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Abstract
A problem that frequently occurs in metrology is one of assessing compatibility of data
obtained by a user laboratory with the specified values and uncertainty estimates from the
certificate of analysis. The user’s data are summarized by an estimated measurand value and a
confidence interval, which is typically based on a repeatability standard deviation, but may
include other variance or bias components. If the lab’s interval and the certificate interval do
not overlap, or more generally when the ‘no-bias’ hypothesis is rejected, the user may seek
guidance on how to confirm this lack of compatibility or how to rectify it. The suggested
two-stage statistical approach demonstrates a confidence interval whose width is similar to that
of the certificate, and a compatibility test of guaranteed power for the given bias magnitude.
Practical computationally simple formulae for each stage sample size are provided.

Keywords: compatibility testing, necessary sample size, power, Stein procedure, uncertainty,
interval

1. Introduction: CRM incompatibility problem

Certified reference materials (CRMs) are well-characterized
materials which are certified for one or more physical, chemical
or biological properties, and are important to ensure the
accuracy and compatibility of measurements. They are
produced and sold in large and continually growing quantities
throughout the industrialized world. ‘CRMs are used for
calibration, quality control and method validation purposes,
as well as for the assignment of values to other materials . . .
and to maintain or establish traceability to conventional scales’
[12]. Metrological traceability of a measurement result is
often achieved by using calibrations whose quantity values are
themselves traceable. However, the calibration CRM should
not be subsequently used for trueness control [4].

The National Institute of Standards and Technology
(NIST) produces at least 1285 individual standard reference
materials (SRM is the NIST trade name for its CRMs), covering
products in the major categories of chemical composition,
physical properties and engineering applications and selling
approximately 33 000 units per year. To certify its SRMs,
NIST as well as other National Metrology Institutes reports
summary statistics with associated uncertainties leading to a
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coverage interval. The certified value represents a resource-
intensive estimate of the ‘true’ value of the measurand, with
the interval designed to bracket this value and to indicate its
uncertainty. Often users are inclined to treat the certified value
as a calibration point, while the certified uncertainty is ignored.
Analysts who do try to use certified uncertainty sometimes
regard the interval as a target band into which the user’s values
must fall in order to be compliant.

The frequently cited NIST Handbook for SRM Users [24]
does not give sufficient guidance for compatibility testing
or bias removal as a corrective action. Although there is
a large, rapidly expanding literature on the subject of CRM
certification [14], complaints about lack of clear guidance on
the use of CRMs continue, e.g. [18]. Indeed the problem
of formally judging the degree of compatibility (also called
‘conformance’, ‘trueness assessment’ or ‘bias determination’)
between a CRM certified value with associated uncertainty and
a user’s best estimate with its uncertainty does not seem to be
fully solved.

One of the most frequently fielded queries by NIST’s
Measurement Services Division is related to the situation when
the user’s interval does not intersect the CRM interval. The
usual interpretation of nonoverlapping intervals is that the
measurements are not CRM compatible (i.e. the hypothesis
discussed in section 3 is convincingly rejected). Non-overlap,
indeed, can be taken as one of most serious indications of
incompatibility, indicating the presence of possibly substantial
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bias. Disjoint intervals will result in rejection of the
compatibility hypothesis for virtually all existing statistical
tests. More importantly, overlapping intervals do not always
indicate the absence of bias.

According to the GUM [11], any significant bias should
to be corrected. There is an increasing number of publications
on the problem of bias removal and formal assessment of the
degree of compatibility between a CRM certified value and
user’s best estimates, e.g. [22, 27, 28, 33]. To correct for bias,
independent estimates of the bias correction uncertainty are
required. Such estimates are hard or impossible to obtain
in the context of just one CRM comparison where a mere
replacement of the lab’s mean by the certificate value should
raise apprehension. This issue is touched upon in section 5.

The recent review [5] discusses more than 30 publications
on the subject of measurement uncertainty and compatibility
assessment over the last 15 years, among them the guidelines
of ISO 10576-1 [13] and EURACHEM/CITAC [6]. See also
[17]. These guides do not explicitly formulate the ‘no bias’
hypothesis in statistical terms. It is specified in section 3
without imposing restrictions on a lab’s repeatability.

The main novel feature of ISO 10576-1 standard [13] is to
recommend a two-stage stage approach to trueness assessment.
If one fails to accept compatibility at stage 1, repeat the
measurement and check at stage 2 by pooling measurement
results from the two stages. Acceptance/rejection then depends
on acceptance/rejection of the combined sample average value
and its standard error. The central part of this work is the CRM
experiment planning in section 3 where we follow a similar
approach. Explicit formulae are given for the sample size
needed in principle for each of two objectives described there:
one to attain a confidence interval of the width proportional
to that of CRM’s interval, another to get a test which rejects
compatibility with a high probability when the true bias is
large.

The second stage sample sizes and the testing
methodology are discussed in section 4. This procedure does
not necessarily recommend to perform a compatibility test at
the first stage but accomplishes one of the goals above for the
combined data using the standard deviation of the first sample.

We apply the suggested methodology to two examples in
section 6. However, before the methods can be explored, there
are minimal requirements the user’s lab must meet to show its
readiness to compare their results with certified values. These
issues are considered in the next section.

2. Laboratory preparation

For the purposes of applying the suggested procedure,
the laboratory should have beforehand or develop an
understanding of both statistical characteristics of the
information contained in the certificate of an appropriate CRM
and of its own measurement performance with that CRM (the
estimated measurand and the uncertainty). As we will see in
the next section, it is imperative that the user has a fairly good
idea about the relative uncertainty of the lab’s measurements
with regard to that given in the CRM certificate. This can be

achieved only if the measurement procedure is under statistical
control.

Irrespective of calibration, traceability and quality control
issues, the CRM’s role is to confirm the trueness of a
user’s measurement results. Before using a CRM for such
purpose, a lab should decide if a standard test method will be
implemented. If so, the method likely has previous precision
statements obtained by labs participating in its assessment.
These can be compared with the CRM expanded uncertainty.
However, even limited in-house validation is desirable. If there
is no published method, the lab’s results must be contrasted
with similar off-the-shelf methods or with the work carried out
for other relevant techniques. Failing that, the lab can derive
some guiding characteristics from customers’ specifications
such as minimum allowed quantities, relative length of a
specific interval, number of significant digits required in
reported results, etc.

Once good repeatability is ensured, measurement
precision over longer time periods and, if appropriate,
among multiple analysts or different instruments should be
evaluated using real samples having typical or representative
analyte levels [9]. Validation studies must also establish
reliable estimates of the limits of detection and quantification.
Attempts to evaluate measurement trueness before fully
characterizing its precision are unlikely to yield reliable
statistical conclusions.

When the lab decides that it is ready to use CRMs, the
next task is to choose an appropriate CRM and to employ it
correctly. This topic is outside the scope of this paper. It
suffices to say that the chosen CRM should have the uncertainty
of certified concentrations small relative to the uncertainty
for intended use. It must be reasonably matched with the
customarily analysed samples and analyte concentrations.
These issues are discussed, for example, in [23, 24, 32].

We focus now on statistical aspects of a CRM experiment,
in particular, how to choose the number of replicates needed
to detect a bias of the given magnitude, when testing the
hypothesis of no bias.

3. Sample size determination: noncentral
t -distribution

Commonly the specifications indicated in a CRM certificate
provide the estimated measurand µcrm, i.e. the certified
value, and the expanded uncertainty Ucrm = U . Thus,
µcrm ± Ucrm is the uncertainty interval for the measurand µ.
Traditionally used in metrology is an expansion factor 2, so that
Ucrm = 2u where u denotes the standard uncertainty (which
commonly includes uncertainties resulting from systematic
effects). For the assumed here large degrees of freedom on
which the CRM interval is based, the expanded uncertainty of
(1 − α)100% coverage interval is zα/2u, where zβ denotes the
(1 − β)-percentile of the standard normal distribution. When
1 − α = 0.95, zα/2 = 1.96 ≈ 2. If the degrees of freedom are
small, the factor zα/2 should be replaced by a critical value of
a t-distribution which can lead to much wider intervals.

The user’s replicated measurements, say, x1, . . . , xn, are
summarized by the value x̄ which is the best estimate (typically
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the sample mean) of the measurand quantity, and s which
estimates the repeatability standard deviation. The number
n of the measurements represents lab’s sample size.

We suppose that s does not depend on x̄ although
the relationship between the sample mean and s can be
quite complicated. Sometimes this independence can be
approximately achieved by a suitable transformation of the x’s.
In particular, when s is proportional to x̄ (as happens for some
chemical measurands), the following results typically hold if
xi is replaced by the logarithmic transform, log xi .

Thus we accept here the simplest setting with xi being
a realization of a Gaussian random variable with some mean
µcrm + �, where � represents an unknown bias, and some
unknown standard deviation τ .

In this model the compatibility (‘no bias’) hypothesis H0

means� = 0. Following the tradition we denote byα the type I
error or the significance level, i.e. the largest probability of false
H0 rejection. The type 2 error occurs when the null hypothesis
is wrong but is not rejected. If β represents the probability of
accepting H0 when � is a non-zero bias, which is the type 2
error, 1 − β is called the power at �. A good statistical test
first of all has a small significance level not exceeding α for all
� = 0, but also has a large power at least for sufficiently large
|�| [20].

Under H0, the ratio
√

n(x̄ − µcrm)/s has a t-distribution
with ν = n − 1 degrees of freedom. The user confidence
interval,

x̄ ± tα/2(ν)s√
n

,

is determined by tα/2(ν), the critical point of t-distribution with
ν degrees of freedom. Thus if tcdf(t, ν) is the corresponding
cumulative t-distribution function, tcdf(tα/2(ν), ν) = 1 − α.
The probability that this interval covers µcrm + � is 1 − α.

Fairly often in practice this interval and the CRM
interval µcrm ± Ucrm do not overlap, refuting compatibility.
Mathematically this fact can be expressed as

|x̄ − µcrm| � Ucrm +
tα/2(ν)s√

n
. (1)

When (1) holds, the lab decides to reject the compatibility
hypothesis. Such a procedure is recommended by ISO 10576-1
[13]. The significance level using (1) is always smaller than
α. An implication is that for small |�| the type 2 error is
fairly large. Despite its intuitive appeal, the underpowered test
(1) has a poor chance to detect a bias when it is there. It is
important to realize that overlapping intervals do not imply
that the lab’s mean coincides with µcrm.

Reference [30] suggests different formulations of
compatibility hypothesis in metrology and provides numerical
power comparisons of various procedures. In this work we
concentrate on the following t-test for two reasons. First
of all this test is the most commonly used technique. The
second reason is that the properties of the two-stage procedure
discussed in section 4 generally do not hold for other tests.

The classical t-test rejects compatibility when

|x̄ − µcrm| � tα/2(ν)s√
n

. (2)

For � = 0, the probability of false rejection using this test is
exactly α. Clearly the right-hand side of (2) is always smaller
than the right-hand side of (1), so each time (1) rejects, (2)
rejects as well. Therefore, the probability of false acceptance
under (1) is larger than that for (2), and the latter test is more
powerful.

If � �= 0, the distribution of the ratio
√

n(x̄ − µcrm)/s

is known as a noncentral t-distribution with the degrees of
freedom ν and the noncentrality parameter

√
n�/τ . In

addition to controlling for the type 1 error (α), one would like
to have the type 2 error (β) as small as possible. Towards this
end the user may specify the minimum non-zero value for the
bias, �c, that is of concern. The choice of �c in practice can
cause difficulties. Indeed for the bias to be deemed significant,
this critical value cannot be smaller than Ucrm, but realistically
�c should not be taken very large. We recommend to limit the
values of �c to the range

Ucrm � �c � 3Ucrm,

which can be motivated by the equations below.
The larger �c, the smaller is the sample size n needed

to attain a given type 2 error, β, at �c. The balance
between α, β, n and �c can be achieved only if there is some
information about the unknown τ . Indeed in our problem for
a fixed α the probability of the type 2 error is a function of the
noncentrality parameter

√
n�/τ . If τ were known, one could

solve for n in the equation, type 2 error = β, to get the needed
sample size n, n ≈ (zα/2 + zβ)2τ 2/�2

c .
If τ is given, one can even construct a coverage interval

of any width 2h by taking n ≈ z2
α/2τ

2/h2. A lab may want
to consider its interval having the width proportional to that
of the certificate. The ratio of (expected) widths of these
intervals, Cm = width(CRM interval)/width(user interval),
is known in quality control problems as the measurement
capability index. See [25] for a discussion of other capability
characteristics.

With u representing the standard uncertainty we suggest
to take h = zα/2uC−1

m for a given value of Cm. Then no matter
what is τ , both of the above formulae for the sample size n

coincide if

�c = C−1
m u

(
zβ + zα/2

)
� 4C−1

m u. (3)

Since in the formulae for the necessary sample size τ

is unknown, it must be estimated. For this purpose the
comparison of τ and u is helpful. Of course one should
anticipate that τ is larger than u. Take τ = Bu, where the
corresponding factor B, say, 1 < B � 5, may be determined
from the lab’s preparatory work. To put it in a somewhat
different way, let Bu be the lab’s best guess about τ .

The factor B used in [30] can be described via
the mentioned measurement capability index Cm, B =
[
√

nzα/2/tα/2(ν)]C−1
m . Thus B merely is a multiple of C−1

m

which takes into account the error probability α and is adjusted
for different sample sizes. Indeed the user’s interval for very
large values of τ/σcrm is practically useless. According to
the rule of thumb, B should be about 2 [15]. The smallest
recommended value of Cm in problems involving compliance
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testing via tolerance zones is 1.3 [1, 3, 17], which requires
fairly large sample sizes n. In our situation one may expect
that Cm � 1. The lab is on equal footing with the CRM in
terms of its interval width when Cm = 1.

Returning to the issue of controlling the type 2 error,
by taking τ = Bu, one gets the estimated value of the
noncentrality parameter,

√
n�c/(Bu), so that the numerical

evaluation of the smallest n such that the inequality, type 2
error � β, becomes feasible. If �c is chosen as in (3), the
noncentrality parameter becomes tα/2(ν)(1 + zβ/zα/2) with
typical values between 4 and 6.

Denote by nm(α, β, d) the minimal sample size n such that
the test (2) of significance level α has the power at least 1 − β

at d = �c/τ . In biostatistics d is called the effect size. The
modern statistical software, in particular the publicly available
R-language, offers several routines to determine nm(α, β, d)

numerically for any given values of α, β and d .
Here is an R-example when sig.level = α = 0.05,

power = 1 − β = 0.9 and d = �c/τ = 2:

library(pwr)
pwr.t.test(d=2,power=0.9, sig.level=0.05,

type=’one.sample’, alternative=’two.sided’)

which produces the result

One-sample t test power calculation

n = 4.912411
d = 2

sig.level = 0.05
power = 0.9

alternative = two.sided

According to this calculation about five observations are
needed to have the type II error of test (2) equal to 0.1 when
�c/τ = 2.

A fairly accurate approximate formula for nm(α, β, d) is

nm(α, β, d) ≈
⌈ (zα/2 + zβ)2

d2
+

z2
α/2

2

⌉
, (4)

where �a� denotes the least integer that is greater or equal
to a [7]. The origin of (4) is the asymptotic expansion of
the noncentral t-distribution function in powers of ν−1 [16,
chapter 31, section 5]. In the example above (4) gives the
correct answer, nm = 5. See also table 1.

Excel users may want to use RExcel, an add-in for MS
Excel which allows to call R-functions as worksheet functions
[8]. There are several web sites (http://hedwig.mgh.harvard.
edu/sample size, http://homepage.stat.uiowa.edu/˜rlenth/
Power, http://calculators.stat.ucla.edu/powercalc) allowing
necessary sample size calculations intended mainly for clinical
trials. The procedure which tests the equality of means by
checking the overlap between two intervals in such studies is
criticized in [31].

In the next section we will see how the user can derive
an 95% confidence interval of any given length when τ is
unknown. For this purpose one can employ the formula

n =

BCm

√
1 + z2

α/2

2


 , (5)

where α is the error probability [19]. Thus, under the
traditional α = 0.05 error, n ≈ 1.55BCm. Equation (5)
provides the optimal choice of the sample size n for h =
zα/2uC−1

m with a given value of Cm as explained in [19]. This
formula gives the same answer, n = 5, in the example above
when BCm = 3.21.

4. Two-stage procedure

If the CRM interval and the user interval do not overlap or,
say, the compatibility hypothesis is rejected by (2), the lab
may decide to follow a sequential two-stage approach to its
testing recommended by [2, 10, 13]. However, none of these
references specifies the necessary sample sizes. The lab’s
motivation may be the fact that the test (2) does not have a
good power unless �c/τ is fairly large [30], or it may feel that
its confidence interval is very wide.

In mathematical statistics there is a method (Stein’s
two-stage procedure [20, p 198]) to choose the second
(random) sample size m, so that when τ is unknown, the
interval X̄ ± h, h > 0, has a guaranteed coverage probability
which is at least 1 − α, say, 95%. Here X̄ is the total sample
mean (based on both the first stage n observations and the
second stage m observations). The formula for N = n + m is

N = max

(
n,

⌈ s2t2
α/2(ν)

h2

⌉)
. (6)

If with a given measurement capability index Cm, h =
zα/2uC−1

m the lab will have its interval’s width proportional
to that of the CRM’s interval at the expense of m additional
measurements,

m = max

(⌈ s2t2
α/2(ν)C2

m

z2
α/2u

2

⌉
− n, 0

)
. (7)

The second sample is not needed at all when

s2 �
nz2

α/2u
2

C2
mt2

α/2(ν)
.

Thus by claiming a small uncertainty, the lab deprives itself of
the chance to re-examine its coverage interval. If the new user
interval and the CRM interval still do not overlap, the lab may
choose to declare its lack of compatibility or to attempt a bias
correction performing further measurement runs. A motivated
laboratory could perform a fully sequential sampling scheme
by making measurements one at a time until for the current
value of s2, s2 � nz2

α/2u
2/[C2

mt2
α/2(ν)].

Stein’s two-stage procedure also can be used in the
hypothesis testing context so that for a particular bias �c one
can construct a test whose power for all τ is at least 1−β at this
critical value. The two-stage t-test rejects the compatibility
hypothesis when

√
N |X̄ − µcrm|

s
� tα/2(ν).
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Table 1. The necessary sample sizes when α = 0.05, β = 0.1.

d 0.5 0.6 0.7 0.8 0.9 1 1.2 1.4 1.6 1.8 2.0 2.5 3
[23] 43 30 22 17 13 11 8 6 5 4 3 2 2
nm 44 32 24 19 16 13 10 8 7 6 5 5 4
Equation (4) 44 32 24 19 15 13 10 8 7 6 5 4 4

If for a constant d,

N = Nd = max

(
n,

⌈ s2d2

�2
c

⌉)
,

this procedure has the significance level α. Its smallest power,
1 − tcdf(d + tα/2(ν), ν) + tcdf(d − tα/2(ν), ν), corresponds to
τ → ∞. If it is 1−β, then the test has the power at least 1−β

for all τ .
A natural choice is

N = Nc = max

[
n, nm

(
α, β,

�c

s

)]
. (8)

with nm from (4). Then additional observations are needed
when and only when the first sample size n is smaller
than nm(α, β, �c/s), which is an estimator of the desirable
theoretical quantity nm(α, β, �c/τ).

Another approximation via the modification of (4)
suggests to take

N = Na = max

(
n,

⌈ s2[tα/2(ν) + tβ(ν)]2

�2
c

+
t2
α/2(ν)

2

⌉)
,

(9)

with the second stage sample size,

m = ma = max

(⌈ s2[tα/2(ν) + tβ(ν)]2

�2
c

+
t2
α/2(ν)

2

⌉
− n, 0

)
.

(10)

Equations (7) and (10) are approximately equal when

�c = C−1
m uzα/2

[
1 +

tβ(ν)

tα/2(ν)

] [
1 − z2

α/2u
2

2s2C2
m

]−1/2

, (11)

which is possible only if s2 > 0.5z2
α/2u

2/C2
m. Then about the

same number of additional measurements m is required for
the lab’s interval to have the half-width zα/2uC−1

m as for the
guaranteed power test of compatibility.

Simulations show that in terms of power the Stein
procedure with Na performs better than for Nc especially
for small/medium n-values. The total sample size (9) is
therefore recommended. The smallest power of this test,
1 − tcdf(zα/2 + zβ + tα/2(ν), ν) + tcdf(zα/2 + zβ − tα/2(ν), ν),
is very close to 1 − β and considerably exceeds that of Nc in
(8) for ν � 6.

5. Bias uncertainty interval

The NIST Special Publication 829 [23] addresses the same
issue as two previous sections, namely the design of a CRM
experiment using the approximate formula

nm(α, β, d) = nm ≈ [tα/2(nm − 1) + tβ(nm − 1)]2

d2
,

for the necessary sample size. Here as before, β is the
desired type 2 error at �c, d = �c/τ . This formula is
obtained from the approximation of the noncentral t-random
variable by the sum of a central t-random variable and the
noncentrality parameter. Since nm enters in both sides,
an iterative process is required to determine its value. As
the following example shows, this process may not be very
accurate.

A part of table 1 in [23] for α = 0.05, β = 0.1, when
d = �c/τ varies from 0.5 to 3, along with exact answers
obtained from the R-code and the approximate formula (4), is
reproduced here. All numbers in the original table present
insufficient sample sizes, while formula (4) is remarkably
accurate, differing by one from the exact nm just for two
values of d (d = 0.9 and d = 2.5). The exact nm value
when d = 2 is 5, while the table’s value 3 is far from
[t0.025(2) + t0.1(2)]2/4 = 5.8. Thus this part of [23] should
not be used in practice.

Reference [23] suggests to treat ucrm as a fixed offset. A
bias uncertainty interval for � is then derived from the user
interval by increasing its half-width by this amount,

x̄ − µcrm ±
[
tα/2(ν)s√

n
+ ucrm

]
.

The probability that the unknown bias is within these two limits
is at least 1 − α, but the interval may be excessively wide for
this purpose. It is closely related to the conservative test (1) as
that test accepts the compatibility hypothesis if and only if the
interval contains the origin.

The bias corrected interval suggested in [28] which has
the end-points

µ = x̄ − max
[ tα/2(ν)s√

n
+ (x̄ − µcrm), 0

]
,

µ = x̄ + max
[ tα/2(ν)s√

n
− (x̄ − µcrm), 0

]
,

does not involve ucrm.
The asymmetric interval (µ, µ) was found to be one of

the best bias removal procedures reviewed in [22]. However,
this interval may not correspond to an interval defined by a
coverage factor and was criticized for this reason [21].

In our problem � represents the short term bias which can
be estimated by x̄ − µcrm with the corresponding uncertainty√

σ 2
crm + s2/n [26]. However, for justifiable bias removal a

typically missing independent estimate of this uncertainty is
required. If compliance is rejected, a lab may want to pursue
the bias correction by taking more measurements involving the
same or different CRM and/or using other available precision
information mentioned in section 2 including reproducibility
conditions.
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6. Two examples

We start with the following illustrative example. A laboratory
purchased a CRM consisting of West Virginia coal ash, whose
certified mass fraction of gallium is 58 mg kg−1, with the
standard measurement uncertainty 2 mg kg−1 evaluated on 95
degrees of freedom.

The laboratory measured this reference material as means
to verify its measurement protocol, and obtained 74 mg kg−1

with the standard deviation 6 mg kg−1 evaluated on five degrees
of freedom. The user 95% confidence interval which ranges
from 59 mg kg−1 to 89 mg kg−1 has a small overlap with the
CRM interval, 58 ± 4.

Under these circumstances in mg kg−1 units, µcrm = 58,
u = 2 while x̄ = 74, s = 6 and for n = 6, ν = 5,
α = 0.05, tα/2(5) = 2.57. The t-test rejects the compatibility
hypothesis as

√
n|x̄ − µcrm|

s
= 6.53 > 2.57 = tα/2(5).

All other compatibility hypotheses tests considered in [30] also
reject.

According to (7), if Cm = 1,

N = max

(
6,

⌈ (6 × 2.57)2

42

⌉)
= 16.

Thus by taking m = 16 − 6 = 10 additional observations,
the user would get a 95% coverage interval X̄ ± 4. If
X̄ � 58 + 2.57 × 6/

√
15 ≈ 61.85, this lab may try to seek a

bias correction or just state its incompatibility with this SRM.
The lab’s choice for n should have been n = 1.55B, which

suggests that in this example, B = τ/u > 3.8. In this situation
if �c = 2u = 4 is the critical bias, then according to (7) when
this bias is present, additional m = 20 measurements for the
Stein test would allow to reject H0 correctly with probability
1 − β = 0.8. The value from (11) is �c = 6, and the second
sample size is m = 10, as above. If �c = 4u = 8, then the
second sample size is reduced to m = 5.

We use the data for environmental SRM 1974a Organics
in Mussel Tissue [29] as the second example. These data
come from 16 laboratories participating in a performance-
based study over a period of several years. All these labs have
used n ≡ 3, so that ν ≡ 2.

Out of 222 cases (14 compounds), the t-test rejected
the compatibility hypothesis 91 times. In contrast, 41 user
intervals did not overlap with the certificate interval. The
three main causes, pyrene, PCB 118 and PCB 153, each
contributing five instances of non-intersection, were followed
by fluoranthene and 4,4′ DDT with four cases each.

As an example, consider PCB 153 with the corresponding
CRM interval (145.2 ± 7.6) µg kg−1. Since tα/2(2) = 4.303,
lab 10 interval, (189.0 ± 10.89) µg kg−1, does not overlap
with the CRM interval, and the t-test rejects the compatibility
hypothesis (table 2). This lab would need four additional
measurements to establish a coverage interval of the same
width as the CRM interval (i.e. to reduce its half-width from
10.89 to no more than 7.6.) However, this shorter interval has
a poor chance to overlap with the certificate interval. The same

Table 2. The lab’s intervals for PCB 153 in SRM 1974a (µg kg−1

units) along with the values of the additional sample size from (7)
and (10) for Cm = 1, �c = 15.4, β = 0.1.

Lab x̄ s (7) (10)

10 189.00 4.38 4 10
11 184.67 5.03 6 11
12 186.50 4.95 5 11
14 182.44 2.90 0 8
16 96.47 15.26 72 45

lab would require the second sample size 10 to obtain power
0.9 when �c = 2 × 7.6 = 15.4.

Similarly, the lab 14 has the half-width of its reported
interval, 7.20, smaller than that of CRM, so that its interval
cannot be altered by a two-stage procedure. The fact that the
lab 16 has a large sample standard deviation s = 15.26 leads
to a very large additional sample size 45 for the guaranteed
power test at �c = 15.4, and to completely unrealistic 72
new measurements for the coverage interval of half-width
2u = 7.6. This example shows that the two-stage procedure
cannot be useful in the extreme cases when the first sample
standard deviation is very small or very large.

7. Conclusions

The Stein procedure offers the promise of shorter uncertainty
intervals and of compatibility verification which is simultane-
ously more powerful and more fair to the user. This promise
cannot be fulfilled by any fixed sample size statistical method.
The calculations involving the necessary second sample size
after (6) or (8) are sufficiently simple that end users of CRM
certificates could employ them when designing a two-stage val-
idation procedure. These formulae serve two different goals:
one to attain a confidence interval of a width comparable in
terms of the measurement capability index to that of the cer-
tificate, another to derive a test rejecting conformity with a high
probability for the prescribed bias value. The two objectives
are not incompatible; in contrast, they coincide when the criti-
cal bias value is given by (11) which can be taken as the default
bias.

However, our approach needs some information about the
lab’s relative uncertainty with regard to CRMs. It cannot be
helpful if this uncertainty is very large or very small. Neither
the formula (5) nor the exact R-language calculations can be
employed without certain distributional assumptions which
may or may not be met in a particular situation. Effectively
combining the message of the CRM certificate with the lab’s
data is possible only if the lab’s measurement process is under
statistical control. Indeed good repeatability is a precondition
for any contemplated bias correction which by itself requires
much more information.
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[21] Lira I H and Wöger W 1998 Removing model and data
non-conformity in measurement evaluation Meas. Sci.
Technol. 9 1010–1

[22] Magnusson B and Ellison S L R 2008 Treatment of
uncorrected measurement bias in uncertainty estimation
for chemical measurements Anal. Bioanal. Chem.
390 201–21

[23] NIST 1992 Use of NIST Standard Reference Materials for
Decisions on Performance of Analytical Chemical Methods
and Laboratories NIST Special Publication 829, USGPO,
Washington, www.nist.gov/mml/csd/inorganic/upload/
NIST SpecialPub829.pdf

[24] NIST 1993 Standard Reference Materials Handbook for SRM
Users NIST Special Publication 260-100, USGPO,
Washington www.nist.gov/srm/upload/SP260-100.pdf

[25] NIST 2010 NIST/SEMATECH e-Handbook of Statistical
Methods www.nist.gov/itl/sed/gsg/handbook project.cfm

[26] O’Donnell G E and Hibbert D B 2005 Treatment of bias in
estimating measurement uncertainty Analyst 130 721-729

[27] O’Donnell G E and Hibbert D B 2013 A study of the
conditions of measurement required to evaluate bias in
analytical results illustrated by the use of data from a
multi-round, blind-duplicated, proficiency test Analyst
138 3673–8

[28] Phillips S D, Eberhardt K R and Parry B 1997 Guidelines for
expressing the uncertainty of measurement results
containing uncorrected bias J. Res. Natl Inst. Stand. Technol.
102 577–85 http://nvlpubs.nist.gov/jres/102/5/j25phi.pdf

[29] Poster D, Schantz M, Kucklick J, Lopez de Alda M, Porter B,
Pugh R and Wise S 2004 Three new mussel tissue standard
reference materials (SRMs) for the determination of organic
contaminants Anal. Bioanal. Chem. 378 1213–31

[30] Rukhin A L 2013 Assessing compatibility of two laboratories:
formulations as a statistical testing problem Metrologia
50 49–59

[31] Schenker N and Gentleman J 2001 On judging the significance
of differences by examining the overlap between confidence
intervals Am. Statist. 55 182–6

[32] Sharpless K E and Duewer D L 2008 Standard Reference
Materials for analysis of dietary supplements J. AOAC Int.
91 1298–302

[33] Synek V 2005 Attempts to include uncorrected bias in the
measurement uncertainty Talanta 65 829–37

17

http://dx.doi.org/10.1007/s00769-001-0400-8
http://dx.doi.org/10.1007/s00769-008-0460-0
http://dx.doi.org/10.1351/PAC-REP-07-09-39
http://dx.doi.org/10.1007/s00216-011-4776-y
http://www.eurachem.org/index.php/publications/guides/uncertcompliance
http://www.eurachem.org/index.php/publications/guides/uncertcompliance
http://metrology_forum.tm.agilent.com/easy.shtml
http://www.bipm.org/utils/common/documents/jcgm/JCGM_106_2012_E.pdf
http://www.bipm.org/utils/common/documents/jcgm/JCGM_106_2012_E.pdf
http://dx.doi.org/10.1088/0957-0233/9/6/019
http://dx.doi.org/10.1007/s00216-007-1693-1
http://www.nist.gov/mml/csd/inorganic/upload/NIST_SpecialPub829.pdf
http://www.nist.gov/mml/csd/inorganic/upload/NIST_SpecialPub829.pdf
http://www.nist.gov/srm/upload/SP260-100.pdf
http://www.nist.gov/itl/sed/gsg/handbook_project.cfm
http://dx.doi.org/10.1039/b414843f
http://dx.doi.org/10.1039/c3an00130j
http://dx.doi.org/10.6028/jres.102.039
http://nvlpubs.nist.gov/jres/102/5/j25phi.pdf
http://dx.doi.org/10.1007/s00216-003-2401-4
http://dx.doi.org/10.1088/0026-1394/50/1/49
http://dx.doi.org/10.1198/000313001317097960
http://dx.doi.org/10.1016/j.talanta.2004.07.038

	1. Introduction: CRM incompatibility problem
	2. Laboratory preparation
	3. Sample size determination: noncentral t-distribution
	4. Two-stage procedure
	5. Bias uncertainty interval
	6. Two examples
	7. Conclusions
	Acknowledgments
	References

