with 253.5 time complexity.

In this paper, we focus on the lightweight block cipher specified and approved in the standard NRS
009-6-7:2002 [11] by Electricity Suppliers Liaison Committee to be used with tokens in prepayment
electricity dispensing systems in South Africa. The respective algorithm is a 16-round SP network,
with simple rounds similar to PRESENT[4]. The description of the main components, namely two
4-to-4 bit S-boxes and the 64-bit permutation, are not publicly available, and being provided only
to the manufacturers of the system, under license conditions. In this paper, we present related-key
slide attacks to recover the secret key and secret components in four different scenarios of adversary
capabilities: (i) known S-box and permutation with 248 time complexity using 216+1 chosen plaintexts;
(ii) unknown S-box and known permutation with 255 time complexity using 222.71+1 chosen plaintexts;
(iii) known S-box and unknown permutation with 248 time complexity using 216 + 1 chosen plaintexts
and 212.28 adaptively chosen plaintexts; and finally, (iv) unknown S-box and permutation, with 248

mailto:meltem.turan@nist.gov

2

time complexity using 222.71 + 1 chosen plaintexts and 231.29 adaptively chosen plaintexts. We also
extend these attacks to recover the secret components of the algorithm in a chosen-key setting with
practical complexities. Moreover, we present a generic way to improve the exhaustive search around
19 percent. The attacks are summarized in the Table 1.

Section S-box Permutation
Time

Complexity
Chosen
Plaintexts

Adapt. Chosen
Plaintexts

Related
Keys

3.1 Known Known 248 216 + 1 - 2
3.1 Unknown Known 255 222.71 + 1 - 2
3.3 Known Unknown 248 216 + 1 212.28 8
3.4 Unknown Unknown 248 222.71 + 1 231.29 8
Table 1. Complexities of the related-key slide attacks with different adversary capabilities.

The organization of the paper is as follows. In Sec. 2, we give a brief description of the encryption
algorithm. In Sec. 3, we present the details of the related-key slide attack for different scenarios. In
Sec. 4, we extend secret component recovery attacks using a chosen-key setting. In Sec. 5, we provide
a method to improve the attack complexities. Finally, we conclude this paper and summarize our
results in Sec. 6.

The Algorithm Specification

The encryption algorithm specified by NRS 009-6-7:2002[11] is a 64-bit block cipher with an SP-
network structure, having 16 rounds. The 16-bit round keys for encryption, RKi = (ri,0, ri,1, . . . , ri,15)
(0 ≤ i ≤ 15) are defined as;

RKi = (k� , k� , k� , . . . , k�),15−i 15−i+4 15−i+8 15−i+60

where all the indices are calculated modulo 64 and ki
� represents the bitwise complement of ki.

Each round consists of a key-dependent nonlinear substitution layer S and a linear bitwise per­
mutation layer π. In the nonlinear layer, the state is partitioned into 16 four-bit sub-blocks and a
4-to-4 bit S-box is applied to each sub-block. The algorithm uses two S-boxes S1 and S2, which are
selected alternatively according to the corresponding round-key bit. The permutation π(x1, . . . , x64)
is defined as (xp(1), . . . , xp(64)), where p(i) is a permutation of {1, 2, . . . , 64}.

In the decryption algorithm, the round keys are defined as RKi = (ki, ki+4, ki+8, . . . , ki+60), for
0 ≤ i ≤ 15 and the round operations are applied in the reverse order. The encryption round keys
are complement of the decryption round keys, i.e. the ith round key for encryption is the bitwise
complement of (15 − i)th round key for decryption. Therefore, in order to satisfy P = DK (EK (P) for
any plaintext P , S1 should be the inverse of S2. The pseudocodes of the encryption and decryption
algorithms are provided in Fig. 1.

It should also be noted that the cipher Cipher1 that uses the S-boxes S1, S2, and key K, denoted
¯as Cipher1(S1, S2, K) is equivalent to the cipher Cipher2(S2, S1, K), where K̄ is the bitwise complement

of K. In other words, the encryption of any plaintext P using Cipher1 having K and Cipher2 having K̄
are equal. In this paper, we assume that the attack is successful, whenever the attacker can recover
Cipher1 or Cipher2.

� � �

� �

�

� �

�

�

� �

�

� �

�

� � �

Encryption (P, K) Decryption(C, K)

for i = 0 to 15; for i = 0 to 15;

RKi = (k�

15−i+4, . . . , k
�
 RKi = (ki, ki+4, . . . , ki+60);15−i, k

�
15−i+60);

STATE = P STATE = C

for i = 0 to 15
 for i = 0 to 15

Parse STATE as STATE0|| . . . ||STATE15;
 STATE = π−1(STATE);

for j = 0 to 15
 Parse STATE as STATE0|| . . . ||STATE15;

if (ri,j = 0) for j = 0 to 15

STATEj = S1(STATEj);
 if (ri,j = 0)

else
 STATEj = S1(STATEj);
STATEj = S2(STATEj); else

end for
 STATEj = S2(STATEj);

Reassemble STATE;
 end for
STATE = π(STATE); Reassemble STATE;
end for end for

C = STATE; P = STATE;

Return C Return P

Fig. 1. Pseudocode of the encryption and the decryption algorithm

3 Related-Key Slide Attacks

We consider an attacker with black box access to two encryption devices initialized with secret
keys K and K , respectively, where K is equal to the left cyclic rotation of K by 1 bit, i.e. K = K « 1.
Consequently, the round keys generated by K and K , denoted as RKi and RKi respectively, satisfies
RKi+1 = RKi, for i = 0, . . . , 14. This also implies that the first round key for P and the last round
key for P satisfies RK15 = RK0 « 4.

The plaintexts P and P are considered to be slid pairs, if one round encryption of P using the
round key RK0 is P and the following 15 rounds are identical as given in Fig. 2. Whenever the
attacker has a slid pair P and P , he can search for the round key RK0 (or RK 15) using the following
partial encryptions,

P = π(S(P, RK0)), or

C = π(S(C, RK 15)).

After recovering 16 bits of the secret key, the attacker can exhaustively search for the remaining
key bits. However, before the exhaustive search, any components that remain secret should first be
recovered. This recovery might need more slid pairs, which can be accomplished (provided one slid
pair is already known) by the algorithm described in Appendix A.

In the following four subsections, we present related-key slide attacks for the four scenarios; (i)
known S-box and known permutation, (ii) unknown S-box and known permutation, (iii) known S-box
and unknown permutation and lastly, (iv) unknown S-box and unknown permutation.

3.1 Known S-box and Permutation Case

First, the attacker tries to identify slid pairs P and P , such that one round partial encryption of
P using RK0 is equal to P , i.e., P = π(S(P, RK0)). The attacker fixes P to all zero input, and since

�

�

�

�

�

�

�

� �

�

�

P

Round 1 I RK0

P

Round 2 I RK1 (=RK0) I Round 1

Round 3 I RK2 (=RK1) I Round 2

... ...

Round 16 I RK15(=RK14) I Round 15

C
RK15

I Round 16

C

Fig. 2. Slid pairs P and P

π is a bitwise permutation, π(0, . . . , 0) = (0, . . . , 0) is satisfied, then P also satisfies

S(P, RK0) = (0, . . . , 0) (1)

Then, the attacker finds Np = 216 candidates {P1, . . . , PNp } for P that such that (1) holds. These
candidates should be of the form (a0, a1, . . . , a15), where four-bit ai’s can take at most two distinct
values, let’s say a and b, such that S1(a) = 0 and S2(b) = 0, i.e., ai ∈ {a, b} (0 ≤ i ≤ 15). For each
candidate Pi = (a0, a1, . . . , a15), there exists a unique round key Ri = (r0, r1, . . . , r15), where

0, if ai = a
ri =

1, if ai = b

such that (1) holds (0 ≤ i ≤ 15). Next, the attacker obtains Ci = EK(Pi) values and finds the correct
(Pi, Ci) pair that satisfy

C = π(S(Ci, RK15), (2)

where RK15 = Ri « 4. After obtaining the correct Pi, the attacker determines Ri, hence the 16
bits of the secret key K. The attacker exhaustively searches for the rest of the key bits. The time

≈ 248complexity of the attack is 248 + 216 with 216 + 1 chosen plaintexts, where 216 plaintexts are
encrypted using key K and one plaintext is encrypted using key K .

3.2 Unknown S-box and Known Permutation Case

In this case, the values of a and b satisfying S1(a) = 0 and S2(b) = 0 are unknown to the attacker,
therefore, for all possible selections of a and b, the attacker considers the plaintexts of the form

(a0, a1, . . . , a15) (3)
where ai ∈ {a, b}’s (0 ≤ i ≤ 15). Then, Np is 216

16 ≈ 222.91. For a strong S-box, we can assume that
2

there exists no fixed points (particularly, S1(0) 0 and S2(0) = reduces to 216
2

= 0), then Np
15 ≈

�

� �

�

�� � �� �� ��

�� ��

��

��

�

�

222.71. It should be noted that the corresponding first round key for each Pi is not unique. There are
two possibilities, where one of them is the bitwise complement of the other. The attacker is allowed
to use any of them, and depending on his selection he either recovers Cipher1 or Cipher2, defined in
Sec. 2. Note that Cipher1 and Cipher2 are equivalent.

In the next step, the attacker obtains Np ciphertexts, (Ci = EK(Pi)). Since the permutation is
known, the attacker can determine π−1(C), and try to find the correct (Pi, Ci) pair that satisfy

π−1(C) = S(Ci, RK15),	 (4)

where RK15 = RKi « 4. Since the S-boxes are unknown to the attacker, it is not trivial to eliminate
the Ci’s that do not satisfy (4). However, for each (Pi, Ci) pair, the attacker can partially construct
the S-boxes and eliminate the Pi’s that result in invalid S-boxes.

For the correct Pi = (a0, . . . , a15) (with corresponding Ci = (c0, . . . , c15) and Ri = (ri,0, . . . , ri,15)),
the followings should hold:

–	 Property 1: If ri,j = 1, then S1(aj) = 0, otherwise S2(aj) = 0, for all 0 ≤ j ≤ 15.
–	 Property 2: Due to the symmetry of the S-boxes, if ri,j = 1, then S2(0) = aj , otherwise S1(0) =

aj , for all 0 ≤ j ≤ 15.
–	 Property 3: Let C = π−1(C) = (c1, c2, . . . , c16). Due to the key schedule, RK15 = RKi « 4.

Then, if ri,j+4 = 1, then S1(aj) = cj , otherwise S2(aj) = cj , for all 0 ≤ j ≤ 15.
–	 Property 4: Due to the symmetry of the S-boxes, if ri,j+4 = 1, then S2(cj) = aj , otherwise

S1(cj) = aj , for all 0 ≤ j ≤ 15.

Using this approach, we obtain 36 constraints (4 from Property 1 and 2; 32 from Property 3 and 4)
for the S-boxes (some of which might be equivalent). Whenever we obtain contradicting constraints,
we conclude that the candidate is incorrect. The correct Pi will never result in a contradiction, how­
ever, in theory, with very small probability, it is possible that an incorrect Pi satisfies all constraints.
We have experimentally tried 225 random inputs and observed that for none of the inputs, all of the
36 constraints are satisfied, so we assume that the expected number of false alarms in 222.71 plaintexts
is 0.

After determining the value of P, the attacker can partially construct S-box, however, it is possible
that the S-boxes are not uniquely determined. Based on Proposition 1 provided Appendix B, the
attacker is expected to determine 11 outputs of S1 and S2 (out of 16) and this enables the attacker
to reduce the possible S-boxes from 244(= 16!) to approximately 27(= 5!).

Example 1. Let

P = (10,1,1,1,10,1,1,10,10,10,1,10,10,1,1,1),

P = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),

RK1 = (1,0,0,0,1,0,0,1,1,1,0,1,1,0,0,0),

C = (7,2,4,1,6,12,14,5,13,7,6,1,10,11,14,2),

C = (12,3,8,5,3,10,13,13,14,15,14,0,0,9,13,3).

RK15 = (1,0,0,1,1,1,0,1,1,0,0,0,1,0,0,0),

Due to Constraint 1 and 2, the following values of the S-boxes are determined.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
S1 10 0 * * * * * * * * * * * * * *
S2 1 * * * * * * * * * 0 * * * * *

�

�

�

�

� �

Due to Constraint 3 and 4, the following values of the S-boxes are determined.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
S1 10 0 3 6 8 1 14 15 * * 12 9 7 5 13 *
S2 1 5 * 2 * 13 3 12 4 11 0 * 10 14 6 7

Using the constraints, 13 (out of 16) values of S-boxes are determined. The undetermined outputs
of S1 can take three values, namely 2, 4, 11. Therefore, there are only 6 different S-boxes that can
satisfy the given constraints.

The attacker obtains 16 key bits with a time complexity of 222.71 and 222.71 + 1 chosen plaintexts.
Then, the attacker searches for the rest of the keys using exhaustive search, for each possible S-box.
The complexity of this part is 255(= 248+7). The attacker can verify the obtained key and the S-box
using the previously obtained plaintext and ciphertext pairs. So, the total complexity of the attack
is 255 + 222.71 ≈ 255 with 222.71 + 1 chosen plaintexts.

3.3 Known S-box and Unknown Permutation Case

Since the S-boxes are known (similar to the case given in Sec. 3.1), Pi’s can take 216 values of the
following form

(a0, a1, . . . , a15) (5)

where ai ∈ {a, b} (for 0 ≤ j ≤ 15) such that S1(a) = 0 and S2(b) = 0. To identify P, the attacker
obtains the corresponding Ci’s and applies one more substitution layer to the Ci’s using the corre­
sponding round keys. For the correct i, S(Ci, Ri « 4) = π(C) holds. Although the attacker does not
know the permutation, based on the following observation, it is possible to eliminate the Ci’s, when
the weight of S(Ci, Ri « 4) is different from the weight of C

Observation 1. Let X = (x1, . . . , x64) be a 64 bit value. The weight of X, denoted as w(X) is
the number of xi’s that are equal to 1. Then,

w(X) = w(π(X)) = w(π−1(X)),

since the permutation π only changes the positions of the bits.
For an incorrect i, we can assume that S(Ci, Ri « 4) and C are independent. Since the weight of

randomly chosen 64-bit inputs is binomially distributed with mean 32 and variance 16, the probability
that w(S(Ci, Ri « 4)) and w(C) are equal is

646
P r(w(S(Ci, Ri « 4)) = w(C)) = P r(w(Ci) = i)P r(w(C) = i)

i=0

64 6 64 64
0.564 0.564 = ×

i i
i=0

= 0.07.

With probability 0.93 (= 1 − 0.07), the attacker eliminates the incorrect Pi’s. In out of Np = 216

candidates, 0.07Np ≈ 212.17 of them are expected to result in a false alarm. For 212.17 Pi’s, the attacker
generates other slid pairs (See Appendix A) and checks the corresponding weights of the slid pairs as
described above. If the weights are not equal, the attacker concludes that the corresponding Pi was
a false alarm. By using one additional slid pair, the expected number of false alarms reduces from
212.17 to 28.34. As seen from Table 2, five slid pairs are enough to identify the correct Pi.

To identify P, hence 16 bits of the key, the required time complexity is 216.11(= 216 + 1 + 212.28)
with 216 + 1 chosen plaintexts and 212.28 adaptively chosen plaintexts. To recover the rest of the 48
bits of the key, the attacker first needs to recover the bit permutation π.

� � � � �

�

�

� �

�

�

�

�

�

�

Slid pairs # False
Alarms

Chosen
Plaintext

Adaptively Chosen
Plaintext

1 212.17 216 + 1 0
2 28.34 216 + 1 212.17

3 24.51 216 + 1 212.27

4 20.69 216 + 1 212.28

5 2−3.18 216 + 1 212.28

Table 2. False alarms and complexities using additional slid pairs

Recovering the Permutation π. For each slid pair X and Y , the attacker has an input/output
pair for π, i.e.

Y = π(S(X, RK0)). (6)
i i i iLet the attacker have N (Xi, Yi) pairs such that Xi = (x1, . . . , x) and Yi = π(Xi) = (x , . . . , x).64 p(1) p(64)

Initially, p(j) ∈ {1, . . . , 64}, for 1 ≤ j ≤ 64. For each (Xi, Yi), the attacker updates the possible values
of p(j) by

p(j) ∈ {l|y i = xl
i , 1 ≤ l ≤ 64}.j

After checking each input pairs, the possible values of p(j) halves, on the average. Then, after a
number of pairs, it is possible to recover p(j) uniquely. We have implemented this approach to recover
64-bit permutations. For 1000 randomly constructed permutations, on the average, 28 input/output
pairs were enough to uniquely recover the permutation.

Example 2. Let p be a permutation of 16 values and π (x1, . . . , x16) = (xp (1), xp (2), . . . , xp (16)). Ini­
tially, pj ∈ {1, . . . , 16}, for all j. Let

π (1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0) = (0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1).

Then, we conclude that p (1) can only be {5, 6, 7, 8, 10, 12, 14, 16}, since yp (1) = xi, only for i ∈
{5, 6, 7, 8, 10, 12, 14, 16}. Similarly, we can say that

p(3), p(8), p(9), p(12), p(13), p(14), p(15) ∈ {5, 6, 7, 8, 10, 12, 14, 16}

p(2), p(4), p(5), p(6), p(7), p(10), p(11), p(16) ∈ {1, 2, 3, 4, 9, 11, 13, 15}

Using the second pair

π (0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1) = (1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1),

following constraints hold

p(1), p(3), p(10), p(14), p(15) ∈ {7, 8, 10, 12, 14, 16}

p(2), p(6), p(11), p(12) ∈ {1, 9, 11, 13}

p(4), p(5), p(8), p(16) ∈ {2, 3, 4, 15}

p(9), p(13) ∈ {5, 6}

Using the following pairs,

π (0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0) = (1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1),

π (0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1) = (0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0),

π (1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1) = (1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0),

π (1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1) = (1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1),

π (1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1) = (0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0),

�

�

�

�

�

�

we uniquely determine p (i) as:

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
p (i) 10 4 5 7 12 8 14 3 11 1 2 13 6 15 16 9

The attacker recovers the permutation, on the average using 28 slid pairs and recovers the per­
mutation. The attacker exhaustively searches for the rest of the key bits and recovers the key and
the permutation with 248(= 248 + 216.11) time complexity and 216 + 1 chosen plaintexts and 212.28

adaptively chosen plaintexts.

3.4 Unknown S-box and Permutation Case

In this case, the attacker needs to identify the slid pairs P and P , without the knowledge of the
S-boxes and the permutation. Similar to other cases, the attacker fixes P to the all zero input and
searches for P among 222.71 many possible candidates, as given in Sec. 3.2.

First, the attacker generates N slid pairs (Xj, Yj) pairs for each Pi. If Pi = P, then the attacker
gets input/output values for the last round encryption, i.e.,

Yj = π(S(Xj , Ri)). (7)

Attacker considers the slid pairs in the set Sa,0, where

Sa,0 = {Xj |Xj = (a, ∗, ∗, . . . , ∗), Ri = (0, ∗, . . . , ∗)}.

After applying the S-box layer to the Xi’s in Sa,0, the first four bits of the outputs will be same. Since
the permutation π only changes the bit positions, there will be four bit positions, let’s say i1, i2, i3

and i4, that will be take the same value in all Yj ’s that corresponds to the Xj ’s in the set Sa,0. Let Q
be the number of bit positions that take the same value for these Yj ’s. For the correct Pi, Q cannot
be less than 4. For an incorrect Pi, the probability that Q ≥ 4 using n input/output pairs is

P r(Q ≥ 4) =
64

(1/16)n−1 .
4

Using this formula, the expected number of incorrect Pi’s with Q ≥ 4 is 2−24.72 with n = 12. Hence, if
the attacker can construct the set Sa,i with n = 12 elements, he can uniquely determine P among 222.71

candidates. It should be noted that the attacker is not limited to the first S-box, and he can apply
the technique for any of the 16 S-box inputs, and input a can take any value from {0, 1, . . . , 15}. To
guarantee that the attacker can construct a such set, with at least 12 elements, the attacker requires
approximately 28.58(= 12x16x2) slid pairs. We experimentally verified that it is possible to determine
P using 28.58 slid pairs. So, the attacker can recover P, with 28.58 adaptively chosen plaintext for the
secret key K, and K . Next, the attacker aims to recover the secret components.

Recovering the secret components. After determining P, the attacker can generate up to 232

(Xi, Y i, Ri) values for the last round as given in Equation (7). Then, for each bit of Yi, the attacker
finds the input S-box, using the technique described above.

Example 3. Let Xi (i = 1, 2, 3) be 16 bit inputs having the first four bits equal to 1. Let Yi’s be the
one round encryption of Xi’s with four parallel S-boxes and a permutation.

X1 = (1111 0010 1101 0001) Y1 = (0011 1011 1100 1001)

X2 = (1111 1011 1001 1101) Y2 = (0000 1111 0101 1000)

X3 = (1111 0001 1010 0000) Y3 = (1011 1100 1001 0011)

It is seen that the bits 2, 5, 11 and 13 are equal in all Yi’s. The attacker concludes that these bits are
the outputs of the first S-box. The attacker cannot determine the output of 1111 for the first S-box,
however, attacker knows that it is a permutation of the bits 0100, hence can be 1000, 0100, 0010 or
0001. Although, the attacker does not know the exact value, he knows what the value will be after
the permutation, i.e., the bits 2, 5, 10 and 14 will be 0,1,0,0, respectively.

Attacker repeats this experiment, for all 16 S-boxes and uniquely determines the composition of
the individual S-boxes and partial permutations. Although the attacker cannot individually determine
the S-boxes, the composition of S-box with the permutation is enough to construct an equivalent
cipher. 28.58 adaptively chosen plaintexts for the related keys are enough to recover the composition
of one S-box input and the partial permutation. To recover all 16 output of the S-box, 212.58 adaptively
chosen plaintexts are enough, with similar time complexity. We experimentally observed that 210 slid
pairs are enough recover composition of S-box and permutation.

In the last step, the attacker recovers the rest of the 48 bits, by exhaustively searching. The attack
requires 248 time complexity and 231.29 = (222.71+8.58) adaptively chosen plaintexts using eight related
keys to recover the key and the secret components.

4 Chosen Key S-box Recovery

In the previous section, we assumed an attacker having access to encryption devices using related
keys. In this section, we assume that the attacker is able to choose the key and aim to recover the
secret components. For the keys that satisfy K = (K « 1), namely (0, 0, . . . , 0) or (1, 1, . . . , 1), the
attacks described to recover the S-boxes and the permutations can be applied using only one key.
Without loss of generality, we assume that the attacker fixes K to (0, 0, . . . , 0).

–	 S-box Recovery. In this case, possible candidates for P take the form (a, a, . . . , a), where a can

be any 4-bit value. Therefore, Np = 24. By applying the attack described in Sec. 3.2, the attacker

is able to obtain the S-box with time complexity of 211(= 24+7).

–	 Permutation Recovery. With known S-boxes, there is only one candidate for P, namely (a, a, . . . , a),
where S1(a) = 0. Then, by applying the attack described in Sec. 3.3, the attacker determines the
permutation with 56 adaptively chosen plaintexts with similar time complexity. Note that the
number of required adaptively chosen plaintext is 28 for each key in Sec. 3.3.

–	 S-box and Permutation Recovery. In this case, there are 24 candidates for P having the form

(a, a, . . . , a), where a can be any 4-bit value. Therefore, Np = 24. Then, the attacker constructs

an equivalent cipher with 28.58 × 2 adaptively chosen plaintext with similar time complexity as

given in Sec. 3.4.

5 Improved Exhaustive Key Search

In this section, we present a method to improve exhaustive key search, by taking the advantage
of a weakness in the key schedule. It is assumed that the attacker knows the S-boxes (S1 and S2),
the permutation π and a plaintext/ciphertext pair (P1, C1).

The attack begins with the attacker partitioning the key space into 248 classes; Class 1, . . . , Class 248 ,
with each class containing 216 keys. Let Bi = (b1, b2, . . . , b48) be the binary representation of the in­
teger i using 48 bits, for 0 ≤ i ≤ 248 . Class i consists of 216 keys having the following format;

(b1, b2, b3, ∗, b4, b5, b6, ∗, . . . , b46, b47, b48, ∗),

where ∗ can be either 0 or 1. In the generic exhaustive key search, to search for a key in a given
class, 216 encryptions are required. However due to the key schedule of the respective algorithm, it

http:222.71+8.58

� �

�

6

is possible to reuse some encryptions. The attacker partially encrypts P1 using the first three round
keys, which only requires (b1, . . . , b48), and stores the result as C . Note that there is a unique C for
each class. Then, trying all 216 keys in the class, encrypts C for 13 more rounds and compares the
resulting value with the given ciphertext C1. Using this approach, the total amount of work in terms
of number of encryption is 216(13/16) + 3 ≈ 215.70. Considering all classes, the complexity is reduced
by 19 percent, in compared to the generic exhaustive key search.

Similarly, the method also works to improve the exhaustive search of the 48-bit key space, when
16 bits of the key are known, as required in all the attacks presented in the paper. In that case, the
complexity of the attack reduces to 247.70 from 248 .

Conclusion

In this paper, we analyze the security of the lightweight encryption algorithm specified and ap­
proved in NRS 009-6-7:2002 by Electricity Suppliers Liaison Committee to be used with tokens in
prepayment electricity dispensing systems in South Africa. The algorithm aims to achieve security
by secrecy of its main building blocks, namely the S-boxes and the permutations.

In the paper, we presented related-key slide attacks to recover the secret key for the four respective
scenarios composed of known vs. unknown S-box and known vs. unknown permutation. We showed
that it is possible to recover the key even without the knowledge of the main building blocks.

The main weakness of the algorithm is due to the cyclic key schedule, and the identical round
structure. The attacks can be avoided by breaking the symmetry between the round functions. In­
cluding an additional layer that uses a counter or a constant might be an easy countermeasure for
the attacks.

References

1.	 M. Feldhofer, J. Wolkerstorfer, and V. Rijmen. AES Implementation on a Grain of Sand. IEE proceedings / Information
Security, 152:13 – 20, 2005.

2.	 P. Hamalainen, T. Alho, M. Hannikainen, and T.D. Hamalainen. Design and Implementation of Low-Area and Low-Power
AES Encryption Hardware Core. In Proceedings of the 9th EUROMICRO Conference on Digital System Design, DSD ’06,
pages 577–583, Washington, DC, USA, 2006. IEEE Computer Society.

3.	 A. Moradi, A. Poschmann, S. Ling, C. Paar, and H. Wang. Pushing the Limits: A Very Compact and a Threshold
Implementation of AES. In Advances in Cryptology - EUROCRYPT 2011 - 30th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, volume 6632 of Lecture Notes in Computer Science, page 69. Springer,
2011.

4.	 A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J. Robshaw, Y. Seurin, and C. Vikkelsoe. PRESENT:
An Ultra-Lightweight Block Cipher. In Proceedings of the 9th international workshop on Cryptographic Hardware and
Embedded Systems, CHES ’07, pages 450–466, Berlin, Heidelberg, 2007. Springer-Verlag.

5.	 D. Hong, J. Sung, S. Hong, J. Lim, S. Lee, B. Koo, C. Lee, D. Chang, J. Lee, K. Jeong, H. Kim, J. Kim, and S. Chee.
HIGHT: A New Block Cipher Suitable for Low-Resource Device. In Louis Goubin and Mitsuru Matsui, editors, CHES,
volume 4249 of Lecture Notes in Computer Science, pages 46–59. Springer, 2006.

6.	 G. Leander, C. Paar, A. Poschmann, and K. Schramm. New Lightweight DES Variants. In Fast Software Encryption, 14th
International Workshop, FSE 2007, Luxembourg, Luxembourg, March 26-28, 2007, Revised Selected Papers, volume 4593
of Lecture Notes in Computer Science, pages 196–210. Springer, 2007.

7.	 L. R. Knudsen, G. Leander, A. Poschmann, and M. J. B. Robshaw. PRINTcipher: A Block Cipher for IC-Printing. In
Stefan Mangard and François-Xavier Standaert, editors, CHES, volume 6225 of Lecture Notes in Computer Science, pages
16–32. Springer, 2010.

8.	 D. Wagner M. Briceno, I. Goldberg. A Pedagogical Implementation of the GSM A5/1 and A5/2 ”voice privacy” encryption
algorithms Available at http://www.scard.org/gsm/a51.html , Accessed January 23, 2013.

9.	 4C Entity. C2 Block Cipher Specification, Revision 1.0. http://www.4centity.com/.
10.	 J. Borghoff, L. R. Knudsen, G. Leander, and K. Matusiewicz. Cryptanalysis of C2. In Shai Halevi, editor, CRYPTO, volume

5677 of Lecture Notes in Computer Science, pages 250–266. Springer, 2009.
11.	 NRS 009-6-7:2002. Rationalized User Specification, Electricity Sales Systems, Part 6: Interface standards Section 7:

Standard Transfer Specification/Credit Dispensing Unit – Electricity dispenser – Token Encoding and Data Encryption
and Decryption, 2002.

http:http://www.4centity.com
http://www.scard.org/gsm/a51.html

�

�

� �

� � � �

� � �

� �

�

�

� � � � � � � � � � � � �

APPENDIX

A Constructing Slid Pairs

In this part, we present a method to construct slid pairs, given the slid pair P and P using the keys
K and K = K « 1 (See Fig. 2). Let the attacker has access to eight encryption devices using keys
K « 16i and K « 16i for i = 0, 1, 2, 3. If P and P are slid pairs, then the ciphertexts C1 = EK(P)
and C1 = EK (P) are slid pairs using the keys K « 16 and K « 16, respectively. Similarly, C2 and
C2 are slid pairs using the keys K « 32 and K « 32. In general, Ci and Ci are slid pairs using the
keys K « 16(i mod 4) and K « 16(i mod 4). To generate N slid pairs with keys K and K , the
attacker make 4N iterative encryptions and gets the values Ci and Ci for i = 0 mod 4 as given in
Figure 3. Due to the birthday bound, the attacker can generate approximately 232 slid pairs using
the slid pair P and P .

EK EK«16 EK«32 EK«48 EK EK«16
P −→ C1 → C2 → C3 −−−−→ C4 −→ C5 −−−− → CN−−−− −−−− → . . . −

EK EK «16 EK «32 EK «48 EK EK «16
P −−→ C1 −−−−→ C2 −−−−→ C3 −−−−→ C4 −−→ C5 → CN−−−−→ . . . −

Fig. 3. Iterative encryption using eight related keys

B Number of Possible S-boxes

In this part, we aim to find the number of possible S-boxes that satisfy a number of given
constraints.

Proposition 1. Let X = (x1, . . . , xn) be a random sample of n, with replacement, from a population
of D = {1, 2, . . . , N}. For i ∈ D, let Yi denote the number of times i occurs in the sample,

Yi = #{j ∈ {1, 2, . . . , N} : xj = i}.

The number of distinct population values in the sample is

VN,n = #{j ∈ {1, 2, . . . , N} : Yj > 0}.

The density function of VN,n is

6N
j

j j − k
P r(VN,n = j) = (−1)k ()n

j k N
k=0

for j = 1, . . . , min{N, n}.

For each S-box, N = 16, and the number of constraints is n = 18. Table 3 shows the probability
distribution of the number of recovered outputs of the S-boxes. The distribution takes its maximum-16 value for 12 recovered outputs, with expected values of j=1 kP r(V16,18 = j) = 10.99 ≈ 11.

1
2
3
4
5
6
7
8

j P r(V16,18 = j) j P r(V16,18 = j)
2−68 9 2−3.42

2−47.09 10 2−2.13

2−34.34 11 2−1.69

2−25.20 12 2−2.11

2−18.25 13 2−3.43

2−12.85 14 2−5.75

2−8.70 15 2−9.26

2−5.59 16 2−14.46

Table 3. The probability distribution of V16,18

.

