
  

1 Combinatorial Methods in Testing 

Developers of large software systems often notice an interesting phenomenon: if usage of an 
application suddenly increases, components that have been working correctly develop previously 
undetected failures. For example, the application may have been installed with a different OS or DBMS 
system from what was used previously, or newly added customers may have account records with 
combinations of values that have not occurred before. Some of these rare combinations trigger failures 
that have escaped previous testing and extensive use. Such failures are known as interaction failures, 
because they are only exposed when two or more input values interact to cause the program to reach an 
incorrect result.   

 
1.1 Software Failures and the Interaction Rule  
 
     Interaction failures are one of the primary reasons why software testing is so difficult.  If failures only 
depended on one variable value at a time, we could simply test each value once, or for continuous-valued 
variables, one value from each representative range.  If our application had inputs with v values each, this 
would only require a total of v tests – one value from each input per test.  Unfortunately, the situation is 
much more complicated than this.   
 

Combinatorial testing can help detect problems like those described above early in the testing life 
cycle. The key insight underlying t-way combinatorial testing is that not every parameter contributes to 
every failure and most failures are triggered by a single parameter value or interactions between a 
relatively small number of parameters (for more on the number of parameters interacting in failures, see 
Appendix B).  For example, a router may be observed to fail only for a particular protocol when packet 
volume exceeds a certain rate, a 2-way interaction between protocol type and packet rate.  Figure 1 
illustrates how such a 2-way interaction may happen in code.  Note that the failure will only be triggered 
when both pressure < 10 and volume > 300 are true.  To detect such interaction failures, software 
developers often use “pairwise testing”, in which all possible pairs of parameter values are covered by at 
least one test.  Its effectiveness is based on the observation that most software failures involve only one or 
two parameters.   

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. 2-way interaction failures are triggered when two conditions are true. 
 
Pairwise testing can be highly effective and good tools are available to generate arrays with all pairs 

of parameter value combinations. But until recently only a handful of tools could generate combinations 
beyond 2-way, and most that did could require impractically long times to generate 3-way, 4-way, or 5-
way arrays because the generation process is mathematically complex.  Pairwise testing, i.e. 2-way 

if (pressure < 10) { 
 // do something 
 if (volume > 300)  {  

faulty code!  BOOM!  
} 

 else {  
good code, no problem 

} 
}  
else { 
 // do something else 
} 



  

Failures appear to 
be caused by 
interactions of only a 
few variables, so 
tests that cover all 
such few-variable 
interactions can be 
very effective. 

combinations, is a common approach to combinatorial testing because it is computationally tractable and 
reasonably effective.    

 
But what if some failure is triggered only by a very unusual combination of 3, 4, or more values?  It 

is very unlikely that pairwise tests would detect this unusual case; we would need to test 3-way and 4-way 
combinations of values.  But is testing all 4-way combinations enough to detect all errors?   It is important 
to understand the way in which interaction failures occur in real systems, and the number of variables 
involved in these failure triggering interactions.   

 
What degree of interaction occurs in real failures in real systems?  Surprisingly, this question had not 

been studied when NIST began investigating interaction failures in 1999.  An analysis of 15 years of 
medical device recall data [190] included an evaluation of fault-triggering combinations and the testing 
that could have detected the faults.  For example, one problem report said that “if device is used with old 
electrodes, an error message will display, instead of an equipment alert.” In this case, testing the device 
with old electrodes would have detected the problem. Another indicated that “upper limit CO2 alarm can 
be manually set above upper limit without alarm sounding.” Again, a single test input that exceeded the 
upper limit would have detected the fault.   Other problems were more complex. One noted that “if a 
bolus delivery is made while pumps are operating in the body weight mode, the middle LCD fails to 
display a continual update.” In this case, detection would have required a test with the particular pair of 
conditions that caused the failure: bolus delivery while in body weight mode. One description of a failure 
manifested on a particular pair of conditions was “the ventilator could fail when the altitude adjustment 
feature was set on 0 meters and the total flow volume was set at a delivery rate of less than 2.2 liters per 
minute.” The most complex failure involved four conditions and was presented as “the error can occur 
when demand dose has been given, 31 days have elapsed, pump time hasn’t been changed, and battery is 
charged.”  
 
     Reviews of failure reports across a variety of domains suggest that all 
failures could be triggered by a maximum of 4-way to 6-way interactions 
[91, 92, 93, 190].   As shown in Figure 2, the detection rate increased 
rapidly with interaction strength (the interaction level t in t-way 
combinations is often referred to as strength).  With the NASA application, 
for example, 67% of the failures were triggered by only a single parameter 
value, 93% by 2-way combinations, and 98% by 3-way combinations.   
The detection rate curves for the other applications studied are similar, 
reaching 100% detection with 4 to 6-way interactions.   Studies by other 
researchers [14, 15, 61, 199] have been consistent with these results.  

 



  

 
Figure 2. The Interaction Rule:  Most failures are triggered by one or two parameters 

interacting, with progressively fewer by 3, 4, or more. 
 

These results are interesting because they suggest that, while pairwise testing is not sufficient, the 
degree of interaction involved in failures is relatively low.  We summarize this result in what we call the 
interaction rule, an empirically-derived [93, 92, 91] rule that characterizes the distribution of interaction 
faults: 

 
Interaction Rule:  Most failures are induced by single factor faults or by the joint combinatorial effect 
(interaction) of two factors, with progressively fewer failures induced by interactions between three or more 
factors.  
 

The maximum degree of interaction in actual real-world faults so far observed is six. This is not to 
say that there are no failures involving more than six variables, only that the available evidence suggests 
they are rare (more on this point below).  Why is the interaction rule important?  Suppose we somehow 
know that for a particular application, any failures can be triggered by 1-way, 2-way, or 3-way 
interactions.  That is, there are some failures that occur when certain sets of two or three parameters have 
particular values, but no failure that is only triggered by a 4-way interaction.  In this case, we would want 
a test suite that covers all 3-way combinations of parameter values (which automatically guarantees 2-
way coverage as well).  If there are some 4-way interactions that are not covered, it will not matter from a 
fault detection standpoint, because all the failures are triggered by 1-way, 2-way, or 3-way interactions.  
Therefore in this example, covering all 3-way combinations is in a certain sense equivalent to exhaustive 
testing.  It won’t test all possible inputs, but those inputs that are not tested would not make any 
difference in finding faults in the software.  For this reason, we sometimes refer to this approach as 
“pseudo-exhaustive” [91], analogous to the digital circuit testing method of the same name [116, 179].  
The obvious flaw in this scenario is our assumption that we “somehow know” the maximum number of 
parameters involved in failures.  In the real world, there may be 4-way, 5-way, or even more parameters 
involved in failures, so our test suite covering 3-way combinations might not detect them.  But if we can 
identify a practical limit for the number of parameters in combinations that must be tested, and this limit 
is not too large, we may actually be able to achieve the “pseudo-exhaustive” property.  This is why it is 
essential to understand interaction faults that occur in typical applications.     

 



  

Some examples of such interactions were described previously for medical device software.  To get 
a better sense of interaction problems in real-world software, let’s consider some examples from an 
analysis of over 3,000 vulnerabilities from the National Vulnerability Database, which is a collection of 
all publicly reported security issues maintained by NIST and the Department of Homeland Security:   

 
• Single variable (1-way interaction):  Heap-based buffer overflow in the SFTP protocol handler 

for Panic Transmit … allows remote attackers to execute arbitrary code via a long  ftps://  URL.  
• 2-way interaction:  single character search string in conjunction with a single character 

replacement string, which causes an "off by one overflow" 
• 3-way interaction: Directory traversal vulnerability when register_globals is enabled and 

magic_quotes is disabled and .. (dot dot) in the page parameter 
 
The single-variable case is a common problem:  someone forgot to check the length of an input string, 
causing an overflow in the input buffer.  A test set that included any test with a sufficiently long input 
string would have detected this failure.  The second case is more complex, and would not necessarily 
have been caught by many test suites.  For example, a requirements-based test suite may have included 
tests to ensure that the software was capable of accepting search strings of 1 to N characters, and others to 
check the requirement that 1 to N replacement strings could be entered.  But unless there was a single test 
that included both a one-character search string and a one-character replacement string, the application 
could have passed the test suite without detection of the error.    The 3-way interaction example is even 
more complex, and it is easy to see that an ad hoc, requirements-based test suite might be constructed 
without including a test for which all three of the underlined conditions were true.  One of the key 
features of combinatorial testing is that it is specifically designed to find this type of complex problem, 
despite requiring a relatively small number of tests.   
 
 As discussed above, an extensive body of empirical research suggests that testing 2-way 
(pairwise), combinations is not sufficient, and a significant proportion of failures result from 3-way and 
higher strength interactions.  This is an important point, since many testers are familiar with pairwise/2-
way testing, mostly because good algorithms to produce 3-way and higher strength tests were not 
available.  Fortunately better algorithms and tools now make high strength t-way tests possible, and one 
of the key research questions in this field is thus:  what t-way combination strength interaction needed to 
detect all interaction failures?  (Keep in mind that not all failures are interaction failures – many result 
from timing considerations, concurrency problems, and other factors that are not addressed by 
conventional combinatorial testing.)  Thus far, failures seen in real-world systems seem to involve six or 
fewer parameters interacting.  However, it is not safe to assume that there are no software failures 
involving 7-way or higher interactions.  It is likely that there are some that simply have not been 
recognized.  One can easily construct an example that could escape detection by t-way testing for any 
arbitrary value of t, by creating a complex conditional with t+1 variables: 
   
 if (v1 && … && vt && vt+1) { /* bad code */ }. 
 
In addition, analysis of the branching conditions in avionics software shows up to 19 variables in some 
cases [39].  Experiments on using combinatorial testing to achieve code coverage goals such as line, 
block, edge, and condition coverage, have found that the best coverage was obtained with 7-way 
combinations [141, 167], but code coverage is not the same as fault detection. Our colleague Linbin Yu 
has found up to 9-way interactions in some conditional statements in the Traffic Collision Avoidance 
System software [0] that is often used in testing research, although 5-way covering arrays were sufficient 
to detect all faults in this set of programs [91] (t-way tests always include some higher strength 
combinations, or the 9-way faults may also have been triggered by less than 9 variables).  Because the 
number of branching conditions involving t variables decreases rapidly as t increases, it is perhaps not 
surprising that the number of failures decreases as well.  The available empirical research on this issue is 



  

covered in more detail in a web page that we maintain [128], and summarized in Error! Reference 
source not found..  Because failures involving more than six parameters have not been observed in 
fielded software, most covering array tools generate up to 6-way arrays.   

 
Because of the interaction rule, ensuring coverage of all 3-way, possibly up to 6-way combinations 

may provide high assurance.   As with most issues in software, however, the situation is not that simple.  
Efficient generation of test suites to cover all t-way combinations is a difficult mathematical problem that 
has been studied for nearly a century, although recent advances in algorithms have made this practical for 
most testing.  An additional complication is that most parameters are continuous variables which have 
possible values in a very large range (+/- 231 or more).  These values must be discretized to a few distinct 
values.  Most glaring of all is the problem of determining the correct result that should be expected from 
the system under test for each set of test inputs.  Generating 1,000 test data inputs is of little help if we 
cannot determine what the system under test (SUT) should produce as output for each of the 1,000 tests.  

  
With the exception of covering combinations, these challenges are 

common to all types of software testing, and a variety of good techniques 
have been developed for dealing with them.  What has made combinatorial 
testing practical today is the development of efficient algorithms to generate 
tests covering t-way combinations, and effective methods of integrating the 
tests produced into the testing process.  A variety of approaches introduced 
in this book can be used to make combinatorial testing a practical and 
effective addition to the software tester’s toolbox. 

 
Notes on terminology:  we use the definitions below, following the Institute of Electrical and 

Electronics Engineers (IEEE) Glossary of Terms [85].  The term “bug” may also be used where its 
meaning is clear.   
• error:  a mistake made by a developer.  This could be a coding error or a misunderstanding of 

requirements or specification. 
• fault:  a difference between an incorrect program and one that correctly implements a specification.  

An error may result in one or more faults.  
• failure:  a result that differs from the correct result as specified.  A fault in code may result in zero or 

more failures, depending on inputs and execution path.  
 
The acronym SUT (System Under Test) refers to the target of testing. It can be a function, a method, a 
complete class, an application, or a full system including hardware and software. Sometimes a SUT is 
also referred as a TO (test object) or AUT (Artifact Under Test).  That is, SUT is not meant to imply only  
the system testing phase. 
 
1.2 Two Forms of Combinatorial Testing 

 
There are basically two approaches to combinatorial testing – use combinations of configuration 

parameter values, or combinations of input parameter values.  In the first case, we select combinations of 
values of configurable parameters.  For example, a server might be tested by setting up all 4-way 
combinations of configuration parameters such as number of simultaneous connections allowed, memory, 
OS, database size, DBMS type, and others, with the same test suite run against each configuration.  The 
tests may have been constructed using any methodology, not necessarily combinatorial coverage.  The 
combinatorial aspect of this approach is in achieving combinatorial coverage of all possible configuration 
parameter values.  (Note, the terms variable and factor are often used interchangeably with parameter to 
refer to inputs to a function or a software program.)  

 

Advances in 
algorithms have made 
combinatorial testing 
beyond pairwise 
finally practical. 



  

Combinatorial testing 
can be applied to 
configurations, input 
data, or both. 

In the second approach, we select combinations of input data 
values, which then become part of complete test cases, creating a test 
suite for the application.  In this case combinatorial coverage of input 
data values is required for tests constructed.   A typical ad hoc 
approach to testing involves subject matter experts setting up use 
scenarios, then selecting input values to exercise the application in 
each scenario, possibly supplementing these tests with unusual or suspected problem cases.  In the 
combinatorial approach to input data selection, a test data generation tool is used to cover all 
combinations of input values up to some specified limit.   One such tool is ACTS (described in Error! 
Reference source not found.), which is available freely from NIST.  

 
Aspects of both configuration testing and input parameter testing may appear in a great deal of 

practical testing.  Both types may be applied for thorough testing, with a covering array of input 
parameters applied to each configuration combination.  In state machine approaches (Chapter 6), other 
variations appear – parameters are inputs that may determine the presence or absence of other parameters, 
or both program variables and states may be treated as test parameters.  But a wide range of testing 
problems can be categorized as either configuration or input testing, and these approaches are analyzed in 
more detail in later chapters.   

 
Configuration Testing  

 
Many, if not most, software systems have a large number of configuration parameters.   Many of the 

earliest applications of combinatorial testing were in testing all pairs of system configurations.  For 
example, telecommunications software may be configured to work with different types of call (local, long 
distance, international), billing (caller, phone card, 800), access (ISDN, VOIP, PBX), and server for 
billing (Windows Server, Linux/MySQL, Oracle).  The software must work correctly with all 
combinations of these, so a single test suite could be applied to all pairwise combinations of these four 
major configuration items.  Any system with a variety of configuration options is a suitable candidate for 
this type of testing.   

 
Configuration coverage is perhaps the most developed form of combinatorial testing.  It has been 

used for years with pairwise coverage, particularly for applications that must be shown to work across a 
variety of combinations of operating systems, databases, and network characteristics.   

 
For example, suppose we had an application that is intended to run on a variety of platforms 

comprised of five components:  an operating system (Windows XP, Apple OS X, Red Hat Enterprise 
Linux), a browser (Internet Explorer, Firefox), protocol stack (IPv4, IPv6), a processor (Intel, AMD), and 
a database (MySQL, Sybase, Oracle), a total of 22223 ××××  = 48 possible platforms.  With only 10 
tests, shown in Table 1, it is possible to test every component interacting with every other component at 
least once, i.e., all possible pairs of platform components are covered.  While this gain in efficiency – 10 
tests instead of 48 – is respectable, the improvement for larger test problems can be spectacular, with 2-
way and 3-way tests often requiring less than 1% of the tests needed for exhaustive testing.  In general, 
the larger the problem, the greater the efficiency gain from combinatorial testing.  

 
 
 
 
 
 
 
 



  

 
 
 
 
 

Test OS Browser Protocol CPU DBMS 
1 XP IE IPv4 Intel MySQL 
2 XP Firefox IPv6 AMD Sybase 
3 XP IE IPv6 Intel Oracle 
4 OS X Firefox IPv4 AMD MySQL 
5 OS X IE IPv4 Intel Sybase 
6 OS X Firefox IPv4 Intel Oracle 
7 RHEL IE IPv6 AMD MySQL 
8 RHEL Firefox IPv4 Intel Sybase 
9 RHEL Firefox IPv4 AMD Oracle 
10 OS X Firefox IPv6 AMD Oracle 

Table 1. Pairwise test configurations 
 
 
 
Input Testing 

 
Even if an application has no configuration options, some form of input will be processed.  For 

example, a word processing application may allow the user to select 10 ways to modify some highlighted 
text:  subscript, superscript, underline, bold, italic, strikethrough, emboss, shadow, small caps, or all 
caps.  The font-processing function within the application that receives these settings as input must 
process the input and modify the text on the screen correctly.  Most options can be combined, such as 
bold and small caps, but some are incompatible, such as subscript and superscript.   

 
Thorough testing requires that the font-processing function work correctly for all valid 

combinations of these input settings.  But with 10 binary inputs, there are 210 = 1,024 possible 
combinations.  But the empirical analysis reported above shows that failures appear to involve a small 
number of parameters, and that testing all 3-way combinations often detect 90% or more of bugs.  For a 
word processing application, testing that detects better than 90% of bugs may be a cost-effective choice, 
but we need to ensure that all 3-way combinations of values are tested.  To do this, or to construct the 
configuration tests shown in Table 1, we create a matrix that covers all t-way combinations of variable 
values, where t=2 for the configuration problem described previously and t=3 for the 10 binary inputs in 
this section.  This matrix is known as a covering array [25, 30, 49, 85, 103, 184]. 

How many t-way combinations must be covered in the array?  Consider the example of 10 binary 
variables.  There are C(10, 2) = 45 pairs of variables (ab, ac, ad,…).  For each pair, the two binary 
variables can be assigned 22 = 4 possible values:  00, 01, 10, 11.  So the number of 2-way combinations 
that must be covered in the array is 22× C(10, 2) = 4×45 = 180.  For 3-way combinations, the variables 
can be assigned eight possible values:  000, 001, 010, ….  Selecting three variables can be done in C(10, 
3)  = 120 ways, so there are 23×C(10, 3) = 960 possible parameter settings to be covered.  In general, 
there are vt t-way combinations of v values, so for n parameters we have 

 

total combinations =  vt








t
n . 



  

The key component is a 
covering array, which 
includes all t-way 
combinations. Each column 
is a parameter.  Each row is 
a test.   

 
Generally not all parameters have the same number of test values. In combinatorics parlance, these are 
referred to as “mixed level” parameters. For n different parameters, with vi values for the ith parameter, 
we need to cover: 

total mixed level combinations = ∑i vi1×…×vit  ∀ i = 1.. 







t
n  t-way combinations  

As we will see in the next section, a very large number of such combinations can be covered in 
remarkably few tests.  Algorithms to compute covering arrays efficiently have been developed and are 
now implemented in practical tools.   

 
1.3 Covering Arrays 

 
An example of a covering array is given in Figure 3, which shows a 3-
way covering array for 10 variables with two values each.  The 
interesting property of this array is that any three columns contain all 
eight possible values for three binary variables.  For example, taking 
columns F, G, and H, we can see that all eight possible 3-way 
combinations (000, 001, 010, 011, 100, 101, 110, 111) occur 
somewhere in the three columns together.  In fact, any combination of three columns chosen in any order 
will also contain all eight possible values.  Collectively, therefore, this set of tests will exercise all 3-way 
combinations of input values in only 13 tests, as compared with 1,024 for exhaustive coverage.  Similar 
arrays can be generated to cover all t-way combinations, for whatever value of t is appropriate to the 
problem.   
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.  A 3-way covering array includes all  
3-way combinations of values. 

 
Covering Array Definition 
 
A covering array CA(N, n, s, t) is an N x n matrix in which entries are from a finite set  S of s symbols 
such that each N x t subarray contains each possible  t-tuple at least once.  For example, in the matrix 
above, we saw that all eight possible 3-tuples (3-way combinations) of the binary variables occurred at 
least once.  The number t is referred to as the strength of the array.  A covering array must satisfy the t-
covering property: when any t of the k columns are chosen, all vt of the possible t-tuples must appear 
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among the rows.  The “size” of an array is usually given as its number N of rows, where the number of 
columns is fixed.  
 
This definition can be generalized to the case where k1 columns have v1 distinct values, k2 columns have 
v2 distinct values, and so on.  A covering array with n1 columns of v1 distinct values, n2 columns of v2 
distinct values, etc., is designated v1

n1 v2
n2 … vnk.  Example:  An array that has three columns with two 

distinct values each, two columns with 5 distinct values each, and four columns with six distinct values 
each is called a 235264 array.  Note that if the columns represent nine parameters and their input values for 
a system under test, the number of tests required for exhaustive testing would be 235264 = 259,200 tests. 
The covering array in Fig. 3 is a 210 array, since it has 10 columns of binary variables.   
 
 
Size of Covering Arrays 
 
    It is important to understand how covering array size is affected by the attributes of a testing problem to 
get a sense of how to apply combinatorial testing in practice.  Since we are discussing tests and 
parameters the notation is a bit different than as used above in the formal definition of a covering array. It 
has been shown [52, 70] that in general, the number of rows (tests) for a covering array constructed with a 
greedy algorithm grows as  

vt log n        (1) 
where 
v = number of possible values that each variable can take on.  
t = interaction strength, i.e., t-way interactions 
n =number of variables or parameters for the tests 

 
     When a covering array is produced, the number of tests will be proportional to this expression, not 
equal to it, but taking a look at the components of this expression will help in understanding how the 
characteristics of a testing problem affect the number of tests needed.  This is a “good news/bad news” 
situation.  The good news is that the number of tests increases only logarithmically with the number of 
parameters, n.  Thus, testing systems with 50 inputs will not require significantly more tests than for 40 
inputs.  However, the bad news is that the number of tests increases exponentially with t, the interaction 
strength.  So 4-way testing will be much more expensive than 3-way testing.  Note another aspect of the 
first component, vt, of expression (1).  The exponent t applies to v, the number of values that each variable 
can take on, so the value of v can have an enormous effect on the number of tests.    
 
     Since many or most variables will be continuous-valued (within the limitations of digital hardware), 
values must be discretized from some range of integer or floating point numbers.  The input range must 
be partitioned into a relatively small number of discrete values (see Sect. 4.1) to keep the number of tests 
to a minimum.  In practice, it is generally a good idea to keep the number of values per variable to 10 or 
fewer.  Figure 4 shows the number of tests required for 10 through 100 parameters for various values of v 
for t = 2.   
 



  

 
Figure 4. Number of tests, t = 2                           

 
There is no known formula for computing the smallest possible covering array for a particular 

problem.  A database maintained by Charles Colbourn at Arizona State University collects the best known 
sizes of covering arrays for a broad range of configurations ranging from t = 2 to t = 6 (see 
http://www.public.asu.edu/~ccolbou/src/tabby/catable.html).  Many algorithms have been developed for 
computing covering arrays, but there is no uniformly best algorithm, in the sense of computing the 
smallest possible array.  Certain algorithms produce very compact arrays for some configurations, but 
perform poorly on others.  More on algorithm design can be found in Chapter Error! Reference source 
not found.. 

 
At this point it is important to point out that covering arrays are not the only way to produce 

combinatorial coverage.  Any test set may cover a large number of parameter value combinations, and 
ways to measure such coverage are introduced in Chapter 7.  As introduced previously in this chapter, the 
motivation for our interest in combinatorial methods is the empirical observation – the interaction rule – 
that a relatively small number of parameters interact in producing failures in real-world software.  We 
thus want to cover in testing as many combinations as possible, and covering arrays are just one approach 
(although usually the most efficient).  We can measure the combinatorial coverage of just about any test 
set, regardless of how it is produced.   A combinatorial approach to testing is thus compatible with a 
broad range of test strategies, and this approach can improve testing in a variety of ways that will be 
introduced in this book.   

 
1.4 The Test Oracle Problem 

 
Even with efficient algorithms to produce covering arrays, the oracle problem remains – testing requires 
both test data and results that should be expected for each data input.  High interaction strength 
combinatorial testing may require a large number of tests in some cases, although not always.  This 
section summarizes some approaches to solving the oracle problem that are particularly suited to 
automated or semi-automated combinatorial testing.  Note that there are other test oracle methods as well.  
One of the most widely used approaches is of course to have human experts analyze test cases and 
determine the expected results.  It is also possible that some or all of the functionality of the SUT will 
exist in another program.  For example, the new code may be modifying one part of an existing program, 
so old tests may be re-used.  In some cases, all of the functions may exist in another program whose 
results can be compared with the SUT, for example in an version that runs on another platform or a 
separate implementation of a compiler or network protocol standard.  Here we summarize some 
approaches for the general case where the SUT presents all or mostly new functionality.  
 



  

Several types of test 
oracle can be used, 
depending on 
resources and the 
system under test. 

 Crash testing:  the easiest and least expensive approach is to simply run tests against the system 
under test (SUT) to check whether any unusual combination of input values causes a crash or other easily 
detectable failure. Execution traces and memory dumps may then be analyzed to determine the cause of 
the crash. This is similar to the procedure used in some types of  “fuzz testing” [159], which sends 
random values against the SUT.  It should be noted that although pure random testing will generally cover 
a high percentage of t-way combinations, 100% coverage of combinations requires a random test set 
much larger than a covering array.  For example, all 3-way combinations of 10 parameters with 4 values 
each can be covered with 151 tests.  A purely random generation requires over 900 tests to provide full 3-
way coverage.   
 

Assertions:  An increasingly popular “light-weight formal methods” technique is to embed 
assertions within code to ensure proper relationships between data, for example as preconditions, 
postconditions, or consistency checks.  Tools such as the Java Modeling language (JML) can be used to 
introduce very complex assertions, effectively embedding a formal specification within the code.  The 
embedded assertions serve as an executable form of the specification, thus providing an oracle for the 
testing phase.  With embedded assertions, exercising the application with all t-way combinations can 
provide reasonable assurance that the code works correctly across a very wide range of inputs.   This 
approach has been used successfully for testing smart cards, with embedded JML assertions acting as an 
oracle for combinatorial tests [57].   Results showed that 80% - 90% of failures could be found in this 
way. 

 
Model based test generation uses a mathematical model of the SUT 

and a simulator or model checker to generate expected results for each input 
[1,16,18,118,134].  If a simulator can be used, expected results can be 
generated directly from the simulation, but model checkers are widely 
available and can also be used to prove properties such as liveness in 
parallel processes, in addition to generating tests.  Conceptually, a model 
checker can be viewed as exploring all states of a system model to determine if a property claimed in a 
specification statement is true. What makes a model checker particularly valuable is that if the claim is 
false, the model checker not only reports this, but also provides a “counterexample” showing how the 
claim can be shown false.  If the claim is false, the model checker indicates this and provides a trace of 
parameter input values and states that will prove it is false.  In effect this is a complete test case, i.e., a set 
of parameter values and expected result.  It is then simple to map these values into complete test cases in 
the syntax needed for the system under test.  Chapter 12 develops detailed procedures for applying model 
based test oracle generation.  

 
1.5 Quick Start – How to Use the Basics of Combinatorial Methods Right Away 

 
This book introduces a wide range of topics in combinatorial methods for software testing, 

sufficient for handling many practical challenges in software assurance.  Most testers, however, will not 
face all of the types of test problems covered in this book, at least not on every project.  Many test 
problems require a core set of methods, possibly with one or two specialized topics.  As with many 
subjects, one of the best ways to approach combinatorial testing is to start small; try the basics to get a 
feel for how it works, then supplement these methods as needed.  This book is designed for such an 
approach.  Readers anxious to learn by applying some of the methods introduced here can use the 
following steps: 

 
1. Read Chapter 1, to learn why combinatorial methods are effective and what to expect. 
2. Read Chapter 3 and 4, for step-by-step approaches to input testing and configuration 

testing (as introduced in Section 1.2 



  

3. Download and install the Java program ACTS or another covering array tool (see Error! 
Reference source not found.) 

4. Develop a covering array of tests using ACTS or other tool, then run the tests.  
 
After reading this chapter to understand why combinatorial testing works, readers can also review 

the two case studies in Chapter 2.  These two testing problems are practical examples that illustrate the 
basics in situations that include many features of web application testing problems.  Following the steps 
above is really just getting started, of course.  But trying these methods on one of your own small testing 
problems will likely make the rest of the topics introduced in the book easier and more interesting to 
apply.   

 
1.6 Chapter Summary 

 
1. Empirical data suggest that software failures are caused by the interaction of relatively few parameter 
values, and that the proportion of failures attributable to t-way interactions declines very rapidly with 
increase in t.  That is, usually single parameter values or a pair of values are the cause of a failure, but 
increasingly smaller proportions are caused by 3-way, 4-way, and higher order interactions.  This 
relationship is called the Interaction Rule.  
 
2. Because a small number of parameters are involved in failures, we can attain a high degree of 
assurance by testing all t-way interactions, for an appropriate interaction strength t (2 to 6 usually).  The 
number of t-way tests that will be required is proportional to vt log n, for n parameters with v values each. 
 
3. A mathematical construct called a covering array can be used to produce tests that cover all t-way 
combinations.  A covering array with k1 columns of v1 distinct values, k2 columns of v2 distinct values, 
etc., is designated v1

k1 v2
k2 … vn

kn, which is also equal to the number of tests that would be required for 
exhaustive testing.  There is no “best” covering array construction algorithm, in the sense of always 
producing an optimal array.    
 
4. As with all other types of testing, the oracle problem must be solved – i.e., for every test input, the 
expected output must be determined in order to check if the application is producing the correct result for 
each set of inputs.  A variety of methods can be used to solve the oracle problem. 
  
5. Combinatorial methods can be applied to configurations of the SUT or to input values, or in some 
cases both.  Figure 5 contrasts the two approaches to combinatorial testing.  With the first approach, we 
may run the same test set against all 3-way combinations of configuration options, while for the second 
approach, we would construct a test suite that covers all 3-way combinations of input transaction fields.  
Of course these approaches could be combined, with the combinatorial tests run against all the 
configuration combinations. 

 
 
 
 
 
 
 
 
 



  

 
 
 
 
 
 
 
 
 
 
 
Figure 5. Combinatorial testing may be used on input values or configurations.  

 
System 
Under Test 

Inputs: 
Product 
Amount 
Quantity 
Pmt method 
Shipping method 

 

Configuration: 
Browser 
OS 
DBMS 
Server 
... 

Use combinations of input values 
in generating tests 

Use combinations of configuration 
values with existing test suite 



  

 
 
2 Combinatorial Testing Applied 
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3 Configuration Testing 
 
    The term “configuration” may be used in slightly different ways with respect to software.  In 
some cases it may refer to options that are settable through an external file or other source.  For 
example, a database management system may have configurable options for storage location and 
size, maximum size of various tables, key length, and other aspects of databases.  These 
configurable options are read in when the system is initialized and used to set properties of the 
application.  In other cases, configuration refers to characteristics of the platform on which the 
application is running, such as the presence or absence of a hard keyboard on a smartphone, the 
network protocol used, or the type of database.  In this case, the configurable options are expected 
to provide essentially the same functions to the software – network interface or searchable storage – 
but low-level functions in the application must interface differently depending on the protocol or 
database in use.  The software is built to operate correctly on a variety of platforms, and different 
parts of the code may be exercised depending on the configuration.  
 
3.1 Runtime Environment Configurations 
 
     One of the most common problems in software testing is assuring that an application can run on 
a variety of platforms.  Different operating systems, web browsers, network protocols, or databases 
may be operated by customers, but developers would like to ensure that their software runs 
correctly on all platforms.  An example illustrating the complexity of the problem occurred in July, 
2012. A major antivirus program suffered crashes on certain configurations of Windows XP 
machines.  According to a Register news article [104], "Subsequent analysis has revealed that a 
three-way clash between third-party encryption drivers, Symantec's own security software and the 
Windows XP Cache manager resulted in the infamous Blue Screen of Death (BSOD) on vulnerable 
machines, as this advisory explains: 

 
"The root cause of the issue was an incompatibility due to a three-way interaction between 
some third-party software that implements a file system driver using kernel stack based file 
objects – typical of encryption drivers, the SONAR signature and the Windows XP Cache 
manager. The SONAR signature update caused new file operations that create the conflict 
and led to the system crash." 

 
Combinatorial testing of runtime configurations can help in catching this type of problem.  While it 
is rarely practical to test all possible runtime platforms, methods described in this chapter can be 
used for efficient testing of all t-way combinations of platform configurations.   
 

Returning to the simple example introduced in Chapter 1, we illustrate development of test 
configurations, and compare the size of test suites for various interaction strengths versus testing all 
possible configurations.  For the five configuration parameters, we have 32223 ××××  = 72 
configurations.  Note that at t = 5, the number of tests is the same as exhaustive testing for this 
example, because there are only five parameters.  The savings as a percentage of exhaustive testing 
are good, but not that impressive for this small example.  With larger systems the savings can be 
enormous, as will be seen in the next section.   
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Parameter Values 
Operating system XP, OS X, RHL 
Browser IE, Firefox 
Protocol IPv4, IPv6 
CPU Intel, AMD 
DBMS MySQL, Sybase, Oracle 

Table 2. Simple example configuration options. 
 

After the parameters and possible values for each have been determined, a covering array 
can be generated using a software tool.  In this book, the generation process will be illustrated using 
the ACTS covering array tool, which is described in more detail in Error! Reference source not 
found., but other tools may have similar features.  In addition to the summary in Error! Reference 
source not found., a comprehensive user manual is included with the ACTS download.   
 
 The first step in creating test configurations is to specify the parameters and possible 
values, as shown in Figure 6.  Another covering array tool or the GUI version of ACTS would of 
course have a different specification, but the essential features will be similar to Figure 6.  
 
  
 
  
 
 
 
 
 
 
 
 

Figure 6. ACTS input includes parameter names, types, and possible values. 
 
The degree of interaction must also be specified: 2-way, 3-way, etc. coverage.  Output can be 
created as a matrix of numbers, comma separated value, or Excel spreadsheet format.  If the output 
will be used by human testers rather than as input for further machine processing, the format in 
Figure 7 is useful. 
 
     The complete test set for 2-way combinations is shown in Table 1 in Section 1.3.  Only 10 tests 
are needed.  Moving to 3-way or higher interaction strengths requires more tests, as shown in Table 
3. 
  

t # Tests % of Exhaustive 
2 10 14 
3 18 25 
4 36 50 
5 72 100 

Table 3. Number of combinatorial tests for a simple example. 
 

 In this example, substantial savings could be realized by testing t-way configurations 
instead of all possible configurations, although for some applications (such as a small but highly 
critical module) a full exhaustive test may be warranted.  As we will see in the next example, in 
many cases it is impossible to test all configurations, so we need to develop reasonable alternatives. 

[System] 
 
[Parameter] 
OS (enum): XP,OS_X,RHL 
Browser (enum): IE, Firefox 
Protocol(enum): IPv4,IPv6 
CPU (enum):  Intel,AMD 
DBMS (enum): MySQL,Sybase,Oracle 
 
[Relation] 
[Constraint] 
[Misc]  
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A software product line 
with n features may 
produce 2n products. 

  
 
 
3.2 Highly Configurable Systems and Software Product Lines 
 
     Software product lines are an increasingly attractive approach to 
application development.  A software product line (SPL) uses 
standardized development procedures on systems that “share a 
common, managed set of features satisfying the specific needs of a 
particular market segment or mission and that are developed from a common set of core assets” 
[166].  The basic idea of a SPL is that enterprises, or their subunits, tend to produce families of 
software products for a particular application domain or market [76, 77, 129, 148].  For example, a 
company may develop software products for point-of-sale (POS) and retail store management.  By 
combining software that implements various features, a wide variety of products can be provided 
with far less effort than traditional development approaches.  In the retail store management 
example, a basic POS terminal application may allow for input from the cashier’s keyboard or a 
laser scanner embedded in the checkout counter, while a more sophisticated terminal application 
may add features for a handheld scanner and a scale.  Thus in some cases a product line can thus be 
viewed as a framework that can produce 2n products, where there are n different features [76]. With 
the high degree of customization and configurable feature sets, combinatorial testing can be 
especially effective when applied to SPLs [49, 50, 86, 135].   
 

Telecommunications and mobile phone vendors have been among the early adopters of the 
SPL approach, with significant success [159].  Smart phones have become enormously popular 
because they combine communication capability with powerful graphical displays and processing 
capability.  Literally tens of thousands of smart phone applications, or ‘apps’, are developed 
annually.  Among the platforms for smart phone apps is the Android, which includes an open 
source development environment and specialized operating system.   Android units contain a large 
number of configuration options that control the behavior of the device.  Android apps must operate 
across a variety of hardware and software platforms, since not all products support the same 
options.  For example, some smart phones may have a physical keyboard and others may present a 
soft keyboard using the touch sensitive screen.  Keyboards may also be either only numeric with a 
few special keys, or a full typewriter keyboard.  Depending on the state of the app and user choices, 
the keyboard may be visible or hidden.  Ensuring that a particular app works across the enormous 
number of options is a significant challenge for developers.  The extensive set of options makes it 
intractable to test all possible configurations, so combinatorial testing is a practical alternative.   
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Figure 7. Excerpt of test configuration output covering all 2-way combinations. 
 
Figure 8 shows a resource configuration file for Android apps.   A total of 35 options may 

be set.  Our task is to develop a set of test configurations that allow testing across all 4-way 
combinations of these options.  The first step is to determine the set of parameters and possible 
values for each that will be tested.  Although the options are listed individually to allow a specific 
integer value to be associated with each, they clearly represent sets of option values with mutually 
exclusive choices.  For example, “Keyboard Hidden” may be “yes”, “no”, or “undefined”.  These 
values will be the possible settings for parameter names that we will use in generating a covering 
array.  Table 4 shows the parameter names and number of possible values that we will use for input 
to the covering array generator.  For a complete specification of these parameters, see: 
 http://developer.android.com/reference/android/content/res/Configuration.html 
 

int  HARDKEYBOARDHIDDEN_NO;   
int  HARDKEYBOARDHIDDEN_UNDEFINED;   
int  HARDKEYBOARDHIDDEN_YES; 
int  KEYBOARDHIDDEN_NO; 

Degree of interaction coverage: 2 
Number of parameters: 5 
Maximum number of values per parameter: 3 
Number of configurations: 10 
------------------------------------- 
Configuration #1: 
 
1 = OS=XP 
2 = Browser=IE 
3 = Protocol=IPv4 
4 = CPU=Intel 
5 = DBMS=MySQL 
------------------------------------- 
Configuration #2: 
 
1 = OS=XP 
2 = Browser=Firefox 
3 = Protocol=IPv6 
4 = CPU=AMD 
5 = DBMS=Sybase 
------------------------------------- 
Configuration #3: 
 
1 = OS=XP 
2 = Browser=IE 
3 = Protocol=IPv6 
4 = CPU=Intel 
5 = DBMS=Oracle 
------------------------------------- 
Configuration #4: 
 
1 = OS=OS_X 
2 = Browser=Firefox 
3 = Protocol=IPv4 
4 = CPU=AMD 
5 = DBMS=MySQL 
etc .  
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int  KEYBOARDHIDDEN_UNDEFINED;   
int  KEYBOARDHIDDEN_YES; 
int  KEYBOARD_12KEY; 
int  KEYBOARD_NOKEYS;   
int  KEYBOARD_QWERTY;   
int  KEYBOARD_UNDEFINED;   
int  NAVIGATIONHIDDEN_NO;   
int  NAVIGATIONHIDDEN_UNDEFINED;   
int  NAVIGATIONHIDDEN_YES;   
int  NAVIGATION_DPAD;  
int  NAVIGATION_NONAV;   
int  NAVIGATION_TRACKBALL;   
int  NAVIGATION_UNDEFINED;   
int  NAVIGATION_WHEEL;   
int  ORIENTATION_LANDSCAPE;   
int  ORIENTATION_PORTRAIT;   
int  ORIENTATION_SQUARE;   
int  ORIENTATION_UNDEFINED;  
int  SCREENLAYOUT_LONG_MASK;   
int  SCREENLAYOUT_LONG_NO;   
int  SCREENLAYOUT_LONG_UNDEFINED;   
int  SCREENLAYOUT_LONG_YES;   
int  SCREENLAYOUT_SIZE_LARGE;   
int  SCREENLAYOUT_SIZE_MASK;   
int  SCREENLAYOUT_SIZE_NORMAL;   
int  SCREENLAYOUT_SIZE_SMALL;   
int  SCREENLAYOUT_SIZE_UNDEFINED;   
int  TOUCHSCREEN_FINGER;   
int  TOUCHSCREEN_NOTOUCH;   
int  TOUCHSCREEN_STYLUS;   
int  TOUCHSCREEN_UNDEFINED; 
Figure 8. Android resource configuration file.  

 
 
 
 

Parameter Name Values # Values 
HARDKEYBOARDHIDDEN NO, UNDEFINED, YES 3 
KEYBOARDHIDDEN NO, UNDEFINED, YES 3 
KEYBOARD 12KEY, NOKEYS, QWERTY, UNDEFINED 4 
NAVIGATIONHIDDEN NO, UNDEFINED, YES 3 
NAVIGATION DPAD, NONAV, TRACKBALL, UNDEFINED, WHEEL 5 
ORIENTATION LANDSCAPE, PORTRAIT, SQUARE, UNDEFINED 4 
SCREENLAYOUT_LONG MASK, NO, UNDEFINED, YES 4 
SCREENLAYOUT_SIZE LARGE, MASK, NORMAL, SMALL, UNDEFINED 5 
TOUCHSCREEN FINGER, NOTOUCH, STYLUS, UNDEFINED 4 

Table 4. This set of Android options has 172,800 possible configurations. 
 

Using Table 4, we can calculate the total number of configurations: 
454453433 ××××××××  = 172,800 configurations (i.e., a 243 543  system).  Like many 

applications, thorough testing will require some human intervention to run tests and verify results, 
and a test suite will typically include many tests.  If each test suite can be run in 15 minutes, it will 
take roughly 24 staff-years to complete testing for an app.  With salary and benefit costs for each 
tester of $150,000, the cost of testing an app will be more than $3 million, making it virtually 
impossible to return a profit for most apps.  We saw in Section 0 that combinatorial methods can 
reduce the number of tests needed for strong assurance, but will the reduction in test set size be 
enough to provide effective testing for apps at a reasonable cost? 
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Some combinations 
never occur in practice. 

Using the covering array generator, we can produce tests that cover t-way combinations of 
values.   Table 5 shows the number of tests required at several levels of t.  For many applications, 
2-way or 3-way testing may be appropriate, and either of these will require less than 1% of the time 
required to cover all possible test configurations.  This example illustrates the power of 
combinatorial testing for real-world testing, and how its advantages increase with the size of the 
problem.  

 
 

t # Tests % of Exhaustive 
2 29 0.02 
3 137 0.08 
4 625 0.4 
5 2532 1.5 
6 9168 5.3 

Table 5. The number of combinatorial tests is a fraction of an exhaustive test set. 
 

 
3.3 Invalid Combinations and Constraints 
 

So far we have assumed that the set of possible values for parameters never changes.  Thus 
a covering array of t-way combinations of possible values would contain combinations that either 
would occur in the systems under test, or could occur and must therefore be tested.  But look more 
closely at the configurations in Figure 7.  In practice, the Internet Explorer browser is never used on 
Linux systems, so it would be impossible to create a configuration that specified IE on a Linux 
system.  This is an example of a constraint between possible values of parameters.  Some 
combinations never occur in practice, or occur only sometimes.  Practical testing requires 
consideration of constraints. 

 
Constraints Among Parameter Values 

 
  The system described earlier illustrates a common situation in all types of testing:  some 

combinations cannot be tested because they don’t exist for the systems under test.  In this case, if 
the operating system is either OS X or Linux, Internet Explorer is not available as a browser.  Note 
that we cannot simply delete tests with these untestable combinations, because that would result in 
losing other combinations that are essential to test but are not covered by other tests.  For example, 
deleting tests 5 and 7 in Section 0 would mean that we would also lose the test for Linux with the 
IPv6 protocol.   
 

One way around this problem is to delete tests and 
supplement the test suite with manually constructed test 
configurations to cover the deleted combinations, but covering array 
tools offer a better solution.  With ACTS we can specify constraints, which tell the tool not to 
include specified combinations in the generated test configurations.  ACTS supports a set of 
commonly used logic and arithmetic operators to specify constraints.  In this case, the following 
constraint can be used to ensure that invalid combinations are not generated.  It says that if the OS 
is not XP, then the Browser will be Firefox: 

 
(OS != “XP”) => (Browser = “Firefox”) 
 

The covering array tool will then generate a set of test configurations that does not include the 
invalid combinations, but does cover all those that are essential.  The revised test configuration 
array is shown in Figure 9.  Parameter values that have changed from the original configurations 
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are underlined.  Note that adding the constraint also resulted in reducing the number of test 
configurations by one.  This will not always be the case, depending on the constraints used, but it 
illustrates how constraints can sometimes reduce the problem.  Even if particular combinations are 
testable, the test team may consider some combinations unnecessary, and constraints could be used 
to prevent these combinations, possibly reducing the number of test configurations.  
 

In many practical cases, the situation will not be quite as simple as the example above.  For 
example, instead of dealing only with one Windows OS variety (in this case XP) we may have 
several: XP, Vista, Win7, and Win8.  Similarly, there may be many Linux releases to consider, such 
as Red Hat, Ubuntu, Fedora, and many others plus different releases of the individual Linux 
versions.  Such a situation could lead to very complicated constraint expressions.  One approach 
proposed for handling this problem is the notion of properties [158], which can be used to combine 
related values.  For the example here, there could be an “OSfamily” property defined for the OS 
parameter, so the constraint could be expressed as  

 
(OS.OSfamily != “Windows”) => (Browser = “Firefox”) 

 
Without the properties feature, we would need to write something like: 

(OS != “XP” && OS != “Vista” && OS != “Win7” && OS != “Win8”)  
        => (Browser = “Firefox”) 

 
If we needed other constraints to also include references to the OSfamily property, the constraint set 
could become complicated very quickly.  Such situations are not uncommon in practical testing.   
 
 Although the “properties” feature is not available on most covering array generators, we 
can achieve the goal of simplifying constraint expression in a different (though somewhat less 
elegant) way by taking advantage of the power of constraint solvers in ACTS or other tools, along 
with a little textual substitution.  For example, define a term “WindowsVersion” as  
 

(OS = “XP” || OS = “Vista” || OS = “Win7” || OS = “Win8”) 
 

Then constraints can be written such as  !WindowsVersion  => (Browser = “Firefox”).  
Substituting the parenthetical expression above for “WindowsVersion” using a preprocessor, or 
simply a text editor, will then introduce the necessary expression throughout the constraint set.  
 
Constraints Among Parameters 
 
     A second way in which untestable combinations may arise in practice is where some parameters 
become inactive when others are set to particular values.  In the previous section, we considered 
situations where particular parameter values do not occur in combination with other particular 
values, but the parameters themselves were always present.  For example, every test configuration 
included both operating system and browser, even though certain OS/browser value combinations 
did not occur.  But for some test problems, a value in one parameter affects not just the possible 
values for another parameter, but the presence of other parameters themselves, regardless of values.  
Returning to the testing problem described in Section 3.1, suppose testers wanted to also consider 
additional software that may be present in configurations.  Java and Microsoft .Net are used by 
many applications, and it is important to test for compatibility with different versions of these 
platforms.  Thus is may be desirable to add two additional parameters:  “java_version” and 
“dot_net_version”.   However, Java can be present on both Windows and Linux platforms, but we 
must deal with the problem that .Net will not be present on a Linux system.  This restriction cannot 
be handled with an ordinary constraint, because if the platform is Linux, the “dot_net_version” 
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parameter does not make any sense.  Instead we end up with two different parameter sets:  for 
Windows, the parameters are OS, browser, protocol, cpu, dbms, java_version, and dot_net_version; 
for Linux the parameters are OS, browser, protocol, cpu, dbms, and java_version.  Practical testing 
problems may be more complex than this somewhat contrived example, and may have multiple 
constraints among parameters.  A variety of approaches can be used to deal with this type of 
problem: 
 
Split test suite:  The simplest and perhaps most obvious method is to switch from a single 
configuration test suite to one for each combination of parameters that control the applicability of 
others.  In this case, there would be one test suite for Linux and one for Windows systems.  This 
setup is easy to accomplish, but results in some duplicate combinations.  For example, the same 3-
way combinations for browser, protocol, and dbms will occur in both test suites.  The situation is 
helped a bit by the fact that splitting the tests into two separate arrays means two covering arrays 
for n-1 parameters instead of one for n parameters, and we will have fewer tests with one less 
parameter to cover.  But since the number of tests grows with log n, the number of tests for n-1 
parameters is just slightly smaller than for n.  In general, therefore, splitting the problem into two 
test suites will result in almost twice the number of tests.  For example, for t = 3, v = 3, a covering 
array for 10 parameters has 66 tests, and for 9 parameters there are 62 tests.   
 
Covering arrays with shielding parameters:  It is also possible to use an algorithm that allows the 
specification of “shielding” parameters [33].  In the example above, dot_net_version  does not 
apply where the OS parameter is Linux.  A parameter that does not always appear (in this case, 
dot_net_version) is called a dependent parameter, one that controls whether the dependent 
parameter is used is called the shielding parameter, and values of the shielding parameter that 
control use of the dependent parameter are controlling values (here, OS = Linux).  This method 
prevents the generation of a large number of duplicate combinations.  However, this approach 
requires modification of the covering array generation algorithm, and the shielded parameter 
approach is not yet implemented in covering array tools. 
 
Combine parameters:  An alternative approach is to combine parameters that do not apply to all 
configurations with other parameters, then use constraints.  This is essentially a way of using the 
“shielded parameters” concept without requiring a modified covering array algorithm.  In this case, 
“java_version” and “dot_net_version” could be combined into a single “platform_version”.  
Constraints could be used to prevent the occurrence of invalid platform versions.  For example, if 
the Java versions being included in tests are 1.6, and 1.7, and .Net versions are 3 and 4, then the 
following  parameter can be established: 
 
platform_version:  {java1.6, java1.7, dot_net3, dot_net4} 
constraint: (OS = “Linux” => platform_version = “java1.6”|| platform_version = 
“java1.7”) 

 
This approach prevents the generation of duplicate 3-way combinations for java_version, protocol, 
and dbms in both test suites.  That is, a particular 3-way combination of these parameters will occur 
in association with at least one, but not necessarily both OSes in the test suite.  The advantage of 
this approach is that it can be used with any covering array tool that implements constraints.  It also 
produces reasonably compact covering arrays that are suitable for practical testing.    
 
 
 

Test OS Browser Protocol CPU DBMS 
1 XP IE IPv4 Intel MySQL 
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2 XP Firefox IPv6 AMD Sybase 
3 XP IE IPv6 Intel Oracle 
4 OS X Firefox IPv4 AMD MySQL 
5 OS X Firefox IPv4 Intel Sybase 
6 OS X Firefox IPv6 AMD Oracle 
7 RHL Firefox IPv6 Intel MySQL 
8 RHL Firefox IPv4 Intel Oracle 
9 XP IE IPv4 AMD Sybase 

Figure 9. Test configurations for simple example with constraint. 
3.4 Cost and Practical Considerations 
 

Applying combinatorial methods to testing configurations can be highly cost-effective.  Most 
software applications are required to run on a variety of systems, and must work correctly on 
different combinations of OS, browser, hardware platform, user interface, and other variables.  
Constraints among parameter values are very common in practical testing.  Depending on the 
constraints needed, the size of the test suite may either decrease or increase with constraints, 
because the covering array algorithm has less opportunity to compress combinations in tests.  The 
increase in test set size is not always significant, but must be kept in mind in initial planning.   

 
One of the key questions in any software assurance effort concerns how many tests are 

required.  Unfortunately, there is no general formula to compute the size of a covering array with 
constraints and parameters with varying numbers of values (mixed level arrays).   If all parameters 
have the same number of values, or at least little variation among values (e.g., mostly binary with a 
few having three values), then tables of covering arrays may be used to determine the number of 
tests needed in advance.  See Error! Reference source not found. for links to pre-computed 
covering arrays and best-known sizes of arrays for particular configurations.  For mixed level 
arrays, particularly where there is significant variation among the number of values per parameter, 
the situation is more complex.  If vl is the least number of values for among n parameters, and vm is 
the greatest, the number of tests will lie somewhere between the size of a covering array for (vl)n 
and (vm)n, but the interpolation is not linear.  For example, a 3-way array for a configuration of 
28102 has 375 tests, while the 210 configuration has 66 tests and the 1010 configuration has 2367 
tests.  The situation is even more complex with more variability among parameter values, or in the 
presence of constraints, so there is generally no practical way to determine the number of tests 
without running the covering array generator.  
 
 
3.5 Chapter Summary 

 
Configuration testing is probably the most commonly used application of combinatorial methods in 
software testing.  Whenever an application has roughly five or more configurable attributes, a 
covering array is likely to make testing more efficient.   Configurable attributes usually have a 
small number of possible values each, which is an ideal situation for combinatorial methods.  
Because the number of t-way tests is proportional to vt log n, for n parameters with v values each, as 
long as configurable attributes have less than around 10 possible values each, the number of tests 
generated will probably be reasonable.  The real-world testing problem introduced in Section 3.2 is 
a fairly typical size, where 4-way interactions can be tested with a few hundred tests.   
 

Because many systems have certain configurations that may not be of interest (such as the 
Internet Explorer browser on a Linux system), constraints are an important consideration in any 
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type of testing.  With combinatorial methods, it is important that the covering array generator 
allows for the inclusion of constraints so that all relevant interactions are tested, and important 
information is not lost because a test contains an impossible combination.  Constraints may exist 
between parameter values or even affect the presence of certain parameters in testing.  An example 
of the former is the constraint “OS = Linux => browser ≠ IE”, where the value of the “OS” 
parameter affects the value of the “browser” parameter.  The second type of constraint involves 
what have been termed “shielding parameters”, such as the case where “OS = Linux” means that 
the parameter “dot_net_version” should not appear in a test, but if “OS = Windows” the a test may 
have both a .Net version and a Java version.  A practical workaround for this situation is to merge 
the dependent parameter into an abstract parameter such as “platform” and then use constraints 
among values to prevent the production of tests with non-existent configurations.  
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4 Input Testing 

 
As noted in the introduction, the key advantage of combinatorial testing derives from the 

Interaction Rule: all, or nearly all, software failures involve interactions of only a few parameters.  
Using combinatorial testing to select configurations can make testing more efficient, but it can be 
even more effective when used to select input parameter values.  Testers traditionally develop 
scenarios of how an application will be used, then select inputs that will exercise each of the 
application features using representative values, normally supplemented with extreme values to test 
performance and reliability.  The problem with this often ad hoc approach is that unusual 
combinations will usually be missed, so a system may pass all tests and work well under normal 
circumstances, but eventually encounter a combination of inputs that it fails to process correctly.  
By testing all t-way combinations, for some specified level of t, combinatorial testing can help to 
avoid this type of situation.   

 
4.1 Partitioning the Input Space 

 
To get a sense of the problem, we will consider a simple example.  The system under test is 

an access control module that implements the following policy: 
Access is allowed if and only if:    

• the subject is an employee  
AND current time is between 9 am and 5 pm  
AND it is not a weekend   

• OR subject is an employee with a special authorization code  
• OR subject is an auditor  

AND the time is between 9 am and 5 pm  
(not constrained to weekdays). 

 
The input parameters for this module are shown in Figure 10.  In an actual implementation, the 

values for a particular access attempt would be passed to a module that returns a “grant” or “deny” 
access decision, using a function call such as “access_decision(emp, time, day, 
auth, aud)”.  

 
   
 
 
 
 

 
Figure 10. Access control module input parameters.  

 
     Our task is to develop a covering array of tests for these inputs.  The first step will be to develop 
a table of parameters and possible values, similar to that in Section 0 in the previous chapter.  The 
only difference is that in this case we are dealing with input parameters rather than configuration 
options.  For the most part, the task is simple:  we just take the values directly from the 
specifications or code, as shown in Figure 11.  Several parameters are boolean, and we will use 0 
and 1 for false and true values respectively.  For day of the week, there are only seven values, so 
these can all be used.  However, hour of the day presents a problem.  Recall that the number of tests 
generated for n parameters is proportional to vt, where v is the number of values and t is the 
interaction level (2-way to 6-way).  For all boolean values and 4-way testing, vt is 24.  But consider 

emp:  boolean; 
time:  0..1440;  // time in minutes 
day:   {m,tu,w,th,f,sa,su}; 
auth: boolean; 

  aud:  boolean; 
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Use a maximum of 8 
to 10 values per 
parameter to keep 
testing tractable. 

what happens with a large number of possible values, such as 24 hours.  The number of tests will be 
proportional to 244 = 331,736.  Even worse in this example, time is given in minutes, which would 
obviously be completely intractable.  Therefore, we must select representative values for the hour 
parameter.  This problem occurs in all types of testing, not just with combinatorial methods, and 
good methods have been developed to deal with it.  Most testers are already familiar with one or 
more of these:  category [135] or equivalence [141] partitioning and boundary value analysis. 
These methods are reviewed here to introduce the examples.  A much more systematic treatment, in 
the context of data modeling, is provided in Sect. Error! Reference source not found..  Additional 
background on these methods can be found in software testing texts such as Ammann and Offutt 
[4], Beizer [9], Copeland [48], Mathur [107], and Myers [118].  
  

Parameter Values 
emp 0,1 
time ?? 
day m,tu,w,th,f,sa,su 
auth 0, 1 
aud 0, 1 

Figure 11. Parameters and values for access control example.  
 

Both of these intuitively appealing methods will produce a smaller set of values that should 
be adequate for testing purposes, by dividing the possible values into partitions that are meaningful 
for the program being tested.  One value is selected for each partition.  The objective is to partition 
the input space such that any value selected from the partition will affect the program under test in 
the same way as any other value in the partition.  Thus, ideally if a test case contains a parameter x 
which has value y, replacing y with any other value from the partition will not affect the test case 
result.  This ideal may not always be achieved in practice.   

 
How should the partitions be determined?  One obvious, but not necessarily good, approach 

is to simply select values from various points on the range of a variable.  For example, if capacity 
can range from 0 to 20,000, it might seem sensible to select 0, 10,000, and 20,000 as possible 
values.  But this approach is likely to miss important cases that depend on the specific requirements 
of the system under test. Engineering judgment is involved, but partitions are usually best 
determined from the specification.  In this example, 9 am and 5 pm are significant, so 0540 (9 hours 
past midnight) and 1020 (17 hours past midnight) determine the appropriate partitions: 

 
 
 

 
 
 
 
Ideally, the program should behave the same for any of the 

times within the partitions; it should not matter whether the time is 4:00 
am or 7:03 am, for example, because the specification treats both of 
these times the same.  Similarly, it should not matter which time 
between the hours of 9 am and 5 pm is chosen; the program should 
behave the same for 10:20 am and 2:33 pm.  One common strategy, 
boundary value analysis, is to select test values at each boundary and at the smallest possible unit 
on either side of the boundary, for three values per boundary.  The intuition, backed by em pirical 
research, is that errors are more likely at boundary conditions because errors in programming may 
be made at these points.  For example, if the requirements for automated teller machine software 

0000 0540 1020 1440 
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For some applications, 
we test combinations of 
input characteristics, not 
just inputs. 

say that a withdrawal should not be allowed to exceed $300, a programming error such as the 
following could occur: 

 
 
 

if (amount > 0 && amount < 300) { 
//process withdrawal  

} else { 
// error message 

} 
 
Here, the second condition should have been “amount <= 300”, so a test case that includes the 
value amount = 300 can detect the error, but a test with amount = 305 would not.  It is 
generally also desirable to test the extremes of ranges.  One possible selection of values for the time 
parameter would then be:  0000, 0539, 0540, 0541, 1019, 1020, 1021, and 1440.  More values 
would be better, but the tester may believe that this is the most effective set for the available time 
budget.  With this selection, the total number of combinations is 22782 ××××  = 448.  
Generating covering arrays for t = 2 through 4 results in the following number of tests: 
 

t # Tests 
2 56 
3 112 
4 224 

Figure 12. Number of tests for access control example. 
 
     It is important to keep in mind that parameters may not always appear in a single function call, 
such as our example access_decision(emp, time, day, auth, aud).  Sometimes 
inputs to a particular operation may be spread through many lines of code in a program.  For 
instance, consider an automated teller machine processing input from a user and the user’s ATM 
card.  The code may contain a series of calls such as the following: 
 

get_acct_num(); // read acct number from card 
get_PIN();  // read PIN from keyboard 
get_tran_type(); // read transaction type, withdrawal or 
deposit 
get_amt();  // read transaction amount from keyboard 
process_tran(); // process transaction 
 

In this case, a series of values will be established in memory before finally being processed.  So 
account number, PIN, transaction type, and amount are all parameters used in tests, but they are 
being entered one at a time instead of all at once.  This situation is common in real-world systems.  
 
4.2 Input Variables vs. Test Parameters 
      
In the example above, we assumed that the parameters to be included 
in tests were taken from function calls in the program, f (p1, p2, …, 
pn), where each parameter had defined values or a range of values.  
In many cases, it will not be so obvious how to identify what should 
be included in the covering array and tests.  The classic Ostrand and 
Balcer [135] software testing paper illustrates this common situation with the example of a “find” 
command, which takes user input of a string and a file name and locates all lines containing the 
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string.  The format of the command is “find <string> <filename>, where <string> is one or more 
quoted strings of characters such as “john”, “john smith”, or “john” “smith”.  Search strings may 
include the escape character (backslash) for quotes, to select strings with embedded quotes in the 
file, such as “\”john\”” to report the presence of lines containing john in quotes within the file.  The 
command displays any lines containing one or more of the strings.  This command has only two 
input variables, string and filename, so is combinatorial testing really useful here? 
 
     In fact, combinatorial methods can be highly effective for this common testing problem.  To 
check the “find” command, testers will want to ensure that it handles inputs correctly.  The input 
variables in this case are string and filename, but it is common to refer to such variables as 
parameters.  We will distinguish between the two here, but follow conventional practice where the 
distinction is clear. The test parameters identify characteristics of the command input variables. So 
the test parameters are in this case different from the two input parameters, string and filename.   
For example, the string input has characteristics such as length and presence of embedded blanks.  
Clearly, there are many ways to select test parameters, so engineering judgment must be used to 
determine what are most important.  One selection could be the following, where file_length is the 
length in characters of the file being searched: 
 

String length:  {0, 1, 1..file_length, >file_length} 
Quotes:  {yes, no, improperly formatted quotes} 
Blanks:  {0, 1, >1} 
Embedded quotes:  {0, 1, 1 escaped, 1 not escaped} 
Filename: {valid, invalid} 
Strings in command line:  {0, 1, >1} 
String presence in file:  {0, 1, >1} 

  
For these seven test parameters, we have 213442= 2,592 possible combinations of test parameter 
values.  If we choose to test all 2-way interactions we need only 19 tests.  For 3 and 4-way 
combinations, we need only 67 and 218 tests respectively.  Because the number of tests grows only 
as log n for n parameters, we can do very thorough testing at relatively low cost for problems like 
this.  That is, we can include a large number of characteristics to be used as test parameters without 
significantly increasing the test burden.  In the problem above, if we used only the first four of the 
test parameters, instead of all seven, the number of tests required for t = 2, 3, and 4 respectively are 
16, 54, and 144.  Using all seven characteristics means much more thorough testing with relatively 
little increase in test set size.   
 
When testing combinations of input characteristics as above, we must be careful that the test set 
captures enough important cases.  For the find command, testing 3-way or 4-way combinations of 
the seven characteristics should be an excellent sample of test cases that can detect problems.  That 
is, the tests will include both valid and invalid strings.  In some cases, there may be a need to ensure 
the presence of test cases with a number of specific characteristics.  For example, passwords may 
be required to (1) exceed a certain length, (2) contain numerics, and (3) contain special characters. 
A 2-way covering array might not include any valid cases, because it contains all pairs but three 
characteristics must be true to constitute a valid test case.  We may need to supplement the covering 
array with some additional tests in this case.  Sect. Error! Reference source not found. discusses 
this situation in more detail, along with ways to deal with it.     
 
 
4.3 Fault Type and Detectability 
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Condition faults are much 
more difficult to detect 
than code block faults.  

Consider the code snipped introduced in Fig. Figure 1 again.  As seen below, if two boolean 
conditions are true, faulty code is executed, resulting in a failure: 
 
 
 
 
 
 

if (pressure < 10) { 
 // do something 
 if (volume > 300)  {  

// faulty code!  BOOM! 
} else {  

// good code, no problem 
} 

} else { 
 // do something else 
} 

In this case, the branches pressure < 10 and volume > 300 are correct and the fault occurs in 
the code that is reached when these conditions are true.  Thus any covering array with values for 
pressure and volume that will make the conditions true can detect the problem.  But consider 
another type of fault, in which branching statements may be faulty.  The difference between these 
two types of faults is illustrated below, which we will refer to as (a) code block faults and (b) 
condition faults: 
 
 
Example 1.  
 

(a) Code block fault example: 
if (correct condition) {faulty code} 
else                   {correct code} 
 

(b) Condition fault example: 
if (faulty condition)  {correct code} 
else                   {correct code} 

 
Now suppose the code is as follows: 
 
Example 2.  
 

if ( (a || !b) && c) {faulty code} 
else                {correct code} 

 
In this case, a 2-way covering array that includes values for a, b, 
and c is guaranteed to trigger the faulty code, since a branch to the 
faulty code occurs if either a && c or !b && c is true.  A 2-way 
array will contain both of these conditions, so only pairs of values 
are needed even though the branch condition contains three variables.  Suppose however that the 
fault is not in the code block that follows from the branch, but in the branch condition itself, as 
shown in the following code block.  In this case, block 1 should be executed when (a || !b) && c 
evaluates to true and block 2 should be executed in all other cases, but a programming error has 
replaced || with &&.   
 



31 

  

if ( (a && !b) && c)  { block 1, correct code } 
else                  { block 2, different correct code } 

 
A 2-way covering array may fail to detect the error.    A quick analysis shows that the two 
expressions (a && !b) && c  and (a || !b) && c evaluate differently for two value settings:  
a,b,c = 0,0,1 and a,b,c = 1,1,1. A 2-way array is certain to include all pairs of these 
values, but not necessarily all three in the same test.  A 3-way array would be needed to ensure 
detecting the error, because it would be guaranteed to include a,b,c = 0,0,1 and a,b,c = 
1,1,1, either of which will detect the error.  

Detecting condition faults can be extremely challenging.  Experimental evaluations of the 
effectiveness of pairwise (2-way) combinatorial testing [9] show the difficulty of detecting 
condition faults.  Using a set of 20 complex boolean expressions that have been used in other 
testing studies (see [10] or [191] for complete list of expressions), detection was evaluated for five 
different types of seeded faults.  For the full set of randomly seeded faults, pairwise testing had an 
effectiveness of only 28%, although this was partially because different types of faults occurred 
with different frequency.  For the five fault types, detection effectiveness was only 22% for one 
type, but the other four ranged from 46% to 73%, averaging 51% across all types.  This is 
considerably below the occurrence rates of 2-way interaction failures reported in Sect. 1.1 and 
shown in Figure 2, which reflect empirical data on failures that result from a combination of 
condition faults and code block faults.  Even 6-way combinations are not likely to detect all errors 
in complex conditions.  A study [181] of fault detection effectiveness for expressions of five to 15 
boolean variables found detection rates for randomly generated faults as shown in Figure 13 (2,000 
trials; 200 per set).  Note that even for 6-way combinations, fault detection was just above 80%.   

How can we reconcile these results with the demonstrated effectiveness of combinatorial 
testing?  First, note that the expressions used in this study were quite complex, involving up to 15 
variables.  Consider also that software nearly always includes code blocks interspersed with nested 
conditionals, often several levels deep.  Furthermore, the input variables used in covering arrays 
often are not used directly in conditions internal to the program.  Their values may be used in 
computing other values that are then propagated to the variables in the Boolean conditions inside 
the program, and using high strength covering arrays of input values in testing may be sufficient for 
a high rate of error detection.  Nevertheless, the results in [181] are important because they 
illustrate an additional consideration in using combinatorial methods.  For high assurance, it may be 
necessary to inspect conditionals in the code (if source code is available) and determine the 
correctness of branching conditions through non-testing means, such as formally mapping 
conditionals to program specifications.  
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Combinatorial test sets 
can approximate an 
operational profile with 
some loss of efficiency.  

Figure 13. Effectiveness of t-way testing for expressions of 5 to 15 boolean variables [181] 
 

What do these observations mean for practical testing, and what interaction strengths are 
needed to detect condition faults that occur in actual product software?  In general, code with 
complex conditions may require higher strength (higher level of t-way combinations) testing, which 
is not surprising.  But it also helps to explain why relatively low-strength covering arrays may be so 
effective.  Although the condition in Example 1 above includes three terms, it expands to a 
disjunctive normal form of a && c || b && c, so only two terms are needed to branch into the 
faulty code.  Even a more complex expression with many different terms, such as: 
 
 ( (a || b) && c || d && e && (!f || g) || !a && (d || h || j) ) 
 
expands to: 
 
 a && c || b && c || d && !a  || h && !a || d && e && g || d && e && !f 
 
which has three clauses with two terms each, and two clauses with three terms.  Note that a test 
which includes any of the pairs [a c], [b c], [d !a], [h !a] will trigger a branch into 
code that follows this conditional.  Thus if that code is faulty, a 2-way covering array will cause it 
to be executed so that the error can be detected.    
 

These observations lead us to an approach for detecting condition faults:  Given any 
complex condition, P, convert P to DNF, then let t equal the smallest number of literals in any term.  
A t-way covering array will then include at least one test in which the conditional will evaluate to 
true, thus branching into the code that follows the conditional.  For example, convert (a || !b) && 
c) to (a && c) || (!b && c); then t = 2. Again, however, an important caveat to this approach 
is that in most software, conditions are nested, interspersed with blocks of code, so the relationship 
between code block faults and condition faults is complex.  A faulty condition may branch into a 
section of code that is not correct for that condition, which then computes values that may be used 
in a nested conditional statement, and so on.   
 
 
4.4 Building Tests to Match an Operational Profile 
 
Many test projects require the use of an operational profile [118, 
121], which attempts to use the same probability distribution of 
inputs for test data as occurs in live system operation.  For example, 
if a web banking system typically receives 40% balance inquiries, 
40% payroll deposit transactions, and 20% bill-pay transactions, 
then the test data would include these three transaction types in approximately the same proportion.  
Similarly, an operational profile may be applied to input data in each transaction, and the test data 
would be matched to this distribution.  For example, an input partition for the “amount” field in the 
bill-pay transaction might include inputs of 96% with amounts under the user’s balance,   3% with 
insufficient funds, and 1% zero amounts (user error), similar to the proportion of values that the 
bank experiences in day to day use of their system.  How can the operational profile approach be 
used in conjunction with combinatorial testing?   
 
One way we can approximate an operational profile for some problems is to assign sets of values to 
variables in proportion to their occurrence in the operational profile, if the chances of their 
occurrence in input are independent of each other.  For example, if we have 5 binary variables, a..e, 
where a and b have value 0 two-thirds of the time and value 1 a third of the time, and the rest have 
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0, 1 with equal chance.  Then use this as input to ACTS, assigning 0 and 1 in proportion to the 
occurrence of 0 for a and b (2/3), and 2 in proportion to the occurrence of 1 (1/3): 

 
a: 0,1,2 
b: 0,1,2 
c: 0,1 
d: 0,1 
e: 0,1 
 

 
 
 
In the covering array, change 1 to 0 for variables a and b, then change 2 to 1: 
 

a b c d e  a b c d e 
0,0,0,0,0 
0,1,1,1,1 
0,2,0,1,0 
1,0,1,0,1 
1,1,0,0,0 
1,2,1,1,1 
2,0,0,1,1 
2,1,1,0,0 
2,2,*,0,* 

 
 
 
 
  becomes   

0,0,0,0,0 
0,0,1,1,1 
0,1,0,1,0 
0,0,1,0,1 
0,0,0,0,0 
0,1,1,1,1 
1,0,0,1,1 
1,0,1,0,0 
1,1,*,0,* 
 

 
 
We will have inputs where a,b = 0,0 4/9 of the time, a,b=0,1 2/9 of the time, etc.  It's just an 
approximation to the correct distribution though, since the distribution isn't quite right for some 
combinations, e.g., b,c = 1,0 only 1/9, instead of 1/6, depending on what we do with the * in the last 
row.   This approach would obviously be a lot messier if we were trying to do distributions with lots 
of values per variable.  There are no doubt lots of ways to make this more efficient, but we should 
probably stick with things we can do using ACTS, and not implementing new algorithms, since 
practical problems will require constraint handling.  
 
Limitations:  Fine-grained control of the distribution of test values is not practical with this 
approach, because it relies on using multiple values that are then mapped into a smaller set of 
desired values to produce the distribution.  Thus if the desired distribution is 60/20/20 for three 
values of parameter P1, we can specify the input to the covering array generator as follows: 
 

P1: a1, a2, a3, b, c. 
 
Then the covering array will have approximately three times as many values of “a” for P1 if we 
map a1, a2, and a3 to a.  We will refer to the values a1, a2, and a3 as “temporary” values, which are 
mapped to the “actual” value a.  A distribution such as 45/25/20/10 for four values a, b, c, and d, 
would be much more difficult to approximate.  It requires that value a appear in the covering array 
4.5 X as frequently as value d, value b appear 2.5 X for each occurrence of d, and c must be twice 
as common as d.  Since we obviously are limited to whole numbers of value occurrences, the way 
to do this would be as follows: 
 

P1:  a1, a2, a3, a4, a5, a6, a7, a8, a9, b1, b2, b3, b4, b5, c1, c2, d.  
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The larger the 
system, the greater 
the benefit from 
combinatorial testing.  

Unfortunately, this results in 17 temporary values for parameter P1.  Recall from Chapter 1 that the 
number of tests is proportional to vt, so even if t = 2 or t = 3, the resulting covering array of tests 
will be extremely large.  A more practical approach to this problem is to trade some of the precision 
in the distribution for a smaller test set.  If we are willing to accept an approximate distribution of 
40/20/20/10 instead of 45/25/20/10, then we reduce the number of values for P1 to 9 instead of 17 
(a1, a2, a3, a4, b1, b2, c1, c2, d).  One heuristic that helps make it more practical to generate test 
arrays meeting an operational distribution is to require that the proportions of different values all be 
divisible by at least 10, to ensure that no more than 10 temporary values are used.  For example, a 
60/20/10/10 distribution can be produced with six for the first value, two for the second, etc.  Of 
course, limiting temporary values to 10 or less means that actual values must be constrained to 
significantly less than 10, depending on the distribution being modeled. Once again, engineering 
judgment is required to find a tradeoff that works for the problem at hand.    
 

We also note that operational profile testing is focused on approximating the type and 
number of inputs normally encountered, while combinatorial testing’s forte is exercising the very 
rare cases that normal testing might miss.  An additional complication is that not all failures have 
the same consequence in terms of economic or other impact.  The more commonly used functions 
of the system may be much more important to a company’s revenue, for example, because of the 
large number of customers impacted when one of them fails.  Such considerations argue for the 
need to consider the operational distribution in test planning, looking at the cost of failure for 
different functions [191, 192].  For example, a retail operation may place a higher priority on 
customer purchase transactions than on item return, on the basis of both volume and impact on 
revenue.  In this case it makes sense to do more testing of purchase transactions, reflecting the 
operational distribution of transaction types.  Combinatorial testing would then be applied to testing 
of purchase transactions to detect obscure input combinations that might cause a failure.  Very 
heavily used transaction types are eventually likely to encounter almost any combination, so it is 
important to find these rare cases in testing.  
 
 
4.5 Scaling Considerations  

 
     With the first of the examples above, the advantage over 
exhaustive testing is not large, because of the small number of 
parameters. The second example provided a respectable gain, but 
what happens with really big problems? For larger problems, the 
advantages of combinatorial testing can be spectacular.  For 
example, consider the problem of testing the software that processes 
switch settings for the panel [125] shown in Figure 14.  There are 34 switches, which can each be 
either on or off, for a total of 234 = 1.7 x 1010 possible settings.  We clearly cannot test 17 billion 
possible settings, but all 3-way interactions can be tested with only 33 tests, and all 4-way 
interactions with only 85.  This may seem surprising at first, but it results from the fact that every 
test of 34 parameters contains 
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34 = 5,984 3-way and 
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34  = 46,376 4-way combinations.   
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Figure 14. Panel with 34 switches.  

      
This example illustrates the fact that the testing efficiency gain from combinatorial methods 

is much greater with larger problems.  Recall from Section 0 that the number of tests required for n 
parameters with v values each increases proportional to vt log n, for t-way testing, but exhaustive 
testing for the same problem would require vn tests.  Figure 15 shows the sizes of 2-way and 4-way 
covering arrays for different levels of v with 10 through 50 variables.  Notice the logarithmic 
growth of covering array sizes with increasing values of n, and the fact that the covering arrays are 
extremely tiny compared with what would be required for exhaustive testing.   

 
 

 
 v=2 v=4 v=6 

n 2-way 
CA 

4-way CA exhaustive 2-way 
CA 

4-way CA exhaustive 2-way CA 4-way CA exhaustive 

10 8 41 1024 29 725 1048576 63 3713 6.046e+7 
20 10 65 1048576 37 1165 1.099e+12 79 6015 3.656e+15 
30 11 80 1.073e+9 41 1448 1.1529e+18 86 7473 2.210e+23 
40 11 90 1.099e+12 44 1661 1.2089e+24 94 8550 1.336e+31 
50 11 98 1.125e+15 46 1839 1.267e+30 99 9466 8.082e+38 

Figure 15. 2-way and 4-way covering array sizes compared with exhaustive tests for 
various values of n and v. 

 
 
 
4.6 Cost and Practical Considerations 

 
Combinatorial methods can be highly effective and reduce the cost of testing substantially.  

For example, Justin Hunter has applied these methods to a wide variety of test problems and 
consistently found both lower cost and more rapid error detection [85].  But as with most aspects of 
engineering, tradeoffs must be considered.  Among the most important is the question of when to 
stop testing, balancing the cost of testing against the risk of failing to discover additional failures.  
An extensive body of research has been devoted to this topic, and sophisticated models are 
available for determining when the cost of further testing will exceed the expected benefits [19, 
107].   Existing models for when to stop testing can be applied to the combinatorial test approach 
also, but there is an additional consideration:  What is the appropriate interaction strength to use in 
this type of testing?   

 
To address these questions consider the number of tests at different interaction strengths for 

an avionics software example [91] shown in Figure 16.  While the number of tests will be different 
(probably much smaller than in Figure 16) depending on the system under test, the magnitude of 
difference between levels of t will be similar to Figure 16, because the number of tests grows with 
vt, for parameters with v values.  That is, the number of tests grows with the exponent t, so we want 
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to use the smallest interaction strength that is appropriate for the problem.   Intuitively, it 
seems that if no failures are detected by t-way tests, then it may be reasonable to conduct additional 
testing only for t+1 interactions, but no greater if no additional failures are found at t+1.  In the 
empirical studies of software failures, the number of failures detected at t > 2 decreased 
monotonically with t, so this heuristic seems to make sense:  start testing using 2-way (pairwise) 
combinations, continue increasing the interaction strength t until no errors are detected by the t-
way tests, then (optionally) try t+1 and ensure that no additional errors are detected.  As with 
other aspects of software development, this guideline is also dependent on resources, time 
constraints, and cost-benefit considerations.   
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Figure 16. Number of tests for avionics example.  

 
When applying combinatorial methods to input parameters, the key cost factors are the 

number of values per parameter, the interaction strength, and the number of parameters.  As shown 
above, the number of tests increases rapidly as the value of t is increased, but the rate of increase 
depends on the number of values per parameter.  Binary variables, with only two values each, result 
in far fewer tests than parameters with many values each.   As a practical matter, when partitioning 
the input space, it is best to keep the number of values per parameter below 8 or 10 if possible, 
since the number of tests increases with vt (consider the difference between 43 = 64 and 113 = 1,331, 
for example).   

 
 Because the number of tests increases only logarithmically with the number of parameters, 
test set size for a large problem may be only somewhat larger than for a much smaller problem.  For 
example, if a project uses combinatorial testing for a system that has 20 parameters and generates 
several hundred tests, a much larger system with 40 to 50 parameters may only require a few dozen 
more tests.  Combinatorial methods may generate the best cost benefit ratio for large systems.   
 
4.7 Chapter Summary 
 
1. The key advantage of combinatorial testing derives from the fact that all, or nearly all, software 

failures appear to involve interactions of only a few parameters.  Generating a covering array of 
input parameter values allows us to test all of these interactions, up to a level of 5-way or 6-way 
combinations, depending on resources.   

 
2. Practical testing often requires abstracting the possible values of a variable into a small set of 

equivalence classes.  For example, if a variable is a 32-bit integer, it is clearly not possible to 
test the full range of values in +/- 231.  This problem is not unique to combinatorial testing, but 
occurs in most test methodologies.  Simple heuristics and engineering judgment are required to 
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determine the appropriate portioning of values into equivalence classes, but once this is 
accomplished it is possible to generate covering arrays of a few hundred to a few thousand tests 
for many applications.  The thoroughness of coverage will depend on resources and criticality 
of the application.  
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5 Test Parameter Analysis (E. Miranda) 
 
 
 
[non-NIST author]
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6  Managing System State in Combinatorial Test Designs (G. Sherwood) 
 
[non NIST author]
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7 Measuring Combinatorial Coverage   
 
 [noted separately] 
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8 Test Suite Prioritization by Combinatorial Coverage  (R. Bryce and S. Sampath)  
 
 

 

[non NIST authors]



42 

  

A large number of random 
tests can provide a high level 
of combinatorial coverage.  

 

9 Combinatorial Testing and Random Test Generation  
 

For combinatorial testing to be most efficient and effective, we need an understanding of when 
a particular test development method is most appropriate.  That is, what characteristics of a problem 
lead us to use one approach over another, and what are the tradeoffs with respect to cost and 
effectiveness?  Some studies have reviewed the effectiveness of combinatorial and random 
approaches to testing, comparing the use of covering arrays with randomly generated tests, but have 
reached conflicting results [5, 6, 9, 139, 151, 94, 95].  Any single test containing values for n 
parameters, no matter how it is constructed, covers C(n,2) 2-way combinations (pairs), C(n,3) 3-
way combinations, and so on.  Naturally as additional tests are added, more combinations are 
covered. A covering array packs combinations together closely, but as long as test i+1 differs from 
previously produced tests, additional combinations will be covered.  Generating values randomly 
naturally leads to differences between tests, resulting in good combinatorial coverage for certain 
classes of problems.  This chapter discusses the use of covering arrays and random test generation.  
As we will see, there is an interesting connection between these two concepts. 

 
 
9.1 Coverage of Random Tests 
 

By definition, a covering array covers all t-way combinations for the specified value of t at 
least once.  If enough random tests are generated, they will eventually also cover all t-way 
combinations.  One key question is how many random tests are needed to cover all t-way 
combinations?  In general, as the number of parameters increases, the probability that a random test 
set covers all t-way combinations increases as well, so that with thousands of parameters, these two 
methods begin to converge to the same number of tests. It has been shown [6] that where there is a 
large number of parameters (i.e., 1000s) and parameter values, and no constraints among 
parameters or parameter values, the number of tests required for t-way coverage (for arbitrary t) is 
approximately the same for covering arrays and randomly generated tests.  This is an encouraging 
result, because of the difficulty of generating large covering arrays. We can produce thousands of 
random tests in seconds, but existing covering array algorithms cannot produce arrays for such 
large problems in a practical amount of time. If t-way coverage is needed for such problems, then 
random tests can be generated with a known probability of producing a full covering array.  For N 
randomly generated tests containing parameters with vi values each, there is a probability Pt of 
detecting at least one t-way fault [6]: 
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For the more common case where there are multiple faults, we need to also consider the ways in 
which combinations of faults can be discovered, leading to a probability Pt,z to detect z different 
faults of [6]: 
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These probabilities converge to limk→ ∞ Pt = 1 and limk→ ∞ Pt,z = 
1, for k parameters.  For very large N, a randomly generated test 
set almost assures full t-way coverage.  However, note that full 



43 

  

coverage is not guaranteed because values are generated randomly.  Using the coverage methods 
presented in Chapter 7 (which are easily parallelizable), we could determine if all t-way 
combinations have been covered, and supplement the test set with any missing ones.  After all, our 
goal is not to use covering arrays, but to cover all t-way combinations, for the appropriate level of t.  
It doesn’t matter how tests providing the necessary coverage are generated.  As mentioned, an 
important caveat to this probability calculation is that it does not hold when constraints are 
involved, as they often are in practical testing problems.  We can still generate tests randomly, but 
cannot rely on this calculation to estimate how many tests to produce.   

        
For smaller test problems involving 10s of parameters, covering array algorithms are entirely 

practical and can cover all t-way combinations in a fraction of the number of tests required by 
random generation.  Table 6 gives the percentage of t-way combinations covered by a randomly 
generated test set of the same size as a t-way covering array, for various combinations of k = 
number of variables and v = number of values per variable.  Note that the coverage could vary with 
different realizations of randomly generated test sets.  That is, a different random number generator, 
or even multiple runs of the same generator, may produce slightly different coverage (perhaps a few 
tests out of thousands, depending on the problem).  Figure 18 through Figure 22 summarize the 
coverage for arrays with variables of 2 to 10 values.  As seen in the figures, the coverage provided 
by a random test suite versus a covering array of the same size varies considerably with different 
configurations.   

 

Vars 
Values/ 
Variable 

ACTS 
2-way  
tests 

Random 
2-way 

coverage 

ACTS 
3-way  
tests 

Random 
3-way 

coverage 

ACTS 
4-way  
tests 

Random 
4-way 

coverage 
10 2 10 89.28% 20 92.18% 42 92.97% 
10 4 30 86.38% 151 89.90% 657 92.89% 
10 6 66 84.03% 532 91.82% 3843 94.86% 
10 8 117 83.37% 1214 90.93% 12010 94.69% 
10 10 172 82.21% 2367 90.71% 29231 94.60% 
15 2 10 96.15% 24 97.08% 58 98.36% 
15 4 33 89.42% 179 93.75% 940 97.49% 
15 6 77 89.03% 663 95.49% 5243 98.26% 
15 8 125 85.27% 1551 95.21% 16554 98.25% 
15 10 199 86.75% 3000 94.96% 40233 98.21% 
20 2 12 97.22% 27 97.08% 66 98.41% 
20 4 37 90.07% 209 96.40% 1126 98.79% 
20 6 86 91.37% 757 97.07% 6291 99.21% 
20 8 142 89.16% 1785 96.92% 19882 99.22% 
20 10 215 88.77% 3463 96.85% 48374 99.20% 
25 2 12 96.54% 30 98.26% 74 99.18% 
25 4 39 91.67% 233 97.49% 1320 99.43% 
25 6 89 92.68% 839 97.94% 7126 99.59% 
25 8 148 90.46% 1971 97.93% 22529 99.59% 
25 10 229 89.80% 3823 97.82% 54856 99.58% 

Table 6. Percent of t-way combinations covered by equal number of random tests 
 
Now consider the size of a random test set required to provide 100% combination coverage.  With 
the most efficient covering array algorithms, the difficulty of finding tests with high coverage 
increases as tests are generated.  Thus even if a randomly generated test set provides better than 
99% of the coverage of an equal sized covering array, it should not be concluded that only a few 
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more tests are needed for the random set to provide 100% coverage.  Table 7 gives the sizes of 
randomly generated test sets required for 100% combinatorial coverage at various configurations, 
and the ratio of these sizes to covering arrays computed with ACTS.  Although there is 
considerable variation among configurations, note that the ratio of random to covering array size 
for 100% coverage exceeds 3 in most cases, with average ratios of 3.9, 3.8, and 3.2 at t = 2, 3, and 4 
respectively.   Thus, combinatorial testing retains a significant advantage over random testing for 
problems of this size if the goal is 100% combination coverage for a given value of t. 

 

Vars 

 
Valu
es 

2-way Tests 3-way Tests 4-way Tests 
ACTS 
Tests 

Random 
Tests Ratio 

ACTS 
Tests 

Random 
Tests Ratio 

ACTS 
Tests 

Random 
Tests Ratio 

10 2 10 18 1.80 20 61 3.05 42 150 3.57 
10 4 30 145 4.83 151 914 6.05 657 2256 3.43 
10 6 66 383 5.80 532 1984 3.73 3843 13356 3.48 
10 8 117 499 4.26 1214 5419 4.46 12010 52744 4.39 
10 10 172 808 4.70 2367 11690 4.94 29231 137590 4.71 
15 2 10 20 2.00 24 52 2.17 58 130 2.24 
15 4 33 121 3.67 179 672 3.75 940 2568 2.73 
15 6 77 294 3.82 663 2515 3.79 5243 17070 3.26 
15 8 125 551 4.41 1551 6770 4.36 16554 60568 3.66 
15 10 199 940 4.72 3000 15234 5.08 40233 159870 3.97 
20 2 12 23 1.92 27 70 2.59 66 140 2.12 
20 4 37 140 3.78 209 623 2.98 1126 3768 3.35 
20 6 86 288 3.35 757 2563 3.39 6291 18798 2.99 
20 8 142 630 4.44 1785 8450 4.73 19882 59592 3.00 
20 10 215 1028 4.78 3463 14001 4.04 48374 157390 3.25 
25 2 12 34 2.83 30 70 2.33 74 174 2.35 
25 4 39 120 3.08 233 790 3.39 1320 3520 2.67 
25 6 89 327 3.67 839 2890 3.44 7126 19632 2.75 
25 8 148 845 5.71 1971 7402 3.76 22529 61184 2.72 
25 10 229 1031 4.50 3823 16512 4.32 54856 191910 3.50 

Ratio Average: 3.90 3.82 3.21 
Table 7. Size of random test set required for 100% t-way combination coverage. 

 
 

Values per 
 variable 

Ratio, 
2-way 

Ratio, 
3-way 

Ratio, 
4-way 

2 2.14 2.54 2.57 
4 3.84 4.04 3.04 
6 4.16 3.59 3.12 
8 4.70 4.33 3.44 
10 4.68 4.59 3.86 

Table 8. Average ratio of random/ACTS for covering arrays 
by values per variable, variables = 10, 15, 20, 25 

 
9.2 Adaptive Random Testing 
 
A recently developed testing strategy that can work quite well with combinatorial methods is called 
adaptive random testing (ART) [33, 35, 36].  The ART strategy seeks to deal with the problem that 
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faults tend to cluster together [2, 16, 34], by choosing tests one at a time such that each newly 
chosen test is as “different” as possible from previous tests.  The difference, or distance, metric is 
chosen based on problem characteristics.  The basic ART algorithm is shown in Figure 17.   

 
T = {} /* T is the set of previously executed test cases */ 
randomly generate an input t 
test the program using t as a test case 
add t to T 
while (stopping criteria not reached) { 

    D = 0 
    randomly generate next k candidates c1, c2, . . . , ck 
   for each candidate ci { 
         calculate the minimum distance di from T 
         if di > D { D = di;   t = ci }  

     } 
     add t to T 
     test the program using t as a test case 
}  // end while 

Figure 17. Adaptive Random Testing algorithm 
 
ART generates a set of random tests, determines the best test, i.e., with the greatest distance from 
the existing test set T, then adds that test to T, continuing until some stopping criterion is fulfilled.  
If the distance metric is based on the number of previously uncovered t-way combinations that are 
covered in the candidate tests, then this algorithm is essentially a greedy algorithm [125] for 
computing a covering array one test at a time.  The distance measures for this approach were 
originally developed for numeric processing.  Many application domains, however, must deal with 
enumerated values with relatively little complex calculation.  In these cases, distance measures 
tailored to covering arrays can help in choosing test order, that is, in prioritizing tests.   Chapter 
Error! Reference source not found. explains the use of prioritization methods.   
 
9.3 Tradeoffs: Covering Arrays and Random Generation 

 
The comparisons between random tests and covering arrays for combinatorial testing suggest a 
number of conclusions: 
 
• For binary variables (v=2), random tests compare reasonably well with covering arrays 
(96% to 99% coverage) for all three values (2, 3, and 4) of t for 15 or more variables.  Thus random 
testing for a SUT with all or mostly binary variables may compare favorably with covering arrays.   
 
• Combination coverage provided by random generation of the equivalent number of 
pairwise tests at (t = 2) decreases as the number of values per variable increases, and the coverage 
provided by pairwise testing is significantly less than 100%.  The effectiveness of random testing 
relative to pairwise testing should be expected to decline as the average number of values per 
variable increases.  
 
• For 4-way interactions, coverage provided by random test generation increases with the 
number of variables.  Using a covering array for a module with approximately 10 variables should 
be significantly more effective than random testing, while the difference between the two methods 
should be less for modules with 20 or more variables.  
 
• For 100% combination coverage, the efficiency advantage of covering arrays varies 
directly with the number of values per variable and inversely with the interaction strength t.  Figure 
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A less optimal (by size) 
array may provide 
better failure detection 
because it includes 
more interactions at 
t+1, t+2, etc. 

23 illustrates how these factors (interaction strength t and values per variable v) combine:  the ratio 
of random/covering array coverage is highest for 10 variables with t = 2, but declines for other 
pairings of t and v.  To obtain 100% combination coverage, random testing is significantly less 
efficient, requiring 2 to nearly 5 times as many tests as a covering array generated by ACTS.  Thus 
if 100% combination coverage is desired, using covering arrays may be less expensive than random 
test generation.    

 
• For very large sets of parameters with no constraints, random test generation can produce 
a set of tests that cover all t-way combinations that is not significantly larger than the corresponding 
covering array.  Generating the tests randomly will be much faster, and for very large problems 
covering array generation with existing tools is likely to be intractable.   
 

An important practical consideration in comparing combinatorial with random testing is the 
efficiency of the covering array generator.   Algorithms have a very wide range in the size of 
covering arrays they produce.  In some cases, the better algorithms to produce arrays that are 50% 
smaller than other algorithms.  We have found in comparisons with other tools that there is no 
uniformly “best” algorithm.  Other algorithms may produce smaller or larger combinatorial test 
suites, so the comparable random test suite will vary in the number of combinations covered.   Thus 
random testing may fare better in comparison with combinatorial tests produced by one of the less 
efficient algorithms. 

 
     However, there is a less obvious but important tradeoff regarding 
covering array size. An algorithm that produces a very compact 
array, i.e., with few tests, for t-way combinations may include fewer 
(t+1)-way combinations because there are fewer tests.  Table 9 and 
Table 10 illustrate this phenomenon for an example.  Table 9 shows 
the percentage of t+1 up to t+3 combination coverage provided by 
the ACTS tests and in Table 10 the equivalent number of random 
tests.  Although ACTS pairwise tests provide better 3-way coverage than the random tests, at other 
interaction strengths and values of t, the random tests are roughly the same or slightly better in 
combination coverage than ACTS.  Recall from Section 9.1 that pairwise combinatorial tests 
detected slightly fewer events than the equivalent number of random tests.  One possible 
explanation may be that the superior 4-way and 5-way coverage of the random tests allowed 
detection of more events.  Almost paradoxically, an algorithm that produces a larger, sub-optimal 
covering array may provide better failure detection because the larger array is statistically more 
likely to include t+1, t+2, and higher degree interaction tests as a byproduct of the test generation.  
Again, however, the less optimal covering array is likely to more closely resemble the random test 
suite in failure detection. 

 
Note also that the number of failures in the SUT can affect the degree to which random testing 

approaches combinatorial testing effectiveness.  For example, suppose the random test set covers 
99% of combinations for 4-way interactions, and the SUT contains only one 4-way interaction 
failure.   Then there is a 99% probability that the random tests will contain the 4-way interaction 
that triggers this failure.  However, if the SUT contains m independent failures, then the probability 
that combinations for all m failures are included in the random test set is .99m.  Hence with multiple 
failures, random testing may be significantly less effective, as its probability of detecting all failures 
will be cm, for c = percent coverage and m = number of failures. 
 
 

t 3-way 
coverage 

4-way 
coverage 

5-way 
coverage 
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2 .758 .429 .217 
3  .924 .709 
4   .974 

Table 9. Higher interaction coverage of t-way tests 
 
 

t 3-way 
coverage 

4-way 
coverage 

5-way 
coverage 

2 .735 .499 .306 
3  .917 .767 
4   .974 

Table 10. Higher interaction coverage of random tests  
 
 
 

 
Figure 18. Percent coverage of t-way combinations for v=2. 

 

 
Figure 19. Percent coverage of t-way combinations for v=4. 
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Figure 20. Percent coverage of t-way combinations for v=6. 

 

 
Figure 21. Percent coverage of t-way combinations for v=8. 

 

 
Figure 22. Percent coverage of t-way combinations for v=10
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Figure 23. Average ratio of random/ACTS for covering arrays by values per variable 

 
 
9.4 Cost and Practical Considerations 

 
 The relationship between covering arrays and randomly generated tests presents some 
interesting issues.  Generating covering arrays for combinatorial tests is complex; it has been shown to 
be an NP-hard problem.  But generating tests randomly is trivial.  Thus for large problems, we can 
compare the cost and time of generating a covering array versus producing tests randomly, measuring 
their coverage (Chapter 7), then adding tests as needed to provide full combinatorial coverage.  Notice 
the last column of Table 6.  For 4-way tests, once the number of parameters exceeds roughly 20, 
random generation will cover 99% or more of 4-way combinations.  If a problem requires tests for 100 
parameters, for example, covering array generators may require hours or days, or may simply be 
unable to handle that many parameters, but random tests could be generated quickly and easily.  The 
test generation time for these two approaches is one factor among many that must be considered in test 
planning. Analyzing test parameters (Chapters 3 through 6), oracle development (Chapters Error! 
Reference source not found. and 12), and other essential tasks such as test execution and managing 
test runs will generally be much more expensive than generating tests, regardless of the test generation 
method used.  
 

While the analyses reported here do not indicate that combinatorial testing is uniformly better 
than random, it does support a preference for combinatorial methods if the cost of applying the two 
test approaches is approximately the same.  Most of the cost of testing goes into test planning, test 
oracle development, running and reporting tests, and the generation of test data – either randomly or 
with covering array tools – can be fully automated and run in parallel with other tasks.  This preference 
may be particularly relevant if the SUT is likely to contain multiple failures (as is usually the case).  
Single failures that depend on the interaction of two or more variables have a high likelihood of being 
detected by random tests, because the random test set may cover a high percentage of all t-way 
combinations.  But the probability of detecting multiple failures declines rapidly as cm, for c = percent 
coverage and m = number of independent failures.  Unfortunately many testing problems are too large 
(too many parameters) to be handled entirely using covering arrays, so random test generation may be 
used to achieve the combinatorial coverage desired.     
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9.5 Chapter Summary 
 

Covering array algorithms are significantly more efficient than random test generation if the 
goal is 100% combination coverage.  The table below summarizes the test set size comparison for a 
variety of problem configurations.  The difference is especially striking for binary parameters, where 
the ACTS covering array generator produces (t+1)-way coverage with roughly the same number of 
tests required by random generation for t-way coverage. Table 7 provides additional detail.  

 
 t = 2 t = 3 t = 4 

n v ACTS random ACTS random ACTS random 
10 2 10 18 20 61 42 150 
10 4 30 145 151 914 657 2256 
10 8 117 499 1214 5419 12010 52744 
15 2 10 20 24 52 58 130 
15 4 33 121 179 672 940 2568 
15 8 125 551 1551 6770 16554 60568 
20 2 12 23 27 70 66 140 
20 4 37 140 209 623 1126 3768 
20 8 142 630 1785 8450 19882 59592 
25 2 12 34 30 70 74 174 
25 4 39 120 233 790 1320 3520 
25 8 148 845 1971 7402 22529 61184 

Table 11. Summary, ACTS and random test set sizes for 100% t-way combination coverage. 
 

Existing research has shown either no difference (for some problems) or higher failure 
detection effectiveness (for most problems) for combinatorial testing.  Analyzing random test sets 
suggests a number of reasons for this result.  In particular, a highly optimized t-way covering array 
may include fewer t+1, t+2, and higher degree interaction tests than an equivalent sized random test 
set.  Similarly, a covering array algorithm that produces a larger, sub-optimal array may provide better 
failure detection because the larger array is statistically more likely to include t+1, t+2, and higher 
degree interaction tests as a byproduct of the test generation.  In some applications, it may make sense 
to combine aspects of both approaches.  Adaptive random testing is a systematic method that can be 
used in this manner.  
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In many systems, the 
order of inputs is 
important.  

 

10 Sequence-Covering Arrays 
 

In testing event-driven software, the critical condition for triggering failures often is whether or 
not a particular event has occurred prior to a second one, establishing a particular state that must be 
reached before a given failure can be triggered. For example, a failure might occur when connecting 
device A only if device B is already connected, or only if devices B and C were both already 
connected.  Events may be repeatable in some systems, but this is not always the case. In the testing 
problem that motivated this work, the critical issue was the sequence of connecting a large number of 
peripherals, so it was physically impossible to connect an already connected device (without 
unplugging, which would be a separate event).  As a different example, a memory management 
function may fail on an attempt to allocate memory if it failed to properly release memory at some 
prior time. Another common class of problems of this type occurs with graphical user interfaces that 
use callbacks.  User actions may trigger the creation or release of resources, or the enabling or 
disabling of GUI controls.  But the user may invoke these callbacks in any order, and errors may result 
if a prior callback left the system in an unexpected state.   
 
10.1 Sequence Covering Array Definition 

For this problem we can define a sequence-covering array 
[96, 97, 98, 99], which is a set of tests that ensure all t-way 
sequences of events have been tested.  The t events in the sequence 
may be interleaved with others, but all permutations will be tested.  
For example, we may have a component of a factory automation system that uses certain devices 
interacting with a control program.  We want to test the events defined in Table 12.  
 

There are 6! = 720 possible sequences for these six events, and the system should respond 
correctly and safely no matter the order in which they occur.  Operators may be instructed to use a 
particular order, but mistakes are inevitable, and should not result in injury to users or compromise the 
enterprise. Because setup, connections and operation of this component are manual, each test can take 
a considerable amount of time. It is not uncommon for system-level tests such as this to take hours to 
execute, monitor, and complete. We want to test this system as thoroughly as possible, but time and 
budget constraints do not allow for testing all possible sequences, so we will test all 3-event sequences.   
 

With six events, a, b, c, d, e, and f, one subset of three is {b, d, e}, which can be arranged in 
six permutations:  [b d e], [b e d], [d b e], [d e b], [e b d], [e d b].  A test that covers the permutation [d 
b e] is: [a d c f b e]; another is [a d c b e f].   A larger example system may have 10 devices to connect, 
in which case the number of permutations is 10!, or 3,628,800 tests for exhaustive testing.  In that case, 
a 3-way sequence covering array with 14 tests covering all 7208910 =⋅⋅  3-way sequences is a 
dramatic improvement, as is 72 tests for all 4-way sequences (see Error! Reference source not 
found.).     
 

Event Description 
a connect air flow meter 
b connect pressure gauge 
c connect satellite link 
d connect pressure readout 
e engage drive motor 
f engage steering control 
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Table 12. System events 
Definition.  A sequence covering array, SCA(N, S, t) is an N x S matrix where entries are from a finite 
set S of s symbols, such that every t-way permutation of symbols from S occurs in at least one row; the 
t symbols in the permutation are not required to be adjacent.  That is, for every t-way arrangement of 
symbols x1, x2, ..., xt, the regular expression .*x1.*x2.*xt.* matches at least one row in the array.  
Sequence covering arrays, as the name implies, are analogous to standard covering arrays (see Sect. 
1.3), which include at least one of every t-way combination of any n variables, where t<n.  A variety of 
algorithms are available for constructing covering arrays, but these are not usable for generating t-way 
sequences because they are designed to cover combinations in any order.   
 
Example 1.  Consider the problem of testing four events, a, b, c, and d.  For convenience, a t-way 
permutation of symbols is referred to as a t-way sequence. There are 4! = 24 possible permutations of 
these four events, but we can test all 3-way sequences of these events with only six tests (see Error! 
Reference source not found.).   
 

Test  
1 a d b c 
2 b a c d 
3 b d c a 
4 c a b d 
5 c d b a 
6 d a c b 

Table 13. Tests for four events. 
 
10.2 Size and Construction of Sequence Covering Arrays 
 

Sequence covering arrays can be constructed with a variety of methods.  A 2-way sequence 
covering array can be constructed simply by listing the events in some order for one test and in reverse 
order for the second test:   

1 a b c d 
2 d c b a 

 
To see that this procedure generates tests that cover all 2-way sequences, note that for 2-way sequence 
coverage, every pair of variables x and y, x..y and y..x must both be in some test (where a..b means that 
a is eventually followed by b).  All variables are included in each test, therefore any sequence x..y 
must be in either test 1 or test 2 and its reverse y..x in the other test.  Thus only 2 tests are needed to 
cover all 2-way sequences, regardless of the number of events to be included in the tests.  This can be 
an effective way of doing initial tests on a GUI with multiple buttons, text input boxes, selection lists, 
and other features.  Invoking each of the features on screen in some order and then reversing the order 
may uncover problems in memory management or initialization (often as a result of developers’ 
assumptions about the order in which the user will interact with the system.) 
 
The number of tests required for t-way coverage of n events is proportional to t! log n., and the lower 
bound for a sequence covering array grows logarithmically in n [97]. Therefore, a large number of 
events can be tested using a reasonable number of tests for most applications, as can be confirmed in 
Error! Reference source not found..  Greedy methods produce good results across a broad range of 
problem sizes.  Construction methods for sequence covering arrays also include answer-set 
programming [11, 58].  Answer set programming can generate more compact test sets than greedy 
methods, but this advantage may not hold for larger problem sizes.     
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Generalized t-way Sequence Covering 
 

For t-way sequence test generation, where t > 2, one method is to use a greedy algorithm that 
generates a large number of tests, scores each by the number of previously uncovered sequences it 
covers, then chooses the highest scoring test.  This simple approach produces surprisingly good results, 
in both test set size and execution time.   

 
 
  
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 

Figure 24. Algorithm t-seq 
 

The complexity of the algorithm is dominated by the selection of a candidate test that covers the 
greatest number of previously uncovered sequences. An array of bits for each possible t-way sequence 
is used so that marking and testing the array for a particular sequence can be done in constant time for 
each of the t-way sequences This selection process checks each of the )1(...)1( +−××−× tnnn  
possible t-way sequences to determine if the sequence has previously been covered or is newly 
covered by the candidate test.  The check is done for each of the N candidate tests, with constant N, so 
the time complexity of the algorithm is O(nt).   Storage required for the algorithm is O(nt) also, 
because of the set chk for keeping track of which sequences have been covered at each step.    

 
  
It is shown in [97] that the number of tests generated by a greedy algorithm grows logarithmically with 
n.  At each step, a greedy algorithm that selects the test which covers the largest number of previously 
uncovered sequences will progress at a rate of at least 1/t! of the remaining sequences at each iteration.  
Thus uncovered sequences are reduced as Ui+1 = Ui(1 - 1/t!), and after k iterations, remaining 
uncovered sequences will be U0(1 - 1/t!)k.     Initially, U0 = )1(...)1( +−××−× tnnn .  For small n, it 
may be possible to implement an optimal greedy algorithm that tests all n! possible tests.  For larger 
values of n, the algorithm may be reasonably close to finding an optimal next test, with sufficient 
candidates.   
 

Algorithm t-seq(int t, int n) 
// t = interaction strength; n = # parameters, n > t; 
 N = # candidate tests to generate  
 initialize test set ts to be an empty set; 
 initialize set chk of )1(...)1( +−××−× tnnn   bits to 0; 
 while (all t-way sequences not marked in chk) { 

1. tc := set of N test candidates generated with random values of each of the n parameters 
2. test1 := test from set tc that covers the greatest number of sequences not marked as covered 

in chk; 
3. for each new sequence covered in test1, mark corresponding bit in set chk to 1; 
4. ts := ts U test1 ; 
5. if (symmetry && all t-way sequences not marked in chk) { test2 := reverse(test1);   

 ts := ts U test2 ; 
 for each new sequence cover in test2,  
      mark corresponding bit in set chk to 1; } 

   } 
return ts; 
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10.3 Using Sequence Covering Arrays 

Sequence covering arrays have been incorporated into operational testing for a mission-critical 
system that uses multiple devices with inputs and outputs to a laptop computer.  The test procedure has 
8 steps:  boot system, open application, run scan, connect peripherals P-1 through P-5.  It is expected 
that for some sequences, the system will not function properly, thus the order of connecting peripherals 
is a critical aspect of testing.  In addition, there are constraints on the sequence of events:  can't scan 
until the app is open; can't open app until system is booted.  There are 40,320 permutations of 8 steps, 
but some are redundant (e.g., changing the order of peripherals connected before boot), and some are 
invalid (violates a constraint).  Around 7,000 are valid, and non-redundant, but this is far too many to 
test for a system that requires manual, physical connections of devices.   
 
The system was tested using a seven-step sequence covering array, incorporating the assumption that 
there is no need to examine strength-3 sequences that involve boot-up. The initial test configuration 
(Error! Reference source not found.) was drawn from the library of pre-computed sequence tests.  
Some changes were made to the pre-computed sequences based on unique requirements of the system 
test.   If 6='Open App' and 5='Run Scan', then cases 1, 4, 6, 8, 10, and 12 are invalid, because the scan 
cannot be run before the application is started.  This was handled by 'swapping 0 and 1' when they are 
adjacent (1 and 4), out of order.  For the other cases, several cases were generated from each that were 
valid mutations of the invalid case.  A test was also embedded to see whether it mattered where each 
of three USB connections were placed.  The last test case ensures at least strength 2 (sequence of 
length 2) for all peripheral connections and 'Boot', i.e., that each peripheral connection occurs prior to 
boot.  The final test array is shown in Table 15.   
 

Test 1 0 1 2 3 4 5 6 
Test 2 6 5 4 3 2 1 0 
Test 3 2 1 0 6 5 4 3 
Test 4 3 4 5 6 0 1 2 
Test 5 4 1 6 0 3 2 5 
Test 6 5 2 3 0 6 1 4 
Test 7 0 6 4 5 2 1 3 
Test 8 3 1 2 5 4 6 0 
Test 9 6 2 5 0 3 4 1 

Test 10 1 4 3 0 5 2 6 
Test 11 2 0 3 4 6 1 5 
Test 12 5 1 6 4 3 0 2 

Figure 25. Seven-event tests from pre-computed test library. 
 
10.4 Cost and Practical Considerations 
 

As with other forms of combinatorial testing, some combinations may be either impossible or not 
exist on the system under test.  For example, ‘receive message’ must occur before ‘process message’.  
One algorithm for sequence covering arrays makes it possible to specify pairs x,y, where the sequence 
x..y is to be excluded from the generated covering array.  Typically this will lead to extra tests, but 
does not increase the test array significantly.   

 Sequence covering can be realtively inexpensive as a test technique.  As noted previously, 
only two tests are needed to produce 2-way covering, and the number of tests grows only as log n for n 
events for t > 2.  Error! Reference source not found. shows the number of tests for 3-way and 4-way 
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sequences.  Different algorithms may produce slightly fewer or more tests than shown, but numbers 
will be similar.   

 
Events 3-seq Tests 4-seq Tests 

5 8 29 

6 10 38 

7 12 50 

8 12 56 

9 14 68 

10 14 72 

11 14 78 

12 16 86 

13 16 92 

14 16 100 

15 18 108 

16 18 112 

17 20 118 

18 20 122 

19 22 128 

20 22 134 

21 22 134 

22 22 140 

23 24 146 

24 24 146 

25 24 152 

26 24 158 

27 26 160 

28 26 162 

29 26 166 

30 26 166 

40 32 198 

50 34 214 

60 38 238 

70 40 250 

80 42 264 
Table 14. Number of tests for combinatorial 3-way and 4-way sequences. 

 
10.5 Chapter Summary 
 

Sequence covering arrays are a new application of combinatorial methods, developed to solve 
problems with interoperability testing.  A sequence-covering array is a set of tests that ensures all t-
way sequences of events have been tested.  The t events in the sequence may be interleaved with 
others, but all permutations will be tested.  All 2-way sequences can be tested simply by listing the 
events to be tested in any order, then reversing the order to create a second test.   Algorithms have 
been developed to create sequence covering arrays for higher strength interaction levels.  For a given 
interaction strength, the number of tests generated is proportional to the log of the number of events.  
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As with other types of combinatorial testing, constraints may be important, since it is very common 
that certain events depend on others occurring first.  The tools developed for this problem allow the 
user to specify constraints in the form of excluded sequences which will not appear in the generated 
test array.
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Table 15. Final sequence covering array used in testing.  

 

 

Original 
Case Case Step1 Step2 Step3 Step4 Step5 Step6 Step7 Step8 

1 1 Boot P-1 (USB-RIGHT) P-2 (USB-BACK) P-3 (USB-LEFT) P-4 P-5 Application Scan 

2 2 Boot Application Scan P-5 P-4 P-3 (USB-RIGHT) P-2 (USB-BACK) P-1 (USB-LEFT) 

3 3 Boot P-3 (USB-RIGHT) P-2 (USB-LEFT) P-1 (USB-BACK) Application Scan P-5 P-4 

4 4 Boot P-4 P-5 Application Scan P-1 (USB-RIGHT) P-2 (USB-LEFT) P-3 (USB-BACK) 

5 5 Boot P-5 P-2 (USB-RIGHT) Application P-1 (USB-BACK) P-4 P-3 (USB-LEFT) Scan 

6A 6 Boot Application P-3 (USB-BACK) P-4 P-1 (USB-LEFT) Scan P-2 (USB-RIGHT) P-5 

6B 7 Boot Application Scan P-3 (USB-LEFT) P-4 P-1 (USB-RIGHT) P-2 (USB-BACK) P-5 

6C 8 Boot P-3 (USB-RIGHT) P-4 P-1 (USB-LEFT) Application Scan P-2 (USB-BACK) P-5 

6D 9 Boot P-3 (USB-RIGHT) Application P-4 Scan P-1 (USB-BACK) P-2 (USB-LEFT) P-5 

7 10 Boot P-1 (USB-RIGHT) Application P-5 Scan P-3 (USB-BACK) P-2 (USB-LEFT) P-4 

8A 11 Boot P-4 P-2 (USB-RIGHT) P-3 (USB-LEFT) Application Scan P-5 P-1 (USB-BACK) 

8B 12 Boot P-4 P-2 (USB-RIGHT) P-3 (USB-BACK) P-5 Application Scan P-1 (USB-LEFT) 

9 13 Boot Application P-3 (USB-LEFT) Scan P-1 (USB-RIGHT) P-4 P-5 P-2 (USB-BACK) 

10A 14 Boot P-2 (USB-BACK) P-5 P-4 P-1 (USB-LEFT) P-3 (USB-RIGHT) Application Scan 

10B 15 Boot P-2 (USB-LEFT) P-5 P-4 P-1 (USB-BACK) Application Scan P-3 (USB-RIGHT) 

11 16 Boot P-3 (USB-BACK) P-1 (USB-RIGHT) P-4 P-5 Application P-2 (USB-LEFT) Scan 

12A 17 Boot Application Scan P-2 (USB-RIGHT) P-5 P-4 P-1 (USB-BACK) P-3 (USB-LEFT) 

12B 18 Boot P-2 (USB-RIGHT) Application Scan P-5 P-4 P-1 (USB-LEFT) P-3 (USB-BACK) 

NA 19 P-5 P-4 P-3 (USB-LEFT) P-2 (USB-RIGHT) P-1 (USB-BACK) Boot Application Scan 
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With self-testing through 
assertions, thousands of 
tests can often be run at 
very low cost, allowing 
high-strength interaction 
coverage.  

 
11 Assertion-Based Testing 
 

Built-in self-test is a common feature for integrated circuits in which additional hardware and 
software functions allow checking for correct operation while the system is running, in contrast with the 
use of externally applied tests.  A similar concept – embedded assertions – has been used for decades in 
software, and advances in programming languages and processor performance have made this method 
even more useful and practical.  It can be especially effective with combinatorial testing.  If the system is 
fully exercised with t-way tests, and assertions are thorough, we can have reasonable confidence that 
operation will be correct for up to t-way combinations of input values.  In addition to standard 
programming language features, a variety of specialized tools have been developed to make this approach 
easier and more effective. 

 
Many programming languages include an assert feature that allows the programmer to specify 

properties that are assumed true at a particular point in the program.  For example, a function that includes 
a division in which a particular parameter x will be used as a divisor may require that this parameter may 
never be zero.  This function may include the C statement assert(x != 0); as the first statement 
executed.   Note that the assertion is not the same as an input validity check that issues an error message if 
input is not acceptable.  The assertion specifies conditions that must hold for the function to operate 
properly, in this case a non-zero divisor.  The distinction between assertions and input validation code is 
that assertions are intended to catch programming mistakes, while input validation detects errors in user 
or file/database input.  

 
With a sufficient number of assertions derived from a 

specification, the program can have a self-checking property [73, 0, 123, 
109].  The assertions can serve as a sort of embedded proof of important 
properties, such that if the assertions pass for all executions of the 
program, then the properties encoded in the assertions can be expected to 
hold.  Then, if the assertions form a chain of logic that implies a formal 
statement of program properties, the program’s correctness with respect 
to these properties can be proven.  We can take advantage of this scheme in combinatorial testing by 
demonstrating that the assertions hold for all t-way combinations of inputs.  While this is not the same as 
a correctness proof, it is an effective way of integrating formal methods for correctness with program 
testing, and an extensive body of research has developed this idea for practical use (for a survey, see [9]).  
Modern programming languages, include support for including assertions that encode program properties, 
and tools such as the Java Modeling Language [102] have been designed to integrate assertions with 
testing.  In many cases, using assertions to self-check important properties makes it practical to run 
thousands of tests in a fully automated fashion, so high-strength interactions of 4-way and above can be 
done in reasonable time. Since important properties of the system are checked with every run, by 
executing the code with all t-way combinations of input we can have high confidence that it works 
correctly.   

 
11.1 Basic Assertions for Testing 
 
 To clarify this somewhat abstract discussion, we will analyze requirements for a small function 
that handles withdrawal processing for an automated teller machine (ATM).  Graphical user interface 
code for the ATM will not be displayed, as this would vary considerably for different systems.  The 
decision not to include GUI code in this example also illustrates a practical limitation of this type of 
testing:  there are many potential sources of error in a software project, and testing may not deal with all 
of them at the same time.  The GUI code may be analyzed separately, or a more complex verification with 
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assertions may specify properties of the GUI calls, but in the end some human involvement is needed to 
ensure that the screen information is properly displayed.  However, we can do very thorough testing of 
the most critical aspects of the withdrawal module.   
 
Requirements for the module are as follows: 

 
1. Some accounts have a minimum balance requirement, indicated by boolean variable 

minflag. 
2. The bank allows all customers a basic overdraft protection amount, but for a fee, customers 

may purchase overdraft protection that exceeds the default.  
3. If the account has a minimum balance, the withdrawal cannot reduce account balance below 

(minimum balance – overdraft default) unless overdraft protection is set for 
this account and the allowed overdraft amount for this account exceeds the default, in which 
case the balance cannot be reduced below (minimum balance – overdraft 
amount). 

4. No withdrawals may exceed the default limit (to keep the ATM from running out of cash), 
although some customers may have a withdrawal limit below this amount, such as minors 
who have an account with limits placed by parents.   

5. The overdraft privilege can be used only once until the balance is made positive again.  
6. Cards flagged as stolen are to be captured and logged in the hot card file.  No withdrawal is 

allowed for a card flagged as stolen.  
 
The module has these inputs from the user after the user is authorized by another module: 
 

string num:  the user card number 
int amt:  withdrawal amount requested 

 
and these inputs from the system: 
 

int balance:  user account balance 
boolean minflag:  account has minimum balance requirement 
int min:  account minimum balance 
boolean odflag: account has overdraft protection 
int odamt:  overdraft protection amount,  
int oddefault: overdraft default 
boolean hot:  card flagged as stolen 
boolean limflag:  withdrawal limit less than default 
int limit:  withdrawal limit for this account 
int limdefault:  withdrawal limit default 
 

How should these requirements be translated into assertions and used in testing?  Consider requirement 1:  
if minflag is set, then the balance before and after the withdrawal must be no less than the minimum 
balance amount.  This could be translated directly into logic for assertions:  minflag => balance 
>= min.   If the assertion facility does not include logical implication, then the equivalent expression 
can be used, for example, in C syntax:   !minflag || balance >= min. 

 
However, we must also consider overdraft protection and withdrawal limits, so the assertion above is not 
adequate.  Collecting conditions, we can develop assertions for each of the eight possible settings of 
minflag, odflag, and limflag.  If there is a minimum balance requirement, no overdraft protection, 
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The quality of assertion-based testing 
with combinatorial methods depends 
on the strength of assertions, in 
addition to t-way interaction strength.  

and a withdrawal limit below the default, what is the relationship between balance and the other 
parameters? 
 
minflag && !odflag && limflag  

=> balance >= min – oddefault && amt <= limit 
 
This relation must hold after the withdrawal, so to develop an assertion that must hold immediately before 
the withdrawal, substitute (balance – amt) for balance in the expression above: 
 
balance0 – amt >= min – oddefault && amt <= limit 

 
Assertions such as this would be placed immediately before the balance is modified, not at the 

beginning of the code for the withdrawal function.  Code prior to the subtraction from balance should 
have ensured that properties encoded by assertions hold immediately before the subtraction, thus any 
violation of the assertions indicates an error in the code (or possibly in the assertions!) that must be 
investigated.  This is illustrated in Figure 26, where “wdl_init.c” and “wdl_final.c” are files containing 
assertions such as developed above.  

 
Including the card number, there are 11 parameters for this module.  We need to partition the inputs 

to determine what values to use in generating a covering array.  Partitions should cover valid and invalid 
values, minimum and maximum for ranges, and values at and on either side of boundaries.  The bank uses 
a check digit scheme for card numbers to detect errors such as digit transposition when numbers are 
entered manually.  A simple partition could be as follows: 

 
string acct:  {valid, invalid} 
int amt:  {0, divisible by 20, not divisible by 20, max} 
int balance:  {0, negative, positive, max int} 
int minflag:  {T, F} 
int min:  {0, negative, positive, max int} 
boolean odflag: {T, F} 
int odamt:  {0, negative, positive, max int} 
int oddefault: {0, negative, positive, max int} 
boolean hot:  {T, F} 
int acctlim:  {0, negative, positive, max int} 
int lim:  {0, negative, positive, max int} 
 

Using the equivalence classes above, this is thus a 2447 system, or 262,144 possible inputs.  If values on 
either side of boundaries are used, the number of possible input combinations will be much larger, but 
using combinatorial methods we can cover 3-way or 4-way combinations with only a few hundred tests.    
 
11.2 Stronger Assertion-based Testing 
 

While the method described in the previous section 
can be very effective in testing, notice that it will be 
inadequate for many problems, because basic assertion 
functions such as those provided in the C language library do 
not support important logic operators such as ∀  (for all) and 
∃  (for some).  Thus expressing simple properties such as S is sorted in ascending order = 

]1[][:10: +≤−<≤∀ iSiSnii  cannot be done without a good deal of additional coding.  While it 
would be possible to add code to handle these problems in assertions, a better solution is to use an 
assertion language that is designed for the purpose and contains all the necessary features.   
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1. while (!valid(acct)) {/* get account number input */} 
2. if (amt  > lim ) { return ERROR;  } 
3. else { 
4.  if (odflag ) { 
5.   if (amt  > balance  + odamt )  
6.   { return ERROR;  } 
7.  } 
8. else { 
9.  if (amt  > balance  + oddefault )   
10.  {return ERROR;  } 
11.  else { 
12.   if (amt  > lim )  
13.   { return ERROR;  } 
14.  } 
15. #include "wdl_init.c" 
16. balance  -= amt ; 
17. #include "wdl_final.c" 
18. } 
19. } 
20. } 

Figure 26. Withdrawal function code to be tested.  
 

 
Tools such as Anna [106] for Ada, the Java Modeling language (JML) [102] and iContract [76] for 

Java, and APP [150] or Nana [108] for C, can be used to introduce complex assertions, effectively 
embedding a specification within the code.  An example of JML [191] can be seen in Figure 27.  The 
assertions are annotated with “//@”, to indicate statements that are input to the pre-processor.  JML 
provides a collection of keywords making it possible to specify the behavior of software and have the 
specifications checked as the program runs.  Other assertion languages may use different keywords, but 
usually provide similar functionality.  The basic run-time assertion checking features illustrated in the 
example are: 

 
• //@ requires:  defines a precondition, i.e. a condition that must hold on entry to a module or 

section of code 
• //@ ensures:  defines a postcondition, i.e. a condition that must hold on exit from a module 

or section of code 
• //@ public invariant:  defines and invariant, i.e. a condition that must always hold  
• \old:  the value of the variable or expression on entry to the method 
• \result:  the return value of the method 

 
JML and other assertion languages also provide features to make them easy to use for a specific 

programming language, and additional logic statements, such as the quantifiers forall, exists (for 
some), and logical implications:  a ==> b, a <== b, a <=> b.  
 

public class BankingExample { 
 
   public static final int MAX_BALANCE = 1000;  
   private /*@ spec_public @*/ int balance; 
   private /*@ spec_public @*/ boolean isLocked = false;  
 
   //@ public invariant balance >= 0 && balance <= MAX_BALANCE; 
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   //@ assignable balance; 
   //@ ensures balance == 0; 
   public BankingExample() { balance = 0; } 
 
   //@ requires 0 < amount && amount + balance < MAX_BALANCE; 
   //@ assignable balance; 
   //@ ensures balance == \old(balance + amount); 
   public void credit(int amount) { balance += amount; } 
 
   //@ requires 0 < amount && amount <= balance; 
   //@ assignable balance; 
   //@ ensures balance == \old(balance) - amount; 
   public void debit(int amount) { balance -= amount; } 
 
   //@ ensures isLocked == true; 
   public void lockAccount() { isLocked = true; } 
 
   //@   requires !isLocked; 
   //@   ensures \result == balance; 
   //@ also 
   //@   requires isLocked; 
   //@   signals_only BankingException; 
   public /*@ pure @*/ int getBalance() throws BankingException { 
       if (!isLocked) { return balance; } 
       else { throw new BankingException(); } 
   } 
} 

Figure 27. Toy Bank Module Example in JML 
 
 
11.3 Cost and Practical Considerations 
 

Assertions may be a cost-effective approach to test automation because they can be a simple 
extension of coding.  In general, use of assertions is correlated with reduced error rates [100], but a very 
wide range of effectiveness results from variations in usage.  In many applications, assertions are used in 
a very basic way, such as ensuring that null pointers are not passed to a function that will use them, or that 
parameters that may be used as divisors are non-zero.   

 
More complex assertions can provide stronger assurance, but there are limits to their effectiveness.  

For example, invariants (properties that are expected to hold throughout a computation) cannot be assured 
without placing an assertion for every line of code.  Since assertions must be executed to show the 
presence or absence of a property at some point, errors that prevent the assertion from being reached may 
not be detected.  As an example, consider the code in Figure 26.  If a coding error in the first few lines of 
the function prevents execution the code at of lines 15 and 17, the assertions will not be executed and it 
may be assumed that the test was passed.   In this case, an ERROR return for the particular test case might 
trigger an investigation that would identify the faulty code, but this may not happen with other 
applications.  Specialized assertion-checking languages such as JML can alleviate many of these 
problems by providing preprocessor statements to generate code that implements such complex checking 
without making the program difficult to read.  

 
 

11.4 Chapter Summary 
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Assertions are one of the easiest to use and most effective approaches to dealing with the oracle 
problem.  Properties ranging from simple parameter checks to effectively embedded proofs can be 
encoded in assertions, but special language support is needed for the stronger forms of assurance.  This 
support may be provided as language preprocessors, as in the case of Anna [106] and others.  Placement 
within code is particularly important to assertion effectiveness [0, 183], but if sufficiently strong 
assertions are embedded, the code becomes self-checking for important properties.  With self-checking 
code, thousands of tests can be run at low cost in most cases, greatly improving the chances that faults 
will be detected.    
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Model-based testing can 
provide very strong 
assurance, with a tradeoff of 
additional up-front time.  

 
12 Model-Based Testing 
 

Probably the most time-consuming aspect of testing is the oracle problem:  determining the 
correct results for a given set of inputs.  This problem is especially complex when the expected result of a 
test requires human intervention.  Even if the output can be fully processed and verified correct by 
machine, for every test, the expected output must be determined.  At first glance, the problem may seem 
almost insoluble:  how can we check the correctness of complex software without implementing equally 
complex software, whose correctness must also be checked, leading to an infinite string of verification 
exercises?  Assertions and self-checking software can help (Chapter 11), but they are not always 
sufficient.  In other cases, previous versions of the software may be available to check at least the old 
functionality, or the code may be implementing a formal standard (e.g. for network protocols or 
cryptography) and other implementations may exist to compare against.   In most cases though, the 
software is doing something new, and we need to verify that it is working correctly for a large set of 
possible inputs.  The difficulty of devising a set of complete tests with inputs and expected results is one 
of the reasons why somewhat ad hoc approaches such as “use cases” are widespread.   Testers use formal 
or informal requirements to determine anticipated system uses, plus inputs and outputs for each such use, 
a slow and expensive way to develop a test oracle.  To make thorough testing practical, more automated 
approaches are needed.  

 
One of the most effective ways to produce test oracles is to 

use a model of the system under test, and generate complete tests, 
including both input data and expected results, directly from the 
model.  We use the term model in the same way it would be used in 
other branches of engineering:  the model incorporates aspects of the 
system that we want to study, but not every detail just as an aircraft 
model might be used in a wind tunnel to evaluate airflow but not all characteristics of a design.  Models in 
software testing may be used to check calculations or performance, for example, but not other properties 
such as the location of a particular numeric value on a screen. (If it did include all details, the model 
would be equivalent to the system itself).  This chapter provides a step-by-step introduction to model-
based automated generation of tests that provide combinatorial coverage.  Procedures introduced in this 
tutorial will produce a set of complete tests, i.e., input values with the expected output for each set of 
inputs.   
 

In addition to the ACTS covering array generator, (see Error! Reference source not found.), we 
use NuSMV [41], a variant of the original SMV model checker.  NuSMV is freely available and was 
developed by Carnegie Mellon University, Instituto per la Ricerca Scientifica e Tecnolgica (IRST), U. of 
Genova, and U. of Trento.  NuSMV can be installed on either UNIX/Linux or Windows systems running 
Cygwin.  Links and instructions for downloading NuSMV are found at http://nusmv.fbk.eu/.   The 
methods described in this chapter could of course be used with other model checkers as well, with some 
adaptation as needed for differences in capabilities of the different tools.  
 

Also needed is a formal or semi-formal specification of the system or subsystem under test 
(SUT).  This can be in the form of a formal logic specification, but state transition tables, decision tables, 
pseudo-code, or structured natural language can also be used, as long as the rules are unambiguous.  The 
specification will be converted to SMV code, which provides a precise, machine-processable set of rules 
that can be used to generate tests.   
 
12.1 Overview 
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To apply combinatorial testing, two tasks must be accomplished: 
 
1. Using ACTS, construct a set of tests that will cover all t-way combinations of parameter values.  The 
covering array specifies test data, where each row of the array can be regarded as a set of parameter 
values for an individual test (see Chapter 4).       
 
2. Determine what output should be produced by the SUT for each set of input parameter values.  The 
test data output from ACTS will be incorporated into SMV specifications that can be processed by the 
NuSMV model checker for this step.   In many cases, the conversion to SMV will be straightforward.  
The example in Section 12.2 illustrates a simple conversion of rules in the form “if condition then action” 
into the syntax used by the model checker.   The model checker will instantiate the specification with 
parameter values from the covering array once for each test in the covering array.  Because the model 
checker works to disprove claims, the resulting specification is evaluated against a claim that negates each 
specified result Rj  to produce the expected result as a counterexample.  Thus the model checker evaluates 
claims in the following form:  Ci => ~Rj, where Ci  is a set of parameter values in one row of the covering 
array in the form p1 = vi1 & p2 = vi2 & ... & pn = vin, and Rj is one of the possible results.  The output of this 
step is a set of counterexamples that show how the SUT can reach the claimed result Rj from a given set 
of inputs.  

   
The example in the following sections illustrates how these counterexamples are converted into tests.  
Other approaches to determining the correct output for each test can also be used.  For example, in some 
cases we can run a model checker in simulation mode, producing expected results directly rather than 
through a counterexample.    
 

The completed tests can be used to validate correct operation of the system for interaction 
strengths up to some pre-determined level t.  Depending on the system type and level of effort, we may 
want to use pairwise (t=2) or higher strength, up to t=6 way interactions.  We do not claim this guarantees 
correctness of the system, as there may be failures triggered only by interaction strengths greater than t.  
In addition, some of the parameters are likely to have a large number of possible values, requiring that 
they be abstracted into equivalence classes.  If the abstraction does not faithfully represent the range of 
values for a parameter, some flaws may not be detected by the equivalence class members used.  
 
12.2 Access Control System Example 
 

Here we present a small example of a very simple access control system.  The rules of the system 
are a simplified multi-level security system, given below, followed by a step-by-step construction of tests 
using a fully automated process. 
 

Each subject (user) has a clearance level u_l, and each file has a classification level, f_l.    Levels 
are given as 0, 1, or 2, which could represent levels such as Confidential, Secret, and Top Secret.  A user 
u can read a file f if u_l  ≥  f_l (the “no read up” rule), or write to a file if  f_l  ≥  u_l (the “no write down” 
rule).    
 
Thus a pseudo-code representation of the access control rules is: 
 

if u_l >= f_l & act = rd then GRANT; 
 else if f_l >= u_l & act = wr then GRANT; 
     else  DENY; 
 
Tests produced will check that these rules are correctly implemented in a system. 
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SMV Model 
 

This system is easily modeled in SMV as a simple two-state finite state machine.  The START state 
merely initializes the system (line 8, Figure 28), with the rule above used to evaluate access as either 
GRANT or DENY (lines 9-13).   For example, line 9 represents the first line of the pseudo-code above:  
in the current state (always START for this simple model), if u_l  ≥  f_l then the next state is GRANT.  
Each line of the case statement is examined sequentially, as in a conventional programming language.   
Line 12 implements the “else DENY” rule, since the predicate “1” is always true.   SPEC clauses given at 
the end of the model are simple “reflections” that duplicate the access control rules as temporal logic 
statements.  They are thus trivially provable, but we are interested in using them to generate tests rather 
than to prove properties of the system.  
 

MODULE main  
1. VAR 
--Input parameters 
2. u_l:   0..2;  -- user level 
3. f_l:   0..2;  -- file level 
4. act:  {rd,wr};  -- action 
 
--output parameter 
5. access: {START_, GRANT,DENY}; 
 
6. ASSIGN  
7. init(access) := START_; 
--if access is allowed under rules, then next state is GRANT 
--else next state is DENY 
8. next(access) := case 
9. u_l >= f_l & act = rd : GRANT; 
10. f_l >= u_l & act = wr : GRANT; 
11. 1 : DENY; 
12. esac; 
13. next(u_l) := u_l; 
14. next(f_l) := f_l; 
15. next(act) := act;  
 
-- if user level is at or above file level then read is OK 
SPEC AG ((u_l >= f_l & act = rd ) -> AX (access = GRANT)); 
 
-- if user level is at or below file level, then write is OK 
SPEC AG ((f_l >= u_l & act = wr ) -> AX (access = GRANT)); 
 
-- if neither condition above is true, then DENY any action 
SPEC AG (!( (u_l >= f_l & act = rd ) | (f_l >= u_l & act = wr ))  

             -> AX (access = DENY)); 
 

Figure 28. SMV model of access control rules 
 
 Separate documentation on SMV should be consulted to fully understand the syntax used, but 
specifications of the form “AG ((predicate 1) -> AX (predicate 2))”   indicate essentially that for all paths 
(the “A” in “AG”) for all states globally (the “G”), if predicate 1 holds then ( “->”) for all paths, in the 
next state (the “X” in “AX”) predicate 2 will hold.  In the next section we will see how this specification 
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If a property cannot be proved, 
the model checker produces a 
counterexample, giving inputs and 
paths that lead to the violation.  

can be used to produce complete tests, with test data input and the expected output for each set of input 
data. 
 
 Model checkers can be used to perform a variety of 
valuable functions, because they make it possible to evaluate 
whether certain properties are true of the system model.  
Conceptually, the model checker can be viewed as exploring all 
states of a system model to determine if a property claimed in a 
SPEC statement is true.  If the statement can be proved true for the given model, the model checker 
reports this fact.  What makes a model checker particularly valuable for many applications, though, is that 
if the statement is false, the model checker not only reports this, but also provides a “counterexample” 
showing how the claim in the SPEC statement can be shown false.  The counterexample will include 
input data values and a trace of system states that lead to a result contrary to the SPEC claim (Figure 29).  
In the process described in this section, the input data values will be the covering array generated by 
ACTS. 
 

For advanced uses in test generation, this counterexample generation capability is very useful for 
proving properties such as liveness (absence of deadlock) that are difficult to ensure through testing.  In 
this tutorial, however, we will simply use the model checker to determine whether a particular input data 
set makes a SPEC claim true or false.  That is, we will enter claims that particular results can be reached 
for a given set of input data values, and the model checker will tell us if the claim is true or false.  This 
gives us the ability to match every set of input test data with the result that the system should produce for 
that set of input data.   

 
 The model checker thus automates the work that normally must be done by a human tester – 
determining what the correct output should be for each set of input data.  In some cases, we may have a 
“reference implementation”, that is, an implementation of the functions that we are testing that is assumed 
to be correct.  This happens, for example, in conformance testing for protocols, where many vendors 
implement their own software for the protocol and submit it to a test lab for comparison with an existing 
implementation of the protocol.  In this case the reference implementation could be used for determining 
the expected output, instead of the model checker.  Of course before this can happen the reference 
implementation itself must be thoroughly tested before it can be the gold standard for testing other 
products. The method we describe here may be needed to produce tests for the original reference 
implementation.  
 

Checking the properties in the SPEC statements shows that they match the access control rules as 
implemented in the FSM, as expected.   In other words, the claims we made about the state machine in the 
SPEC clauses can be proven.  This step is used to check that the SPEC claims are valid for the model 
defined previously.  If NuSMV is unable to prove one of the SPECs, then either the spec or the model is 
incorrect.  This problem must be resolved before continuing with the test generation process. Once the 
model is correct and SPEC claims have been shown valid for the model, counterexamples can be 
produced that will be turned into test cases, by which we mean a set of test inputs with the expected result 
for these inputs.  In other words, ACTS is used to generate tests, then the model checker determines 
expected results for each test.   

 
 
 

  
  -- specification AG((u_l >= f_l & act = rd) -> AX access = GRANT)   
      is true 
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-- specification AG((f_l >= u_l & act = wr) -> AX access = GRANT)   
      is true 
-- specification AG(!((u_l >= f_l & act = rd)|(f_l >= u_l & act = wr))  

                                      -> AX access = DENY)  is true 
Figure 29. NuSMV output 

 
 
Integrating Combinatorial Tests into the Model 
 

We will compute covering arrays that give all t-way combinations, with interaction strength = 2 
for this example.   This section describes the use of ACTS as a standalone command line tool, using a text 
file input (see Error! Reference source not found.).  The first step is to define the parameters and their 
values in a system definition file that will be used as input to ACTS.  Call this file “in.txt”, with the 
following format: 

 
 

 
[System] 
[Parameter] 

u_l: 0,1,2 
f_l: 0,1,2 
act: rd,wr 

[Relation] 
[Constraint] 
[Misc] 

 
For this application, the [Parameter] section of the file is all that is needed.  Other tags refer to advanced 
functions that will be explained in other documents.   After the system definition file is saved, run ACTS 
as shown below:  

java -Ddoi=2 –jar acts_cmd.jar ActsConsoleManager in.txt out.txt 
 
The “-Ddoi=2” argument sets the interaction strength (degree of interaction) for the covering array that 
we want ACTS to compute.  In this case we are using simple 2-way, or pairwise, interactions.   (For a 
system with more parameters we would use a higher strength interaction, but with only three parameters, 
3-way interaction would be equivalent to exhaustive testing.)  ACTS produces the output shown in Figure 
30.   
 

Each test configuration defines a set of values for the input parameters u_l, f_l, and act.  The 
complete test set ensures that all 2-way combinations of parameter values have been covered.  If we had a 
larger number of parameters, we could produce test configurations that cover all 3-way, 4-way, etc. 
combinations.   ACTS may output “don’t care” for some parameter values.  This means that any 
legitimate value for that parameter can be used and the full set of configurations will still cover all t-way 
combinations.  Since “don’t care” is not normally an acceptable input for programs being tested, a random 
value for that parameter is substituted before using the covering array to produce tests.  
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Number of parameters: 3 
Maximum number of values per parameter: 3 
Number of configurations: 9 
------------------------------------- 
Configuration #1: 
1 = u_l=0 
2 = f_l=0 
3 = act=rd 
------------------------------------- 
Configuration #2: 
1 = u_l=0 
2 = f_l=1 
3 = act=wr 
------------------------------------- 
Configuration #3: 
1 = u_l=0 
2 = f_l=2 
3 = act=rd 
------------------------------------- 
Configuration #4: 
1 = u_l=1 
2 = f_l=0 
3 = act=wr 
------------------------------------- 
Configuration #5: 
1 = u_l=1 
2 = f_l=1 
3 = act=rd 
------------------------------------- 
Configuration #6: 
1 = u_l=1 
2 = f_l=2 
3 = act=wr 
------------------------------------- 
Configuration #7: 
1 = u_l=2 
2 = f_l=0 
3 = act=rd 
------------------------------------- 
Configuration #8: 
1 = u_l=2 
2 = f_l=1 
3 = act=wr 
------------------------------------- 
Configuration #9: 
1 = u_l=2 
2 = f_l=2 
3 = (don't care) 
 

Figure 30. ACTS output 
 

The next step is to assign values from the covering array to parameters used in the model.  For 
each test, we claim that the expected result will not occur.  The model checker determines combinations 
that would disprove these claims, outputting these as counterexamples.  Each counterexample can then be 
converted to a test with known expected result. Every test from the ACTS tool is used, with the model 
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Counterexamples from the model 
checker can be post-processed 
into complete tests, with inputs 
and expected output for each.  

checker supplying expected results for each test.  (Note that the trivially provable positive claims have 
been commented out.  Here we are concerned with producing counterexamples.) 

 
Recall the structure introduced in Section 12.1:  Ci => ~Rj.  Here Ci is the set of parameter values 

from the covering array.  For example, for configuration #1 in Section:  
 

u_l = 0 & f_l = 0 & act = rd 
 
As can be seen below, for each of the 9 configurations in the covering array  

we create a SPEC claim of the form: 
 

SPEC AG(( <covering array values> ) -> AX !(access = <result>)); 
 

This process is repeated for each possible result, in this case either “GRANT” or “DENY”, so we 
have 9 claims for each of the two results.  The model checker is able to determine, using the model 
defined in Section 12.2, which result is the correct one for each set of input values, producing a total of 9 
tests.   
 
Excerpt: 
... 
-- reflection of the assign for access 
--SPEC AG ((u_l >= f_l & act = rd ) -> AX (access = GRANT)); 
--SPEC AG ((f_l >= u_l & act = wr ) -> AX (access = GRANT)); 
--SPEC AG (!((u_l >= f_l & act = rd ) | (f_l >= u_l & act = wr ))  
            -> AX (access = DENY)); 
 
SPEC AG((u_l = 0 & f_l = 0 & act = rd) -> AX !(access = GRANT)); 
SPEC AG((u_l = 0 & f_l = 1 & act = wr) -> AX !(access = GRANT)); 
SPEC AG((u_l = 0 & f_l = 2 & act = rd) -> AX !(access = GRANT)); 
SPEC AG((u_l = 1 & f_l = 0 & act = wr) -> AX !(access = GRANT)); 
SPEC AG((u_l = 1 & f_l = 1 & act = rd) -> AX !(access = GRANT)); 
SPEC AG((u_l = 1 & f_l = 2 & act = wr) -> AX !(access = GRANT)); 
SPEC AG((u_l = 2 & f_l = 0 & act = rd) -> AX !(access = GRANT)); 
SPEC AG((u_l = 2 & f_l = 1 & act = wr) -> AX !(access = GRANT)); 
SPEC AG((u_l = 2 & f_l = 2 & act = rd) -> AX !(access = GRANT)); 
 
SPEC AG((u_l = 0 & f_l = 0 & act = rd) -> AX !(access = DENY)); 
SPEC AG((u_l = 0 & f_l = 1 & act = wr) -> AX !(access = DENY)); 
SPEC AG((u_l = 0 & f_l = 2 & act = rd) -> AX !(access = DENY)); 
SPEC AG((u_l = 1 & f_l = 0 & act = wr) -> AX !(access = DENY)); 
SPEC AG((u_l = 1 & f_l = 1 & act = rd) -> AX !(access = DENY)); 
SPEC AG((u_l = 1 & f_l = 2 & act = wr) -> AX !(access = DENY)); 
SPEC AG((u_l = 2 & f_l = 0 & act = rd) -> AX !(access = DENY)); 
SPEC AG((u_l = 2 & f_l = 1 & act = wr) -> AX !(access = DENY)); 
SPEC AG((u_l = 2 & f_l = 2 & act = rd) -> AX !(access = DENY)); 
 
 
 
 
12.3 Generating Tests from Counterexamples 
 

NuSMV produces counterexamples where the input 
values would disprove the claims specified in the previous 
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section.  Each of these counterexamples is thus a set of test data that would have the expected result of 
GRANT or DENY. 
 

For each SPEC claim, if this set of values cannot in fact lead to the particular result Rj, the model 
checker indicates that this is true.  For example, for the configuration below, the claim that access will not 
be granted is true, because the user’s clearance level (u_l = 0) is below the file’s level (f_l = 2): 
-- specification AG (((u_l = 0 & f_l = 2) & act = rd) -> AX !(access = 
GRANT))  is true 

 
If the claim is false, the model checker indicates this and provides a trace of parameter input 

values and states that will prove it is false.  In effect this is a complete test case, i.e., a set of parameter 
values and expected result.  It is then simple to map these values into complete test cases in the syntax 
needed for the system under test.    
 
Excerpt from NuSMV output: 

-- specification AG (((u_l = 0 & f_l = 0) & act = rd) -> AX 
         access = GRANT))  is false 

-- as demonstrated by the following execution sequence 
Trace Description: CTL Counterexample  
Trace Type: Counterexample  
-> State: 1.1 <- 
  u_l = 0 
  f_l = 0 
  act = rd 
  access = START_ 
-> Input: 1.2 <- 
-> State: 1.2 <- 
  access = GRANT 

 
The model checker finds that 6 of the input parameter configurations produce a result of GRANT and 3 
produce a DENY result, so at the completion of this step we have successfully matched up each input 
parameter configuration with the result that should be produced by the SUT.  
 

We now strip out the parameter names and values, giving tests that can be applied to the system 
under test.  This can be accomplished using a variety of methods; a simple script used in this example is 
given in the appendix.  The test inputs and expected results produced are shown below: 
 
 u_l = 0 & f_l = 0 & act = rd -> access = GRANT   
 u_l = 0 & f_l = 1 & act = wr -> access = GRANT   
 u_l = 1 & f_l = 1 & act = rd -> access = GRANT   
 u_l = 1 & f_l = 2 & act = wr -> access = GRANT   
 u_l = 2 & f_l = 0 & act = rd -> access = GRANT   
 u_l = 2 & f_l = 2 & act = rd -> access = GRANT   
 u_l = 0 & f_l = 2 & act = rd -> access = DENY   
 u_l = 1 & f_l = 0 & act = wr -> access = DENY   
 u_l = 2 & f_l = 1 & act = wr -> access = DENY   
 
 
These test definitions can now be post-processed using simple scripts written in PERL, Python, or similar 
tool to produce a test harness that will execute the SUT with each input and check the results.  While tests 
for this trivial example could easily have been constructed manually, the procedures introduced in this 
tutorial can, and have, been used to produce tens of thousands of complete test cases in a few minutes, 
once the SMV model has been defined for the SUT.  
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Model-based testing can 
reduce overall cost because 
of the tradeoffs involved. 

 
12.4 Cost and Practical Considerations 
 

Model based test generation trades up-front analysis and 
specification time against the cost of greater human interaction for 
analyzing test results.  The model or formal specification may be 
costly to produce, but once it is available, large numbers of 
tests can be generated, executed, and analyzed without human 
intervention.  This can be an enormous cost savings, since testing usually requires 50% or more of the 
software development budget.  For example, suppose a $100,000 development project expects to spend 
$50,000 on testing, because of the staff time required to code and run tests, and analyze results.  If a 
formal model can be created for $20,000, complete tests generated and analyzed automatically, with 
another $10,000 for a smaller number of human-involved tests and analysis, then the project will save 
20%.   One tradeoff for this savings is the requirement for staff with skills in formal methods, but in some 
cases this approach may be practical and highly cost-effective.  

 
One nice property of the model checking approach described in this chapter is that test case 

generation can be run in parallel.  For each test row of the covering array, we run the model checker to 
determine the expected results for the inputs given by that row, and model checker runs are independent 
of each other.  Thus this task falls into the class of parallelization problems known as “embarrassingly 
parallel”; for N covering array rows, we can assign up to N processors.  With the widespread availability 
of cloud and cluster systems, test generation can run very quickly.  In most cases, test execution can be 
run in parallel also, although we may be limited by practical concerns such as availability of specialized 
hardware. 
 
 
12.5 Chapter Summary 
 
1. The oracle problem must be solved for any test methodology, and it is particularly important for 

thorough testing that produces a large number of test cases.  One approach to determining expected 
results for each test input is to use a model of the system that can be simulated or analyzed to 
compute output for each input.   

 
2. Model checkers can be used to solve the oracle problem because whenever a specified property for a 

model does not hold, the model checker generates a counter-example.  The counter-example can be 
post-processed into a complete working test harness that executes all tests from the covering array 
and checks results.  

 
3. Several approaches are possible for integrating combinatorial testing with model checkers, but some 

present practical problems.  The method reported in this chapter can be used to generate full 
combinatorial test suites, with expected results for each test, in a cost effective way.   
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13 Fault Localization 
 
 Developing dependable software requires preventing as many bugs as possible and detecting, then 
repairing, those that remain.  Testing can identify flaws in software, but after a failed test is discovered, it 
is necessary to determine what caused the failure.  In most cases this may be accomplished for 
combinatorial testing in the same way as other test methodologies, using a debugger or in-circuit 
emulator.  But one goal of combinatorial testing is to identify the particular t-way combination that 
triggered a failure.  The problem of fault localization, identifying such combination(s), is an area of active 
research, but some basic approaches can be identified.  The discussion in this chapter assumes systems are 
deterministic, such that a particular input always generates the same output.  
 
   At first glance, fault localization may not appear to be a difficult problem, and in many cases it will 
not be, but we want to automate the process as much as possible.  To understand the size of the problem, 
consider a module that has 20 input parameters.  A set of 3-way covering tests passes 100%, but several 
tests derived from a 4-way covering array result in failure.  (Therefore, at least four parameter values are 
involved in triggering the failure.  It is possible that a 5-way or higher combination caused the failure, 
since any set of t-way tests also includes (t+1)-way and higher strength combinations as well.)  A test 
with 20 input parameters has C(20, 4)  = 4,845 4-way combinations, yet presumably only one  (or just a 
few) of  these triggered the failure.  To determine the combination at fault, a variety of strategies can be 
used.  
 
13.1 Set-theoretic Analysis 
 
 The analysis presented here applies to a deterministic system, in which a particular set of input 
values always results in the same processing and outputs.  Let P = {combinations in passing tests} and F 
= {combinations in failing tests} and C = {fault-triggering combinations}.  Then PF \ , combinations in 
failing tests that are not in any passing tests, must contain the fault-triggering combinations C because if 
any of those in C were in P, then the test would have failed.  So in most cases, PFC \⊆ , as shown in 
Figure 31. 

 
 
 

PFC \⊆  
 
 
 
 
 
 
 

Figure 31. Combinations in failing tests but not in passing tests. 
 
Continuing with the analysis in this manner, some properties become apparent.  For the discussion below, 
Pt = {combinations in t-way passing tests}, with Ft and Ct defined analogously.  Let Tt = {t-way tests} 
and f(x) be a function that indicates whether a test x passes or fails for the system under test.  Thus P4 = 
{combinations in 4-way passing tests}, T5= {5-way tests}, etc.   
 
Suppose that a particular combination c triggers or causes a failure if whenever c is contained in some test 
x, f(x) = fail. (That is, the system is deterministic and the failure-triggering combination is not masked by 

P F 
PFC \⊆
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other parameter values.)  We can now consolidate these ideas into heuristics for identifying the failure-
triggering combination(s) C. 
 

• Elimination:  For a deterministic system, PF \  must contain the fault-triggering combinations C 
because if any of those in C were in P, then the test would have failed.   

 
• Interaction level lower bound:  If all t-way tests pass, then a t-way or lower strength combination 

did not cause the failure.  The failure must have been caused by a (t+k)-way combination, for 
some k > t.  Note that the converse is not necessarily true:  if some t-way test fails, we cannot 
conclude that a t-way test caused the failure, because any t-way test set contains some k-way 
combinations, for k > t.  

 
• Interaction continuity:  Now consider Ct. Because t-way tests cover all combinations of t-way or 

lower strength (e.g., 4-way tests also cover all 3-way combinations), a combination that triggered 
the failure in Ft must also occur in F(t+1), F(t+2), etc.  Therefore we can further reduce the 
potential failure-triggering combinations by computing )(...)1( ktFtFFt ++  for 
whatever interaction strength k we have tests available.  

 
• Value dependence:  If tests in Ft cover all values for a t-way parameter combination c, then the 

failure is independent of c; i.e., c is not a t-way failure-triggering combination(s).  
 
 

Example:  In the preceding discussion we assumed that a particular combination c triggers or causes a 
failure if whenever c is contained in some test x, f(x) = fail.  However, in many cases the presence of a 
particular combination may trigger a failure, but is not guaranteed to do so (see discussion of interaction 
level lower bound above).  Consider the following: 

 
1. p(int a, int b, int c, int d, int e) { 
2. if (a && b)   return 1; 
3. else if (c && d)  return 2; 
4. else if (e)  return 3; 
5. else   return 4; 
6. } 

 
If line 3 is incorrectly implemented as “return 7” instead of “return 2”, then p(1,1,1,1,0) = 
 1 because “a && b” evaluates to 1, but p(0,1,1,1,0) will detect the error.  A complete 3-way covering test 
set will detect the error because it must include at least one test with values 0,1,1,1,. and one with 1,0,1,1,. 
.  Figure 32 shows tests for this example for t = 2, 3, and 4.  Failing tests are underlined.   
 

A 2-way test may detect the error, since “c && d” is the condition necessary, but this will only 
occur if line 3 is reached, which requires either a=0 or b=0.  In the example test set this occurs with the 
second test.  So in this case, a full 2-way test set has detected the error, and the heuristics above for 2-way 
combinations will find that tests with c=1 and d=1 occur in both P and F. In this case, debugging may 
identify c=1, d=1 as  a combination that triggers the failure, but automated analysis using the heuristics 
will find two 3-way combinations that occur in failing tests but not passing tests:  a=0, c=1, d=1 and b=0, 
c=1, d=1.  As Figure 33 illustrates, in most cases we will find more than one combination identified as 
possible causes of failure.   
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1 way tests 2 way tests 3 way tests 4 way tests 
0,0,0,0,0 
1,1,1,1,1 
 

0,0,0,0,0 
0,1,1,1,1 
1,0,1,0,1 
1,1,0,1,0 
1,1,1,0,0 
1,0,0,1,1 
 

0,0,0,0,0 
0,0,1,1,1 
0,1,0,1,0 
0,1,1,0,1 
1,0,0,1,1 
1,0,1,0,0 
1,1,0,0,1 
1,1,1,1,0 
0,0,1,1,0 
1,1,0,0,0 
0,0,0,0,1 
1,1,1,1,1 
0,1,1,1,0 

0,0,0,0,0 
0,0,0,1,1 
0,0,1,0,1 
0,0,1,1,0 
0,1,0,0,1 
0,1,0,1,0 
0,1,1,0,0 
0,1,1,1,1 
1,0,0,0,1 
1,0,0,1,0 
1,0,1,0,0 
1,0,1,1,1 
1,1,0,0,0 
1,1,0,1,1 
1,1,1,0,1 
1,1,1,1,0 

Figure 32. Tests for fault location example. 
  
The heuristics above can be applied to combinations in the failed tests to identify possible failure-
triggering combinations, shown in Figure 33.   
 

• The 1-way tests do not detect any failures, but the 2-way tests do, so t=2 is a lower bound for the 
interaction level needed to detect a failure. 

 
• The value dependence rule applies to combination “be” – since all four possible values for this 

combination occur in failing tests, failure must be independent of combination be.  In other 
words, we do not consider the pair be to be a cause of failure because it does not matter what 
value this pair has.  Every test must have some value for these parameters.   
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Figure 33. Combinations in failing tests.  
 

• The elimination rule can be applied to determine that there are no 1-way or 2-way combinations 
that do not appear in both passing and failing tests.  Results for 3-way and 4-way combinations 
are shown in Figure 34.  These results were produced by an analysis tool which outputs in the 
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format <test number>:<t level> <parameter numbers> = <parameter values>.  Two different 3-
way combinations are identified:  a=0, c=1, d=1 and b=0, c=1, d=1.  A large number of 4-way 
combinations are also identified, but we can use the interaction continuity rule to show that one of 
the two 3-way combinations occurs in all of the failing 4-way failing tests.  Therefore we can 
conclude that covering all 3-way parameter interactions would detect the error. 

 
1 :3way 0,2,3 =  0,1,1 
2 :3way 0,2,3 =  0,1,1 
3 :3way 0,2,3 =  0,1,1 
4 :3way 0,2,3 =  0,1,1 
1 :3way 1,2,3 =  0,1,1 
2 :3way 1,2,3 =  0,1,1 
5 :3way 1,2,3 =  0,1,1 
 

1 :4way 0,1,2,3 =  0,0,1,1 
2 :4way 0,1,2,3 =  0,0,1,1 
3 :4way 0,1,2,3 =  0,1,1,1 
4 :4way 0,1,2,3 =  0,1,1,1 
5 :4way 0,1,2,3 =  1,0,1,1 
1 :4way 0,1,2,4 =  0,0,1,0 
1 :4way 0,1,3,4 =  0,0,1,0 
4 :4way 0,1,3,4 =  0,1,1,1 
1 :4way 0,2,3,4 =  0,1,1,0 
2 :4way 0,2,3,4 =  0,1,1,1 
3 :4way 0,2,3,4 =  0,1,1,0 
4 :4way 0,2,3,4 =  0,1,1,1 
1 :4way 1,2,3,4 =  0,1,1,0 
2 :4way 1,2,3,4 =  0,1,1,1 
5 :4way 1,2,3,4 =  0,1,1,1 

Figure 34. 3-way and 4-way combinations in PF \  
 

The situation is more complex with continuous variables.  If, for example, a failure-related branch 
is taken any time x > 100, y = 3, z < 1000, there may be many combinations implicated in the failure.  
Analysis will show that [x = 200, y = 3, z = 120], [x = 201, y = 3, z = 119], [x = 999, y = 3, z = 999], [x = 
101, y = 3, z = 0], [x = 200, y = 3, z = 0] are all combinations that trigger the failure.  With more than 
three input parameters, there may be dozens or hundreds of failure-triggering combinations, even though 
there is most likely a single point in the code that is in error.   

 
 
  

13.2 Fault Localization Using Fault Identifier Tool 
 

This section describes a method of software fault localization using the Fault Identifier tool.  It shows 
how, for a failure-triggering fault x containing t variable values, a small set of possible failure-triggering 
combinations can be identified with a t-way covering array, and how fault x can be identified uniquely 
with a variety of techniques.  Simple set operations can identify a small number of suspect t-way 
combinations that must contain the failure-triggering combination, if tests from a full t-way covering 
array are run on the SUT.  Once tests have been run, the test set is augmented with additional tests in one 
of three ways described below. 

 
Procedure: 
Step 1.  Run tests.  All tests are run against the system under test, and the rows of the array 
divided into two sets, F = tests that produced a failure or other faulty operation, and P = tests that 
did not detect faulty operation.   
 
Step 2.  Compute set difference F\P, the combinations that occur in failing tests but not in passing 
tests.  The tool identifies the tests in which these occur.  
 
Step 3.  Create augmented passing set.  For each failing test identified in Step 2, create additional 
tests using either the alternate value or base choice procedures detailed below.  Not all failing 
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tests may be included in the list from Step 2 because combinations that have already been 
identified will not be repeated.  Set P+ = P ∪ {passing base choice tests}. 
 
Step 3 (alternative).  Generate a (t+1)-way covering array, and set P+ = (t+1) covering array.  
 
Step 4.  Compute F\P+ to identify failure triggering combinations.   Select 2-way through 6-way 
analysis, depending on the strength of the covering array used in testing, and the type of analysis 
desired.   

 
Test augmentation.  Additional tests are generated according to one of the methods below.  Each new 
test is run and those that pass are added to set P to produce set P+.  We then compute F\ P+

 = c, detecting 
the FT combination.   
 
Alternate value.  Let Tf  be a failing test.  For each of the i=1..n parameters, create one new test for each 
parameter i, with all other parameter values held constant.  For example, if we have five binary 
parameters, Tf = 01011, create 11011, 00011, 01111, 01001, and 01010.  This procedure generates kn 
new tests, where k = number of tests identified in Step 2; n = number of parameters. 
 
Base choice:  Let Tf  be a failing test.  For each of the i=1..n parameters, create one new test for each 
parameter, for each value of parameter i, with all other parameter values held constant.  For example, if 
each parameter has three possible values, 0, 1, and 2, and Tf = 10212, create 20212, 00212, 11212, 12212, 
etc.  The base choice procedure creates kn(v-1) new tests, where k = number of tests identified in Step 2; n 
= number of parameters; v = number of values per parameter.  If parameters have different numbers of 
values, vi values for parameter I, then Σ i=1,n (vi -1) new tests are created.   
 
Example, test augmentation:   
We have binary variables a through e, and the 2-way combination a=0, b=1 triggers a failure.   
A covering array for this system is: 
 

0,0,0,0,0 
0,1,1,1,1 
1,0,1,0,1 
1,1,0,1,0 
1,1,1,0,0 
0,0,0,1,1 

 
The row containing a=0, b=1 is 0,1,1,1,1, which becomes set F.  Set P is combinations from:  

0,0,0,0,0 
1,0,1,0,1 
1,1,0,1,0 
1,1,1,0,0 
0,0,0,1,1 

 
Now generate the base choice tests, as shown below.  Note that not all of the base choice tests may be 
necessary, since we only need to disrupt the FT combination c such that T’ passes, so it is not necessary to 
run all before recomputing the set difference.  An alternative is to generate the supplemental tests one at a 
time and do the computation F\P after each test.  The choice of procedures depends on the tradeoff 
between test execution time.    
 
The additional tests and results are: 
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1,1,1,1,1  (pass) 
0,0,1,1,1  (pass) 
0,1,0,1,1  (fail) 
0,1,1,0,1  (fail) 
0,1,1,1,0  (fail) 

 
Using the new information from the base choice tests, we have two additional passing tests:  1,1,1,1,1 and 
0,0,1,1,1.  Adding these to the previous passing set P to produce P+, we have 
 

0,0,1,1,1 
0,0,0,0,0 
1,0,1,0,1 
1,1,0,1,0 
1,1,1,0,0 
0,0,0,1,1 
1,1,1,1,1 
 

Then computing F\ P+
 = c = (ab = 01), thus correctly identifying the fault.  In this case we detected that a 

was involved in the failure on the first test, but note that we would need at most n-1 new base choice tests 
to find a parameter involved in failure (at worst, the last two parameters would be the fault-triggering 
combination). Thus this method requires a total of Σ i=1,n (vi -1) new tests to augment the existing set.  
 
Example, (t+1)-way augmentation:  As above we have binary variables a through e, and the 2-way 
combination a=0, b=1 triggers a failure.   
A covering array for this system is: 
 

0,0,0,0,0 
0,1,1,1,1 
1,0,1,0,1 
1,1,0,1,0 
1,1,1,0,0 
0,0,0,1,1 

 
The row containing a=0, b=1 is 0,1,1,1,1, which becomes set F.  Set P is combinations from:  
 

0,0,0,0,0 
1,0,1,0,1 
1,1,0,1,0 
1,1,1,0,0 
0,0,0,1,1 

 
A 3-way covering array for a-e is below (two rows with a=0, b=1 are shown at the end of the array): 
 

0,0,0,0,0 
0,0,1,1,1 
1,0,0,1,1 
1,0,1,0,0 
1,1,0,0,1 
1,1,1,1,0 
0,0,1,1,0 
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1,1,0,0,0 
0,0,0,0,1 
1,1,1,1,1 
0,1,0,1,0 
0,1,1,0,1 

 
So P+ is the set of combinations from the array above with the last two lines removed.  Now any 2-way 
combination that can be made from either a or b and some other variable in 0,1,1,1,1, must be duplicated 
in P+.  If one of these six contains a=0, then it must not contain b=1, because otherwise it would be in F.  
So it must be in P+.  If it does not contain either a or b, then there must be more than one (three) 3-way 
combinations containing it.   Not all of these can be in rows of F  because F  contains all failing tests.  
(end of example) 
 
Tool Example.  A hypothetical application has 20 variables with 3 values each, and two failure triggering 
faults:  v0, v1, v2 = 1,1,2, and v4, v5, v6 = 2,1,1.  Tests are run using 3-way and 4-way covering arrays.  
Figure 1 shows the tool output for the 3-way test array, and Figure 2 for the 4-way test array.  Rows of the 
failing test file are shown in the top panel, and 2-way, 3-way, or 4-way combinations that may trigger the 
fault are shown in the lower panels.  In Fig. 1, there are 138 possible combinations that could have 
triggered the failure, i.e., combinations that occurred in 3-way failing tests but not in 3-way passing tests. 
Running 3-way analysis with passing tests from a 4-way covering array, shown in Fig. 2, identifies the 
two failure-triggering combinations:  v0=1, v1=1, v2=2, and v4=2, v5=1, v6=1.  In the Background 
section below, it is shown how this approach is able to identify failure-triggering combinations exactly.  
 

 
Figure 1.  Tool output for 3-way combinations in the 3-way test array. 
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Figure 2.  Tool output for 3-way combinations in the 4-way test array. 

 
  

 
Given these sets, F\P will produce a small set of suspect combinations.  Examples are given in Table 1.  
Loading F with the “Load fault file” and P with “Load nominal file” will display suspect combinations 
from F\P in the panels for 2-way through 4-way combinations, as selected on the screen.  Loading P+ 
instead of P will result in the computation of F\P+ = c.   This works because c is a t-way combination that 
triggers the failure, c is in F but is not in P or P+.  For F\P+ = c,  P+ must contain at least one of all t-way 
combinations except c.   To see that all combinations but c are in P+ consider that c contains t values 
among the n variables.  Any t-way combination d ≠ c must have at least one value different from c.  We 
know that A+ contains all (t+1)-way combinations, and therefore also all t-way combinations. For c to be 
unique in F\P+, we need to show that every combination d ≠ c in F  also has a copy in P+.  A+ contains 
all (t+1)-way combinations, so P+ contains all rows that do not contain c.  Any t-way combination d ≠ c 
in F must be included in at least n-t (t+1)-way combinations, because d’s variables can be joined with any 
of the other variables not in d in order to produce a (t+1)-way combination.  Since d differs from c in at 
least one variable, there is a (t+1)-way combination in A+ that includes a variable from c (with a different 
value for the same variable in c) plus the variables of d.  Because it differs from c in at least one variable 
value, it is not in F, so must be in P+.   This procedure works for up to v-1 faults.   
 
 

 
 

13.3 Cost and Practical Considerations 
 

As shown in the example above, it is a non-trivial matter to determine the failure-triggering 
combination(s) from test results alone.  When source code is available, the methods described in this 
section are probably unnecessary, and can be replaced with conventional debugging techniques.  In black-
box testing situations where there is no source code, these methods may be useful in narrowing the search 
for failure-triggering combinations.   Tools to implement these methods have been developed and are 
available from the ACTS project site.     
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Determining the approach to fault location in black-box test situations also depends on cost.  
Clearly, if faults are detected at one level of interaction strength, there may be additional faults, including 
some that are more complex and only detectable with higher strength test sets.    Thus it will usually be 
desirable to run a (t+1)-way test set when faults are detected at level t.  But going from a t-way array to a 
(t+1)-way array requires a much larger set of tests, which may not be practical from a time or cost 
standpoint.  In these cases, base choice augmentation can be a highly cost-effective alternative for fault 
location.   

 
 
13.4 Chapter Summary 
 

When source code is available, the best way to identify the cause of a failure is with conventional 
debugging techniques, since the error must be fixed in code anyway.  With pure black-box testing and no 
access to source code, the heuristics discussed in this chapter may help to narrow down possible causes.  
Usually there will be many combinations identified as possible causes, so substantial additional testing 
may be needed to determine the exact cause.   
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