

1 Combinatorial Methods in Testing

Developers of large software systems often notice an interesting phenomenon: if usage of an
application suddenly increases, components that have been working correctly develop previously
undetected failures. For example, the application may have been installed with a different OS or DBMS
system from what was used previously, or newly added customers may have account records with
combinations of values that have not occurred before. Some of these rare combinations trigger failures
that have escaped previous testing and extensive use. Such failures are known as interaction failures,
because they are only exposed when two or more input values interact to cause the program to reach an
incorrect result.

1.1 Software Failures and the Interaction Rule

 Interaction failures are one of the primary reasons why software testing is so difficult. If failures only
depended on one variable value at a time, we could simply test each value once, or for continuous-valued
variables, one value from each representative range. If our application had inputs with v values each, this
would only require a total of v tests – one value from each input per test. Unfortunately, the situation is
much more complicated than this.

Combinatorial testing can help detect problems like those described above early in the testing life
cycle. The key insight underlying t-way combinatorial testing is that not every parameter contributes to
every failure and most failures are triggered by a single parameter value or interactions between a
relatively small number of parameters (for more on the number of parameters interacting in failures, see
Appendix B). For example, a router may be observed to fail only for a particular protocol when packet
volume exceeds a certain rate, a 2-way interaction between protocol type and packet rate. Figure 1
illustrates how such a 2-way interaction may happen in code. Note that the failure will only be triggered
when both pressure < 10 and volume > 300 are true. To detect such interaction failures, software
developers often use “pairwise testing”, in which all possible pairs of parameter values are covered by at
least one test. Its effectiveness is based on the observation that most software failures involve only one or
two parameters.

Figure 1. 2-way interaction failures are triggered when two conditions are true.

Pairwise testing can be highly effective and good tools are available to generate arrays with all pairs

of parameter value combinations. But until recently only a handful of tools could generate combinations
beyond 2-way, and most that did could require impractically long times to generate 3-way, 4-way, or 5-
way arrays because the generation process is mathematically complex. Pairwise testing, i.e. 2-way

if (pressure < 10) {
 // do something
 if (volume > 300) {

faulty code! BOOM!
}

 else {
good code, no problem

}
}
else {
 // do something else
}

Failures appear to
be caused by
interactions of only a
few variables, so
tests that cover all
such few-variable
interactions can be
very effective.

combinations, is a common approach to combinatorial testing because it is computationally tractable and
reasonably effective.

But what if some failure is triggered only by a very unusual combination of 3, 4, or more values? It

is very unlikely that pairwise tests would detect this unusual case; we would need to test 3-way and 4-way
combinations of values. But is testing all 4-way combinations enough to detect all errors? It is important
to understand the way in which interaction failures occur in real systems, and the number of variables
involved in these failure triggering interactions.

What degree of interaction occurs in real failures in real systems? Surprisingly, this question had not

been studied when NIST began investigating interaction failures in 1999. An analysis of 15 years of
medical device recall data [190] included an evaluation of fault-triggering combinations and the testing
that could have detected the faults. For example, one problem report said that “if device is used with old
electrodes, an error message will display, instead of an equipment alert.” In this case, testing the device
with old electrodes would have detected the problem. Another indicated that “upper limit CO2 alarm can
be manually set above upper limit without alarm sounding.” Again, a single test input that exceeded the
upper limit would have detected the fault. Other problems were more complex. One noted that “if a
bolus delivery is made while pumps are operating in the body weight mode, the middle LCD fails to
display a continual update.” In this case, detection would have required a test with the particular pair of
conditions that caused the failure: bolus delivery while in body weight mode. One description of a failure
manifested on a particular pair of conditions was “the ventilator could fail when the altitude adjustment
feature was set on 0 meters and the total flow volume was set at a delivery rate of less than 2.2 liters per
minute.” The most complex failure involved four conditions and was presented as “the error can occur
when demand dose has been given, 31 days have elapsed, pump time hasn’t been changed, and battery is
charged.”

 Reviews of failure reports across a variety of domains suggest that all
failures could be triggered by a maximum of 4-way to 6-way interactions
[91, 92, 93, 190]. As shown in Figure 2, the detection rate increased
rapidly with interaction strength (the interaction level t in t-way
combinations is often referred to as strength). With the NASA application,
for example, 67% of the failures were triggered by only a single parameter
value, 93% by 2-way combinations, and 98% by 3-way combinations.
The detection rate curves for the other applications studied are similar,
reaching 100% detection with 4 to 6-way interactions. Studies by other
researchers [14, 15, 61, 199] have been consistent with these results.

Figure 2. The Interaction Rule: Most failures are triggered by one or two parameters

interacting, with progressively fewer by 3, 4, or more.

These results are interesting because they suggest that, while pairwise testing is not sufficient, the
degree of interaction involved in failures is relatively low. We summarize this result in what we call the
interaction rule, an empirically-derived [93, 92, 91] rule that characterizes the distribution of interaction
faults:

Interaction Rule: Most failures are induced by single factor faults or by the joint combinatorial effect
(interaction) of two factors, with progressively fewer failures induced by interactions between three or more
factors.

The maximum degree of interaction in actual real-world faults so far observed is six. This is not to
say that there are no failures involving more than six variables, only that the available evidence suggests
they are rare (more on this point below). Why is the interaction rule important? Suppose we somehow
know that for a particular application, any failures can be triggered by 1-way, 2-way, or 3-way
interactions. That is, there are some failures that occur when certain sets of two or three parameters have
particular values, but no failure that is only triggered by a 4-way interaction. In this case, we would want
a test suite that covers all 3-way combinations of parameter values (which automatically guarantees 2-
way coverage as well). If there are some 4-way interactions that are not covered, it will not matter from a
fault detection standpoint, because all the failures are triggered by 1-way, 2-way, or 3-way interactions.
Therefore in this example, covering all 3-way combinations is in a certain sense equivalent to exhaustive
testing. It won’t test all possible inputs, but those inputs that are not tested would not make any
difference in finding faults in the software. For this reason, we sometimes refer to this approach as
“pseudo-exhaustive” [91], analogous to the digital circuit testing method of the same name [116, 179].
The obvious flaw in this scenario is our assumption that we “somehow know” the maximum number of
parameters involved in failures. In the real world, there may be 4-way, 5-way, or even more parameters
involved in failures, so our test suite covering 3-way combinations might not detect them. But if we can
identify a practical limit for the number of parameters in combinations that must be tested, and this limit
is not too large, we may actually be able to achieve the “pseudo-exhaustive” property. This is why it is
essential to understand interaction faults that occur in typical applications.

Some examples of such interactions were described previously for medical device software. To get
a better sense of interaction problems in real-world software, let’s consider some examples from an
analysis of over 3,000 vulnerabilities from the National Vulnerability Database, which is a collection of
all publicly reported security issues maintained by NIST and the Department of Homeland Security:

• Single variable (1-way interaction): Heap-based buffer overflow in the SFTP protocol handler

for Panic Transmit … allows remote attackers to execute arbitrary code via a long ftps:// URL.
• 2-way interaction: single character search string in conjunction with a single character

replacement string, which causes an "off by one overflow"
• 3-way interaction: Directory traversal vulnerability when register_globals is enabled and

magic_quotes is disabled and .. (dot dot) in the page parameter

The single-variable case is a common problem: someone forgot to check the length of an input string,
causing an overflow in the input buffer. A test set that included any test with a sufficiently long input
string would have detected this failure. The second case is more complex, and would not necessarily
have been caught by many test suites. For example, a requirements-based test suite may have included
tests to ensure that the software was capable of accepting search strings of 1 to N characters, and others to
check the requirement that 1 to N replacement strings could be entered. But unless there was a single test
that included both a one-character search string and a one-character replacement string, the application
could have passed the test suite without detection of the error. The 3-way interaction example is even
more complex, and it is easy to see that an ad hoc, requirements-based test suite might be constructed
without including a test for which all three of the underlined conditions were true. One of the key
features of combinatorial testing is that it is specifically designed to find this type of complex problem,
despite requiring a relatively small number of tests.

 As discussed above, an extensive body of empirical research suggests that testing 2-way
(pairwise), combinations is not sufficient, and a significant proportion of failures result from 3-way and
higher strength interactions. This is an important point, since many testers are familiar with pairwise/2-
way testing, mostly because good algorithms to produce 3-way and higher strength tests were not
available. Fortunately better algorithms and tools now make high strength t-way tests possible, and one
of the key research questions in this field is thus: what t-way combination strength interaction needed to
detect all interaction failures? (Keep in mind that not all failures are interaction failures – many result
from timing considerations, concurrency problems, and other factors that are not addressed by
conventional combinatorial testing.) Thus far, failures seen in real-world systems seem to involve six or
fewer parameters interacting. However, it is not safe to assume that there are no software failures
involving 7-way or higher interactions. It is likely that there are some that simply have not been
recognized. One can easily construct an example that could escape detection by t-way testing for any
arbitrary value of t, by creating a complex conditional with t+1 variables:

 if (v1 && … && vt && vt+1) { /* bad code */ }.

In addition, analysis of the branching conditions in avionics software shows up to 19 variables in some
cases [39]. Experiments on using combinatorial testing to achieve code coverage goals such as line,
block, edge, and condition coverage, have found that the best coverage was obtained with 7-way
combinations [141, 167], but code coverage is not the same as fault detection. Our colleague Linbin Yu
has found up to 9-way interactions in some conditional statements in the Traffic Collision Avoidance
System software [0] that is often used in testing research, although 5-way covering arrays were sufficient
to detect all faults in this set of programs [91] (t-way tests always include some higher strength
combinations, or the 9-way faults may also have been triggered by less than 9 variables). Because the
number of branching conditions involving t variables decreases rapidly as t increases, it is perhaps not
surprising that the number of failures decreases as well. The available empirical research on this issue is

covered in more detail in a web page that we maintain [128], and summarized in Error! Reference
source not found.. Because failures involving more than six parameters have not been observed in
fielded software, most covering array tools generate up to 6-way arrays.

Because of the interaction rule, ensuring coverage of all 3-way, possibly up to 6-way combinations

may provide high assurance. As with most issues in software, however, the situation is not that simple.
Efficient generation of test suites to cover all t-way combinations is a difficult mathematical problem that
has been studied for nearly a century, although recent advances in algorithms have made this practical for
most testing. An additional complication is that most parameters are continuous variables which have
possible values in a very large range (+/- 231 or more). These values must be discretized to a few distinct
values. Most glaring of all is the problem of determining the correct result that should be expected from
the system under test for each set of test inputs. Generating 1,000 test data inputs is of little help if we
cannot determine what the system under test (SUT) should produce as output for each of the 1,000 tests.

With the exception of covering combinations, these challenges are

common to all types of software testing, and a variety of good techniques
have been developed for dealing with them. What has made combinatorial
testing practical today is the development of efficient algorithms to generate
tests covering t-way combinations, and effective methods of integrating the
tests produced into the testing process. A variety of approaches introduced
in this book can be used to make combinatorial testing a practical and
effective addition to the software tester’s toolbox.

Notes on terminology: we use the definitions below, following the Institute of Electrical and

Electronics Engineers (IEEE) Glossary of Terms [85]. The term “bug” may also be used where its
meaning is clear.
• error: a mistake made by a developer. This could be a coding error or a misunderstanding of

requirements or specification.
• fault: a difference between an incorrect program and one that correctly implements a specification.

An error may result in one or more faults.
• failure: a result that differs from the correct result as specified. A fault in code may result in zero or

more failures, depending on inputs and execution path.

The acronym SUT (System Under Test) refers to the target of testing. It can be a function, a method, a
complete class, an application, or a full system including hardware and software. Sometimes a SUT is
also referred as a TO (test object) or AUT (Artifact Under Test). That is, SUT is not meant to imply only
the system testing phase.

1.2 Two Forms of Combinatorial Testing

There are basically two approaches to combinatorial testing – use combinations of configuration

parameter values, or combinations of input parameter values. In the first case, we select combinations of
values of configurable parameters. For example, a server might be tested by setting up all 4-way
combinations of configuration parameters such as number of simultaneous connections allowed, memory,
OS, database size, DBMS type, and others, with the same test suite run against each configuration. The
tests may have been constructed using any methodology, not necessarily combinatorial coverage. The
combinatorial aspect of this approach is in achieving combinatorial coverage of all possible configuration
parameter values. (Note, the terms variable and factor are often used interchangeably with parameter to
refer to inputs to a function or a software program.)

Advances in
algorithms have made
combinatorial testing
beyond pairwise
finally practical.

Combinatorial testing
can be applied to
configurations, input
data, or both.

In the second approach, we select combinations of input data
values, which then become part of complete test cases, creating a test
suite for the application. In this case combinatorial coverage of input
data values is required for tests constructed. A typical ad hoc
approach to testing involves subject matter experts setting up use
scenarios, then selecting input values to exercise the application in
each scenario, possibly supplementing these tests with unusual or suspected problem cases. In the
combinatorial approach to input data selection, a test data generation tool is used to cover all
combinations of input values up to some specified limit. One such tool is ACTS (described in Error!
Reference source not found.), which is available freely from NIST.

Aspects of both configuration testing and input parameter testing may appear in a great deal of

practical testing. Both types may be applied for thorough testing, with a covering array of input
parameters applied to each configuration combination. In state machine approaches (Chapter 6), other
variations appear – parameters are inputs that may determine the presence or absence of other parameters,
or both program variables and states may be treated as test parameters. But a wide range of testing
problems can be categorized as either configuration or input testing, and these approaches are analyzed in
more detail in later chapters.

Configuration Testing

Many, if not most, software systems have a large number of configuration parameters. Many of the

earliest applications of combinatorial testing were in testing all pairs of system configurations. For
example, telecommunications software may be configured to work with different types of call (local, long
distance, international), billing (caller, phone card, 800), access (ISDN, VOIP, PBX), and server for
billing (Windows Server, Linux/MySQL, Oracle). The software must work correctly with all
combinations of these, so a single test suite could be applied to all pairwise combinations of these four
major configuration items. Any system with a variety of configuration options is a suitable candidate for
this type of testing.

Configuration coverage is perhaps the most developed form of combinatorial testing. It has been

used for years with pairwise coverage, particularly for applications that must be shown to work across a
variety of combinations of operating systems, databases, and network characteristics.

For example, suppose we had an application that is intended to run on a variety of platforms

comprised of five components: an operating system (Windows XP, Apple OS X, Red Hat Enterprise
Linux), a browser (Internet Explorer, Firefox), protocol stack (IPv4, IPv6), a processor (Intel, AMD), and
a database (MySQL, Sybase, Oracle), a total of 22223 ×××× = 48 possible platforms. With only 10
tests, shown in Table 1, it is possible to test every component interacting with every other component at
least once, i.e., all possible pairs of platform components are covered. While this gain in efficiency – 10
tests instead of 48 – is respectable, the improvement for larger test problems can be spectacular, with 2-
way and 3-way tests often requiring less than 1% of the tests needed for exhaustive testing. In general,
the larger the problem, the greater the efficiency gain from combinatorial testing.

Test OS Browser Protocol CPU DBMS
1 XP IE IPv4 Intel MySQL
2 XP Firefox IPv6 AMD Sybase
3 XP IE IPv6 Intel Oracle
4 OS X Firefox IPv4 AMD MySQL
5 OS X IE IPv4 Intel Sybase
6 OS X Firefox IPv4 Intel Oracle
7 RHEL IE IPv6 AMD MySQL
8 RHEL Firefox IPv4 Intel Sybase
9 RHEL Firefox IPv4 AMD Oracle
10 OS X Firefox IPv6 AMD Oracle

Table 1. Pairwise test configurations

Input Testing

Even if an application has no configuration options, some form of input will be processed. For

example, a word processing application may allow the user to select 10 ways to modify some highlighted
text: subscript, superscript, underline, bold, italic, strikethrough, emboss, shadow, small caps, or all
caps. The font-processing function within the application that receives these settings as input must
process the input and modify the text on the screen correctly. Most options can be combined, such as
bold and small caps, but some are incompatible, such as subscript and superscript.

Thorough testing requires that the font-processing function work correctly for all valid

combinations of these input settings. But with 10 binary inputs, there are 210 = 1,024 possible
combinations. But the empirical analysis reported above shows that failures appear to involve a small
number of parameters, and that testing all 3-way combinations often detect 90% or more of bugs. For a
word processing application, testing that detects better than 90% of bugs may be a cost-effective choice,
but we need to ensure that all 3-way combinations of values are tested. To do this, or to construct the
configuration tests shown in Table 1, we create a matrix that covers all t-way combinations of variable
values, where t=2 for the configuration problem described previously and t=3 for the 10 binary inputs in
this section. This matrix is known as a covering array [25, 30, 49, 85, 103, 184].

How many t-way combinations must be covered in the array? Consider the example of 10 binary
variables. There are C(10, 2) = 45 pairs of variables (ab, ac, ad,…). For each pair, the two binary
variables can be assigned 22 = 4 possible values: 00, 01, 10, 11. So the number of 2-way combinations
that must be covered in the array is 22× C(10, 2) = 4×45 = 180. For 3-way combinations, the variables
can be assigned eight possible values: 000, 001, 010, …. Selecting three variables can be done in C(10,
3) = 120 ways, so there are 23×C(10, 3) = 960 possible parameter settings to be covered. In general,
there are vt t-way combinations of v values, so for n parameters we have

total combinations = vt

t
n .

The key component is a
covering array, which
includes all t-way
combinations. Each column
is a parameter. Each row is
a test.

Generally not all parameters have the same number of test values. In combinatorics parlance, these are
referred to as “mixed level” parameters. For n different parameters, with vi values for the ith parameter,
we need to cover:

total mixed level combinations = ∑i vi1×…×vit ∀ i = 1..

t
n t-way combinations

As we will see in the next section, a very large number of such combinations can be covered in
remarkably few tests. Algorithms to compute covering arrays efficiently have been developed and are
now implemented in practical tools.

1.3 Covering Arrays

An example of a covering array is given in Figure 3, which shows a 3-
way covering array for 10 variables with two values each. The
interesting property of this array is that any three columns contain all
eight possible values for three binary variables. For example, taking
columns F, G, and H, we can see that all eight possible 3-way
combinations (000, 001, 010, 011, 100, 101, 110, 111) occur
somewhere in the three columns together. In fact, any combination of three columns chosen in any order
will also contain all eight possible values. Collectively, therefore, this set of tests will exercise all 3-way
combinations of input values in only 13 tests, as compared with 1,024 for exhaustive coverage. Similar
arrays can be generated to cover all t-way combinations, for whatever value of t is appropriate to the
problem.

Figure 3. A 3-way covering array includes all
3-way combinations of values.

Covering Array Definition

A covering array CA(N, n, s, t) is an N x n matrix in which entries are from a finite set S of s symbols
such that each N x t subarray contains each possible t-tuple at least once. For example, in the matrix
above, we saw that all eight possible 3-tuples (3-way combinations) of the binary variables occurred at
least once. The number t is referred to as the strength of the array. A covering array must satisfy the t-
covering property: when any t of the k columns are chosen, all vt of the possible t-tuples must appear

Tests

A B C D E F G H I J

among the rows. The “size” of an array is usually given as its number N of rows, where the number of
columns is fixed.

This definition can be generalized to the case where k1 columns have v1 distinct values, k2 columns have
v2 distinct values, and so on. A covering array with n1 columns of v1 distinct values, n2 columns of v2
distinct values, etc., is designated v1

n1 v2
n2 … vnk. Example: An array that has three columns with two

distinct values each, two columns with 5 distinct values each, and four columns with six distinct values
each is called a 235264 array. Note that if the columns represent nine parameters and their input values for
a system under test, the number of tests required for exhaustive testing would be 235264 = 259,200 tests.
The covering array in Fig. 3 is a 210 array, since it has 10 columns of binary variables.

Size of Covering Arrays

 It is important to understand how covering array size is affected by the attributes of a testing problem to
get a sense of how to apply combinatorial testing in practice. Since we are discussing tests and
parameters the notation is a bit different than as used above in the formal definition of a covering array. It
has been shown [52, 70] that in general, the number of rows (tests) for a covering array constructed with a
greedy algorithm grows as

vt log n (1)
where
v = number of possible values that each variable can take on.
t = interaction strength, i.e., t-way interactions
n =number of variables or parameters for the tests

 When a covering array is produced, the number of tests will be proportional to this expression, not
equal to it, but taking a look at the components of this expression will help in understanding how the
characteristics of a testing problem affect the number of tests needed. This is a “good news/bad news”
situation. The good news is that the number of tests increases only logarithmically with the number of
parameters, n. Thus, testing systems with 50 inputs will not require significantly more tests than for 40
inputs. However, the bad news is that the number of tests increases exponentially with t, the interaction
strength. So 4-way testing will be much more expensive than 3-way testing. Note another aspect of the
first component, vt, of expression (1). The exponent t applies to v, the number of values that each variable
can take on, so the value of v can have an enormous effect on the number of tests.

 Since many or most variables will be continuous-valued (within the limitations of digital hardware),
values must be discretized from some range of integer or floating point numbers. The input range must
be partitioned into a relatively small number of discrete values (see Sect. 4.1) to keep the number of tests
to a minimum. In practice, it is generally a good idea to keep the number of values per variable to 10 or
fewer. Figure 4 shows the number of tests required for 10 through 100 parameters for various values of v
for t = 2.

Figure 4. Number of tests, t = 2

There is no known formula for computing the smallest possible covering array for a particular

problem. A database maintained by Charles Colbourn at Arizona State University collects the best known
sizes of covering arrays for a broad range of configurations ranging from t = 2 to t = 6 (see
http://www.public.asu.edu/~ccolbou/src/tabby/catable.html). Many algorithms have been developed for
computing covering arrays, but there is no uniformly best algorithm, in the sense of computing the
smallest possible array. Certain algorithms produce very compact arrays for some configurations, but
perform poorly on others. More on algorithm design can be found in Chapter Error! Reference source
not found..

At this point it is important to point out that covering arrays are not the only way to produce

combinatorial coverage. Any test set may cover a large number of parameter value combinations, and
ways to measure such coverage are introduced in Chapter 7. As introduced previously in this chapter, the
motivation for our interest in combinatorial methods is the empirical observation – the interaction rule –
that a relatively small number of parameters interact in producing failures in real-world software. We
thus want to cover in testing as many combinations as possible, and covering arrays are just one approach
(although usually the most efficient). We can measure the combinatorial coverage of just about any test
set, regardless of how it is produced. A combinatorial approach to testing is thus compatible with a
broad range of test strategies, and this approach can improve testing in a variety of ways that will be
introduced in this book.

1.4 The Test Oracle Problem

Even with efficient algorithms to produce covering arrays, the oracle problem remains – testing requires
both test data and results that should be expected for each data input. High interaction strength
combinatorial testing may require a large number of tests in some cases, although not always. This
section summarizes some approaches to solving the oracle problem that are particularly suited to
automated or semi-automated combinatorial testing. Note that there are other test oracle methods as well.
One of the most widely used approaches is of course to have human experts analyze test cases and
determine the expected results. It is also possible that some or all of the functionality of the SUT will
exist in another program. For example, the new code may be modifying one part of an existing program,
so old tests may be re-used. In some cases, all of the functions may exist in another program whose
results can be compared with the SUT, for example in an version that runs on another platform or a
separate implementation of a compiler or network protocol standard. Here we summarize some
approaches for the general case where the SUT presents all or mostly new functionality.

Several types of test
oracle can be used,
depending on
resources and the
system under test.

 Crash testing: the easiest and least expensive approach is to simply run tests against the system
under test (SUT) to check whether any unusual combination of input values causes a crash or other easily
detectable failure. Execution traces and memory dumps may then be analyzed to determine the cause of
the crash. This is similar to the procedure used in some types of “fuzz testing” [159], which sends
random values against the SUT. It should be noted that although pure random testing will generally cover
a high percentage of t-way combinations, 100% coverage of combinations requires a random test set
much larger than a covering array. For example, all 3-way combinations of 10 parameters with 4 values
each can be covered with 151 tests. A purely random generation requires over 900 tests to provide full 3-
way coverage.

Assertions: An increasingly popular “light-weight formal methods” technique is to embed
assertions within code to ensure proper relationships between data, for example as preconditions,
postconditions, or consistency checks. Tools such as the Java Modeling language (JML) can be used to
introduce very complex assertions, effectively embedding a formal specification within the code. The
embedded assertions serve as an executable form of the specification, thus providing an oracle for the
testing phase. With embedded assertions, exercising the application with all t-way combinations can
provide reasonable assurance that the code works correctly across a very wide range of inputs. This
approach has been used successfully for testing smart cards, with embedded JML assertions acting as an
oracle for combinatorial tests [57]. Results showed that 80% - 90% of failures could be found in this
way.

Model based test generation uses a mathematical model of the SUT

and a simulator or model checker to generate expected results for each input
[1,16,18,118,134]. If a simulator can be used, expected results can be
generated directly from the simulation, but model checkers are widely
available and can also be used to prove properties such as liveness in
parallel processes, in addition to generating tests. Conceptually, a model
checker can be viewed as exploring all states of a system model to determine if a property claimed in a
specification statement is true. What makes a model checker particularly valuable is that if the claim is
false, the model checker not only reports this, but also provides a “counterexample” showing how the
claim can be shown false. If the claim is false, the model checker indicates this and provides a trace of
parameter input values and states that will prove it is false. In effect this is a complete test case, i.e., a set
of parameter values and expected result. It is then simple to map these values into complete test cases in
the syntax needed for the system under test. Chapter 12 develops detailed procedures for applying model
based test oracle generation.

1.5 Quick Start – How to Use the Basics of Combinatorial Methods Right Away

This book introduces a wide range of topics in combinatorial methods for software testing,

sufficient for handling many practical challenges in software assurance. Most testers, however, will not
face all of the types of test problems covered in this book, at least not on every project. Many test
problems require a core set of methods, possibly with one or two specialized topics. As with many
subjects, one of the best ways to approach combinatorial testing is to start small; try the basics to get a
feel for how it works, then supplement these methods as needed. This book is designed for such an
approach. Readers anxious to learn by applying some of the methods introduced here can use the
following steps:

1. Read Chapter 1, to learn why combinatorial methods are effective and what to expect.
2. Read Chapter 3 and 4, for step-by-step approaches to input testing and configuration

testing (as introduced in Section 1.2

3. Download and install the Java program ACTS or another covering array tool (see Error!
Reference source not found.)

4. Develop a covering array of tests using ACTS or other tool, then run the tests.

After reading this chapter to understand why combinatorial testing works, readers can also review

the two case studies in Chapter 2. These two testing problems are practical examples that illustrate the
basics in situations that include many features of web application testing problems. Following the steps
above is really just getting started, of course. But trying these methods on one of your own small testing
problems will likely make the rest of the topics introduced in the book easier and more interesting to
apply.

1.6 Chapter Summary

1. Empirical data suggest that software failures are caused by the interaction of relatively few parameter
values, and that the proportion of failures attributable to t-way interactions declines very rapidly with
increase in t. That is, usually single parameter values or a pair of values are the cause of a failure, but
increasingly smaller proportions are caused by 3-way, 4-way, and higher order interactions. This
relationship is called the Interaction Rule.

2. Because a small number of parameters are involved in failures, we can attain a high degree of
assurance by testing all t-way interactions, for an appropriate interaction strength t (2 to 6 usually). The
number of t-way tests that will be required is proportional to vt log n, for n parameters with v values each.

3. A mathematical construct called a covering array can be used to produce tests that cover all t-way
combinations. A covering array with k1 columns of v1 distinct values, k2 columns of v2 distinct values,
etc., is designated v1

k1 v2
k2 … vn

kn, which is also equal to the number of tests that would be required for
exhaustive testing. There is no “best” covering array construction algorithm, in the sense of always
producing an optimal array.

4. As with all other types of testing, the oracle problem must be solved – i.e., for every test input, the
expected output must be determined in order to check if the application is producing the correct result for
each set of inputs. A variety of methods can be used to solve the oracle problem.

5. Combinatorial methods can be applied to configurations of the SUT or to input values, or in some
cases both. Figure 5 contrasts the two approaches to combinatorial testing. With the first approach, we
may run the same test set against all 3-way combinations of configuration options, while for the second
approach, we would construct a test suite that covers all 3-way combinations of input transaction fields.
Of course these approaches could be combined, with the combinatorial tests run against all the
configuration combinations.

Figure 5. Combinatorial testing may be used on input values or configurations.

System
Under Test

Inputs:
Product
Amount
Quantity
Pmt method
Shipping method

Configuration:
Browser
OS
DBMS
Server
...

Use combinations of input values
in generating tests

Use combinations of configuration
values with existing test suite

2 Combinatorial Testing Applied

15

16

3 Configuration Testing

 The term “configuration” may be used in slightly different ways with respect to software. In
some cases it may refer to options that are settable through an external file or other source. For
example, a database management system may have configurable options for storage location and
size, maximum size of various tables, key length, and other aspects of databases. These
configurable options are read in when the system is initialized and used to set properties of the
application. In other cases, configuration refers to characteristics of the platform on which the
application is running, such as the presence or absence of a hard keyboard on a smartphone, the
network protocol used, or the type of database. In this case, the configurable options are expected
to provide essentially the same functions to the software – network interface or searchable storage –
but low-level functions in the application must interface differently depending on the protocol or
database in use. The software is built to operate correctly on a variety of platforms, and different
parts of the code may be exercised depending on the configuration.

3.1 Runtime Environment Configurations

 One of the most common problems in software testing is assuring that an application can run on
a variety of platforms. Different operating systems, web browsers, network protocols, or databases
may be operated by customers, but developers would like to ensure that their software runs
correctly on all platforms. An example illustrating the complexity of the problem occurred in July,
2012. A major antivirus program suffered crashes on certain configurations of Windows XP
machines. According to a Register news article [104], "Subsequent analysis has revealed that a
three-way clash between third-party encryption drivers, Symantec's own security software and the
Windows XP Cache manager resulted in the infamous Blue Screen of Death (BSOD) on vulnerable
machines, as this advisory explains:

"The root cause of the issue was an incompatibility due to a three-way interaction between
some third-party software that implements a file system driver using kernel stack based file
objects – typical of encryption drivers, the SONAR signature and the Windows XP Cache
manager. The SONAR signature update caused new file operations that create the conflict
and led to the system crash."

Combinatorial testing of runtime configurations can help in catching this type of problem. While it
is rarely practical to test all possible runtime platforms, methods described in this chapter can be
used for efficient testing of all t-way combinations of platform configurations.

Returning to the simple example introduced in Chapter 1, we illustrate development of test
configurations, and compare the size of test suites for various interaction strengths versus testing all
possible configurations. For the five configuration parameters, we have 32223 ×××× = 72
configurations. Note that at t = 5, the number of tests is the same as exhaustive testing for this
example, because there are only five parameters. The savings as a percentage of exhaustive testing
are good, but not that impressive for this small example. With larger systems the savings can be
enormous, as will be seen in the next section.

17

Parameter Values
Operating system XP, OS X, RHL
Browser IE, Firefox
Protocol IPv4, IPv6
CPU Intel, AMD
DBMS MySQL, Sybase, Oracle

Table 2. Simple example configuration options.

After the parameters and possible values for each have been determined, a covering array
can be generated using a software tool. In this book, the generation process will be illustrated using
the ACTS covering array tool, which is described in more detail in Error! Reference source not
found., but other tools may have similar features. In addition to the summary in Error! Reference
source not found., a comprehensive user manual is included with the ACTS download.

 The first step in creating test configurations is to specify the parameters and possible
values, as shown in Figure 6. Another covering array tool or the GUI version of ACTS would of
course have a different specification, but the essential features will be similar to Figure 6.

Figure 6. ACTS input includes parameter names, types, and possible values.

The degree of interaction must also be specified: 2-way, 3-way, etc. coverage. Output can be
created as a matrix of numbers, comma separated value, or Excel spreadsheet format. If the output
will be used by human testers rather than as input for further machine processing, the format in
Figure 7 is useful.

 The complete test set for 2-way combinations is shown in Table 1 in Section 1.3. Only 10 tests
are needed. Moving to 3-way or higher interaction strengths requires more tests, as shown in Table
3.

t # Tests % of Exhaustive
2 10 14
3 18 25
4 36 50
5 72 100

Table 3. Number of combinatorial tests for a simple example.

 In this example, substantial savings could be realized by testing t-way configurations
instead of all possible configurations, although for some applications (such as a small but highly
critical module) a full exhaustive test may be warranted. As we will see in the next example, in
many cases it is impossible to test all configurations, so we need to develop reasonable alternatives.

[System]

[Parameter]
OS (enum): XP,OS_X,RHL
Browser (enum): IE, Firefox
Protocol(enum): IPv4,IPv6
CPU (enum): Intel,AMD
DBMS (enum): MySQL,Sybase,Oracle

[Relation]
[Constraint]
[Misc]

18

A software product line
with n features may
produce 2n products.

3.2 Highly Configurable Systems and Software Product Lines

 Software product lines are an increasingly attractive approach to
application development. A software product line (SPL) uses
standardized development procedures on systems that “share a
common, managed set of features satisfying the specific needs of a
particular market segment or mission and that are developed from a common set of core assets”
[166]. The basic idea of a SPL is that enterprises, or their subunits, tend to produce families of
software products for a particular application domain or market [76, 77, 129, 148]. For example, a
company may develop software products for point-of-sale (POS) and retail store management. By
combining software that implements various features, a wide variety of products can be provided
with far less effort than traditional development approaches. In the retail store management
example, a basic POS terminal application may allow for input from the cashier’s keyboard or a
laser scanner embedded in the checkout counter, while a more sophisticated terminal application
may add features for a handheld scanner and a scale. Thus in some cases a product line can thus be
viewed as a framework that can produce 2n products, where there are n different features [76]. With
the high degree of customization and configurable feature sets, combinatorial testing can be
especially effective when applied to SPLs [49, 50, 86, 135].

Telecommunications and mobile phone vendors have been among the early adopters of the
SPL approach, with significant success [159]. Smart phones have become enormously popular
because they combine communication capability with powerful graphical displays and processing
capability. Literally tens of thousands of smart phone applications, or ‘apps’, are developed
annually. Among the platforms for smart phone apps is the Android, which includes an open
source development environment and specialized operating system. Android units contain a large
number of configuration options that control the behavior of the device. Android apps must operate
across a variety of hardware and software platforms, since not all products support the same
options. For example, some smart phones may have a physical keyboard and others may present a
soft keyboard using the touch sensitive screen. Keyboards may also be either only numeric with a
few special keys, or a full typewriter keyboard. Depending on the state of the app and user choices,
the keyboard may be visible or hidden. Ensuring that a particular app works across the enormous
number of options is a significant challenge for developers. The extensive set of options makes it
intractable to test all possible configurations, so combinatorial testing is a practical alternative.

19

Figure 7. Excerpt of test configuration output covering all 2-way combinations.

Figure 8 shows a resource configuration file for Android apps. A total of 35 options may

be set. Our task is to develop a set of test configurations that allow testing across all 4-way
combinations of these options. The first step is to determine the set of parameters and possible
values for each that will be tested. Although the options are listed individually to allow a specific
integer value to be associated with each, they clearly represent sets of option values with mutually
exclusive choices. For example, “Keyboard Hidden” may be “yes”, “no”, or “undefined”. These
values will be the possible settings for parameter names that we will use in generating a covering
array. Table 4 shows the parameter names and number of possible values that we will use for input
to the covering array generator. For a complete specification of these parameters, see:
 http://developer.android.com/reference/android/content/res/Configuration.html

int HARDKEYBOARDHIDDEN_NO;
int HARDKEYBOARDHIDDEN_UNDEFINED;
int HARDKEYBOARDHIDDEN_YES;
int KEYBOARDHIDDEN_NO;

Degree of interaction coverage: 2
Number of parameters: 5
Maximum number of values per parameter: 3
Number of configurations: 10

Configuration #1:

1 = OS=XP
2 = Browser=IE
3 = Protocol=IPv4
4 = CPU=Intel
5 = DBMS=MySQL

Configuration #2:

1 = OS=XP
2 = Browser=Firefox
3 = Protocol=IPv6
4 = CPU=AMD
5 = DBMS=Sybase

Configuration #3:

1 = OS=XP
2 = Browser=IE
3 = Protocol=IPv6
4 = CPU=Intel
5 = DBMS=Oracle

Configuration #4:

1 = OS=OS_X
2 = Browser=Firefox
3 = Protocol=IPv4
4 = CPU=AMD
5 = DBMS=MySQL
etc .

20

int KEYBOARDHIDDEN_UNDEFINED;
int KEYBOARDHIDDEN_YES;
int KEYBOARD_12KEY;
int KEYBOARD_NOKEYS;
int KEYBOARD_QWERTY;
int KEYBOARD_UNDEFINED;
int NAVIGATIONHIDDEN_NO;
int NAVIGATIONHIDDEN_UNDEFINED;
int NAVIGATIONHIDDEN_YES;
int NAVIGATION_DPAD;
int NAVIGATION_NONAV;
int NAVIGATION_TRACKBALL;
int NAVIGATION_UNDEFINED;
int NAVIGATION_WHEEL;
int ORIENTATION_LANDSCAPE;
int ORIENTATION_PORTRAIT;
int ORIENTATION_SQUARE;
int ORIENTATION_UNDEFINED;
int SCREENLAYOUT_LONG_MASK;
int SCREENLAYOUT_LONG_NO;
int SCREENLAYOUT_LONG_UNDEFINED;
int SCREENLAYOUT_LONG_YES;
int SCREENLAYOUT_SIZE_LARGE;
int SCREENLAYOUT_SIZE_MASK;
int SCREENLAYOUT_SIZE_NORMAL;
int SCREENLAYOUT_SIZE_SMALL;
int SCREENLAYOUT_SIZE_UNDEFINED;
int TOUCHSCREEN_FINGER;
int TOUCHSCREEN_NOTOUCH;
int TOUCHSCREEN_STYLUS;
int TOUCHSCREEN_UNDEFINED;
Figure 8. Android resource configuration file.

Parameter Name Values # Values
HARDKEYBOARDHIDDEN NO, UNDEFINED, YES 3
KEYBOARDHIDDEN NO, UNDEFINED, YES 3
KEYBOARD 12KEY, NOKEYS, QWERTY, UNDEFINED 4
NAVIGATIONHIDDEN NO, UNDEFINED, YES 3
NAVIGATION DPAD, NONAV, TRACKBALL, UNDEFINED, WHEEL 5
ORIENTATION LANDSCAPE, PORTRAIT, SQUARE, UNDEFINED 4
SCREENLAYOUT_LONG MASK, NO, UNDEFINED, YES 4
SCREENLAYOUT_SIZE LARGE, MASK, NORMAL, SMALL, UNDEFINED 5
TOUCHSCREEN FINGER, NOTOUCH, STYLUS, UNDEFINED 4

Table 4. This set of Android options has 172,800 possible configurations.

Using Table 4, we can calculate the total number of configurations:
454453433 ×××××××× = 172,800 configurations (i.e., a 243 543 system). Like many

applications, thorough testing will require some human intervention to run tests and verify results,
and a test suite will typically include many tests. If each test suite can be run in 15 minutes, it will
take roughly 24 staff-years to complete testing for an app. With salary and benefit costs for each
tester of $150,000, the cost of testing an app will be more than $3 million, making it virtually
impossible to return a profit for most apps. We saw in Section 0 that combinatorial methods can
reduce the number of tests needed for strong assurance, but will the reduction in test set size be
enough to provide effective testing for apps at a reasonable cost?

21

Some combinations
never occur in practice.

Using the covering array generator, we can produce tests that cover t-way combinations of
values. Table 5 shows the number of tests required at several levels of t. For many applications,
2-way or 3-way testing may be appropriate, and either of these will require less than 1% of the time
required to cover all possible test configurations. This example illustrates the power of
combinatorial testing for real-world testing, and how its advantages increase with the size of the
problem.

t # Tests % of Exhaustive
2 29 0.02
3 137 0.08
4 625 0.4
5 2532 1.5
6 9168 5.3

Table 5. The number of combinatorial tests is a fraction of an exhaustive test set.

3.3 Invalid Combinations and Constraints

So far we have assumed that the set of possible values for parameters never changes. Thus
a covering array of t-way combinations of possible values would contain combinations that either
would occur in the systems under test, or could occur and must therefore be tested. But look more
closely at the configurations in Figure 7. In practice, the Internet Explorer browser is never used on
Linux systems, so it would be impossible to create a configuration that specified IE on a Linux
system. This is an example of a constraint between possible values of parameters. Some
combinations never occur in practice, or occur only sometimes. Practical testing requires
consideration of constraints.

Constraints Among Parameter Values

 The system described earlier illustrates a common situation in all types of testing: some

combinations cannot be tested because they don’t exist for the systems under test. In this case, if
the operating system is either OS X or Linux, Internet Explorer is not available as a browser. Note
that we cannot simply delete tests with these untestable combinations, because that would result in
losing other combinations that are essential to test but are not covered by other tests. For example,
deleting tests 5 and 7 in Section 0 would mean that we would also lose the test for Linux with the
IPv6 protocol.

One way around this problem is to delete tests and
supplement the test suite with manually constructed test
configurations to cover the deleted combinations, but covering array
tools offer a better solution. With ACTS we can specify constraints, which tell the tool not to
include specified combinations in the generated test configurations. ACTS supports a set of
commonly used logic and arithmetic operators to specify constraints. In this case, the following
constraint can be used to ensure that invalid combinations are not generated. It says that if the OS
is not XP, then the Browser will be Firefox:

(OS != “XP”) => (Browser = “Firefox”)

The covering array tool will then generate a set of test configurations that does not include the
invalid combinations, but does cover all those that are essential. The revised test configuration
array is shown in Figure 9. Parameter values that have changed from the original configurations

22

are underlined. Note that adding the constraint also resulted in reducing the number of test
configurations by one. This will not always be the case, depending on the constraints used, but it
illustrates how constraints can sometimes reduce the problem. Even if particular combinations are
testable, the test team may consider some combinations unnecessary, and constraints could be used
to prevent these combinations, possibly reducing the number of test configurations.

In many practical cases, the situation will not be quite as simple as the example above. For
example, instead of dealing only with one Windows OS variety (in this case XP) we may have
several: XP, Vista, Win7, and Win8. Similarly, there may be many Linux releases to consider, such
as Red Hat, Ubuntu, Fedora, and many others plus different releases of the individual Linux
versions. Such a situation could lead to very complicated constraint expressions. One approach
proposed for handling this problem is the notion of properties [158], which can be used to combine
related values. For the example here, there could be an “OSfamily” property defined for the OS
parameter, so the constraint could be expressed as

(OS.OSfamily != “Windows”) => (Browser = “Firefox”)

Without the properties feature, we would need to write something like:

(OS != “XP” && OS != “Vista” && OS != “Win7” && OS != “Win8”)
 => (Browser = “Firefox”)

If we needed other constraints to also include references to the OSfamily property, the constraint set
could become complicated very quickly. Such situations are not uncommon in practical testing.

 Although the “properties” feature is not available on most covering array generators, we
can achieve the goal of simplifying constraint expression in a different (though somewhat less
elegant) way by taking advantage of the power of constraint solvers in ACTS or other tools, along
with a little textual substitution. For example, define a term “WindowsVersion” as

(OS = “XP” || OS = “Vista” || OS = “Win7” || OS = “Win8”)

Then constraints can be written such as !WindowsVersion => (Browser = “Firefox”).
Substituting the parenthetical expression above for “WindowsVersion” using a preprocessor, or
simply a text editor, will then introduce the necessary expression throughout the constraint set.

Constraints Among Parameters

 A second way in which untestable combinations may arise in practice is where some parameters
become inactive when others are set to particular values. In the previous section, we considered
situations where particular parameter values do not occur in combination with other particular
values, but the parameters themselves were always present. For example, every test configuration
included both operating system and browser, even though certain OS/browser value combinations
did not occur. But for some test problems, a value in one parameter affects not just the possible
values for another parameter, but the presence of other parameters themselves, regardless of values.
Returning to the testing problem described in Section 3.1, suppose testers wanted to also consider
additional software that may be present in configurations. Java and Microsoft .Net are used by
many applications, and it is important to test for compatibility with different versions of these
platforms. Thus is may be desirable to add two additional parameters: “java_version” and
“dot_net_version”. However, Java can be present on both Windows and Linux platforms, but we
must deal with the problem that .Net will not be present on a Linux system. This restriction cannot
be handled with an ordinary constraint, because if the platform is Linux, the “dot_net_version”

23

parameter does not make any sense. Instead we end up with two different parameter sets: for
Windows, the parameters are OS, browser, protocol, cpu, dbms, java_version, and dot_net_version;
for Linux the parameters are OS, browser, protocol, cpu, dbms, and java_version. Practical testing
problems may be more complex than this somewhat contrived example, and may have multiple
constraints among parameters. A variety of approaches can be used to deal with this type of
problem:

Split test suite: The simplest and perhaps most obvious method is to switch from a single
configuration test suite to one for each combination of parameters that control the applicability of
others. In this case, there would be one test suite for Linux and one for Windows systems. This
setup is easy to accomplish, but results in some duplicate combinations. For example, the same 3-
way combinations for browser, protocol, and dbms will occur in both test suites. The situation is
helped a bit by the fact that splitting the tests into two separate arrays means two covering arrays
for n-1 parameters instead of one for n parameters, and we will have fewer tests with one less
parameter to cover. But since the number of tests grows with log n, the number of tests for n-1
parameters is just slightly smaller than for n. In general, therefore, splitting the problem into two
test suites will result in almost twice the number of tests. For example, for t = 3, v = 3, a covering
array for 10 parameters has 66 tests, and for 9 parameters there are 62 tests.

Covering arrays with shielding parameters: It is also possible to use an algorithm that allows the
specification of “shielding” parameters [33]. In the example above, dot_net_version does not
apply where the OS parameter is Linux. A parameter that does not always appear (in this case,
dot_net_version) is called a dependent parameter, one that controls whether the dependent
parameter is used is called the shielding parameter, and values of the shielding parameter that
control use of the dependent parameter are controlling values (here, OS = Linux). This method
prevents the generation of a large number of duplicate combinations. However, this approach
requires modification of the covering array generation algorithm, and the shielded parameter
approach is not yet implemented in covering array tools.

Combine parameters: An alternative approach is to combine parameters that do not apply to all
configurations with other parameters, then use constraints. This is essentially a way of using the
“shielded parameters” concept without requiring a modified covering array algorithm. In this case,
“java_version” and “dot_net_version” could be combined into a single “platform_version”.
Constraints could be used to prevent the occurrence of invalid platform versions. For example, if
the Java versions being included in tests are 1.6, and 1.7, and .Net versions are 3 and 4, then the
following parameter can be established:

platform_version: {java1.6, java1.7, dot_net3, dot_net4}
constraint: (OS = “Linux” => platform_version = “java1.6”|| platform_version =
“java1.7”)

This approach prevents the generation of duplicate 3-way combinations for java_version, protocol,
and dbms in both test suites. That is, a particular 3-way combination of these parameters will occur
in association with at least one, but not necessarily both OSes in the test suite. The advantage of
this approach is that it can be used with any covering array tool that implements constraints. It also
produces reasonably compact covering arrays that are suitable for practical testing.

Test OS Browser Protocol CPU DBMS
1 XP IE IPv4 Intel MySQL

24

2 XP Firefox IPv6 AMD Sybase
3 XP IE IPv6 Intel Oracle
4 OS X Firefox IPv4 AMD MySQL
5 OS X Firefox IPv4 Intel Sybase
6 OS X Firefox IPv6 AMD Oracle
7 RHL Firefox IPv6 Intel MySQL
8 RHL Firefox IPv4 Intel Oracle
9 XP IE IPv4 AMD Sybase

Figure 9. Test configurations for simple example with constraint.
3.4 Cost and Practical Considerations

Applying combinatorial methods to testing configurations can be highly cost-effective. Most
software applications are required to run on a variety of systems, and must work correctly on
different combinations of OS, browser, hardware platform, user interface, and other variables.
Constraints among parameter values are very common in practical testing. Depending on the
constraints needed, the size of the test suite may either decrease or increase with constraints,
because the covering array algorithm has less opportunity to compress combinations in tests. The
increase in test set size is not always significant, but must be kept in mind in initial planning.

One of the key questions in any software assurance effort concerns how many tests are

required. Unfortunately, there is no general formula to compute the size of a covering array with
constraints and parameters with varying numbers of values (mixed level arrays). If all parameters
have the same number of values, or at least little variation among values (e.g., mostly binary with a
few having three values), then tables of covering arrays may be used to determine the number of
tests needed in advance. See Error! Reference source not found. for links to pre-computed
covering arrays and best-known sizes of arrays for particular configurations. For mixed level
arrays, particularly where there is significant variation among the number of values per parameter,
the situation is more complex. If vl is the least number of values for among n parameters, and vm is
the greatest, the number of tests will lie somewhere between the size of a covering array for (vl)n
and (vm)n, but the interpolation is not linear. For example, a 3-way array for a configuration of
28102 has 375 tests, while the 210 configuration has 66 tests and the 1010 configuration has 2367
tests. The situation is even more complex with more variability among parameter values, or in the
presence of constraints, so there is generally no practical way to determine the number of tests
without running the covering array generator.

3.5 Chapter Summary

Configuration testing is probably the most commonly used application of combinatorial methods in
software testing. Whenever an application has roughly five or more configurable attributes, a
covering array is likely to make testing more efficient. Configurable attributes usually have a
small number of possible values each, which is an ideal situation for combinatorial methods.
Because the number of t-way tests is proportional to vt log n, for n parameters with v values each, as
long as configurable attributes have less than around 10 possible values each, the number of tests
generated will probably be reasonable. The real-world testing problem introduced in Section 3.2 is
a fairly typical size, where 4-way interactions can be tested with a few hundred tests.

Because many systems have certain configurations that may not be of interest (such as the
Internet Explorer browser on a Linux system), constraints are an important consideration in any

25

type of testing. With combinatorial methods, it is important that the covering array generator
allows for the inclusion of constraints so that all relevant interactions are tested, and important
information is not lost because a test contains an impossible combination. Constraints may exist
between parameter values or even affect the presence of certain parameters in testing. An example
of the former is the constraint “OS = Linux => browser ≠ IE”, where the value of the “OS”
parameter affects the value of the “browser” parameter. The second type of constraint involves
what have been termed “shielding parameters”, such as the case where “OS = Linux” means that
the parameter “dot_net_version” should not appear in a test, but if “OS = Windows” the a test may
have both a .Net version and a Java version. A practical workaround for this situation is to merge
the dependent parameter into an abstract parameter such as “platform” and then use constraints
among values to prevent the production of tests with non-existent configurations.

26

4 Input Testing

As noted in the introduction, the key advantage of combinatorial testing derives from the

Interaction Rule: all, or nearly all, software failures involve interactions of only a few parameters.
Using combinatorial testing to select configurations can make testing more efficient, but it can be
even more effective when used to select input parameter values. Testers traditionally develop
scenarios of how an application will be used, then select inputs that will exercise each of the
application features using representative values, normally supplemented with extreme values to test
performance and reliability. The problem with this often ad hoc approach is that unusual
combinations will usually be missed, so a system may pass all tests and work well under normal
circumstances, but eventually encounter a combination of inputs that it fails to process correctly.
By testing all t-way combinations, for some specified level of t, combinatorial testing can help to
avoid this type of situation.

4.1 Partitioning the Input Space

To get a sense of the problem, we will consider a simple example. The system under test is

an access control module that implements the following policy:
Access is allowed if and only if:

• the subject is an employee
AND current time is between 9 am and 5 pm
AND it is not a weekend

• OR subject is an employee with a special authorization code
• OR subject is an auditor

AND the time is between 9 am and 5 pm
(not constrained to weekdays).

The input parameters for this module are shown in Figure 10. In an actual implementation, the

values for a particular access attempt would be passed to a module that returns a “grant” or “deny”
access decision, using a function call such as “access_decision(emp, time, day,
auth, aud)”.

Figure 10. Access control module input parameters.

 Our task is to develop a covering array of tests for these inputs. The first step will be to develop
a table of parameters and possible values, similar to that in Section 0 in the previous chapter. The
only difference is that in this case we are dealing with input parameters rather than configuration
options. For the most part, the task is simple: we just take the values directly from the
specifications or code, as shown in Figure 11. Several parameters are boolean, and we will use 0
and 1 for false and true values respectively. For day of the week, there are only seven values, so
these can all be used. However, hour of the day presents a problem. Recall that the number of tests
generated for n parameters is proportional to vt, where v is the number of values and t is the
interaction level (2-way to 6-way). For all boolean values and 4-way testing, vt is 24. But consider

emp: boolean;
time: 0..1440; // time in minutes
day: {m,tu,w,th,f,sa,su};
auth: boolean;

 aud: boolean;

27

Use a maximum of 8
to 10 values per
parameter to keep
testing tractable.

what happens with a large number of possible values, such as 24 hours. The number of tests will be
proportional to 244 = 331,736. Even worse in this example, time is given in minutes, which would
obviously be completely intractable. Therefore, we must select representative values for the hour
parameter. This problem occurs in all types of testing, not just with combinatorial methods, and
good methods have been developed to deal with it. Most testers are already familiar with one or
more of these: category [135] or equivalence [141] partitioning and boundary value analysis.
These methods are reviewed here to introduce the examples. A much more systematic treatment, in
the context of data modeling, is provided in Sect. Error! Reference source not found.. Additional
background on these methods can be found in software testing texts such as Ammann and Offutt
[4], Beizer [9], Copeland [48], Mathur [107], and Myers [118].

Parameter Values
emp 0,1
time ??
day m,tu,w,th,f,sa,su
auth 0, 1
aud 0, 1

Figure 11. Parameters and values for access control example.

Both of these intuitively appealing methods will produce a smaller set of values that should
be adequate for testing purposes, by dividing the possible values into partitions that are meaningful
for the program being tested. One value is selected for each partition. The objective is to partition
the input space such that any value selected from the partition will affect the program under test in
the same way as any other value in the partition. Thus, ideally if a test case contains a parameter x
which has value y, replacing y with any other value from the partition will not affect the test case
result. This ideal may not always be achieved in practice.

How should the partitions be determined? One obvious, but not necessarily good, approach

is to simply select values from various points on the range of a variable. For example, if capacity
can range from 0 to 20,000, it might seem sensible to select 0, 10,000, and 20,000 as possible
values. But this approach is likely to miss important cases that depend on the specific requirements
of the system under test. Engineering judgment is involved, but partitions are usually best
determined from the specification. In this example, 9 am and 5 pm are significant, so 0540 (9 hours
past midnight) and 1020 (17 hours past midnight) determine the appropriate partitions:

Ideally, the program should behave the same for any of the

times within the partitions; it should not matter whether the time is 4:00
am or 7:03 am, for example, because the specification treats both of
these times the same. Similarly, it should not matter which time
between the hours of 9 am and 5 pm is chosen; the program should
behave the same for 10:20 am and 2:33 pm. One common strategy,
boundary value analysis, is to select test values at each boundary and at the smallest possible unit
on either side of the boundary, for three values per boundary. The intuition, backed by em pirical
research, is that errors are more likely at boundary conditions because errors in programming may
be made at these points. For example, if the requirements for automated teller machine software

0000 0540 1020 1440

28

For some applications,
we test combinations of
input characteristics, not
just inputs.

say that a withdrawal should not be allowed to exceed $300, a programming error such as the
following could occur:

if (amount > 0 && amount < 300) {
//process withdrawal

} else {
// error message

}

Here, the second condition should have been “amount <= 300”, so a test case that includes the
value amount = 300 can detect the error, but a test with amount = 305 would not. It is
generally also desirable to test the extremes of ranges. One possible selection of values for the time
parameter would then be: 0000, 0539, 0540, 0541, 1019, 1020, 1021, and 1440. More values
would be better, but the tester may believe that this is the most effective set for the available time
budget. With this selection, the total number of combinations is 22782 ×××× = 448.
Generating covering arrays for t = 2 through 4 results in the following number of tests:

t # Tests
2 56
3 112
4 224

Figure 12. Number of tests for access control example.

 It is important to keep in mind that parameters may not always appear in a single function call,
such as our example access_decision(emp, time, day, auth, aud). Sometimes
inputs to a particular operation may be spread through many lines of code in a program. For
instance, consider an automated teller machine processing input from a user and the user’s ATM
card. The code may contain a series of calls such as the following:

get_acct_num(); // read acct number from card
get_PIN(); // read PIN from keyboard
get_tran_type(); // read transaction type, withdrawal or
deposit
get_amt(); // read transaction amount from keyboard
process_tran(); // process transaction

In this case, a series of values will be established in memory before finally being processed. So
account number, PIN, transaction type, and amount are all parameters used in tests, but they are
being entered one at a time instead of all at once. This situation is common in real-world systems.

4.2 Input Variables vs. Test Parameters

In the example above, we assumed that the parameters to be included
in tests were taken from function calls in the program, f (p1, p2, …,
pn), where each parameter had defined values or a range of values.
In many cases, it will not be so obvious how to identify what should
be included in the covering array and tests. The classic Ostrand and
Balcer [135] software testing paper illustrates this common situation with the example of a “find”
command, which takes user input of a string and a file name and locates all lines containing the

29

string. The format of the command is “find <string> <filename>, where <string> is one or more
quoted strings of characters such as “john”, “john smith”, or “john” “smith”. Search strings may
include the escape character (backslash) for quotes, to select strings with embedded quotes in the
file, such as “\”john\”” to report the presence of lines containing john in quotes within the file. The
command displays any lines containing one or more of the strings. This command has only two
input variables, string and filename, so is combinatorial testing really useful here?

 In fact, combinatorial methods can be highly effective for this common testing problem. To
check the “find” command, testers will want to ensure that it handles inputs correctly. The input
variables in this case are string and filename, but it is common to refer to such variables as
parameters. We will distinguish between the two here, but follow conventional practice where the
distinction is clear. The test parameters identify characteristics of the command input variables. So
the test parameters are in this case different from the two input parameters, string and filename.
For example, the string input has characteristics such as length and presence of embedded blanks.
Clearly, there are many ways to select test parameters, so engineering judgment must be used to
determine what are most important. One selection could be the following, where file_length is the
length in characters of the file being searched:

String length: {0, 1, 1..file_length, >file_length}
Quotes: {yes, no, improperly formatted quotes}
Blanks: {0, 1, >1}
Embedded quotes: {0, 1, 1 escaped, 1 not escaped}
Filename: {valid, invalid}
Strings in command line: {0, 1, >1}
String presence in file: {0, 1, >1}

For these seven test parameters, we have 213442= 2,592 possible combinations of test parameter
values. If we choose to test all 2-way interactions we need only 19 tests. For 3 and 4-way
combinations, we need only 67 and 218 tests respectively. Because the number of tests grows only
as log n for n parameters, we can do very thorough testing at relatively low cost for problems like
this. That is, we can include a large number of characteristics to be used as test parameters without
significantly increasing the test burden. In the problem above, if we used only the first four of the
test parameters, instead of all seven, the number of tests required for t = 2, 3, and 4 respectively are
16, 54, and 144. Using all seven characteristics means much more thorough testing with relatively
little increase in test set size.

When testing combinations of input characteristics as above, we must be careful that the test set
captures enough important cases. For the find command, testing 3-way or 4-way combinations of
the seven characteristics should be an excellent sample of test cases that can detect problems. That
is, the tests will include both valid and invalid strings. In some cases, there may be a need to ensure
the presence of test cases with a number of specific characteristics. For example, passwords may
be required to (1) exceed a certain length, (2) contain numerics, and (3) contain special characters.
A 2-way covering array might not include any valid cases, because it contains all pairs but three
characteristics must be true to constitute a valid test case. We may need to supplement the covering
array with some additional tests in this case. Sect. Error! Reference source not found. discusses
this situation in more detail, along with ways to deal with it.

4.3 Fault Type and Detectability

30

Condition faults are much
more difficult to detect
than code block faults.

Consider the code snipped introduced in Fig. Figure 1 again. As seen below, if two boolean
conditions are true, faulty code is executed, resulting in a failure:

if (pressure < 10) {
 // do something
 if (volume > 300) {

// faulty code! BOOM!
} else {

// good code, no problem
}

} else {
 // do something else
}

In this case, the branches pressure < 10 and volume > 300 are correct and the fault occurs in
the code that is reached when these conditions are true. Thus any covering array with values for
pressure and volume that will make the conditions true can detect the problem. But consider
another type of fault, in which branching statements may be faulty. The difference between these
two types of faults is illustrated below, which we will refer to as (a) code block faults and (b)
condition faults:

Example 1.

(a) Code block fault example:
if (correct condition) {faulty code}
else {correct code}

(b) Condition fault example:
if (faulty condition) {correct code}
else {correct code}

Now suppose the code is as follows:

Example 2.

if ((a || !b) && c) {faulty code}
else {correct code}

In this case, a 2-way covering array that includes values for a, b,
and c is guaranteed to trigger the faulty code, since a branch to the
faulty code occurs if either a && c or !b && c is true. A 2-way
array will contain both of these conditions, so only pairs of values
are needed even though the branch condition contains three variables. Suppose however that the
fault is not in the code block that follows from the branch, but in the branch condition itself, as
shown in the following code block. In this case, block 1 should be executed when (a || !b) && c
evaluates to true and block 2 should be executed in all other cases, but a programming error has
replaced || with &&.

31

if ((a && !b) && c) { block 1, correct code }
else { block 2, different correct code }

A 2-way covering array may fail to detect the error. A quick analysis shows that the two
expressions (a && !b) && c and (a || !b) && c evaluate differently for two value settings:
a,b,c = 0,0,1 and a,b,c = 1,1,1. A 2-way array is certain to include all pairs of these
values, but not necessarily all three in the same test. A 3-way array would be needed to ensure
detecting the error, because it would be guaranteed to include a,b,c = 0,0,1 and a,b,c =
1,1,1, either of which will detect the error.

Detecting condition faults can be extremely challenging. Experimental evaluations of the
effectiveness of pairwise (2-way) combinatorial testing [9] show the difficulty of detecting
condition faults. Using a set of 20 complex boolean expressions that have been used in other
testing studies (see [10] or [191] for complete list of expressions), detection was evaluated for five
different types of seeded faults. For the full set of randomly seeded faults, pairwise testing had an
effectiveness of only 28%, although this was partially because different types of faults occurred
with different frequency. For the five fault types, detection effectiveness was only 22% for one
type, but the other four ranged from 46% to 73%, averaging 51% across all types. This is
considerably below the occurrence rates of 2-way interaction failures reported in Sect. 1.1 and
shown in Figure 2, which reflect empirical data on failures that result from a combination of
condition faults and code block faults. Even 6-way combinations are not likely to detect all errors
in complex conditions. A study [181] of fault detection effectiveness for expressions of five to 15
boolean variables found detection rates for randomly generated faults as shown in Figure 13 (2,000
trials; 200 per set). Note that even for 6-way combinations, fault detection was just above 80%.

How can we reconcile these results with the demonstrated effectiveness of combinatorial
testing? First, note that the expressions used in this study were quite complex, involving up to 15
variables. Consider also that software nearly always includes code blocks interspersed with nested
conditionals, often several levels deep. Furthermore, the input variables used in covering arrays
often are not used directly in conditions internal to the program. Their values may be used in
computing other values that are then propagated to the variables in the Boolean conditions inside
the program, and using high strength covering arrays of input values in testing may be sufficient for
a high rate of error detection. Nevertheless, the results in [181] are important because they
illustrate an additional consideration in using combinatorial methods. For high assurance, it may be
necessary to inspect conditionals in the code (if source code is available) and determine the
correctness of branching conditions through non-testing means, such as formally mapping
conditionals to program specifications.

32

Combinatorial test sets
can approximate an
operational profile with
some loss of efficiency.

Figure 13. Effectiveness of t-way testing for expressions of 5 to 15 boolean variables [181]

What do these observations mean for practical testing, and what interaction strengths are
needed to detect condition faults that occur in actual product software? In general, code with
complex conditions may require higher strength (higher level of t-way combinations) testing, which
is not surprising. But it also helps to explain why relatively low-strength covering arrays may be so
effective. Although the condition in Example 1 above includes three terms, it expands to a
disjunctive normal form of a && c || b && c, so only two terms are needed to branch into the
faulty code. Even a more complex expression with many different terms, such as:

 ((a || b) && c || d && e && (!f || g) || !a && (d || h || j))

expands to:

 a && c || b && c || d && !a || h && !a || d && e && g || d && e && !f

which has three clauses with two terms each, and two clauses with three terms. Note that a test
which includes any of the pairs [a c], [b c], [d !a], [h !a] will trigger a branch into
code that follows this conditional. Thus if that code is faulty, a 2-way covering array will cause it
to be executed so that the error can be detected.

These observations lead us to an approach for detecting condition faults: Given any
complex condition, P, convert P to DNF, then let t equal the smallest number of literals in any term.
A t-way covering array will then include at least one test in which the conditional will evaluate to
true, thus branching into the code that follows the conditional. For example, convert (a || !b) &&
c) to (a && c) || (!b && c); then t = 2. Again, however, an important caveat to this approach
is that in most software, conditions are nested, interspersed with blocks of code, so the relationship
between code block faults and condition faults is complex. A faulty condition may branch into a
section of code that is not correct for that condition, which then computes values that may be used
in a nested conditional statement, and so on.

4.4 Building Tests to Match an Operational Profile

Many test projects require the use of an operational profile [118,
121], which attempts to use the same probability distribution of
inputs for test data as occurs in live system operation. For example,
if a web banking system typically receives 40% balance inquiries,
40% payroll deposit transactions, and 20% bill-pay transactions,
then the test data would include these three transaction types in approximately the same proportion.
Similarly, an operational profile may be applied to input data in each transaction, and the test data
would be matched to this distribution. For example, an input partition for the “amount” field in the
bill-pay transaction might include inputs of 96% with amounts under the user’s balance, 3% with
insufficient funds, and 1% zero amounts (user error), similar to the proportion of values that the
bank experiences in day to day use of their system. How can the operational profile approach be
used in conjunction with combinatorial testing?

One way we can approximate an operational profile for some problems is to assign sets of values to
variables in proportion to their occurrence in the operational profile, if the chances of their
occurrence in input are independent of each other. For example, if we have 5 binary variables, a..e,
where a and b have value 0 two-thirds of the time and value 1 a third of the time, and the rest have

33

0, 1 with equal chance. Then use this as input to ACTS, assigning 0 and 1 in proportion to the
occurrence of 0 for a and b (2/3), and 2 in proportion to the occurrence of 1 (1/3):

a: 0,1,2
b: 0,1,2
c: 0,1
d: 0,1
e: 0,1

In the covering array, change 1 to 0 for variables a and b, then change 2 to 1:

a b c d e a b c d e
0,0,0,0,0
0,1,1,1,1
0,2,0,1,0
1,0,1,0,1
1,1,0,0,0
1,2,1,1,1
2,0,0,1,1
2,1,1,0,0
2,2,*,0,*

 becomes

0,0,0,0,0
0,0,1,1,1
0,1,0,1,0
0,0,1,0,1
0,0,0,0,0
0,1,1,1,1
1,0,0,1,1
1,0,1,0,0
1,1,*,0,*

We will have inputs where a,b = 0,0 4/9 of the time, a,b=0,1 2/9 of the time, etc. It's just an
approximation to the correct distribution though, since the distribution isn't quite right for some
combinations, e.g., b,c = 1,0 only 1/9, instead of 1/6, depending on what we do with the * in the last
row. This approach would obviously be a lot messier if we were trying to do distributions with lots
of values per variable. There are no doubt lots of ways to make this more efficient, but we should
probably stick with things we can do using ACTS, and not implementing new algorithms, since
practical problems will require constraint handling.

Limitations: Fine-grained control of the distribution of test values is not practical with this
approach, because it relies on using multiple values that are then mapped into a smaller set of
desired values to produce the distribution. Thus if the desired distribution is 60/20/20 for three
values of parameter P1, we can specify the input to the covering array generator as follows:

P1: a1, a2, a3, b, c.

Then the covering array will have approximately three times as many values of “a” for P1 if we
map a1, a2, and a3 to a. We will refer to the values a1, a2, and a3 as “temporary” values, which are
mapped to the “actual” value a. A distribution such as 45/25/20/10 for four values a, b, c, and d,
would be much more difficult to approximate. It requires that value a appear in the covering array
4.5 X as frequently as value d, value b appear 2.5 X for each occurrence of d, and c must be twice
as common as d. Since we obviously are limited to whole numbers of value occurrences, the way
to do this would be as follows:

P1: a1, a2, a3, a4, a5, a6, a7, a8, a9, b1, b2, b3, b4, b5, c1, c2, d.

34

The larger the
system, the greater
the benefit from
combinatorial testing.

Unfortunately, this results in 17 temporary values for parameter P1. Recall from Chapter 1 that the
number of tests is proportional to vt, so even if t = 2 or t = 3, the resulting covering array of tests
will be extremely large. A more practical approach to this problem is to trade some of the precision
in the distribution for a smaller test set. If we are willing to accept an approximate distribution of
40/20/20/10 instead of 45/25/20/10, then we reduce the number of values for P1 to 9 instead of 17
(a1, a2, a3, a4, b1, b2, c1, c2, d). One heuristic that helps make it more practical to generate test
arrays meeting an operational distribution is to require that the proportions of different values all be
divisible by at least 10, to ensure that no more than 10 temporary values are used. For example, a
60/20/10/10 distribution can be produced with six for the first value, two for the second, etc. Of
course, limiting temporary values to 10 or less means that actual values must be constrained to
significantly less than 10, depending on the distribution being modeled. Once again, engineering
judgment is required to find a tradeoff that works for the problem at hand.

We also note that operational profile testing is focused on approximating the type and
number of inputs normally encountered, while combinatorial testing’s forte is exercising the very
rare cases that normal testing might miss. An additional complication is that not all failures have
the same consequence in terms of economic or other impact. The more commonly used functions
of the system may be much more important to a company’s revenue, for example, because of the
large number of customers impacted when one of them fails. Such considerations argue for the
need to consider the operational distribution in test planning, looking at the cost of failure for
different functions [191, 192]. For example, a retail operation may place a higher priority on
customer purchase transactions than on item return, on the basis of both volume and impact on
revenue. In this case it makes sense to do more testing of purchase transactions, reflecting the
operational distribution of transaction types. Combinatorial testing would then be applied to testing
of purchase transactions to detect obscure input combinations that might cause a failure. Very
heavily used transaction types are eventually likely to encounter almost any combination, so it is
important to find these rare cases in testing.

4.5 Scaling Considerations

 With the first of the examples above, the advantage over
exhaustive testing is not large, because of the small number of
parameters. The second example provided a respectable gain, but
what happens with really big problems? For larger problems, the
advantages of combinatorial testing can be spectacular. For
example, consider the problem of testing the software that processes
switch settings for the panel [125] shown in Figure 14. There are 34 switches, which can each be
either on or off, for a total of 234 = 1.7 x 1010 possible settings. We clearly cannot test 17 billion
possible settings, but all 3-way interactions can be tested with only 33 tests, and all 4-way
interactions with only 85. This may seem surprising at first, but it results from the fact that every
test of 34 parameters contains

3

34 = 5,984 3-way and

4

34 = 46,376 4-way combinations.

35

Figure 14. Panel with 34 switches.

This example illustrates the fact that the testing efficiency gain from combinatorial methods

is much greater with larger problems. Recall from Section 0 that the number of tests required for n
parameters with v values each increases proportional to vt log n, for t-way testing, but exhaustive
testing for the same problem would require vn tests. Figure 15 shows the sizes of 2-way and 4-way
covering arrays for different levels of v with 10 through 50 variables. Notice the logarithmic
growth of covering array sizes with increasing values of n, and the fact that the covering arrays are
extremely tiny compared with what would be required for exhaustive testing.

 v=2 v=4 v=6

n 2-way
CA

4-way CA exhaustive 2-way
CA

4-way CA exhaustive 2-way CA 4-way CA exhaustive

10 8 41 1024 29 725 1048576 63 3713 6.046e+7
20 10 65 1048576 37 1165 1.099e+12 79 6015 3.656e+15
30 11 80 1.073e+9 41 1448 1.1529e+18 86 7473 2.210e+23
40 11 90 1.099e+12 44 1661 1.2089e+24 94 8550 1.336e+31
50 11 98 1.125e+15 46 1839 1.267e+30 99 9466 8.082e+38

Figure 15. 2-way and 4-way covering array sizes compared with exhaustive tests for
various values of n and v.

4.6 Cost and Practical Considerations

Combinatorial methods can be highly effective and reduce the cost of testing substantially.

For example, Justin Hunter has applied these methods to a wide variety of test problems and
consistently found both lower cost and more rapid error detection [85]. But as with most aspects of
engineering, tradeoffs must be considered. Among the most important is the question of when to
stop testing, balancing the cost of testing against the risk of failing to discover additional failures.
An extensive body of research has been devoted to this topic, and sophisticated models are
available for determining when the cost of further testing will exceed the expected benefits [19,
107]. Existing models for when to stop testing can be applied to the combinatorial test approach
also, but there is an additional consideration: What is the appropriate interaction strength to use in
this type of testing?

To address these questions consider the number of tests at different interaction strengths for

an avionics software example [91] shown in Figure 16. While the number of tests will be different
(probably much smaller than in Figure 16) depending on the system under test, the magnitude of
difference between levels of t will be similar to Figure 16, because the number of tests grows with
vt, for parameters with v values. That is, the number of tests grows with the exponent t, so we want

36

to use the smallest interaction strength that is appropriate for the problem. Intuitively, it
seems that if no failures are detected by t-way tests, then it may be reasonable to conduct additional
testing only for t+1 interactions, but no greater if no additional failures are found at t+1. In the
empirical studies of software failures, the number of failures detected at t > 2 decreased
monotonically with t, so this heuristic seems to make sense: start testing using 2-way (pairwise)
combinations, continue increasing the interaction strength t until no errors are detected by the t-
way tests, then (optionally) try t+1 and ensure that no additional errors are detected. As with
other aspects of software development, this guideline is also dependent on resources, time
constraints, and cost-benefit considerations.

0

2000

4000

6000

8000

10000

12000

2-way 3-way 4-way 5-way 6-way

Te
st

s

Figure 16. Number of tests for avionics example.

When applying combinatorial methods to input parameters, the key cost factors are the

number of values per parameter, the interaction strength, and the number of parameters. As shown
above, the number of tests increases rapidly as the value of t is increased, but the rate of increase
depends on the number of values per parameter. Binary variables, with only two values each, result
in far fewer tests than parameters with many values each. As a practical matter, when partitioning
the input space, it is best to keep the number of values per parameter below 8 or 10 if possible,
since the number of tests increases with vt (consider the difference between 43 = 64 and 113 = 1,331,
for example).

 Because the number of tests increases only logarithmically with the number of parameters,
test set size for a large problem may be only somewhat larger than for a much smaller problem. For
example, if a project uses combinatorial testing for a system that has 20 parameters and generates
several hundred tests, a much larger system with 40 to 50 parameters may only require a few dozen
more tests. Combinatorial methods may generate the best cost benefit ratio for large systems.

4.7 Chapter Summary

1. The key advantage of combinatorial testing derives from the fact that all, or nearly all, software

failures appear to involve interactions of only a few parameters. Generating a covering array of
input parameter values allows us to test all of these interactions, up to a level of 5-way or 6-way
combinations, depending on resources.

2. Practical testing often requires abstracting the possible values of a variable into a small set of

equivalence classes. For example, if a variable is a 32-bit integer, it is clearly not possible to
test the full range of values in +/- 231. This problem is not unique to combinatorial testing, but
occurs in most test methodologies. Simple heuristics and engineering judgment are required to

37

determine the appropriate portioning of values into equivalence classes, but once this is
accomplished it is possible to generate covering arrays of a few hundred to a few thousand tests
for many applications. The thoroughness of coverage will depend on resources and criticality
of the application.

38

5 Test Parameter Analysis (E. Miranda)

[non-NIST author]

39

6 Managing System State in Combinatorial Test Designs (G. Sherwood)

[non NIST author]

40

7 Measuring Combinatorial Coverage

 [noted separately]

41

8 Test Suite Prioritization by Combinatorial Coverage (R. Bryce and S. Sampath)

[non NIST authors]

42

A large number of random
tests can provide a high level
of combinatorial coverage.

9 Combinatorial Testing and Random Test Generation

For combinatorial testing to be most efficient and effective, we need an understanding of when
a particular test development method is most appropriate. That is, what characteristics of a problem
lead us to use one approach over another, and what are the tradeoffs with respect to cost and
effectiveness? Some studies have reviewed the effectiveness of combinatorial and random
approaches to testing, comparing the use of covering arrays with randomly generated tests, but have
reached conflicting results [5, 6, 9, 139, 151, 94, 95]. Any single test containing values for n
parameters, no matter how it is constructed, covers C(n,2) 2-way combinations (pairs), C(n,3) 3-
way combinations, and so on. Naturally as additional tests are added, more combinations are
covered. A covering array packs combinations together closely, but as long as test i+1 differs from
previously produced tests, additional combinations will be covered. Generating values randomly
naturally leads to differences between tests, resulting in good combinatorial coverage for certain
classes of problems. This chapter discusses the use of covering arrays and random test generation.
As we will see, there is an interesting connection between these two concepts.

9.1 Coverage of Random Tests

By definition, a covering array covers all t-way combinations for the specified value of t at
least once. If enough random tests are generated, they will eventually also cover all t-way
combinations. One key question is how many random tests are needed to cover all t-way
combinations? In general, as the number of parameters increases, the probability that a random test
set covers all t-way combinations increases as well, so that with thousands of parameters, these two
methods begin to converge to the same number of tests. It has been shown [6] that where there is a
large number of parameters (i.e., 1000s) and parameter values, and no constraints among
parameters or parameter values, the number of tests required for t-way coverage (for arbitrary t) is
approximately the same for covering arrays and randomly generated tests. This is an encouraging
result, because of the difficulty of generating large covering arrays. We can produce thousands of
random tests in seconds, but existing covering array algorithms cannot produce arrays for such
large problems in a practical amount of time. If t-way coverage is needed for such problems, then
random tests can be generated with a known probability of producing a full covering array. For N
randomly generated tests containing parameters with vi values each, there is a probability Pt of
detecting at least one t-way fault [6]:

N

t

i i
t

v
P

−−≥
∏=1

111 (9.1.1)

For the more common case where there are multiple faults, we need to also consider the ways in
which combinations of faults can be discovered, leading to a probability Pt,z to detect z different
faults of [6]:

N

t

i i
zj

j
zt

vj
z

P

−

−≥

∏
∑

=

=

1
,0,

11)1((9.1.2)

These probabilities converge to limk→ ∞ Pt = 1 and limk→ ∞ Pt,z =
1, for k parameters. For very large N, a randomly generated test
set almost assures full t-way coverage. However, note that full

43

coverage is not guaranteed because values are generated randomly. Using the coverage methods
presented in Chapter 7 (which are easily parallelizable), we could determine if all t-way
combinations have been covered, and supplement the test set with any missing ones. After all, our
goal is not to use covering arrays, but to cover all t-way combinations, for the appropriate level of t.
It doesn’t matter how tests providing the necessary coverage are generated. As mentioned, an
important caveat to this probability calculation is that it does not hold when constraints are
involved, as they often are in practical testing problems. We can still generate tests randomly, but
cannot rely on this calculation to estimate how many tests to produce.

For smaller test problems involving 10s of parameters, covering array algorithms are entirely

practical and can cover all t-way combinations in a fraction of the number of tests required by
random generation. Table 6 gives the percentage of t-way combinations covered by a randomly
generated test set of the same size as a t-way covering array, for various combinations of k =
number of variables and v = number of values per variable. Note that the coverage could vary with
different realizations of randomly generated test sets. That is, a different random number generator,
or even multiple runs of the same generator, may produce slightly different coverage (perhaps a few
tests out of thousands, depending on the problem). Figure 18 through Figure 22 summarize the
coverage for arrays with variables of 2 to 10 values. As seen in the figures, the coverage provided
by a random test suite versus a covering array of the same size varies considerably with different
configurations.

Vars
Values/
Variable

ACTS
2-way
tests

Random
2-way

coverage

ACTS
3-way
tests

Random
3-way

coverage

ACTS
4-way
tests

Random
4-way

coverage
10 2 10 89.28% 20 92.18% 42 92.97%
10 4 30 86.38% 151 89.90% 657 92.89%
10 6 66 84.03% 532 91.82% 3843 94.86%
10 8 117 83.37% 1214 90.93% 12010 94.69%
10 10 172 82.21% 2367 90.71% 29231 94.60%
15 2 10 96.15% 24 97.08% 58 98.36%
15 4 33 89.42% 179 93.75% 940 97.49%
15 6 77 89.03% 663 95.49% 5243 98.26%
15 8 125 85.27% 1551 95.21% 16554 98.25%
15 10 199 86.75% 3000 94.96% 40233 98.21%
20 2 12 97.22% 27 97.08% 66 98.41%
20 4 37 90.07% 209 96.40% 1126 98.79%
20 6 86 91.37% 757 97.07% 6291 99.21%
20 8 142 89.16% 1785 96.92% 19882 99.22%
20 10 215 88.77% 3463 96.85% 48374 99.20%
25 2 12 96.54% 30 98.26% 74 99.18%
25 4 39 91.67% 233 97.49% 1320 99.43%
25 6 89 92.68% 839 97.94% 7126 99.59%
25 8 148 90.46% 1971 97.93% 22529 99.59%
25 10 229 89.80% 3823 97.82% 54856 99.58%

Table 6. Percent of t-way combinations covered by equal number of random tests

Now consider the size of a random test set required to provide 100% combination coverage. With
the most efficient covering array algorithms, the difficulty of finding tests with high coverage
increases as tests are generated. Thus even if a randomly generated test set provides better than
99% of the coverage of an equal sized covering array, it should not be concluded that only a few

44

more tests are needed for the random set to provide 100% coverage. Table 7 gives the sizes of
randomly generated test sets required for 100% combinatorial coverage at various configurations,
and the ratio of these sizes to covering arrays computed with ACTS. Although there is
considerable variation among configurations, note that the ratio of random to covering array size
for 100% coverage exceeds 3 in most cases, with average ratios of 3.9, 3.8, and 3.2 at t = 2, 3, and 4
respectively. Thus, combinatorial testing retains a significant advantage over random testing for
problems of this size if the goal is 100% combination coverage for a given value of t.

Vars

Valu
es

2-way Tests 3-way Tests 4-way Tests
ACTS
Tests

Random
Tests Ratio

ACTS
Tests

Random
Tests Ratio

ACTS
Tests

Random
Tests Ratio

10 2 10 18 1.80 20 61 3.05 42 150 3.57
10 4 30 145 4.83 151 914 6.05 657 2256 3.43
10 6 66 383 5.80 532 1984 3.73 3843 13356 3.48
10 8 117 499 4.26 1214 5419 4.46 12010 52744 4.39
10 10 172 808 4.70 2367 11690 4.94 29231 137590 4.71
15 2 10 20 2.00 24 52 2.17 58 130 2.24
15 4 33 121 3.67 179 672 3.75 940 2568 2.73
15 6 77 294 3.82 663 2515 3.79 5243 17070 3.26
15 8 125 551 4.41 1551 6770 4.36 16554 60568 3.66
15 10 199 940 4.72 3000 15234 5.08 40233 159870 3.97
20 2 12 23 1.92 27 70 2.59 66 140 2.12
20 4 37 140 3.78 209 623 2.98 1126 3768 3.35
20 6 86 288 3.35 757 2563 3.39 6291 18798 2.99
20 8 142 630 4.44 1785 8450 4.73 19882 59592 3.00
20 10 215 1028 4.78 3463 14001 4.04 48374 157390 3.25
25 2 12 34 2.83 30 70 2.33 74 174 2.35
25 4 39 120 3.08 233 790 3.39 1320 3520 2.67
25 6 89 327 3.67 839 2890 3.44 7126 19632 2.75
25 8 148 845 5.71 1971 7402 3.76 22529 61184 2.72
25 10 229 1031 4.50 3823 16512 4.32 54856 191910 3.50

Ratio Average: 3.90 3.82 3.21
Table 7. Size of random test set required for 100% t-way combination coverage.

Values per
 variable

Ratio,
2-way

Ratio,
3-way

Ratio,
4-way

2 2.14 2.54 2.57
4 3.84 4.04 3.04
6 4.16 3.59 3.12
8 4.70 4.33 3.44
10 4.68 4.59 3.86

Table 8. Average ratio of random/ACTS for covering arrays
by values per variable, variables = 10, 15, 20, 25

9.2 Adaptive Random Testing

A recently developed testing strategy that can work quite well with combinatorial methods is called
adaptive random testing (ART) [33, 35, 36]. The ART strategy seeks to deal with the problem that

45

faults tend to cluster together [2, 16, 34], by choosing tests one at a time such that each newly
chosen test is as “different” as possible from previous tests. The difference, or distance, metric is
chosen based on problem characteristics. The basic ART algorithm is shown in Figure 17.

T = {} /* T is the set of previously executed test cases */
randomly generate an input t
test the program using t as a test case
add t to T
while (stopping criteria not reached) {

 D = 0
 randomly generate next k candidates c1, c2, . . . , ck
 for each candidate ci {
 calculate the minimum distance di from T
 if di > D { D = di; t = ci }

 }
 add t to T
 test the program using t as a test case
} // end while

Figure 17. Adaptive Random Testing algorithm

ART generates a set of random tests, determines the best test, i.e., with the greatest distance from
the existing test set T, then adds that test to T, continuing until some stopping criterion is fulfilled.
If the distance metric is based on the number of previously uncovered t-way combinations that are
covered in the candidate tests, then this algorithm is essentially a greedy algorithm [125] for
computing a covering array one test at a time. The distance measures for this approach were
originally developed for numeric processing. Many application domains, however, must deal with
enumerated values with relatively little complex calculation. In these cases, distance measures
tailored to covering arrays can help in choosing test order, that is, in prioritizing tests. Chapter
Error! Reference source not found. explains the use of prioritization methods.

9.3 Tradeoffs: Covering Arrays and Random Generation

The comparisons between random tests and covering arrays for combinatorial testing suggest a
number of conclusions:

• For binary variables (v=2), random tests compare reasonably well with covering arrays
(96% to 99% coverage) for all three values (2, 3, and 4) of t for 15 or more variables. Thus random
testing for a SUT with all or mostly binary variables may compare favorably with covering arrays.

• Combination coverage provided by random generation of the equivalent number of
pairwise tests at (t = 2) decreases as the number of values per variable increases, and the coverage
provided by pairwise testing is significantly less than 100%. The effectiveness of random testing
relative to pairwise testing should be expected to decline as the average number of values per
variable increases.

• For 4-way interactions, coverage provided by random test generation increases with the
number of variables. Using a covering array for a module with approximately 10 variables should
be significantly more effective than random testing, while the difference between the two methods
should be less for modules with 20 or more variables.

• For 100% combination coverage, the efficiency advantage of covering arrays varies
directly with the number of values per variable and inversely with the interaction strength t. Figure

46

A less optimal (by size)
array may provide
better failure detection
because it includes
more interactions at
t+1, t+2, etc.

23 illustrates how these factors (interaction strength t and values per variable v) combine: the ratio
of random/covering array coverage is highest for 10 variables with t = 2, but declines for other
pairings of t and v. To obtain 100% combination coverage, random testing is significantly less
efficient, requiring 2 to nearly 5 times as many tests as a covering array generated by ACTS. Thus
if 100% combination coverage is desired, using covering arrays may be less expensive than random
test generation.

• For very large sets of parameters with no constraints, random test generation can produce
a set of tests that cover all t-way combinations that is not significantly larger than the corresponding
covering array. Generating the tests randomly will be much faster, and for very large problems
covering array generation with existing tools is likely to be intractable.

An important practical consideration in comparing combinatorial with random testing is the
efficiency of the covering array generator. Algorithms have a very wide range in the size of
covering arrays they produce. In some cases, the better algorithms to produce arrays that are 50%
smaller than other algorithms. We have found in comparisons with other tools that there is no
uniformly “best” algorithm. Other algorithms may produce smaller or larger combinatorial test
suites, so the comparable random test suite will vary in the number of combinations covered. Thus
random testing may fare better in comparison with combinatorial tests produced by one of the less
efficient algorithms.

 However, there is a less obvious but important tradeoff regarding
covering array size. An algorithm that produces a very compact
array, i.e., with few tests, for t-way combinations may include fewer
(t+1)-way combinations because there are fewer tests. Table 9 and
Table 10 illustrate this phenomenon for an example. Table 9 shows
the percentage of t+1 up to t+3 combination coverage provided by
the ACTS tests and in Table 10 the equivalent number of random
tests. Although ACTS pairwise tests provide better 3-way coverage than the random tests, at other
interaction strengths and values of t, the random tests are roughly the same or slightly better in
combination coverage than ACTS. Recall from Section 9.1 that pairwise combinatorial tests
detected slightly fewer events than the equivalent number of random tests. One possible
explanation may be that the superior 4-way and 5-way coverage of the random tests allowed
detection of more events. Almost paradoxically, an algorithm that produces a larger, sub-optimal
covering array may provide better failure detection because the larger array is statistically more
likely to include t+1, t+2, and higher degree interaction tests as a byproduct of the test generation.
Again, however, the less optimal covering array is likely to more closely resemble the random test
suite in failure detection.

Note also that the number of failures in the SUT can affect the degree to which random testing

approaches combinatorial testing effectiveness. For example, suppose the random test set covers
99% of combinations for 4-way interactions, and the SUT contains only one 4-way interaction
failure. Then there is a 99% probability that the random tests will contain the 4-way interaction
that triggers this failure. However, if the SUT contains m independent failures, then the probability
that combinations for all m failures are included in the random test set is .99m. Hence with multiple
failures, random testing may be significantly less effective, as its probability of detecting all failures
will be cm, for c = percent coverage and m = number of failures.

t 3-way
coverage

4-way
coverage

5-way
coverage

47

2 .758 .429 .217
3 .924 .709
4 .974

Table 9. Higher interaction coverage of t-way tests

t 3-way
coverage

4-way
coverage

5-way
coverage

2 .735 .499 .306
3 .917 .767
4 .974

Table 10. Higher interaction coverage of random tests

Figure 18. Percent coverage of t-way combinations for v=2.

Figure 19. Percent coverage of t-way combinations for v=4.

48

Figure 20. Percent coverage of t-way combinations for v=6.

Figure 21. Percent coverage of t-way combinations for v=8.

Figure 22. Percent coverage of t-way combinations for v=10

49

2way 3way 4way
nval=2

nval=6

nval=10

0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50

4.00

4.50

5.00

Ratio

Interactions

Values per variable

4.50-5.00
4.00-4.50
3.50-4.00
3.00-3.50
2.50-3.00
2.00-2.50
1.50-2.00
1.00-1.50
0.50-1.00
0.00-0.50

Figure 23. Average ratio of random/ACTS for covering arrays by values per variable

9.4 Cost and Practical Considerations

 The relationship between covering arrays and randomly generated tests presents some
interesting issues. Generating covering arrays for combinatorial tests is complex; it has been shown to
be an NP-hard problem. But generating tests randomly is trivial. Thus for large problems, we can
compare the cost and time of generating a covering array versus producing tests randomly, measuring
their coverage (Chapter 7), then adding tests as needed to provide full combinatorial coverage. Notice
the last column of Table 6. For 4-way tests, once the number of parameters exceeds roughly 20,
random generation will cover 99% or more of 4-way combinations. If a problem requires tests for 100
parameters, for example, covering array generators may require hours or days, or may simply be
unable to handle that many parameters, but random tests could be generated quickly and easily. The
test generation time for these two approaches is one factor among many that must be considered in test
planning. Analyzing test parameters (Chapters 3 through 6), oracle development (Chapters Error!
Reference source not found. and 12), and other essential tasks such as test execution and managing
test runs will generally be much more expensive than generating tests, regardless of the test generation
method used.

While the analyses reported here do not indicate that combinatorial testing is uniformly better
than random, it does support a preference for combinatorial methods if the cost of applying the two
test approaches is approximately the same. Most of the cost of testing goes into test planning, test
oracle development, running and reporting tests, and the generation of test data – either randomly or
with covering array tools – can be fully automated and run in parallel with other tasks. This preference
may be particularly relevant if the SUT is likely to contain multiple failures (as is usually the case).
Single failures that depend on the interaction of two or more variables have a high likelihood of being
detected by random tests, because the random test set may cover a high percentage of all t-way
combinations. But the probability of detecting multiple failures declines rapidly as cm, for c = percent
coverage and m = number of independent failures. Unfortunately many testing problems are too large
(too many parameters) to be handled entirely using covering arrays, so random test generation may be
used to achieve the combinatorial coverage desired.

50

9.5 Chapter Summary

Covering array algorithms are significantly more efficient than random test generation if the
goal is 100% combination coverage. The table below summarizes the test set size comparison for a
variety of problem configurations. The difference is especially striking for binary parameters, where
the ACTS covering array generator produces (t+1)-way coverage with roughly the same number of
tests required by random generation for t-way coverage. Table 7 provides additional detail.

 t = 2 t = 3 t = 4

n v ACTS random ACTS random ACTS random
10 2 10 18 20 61 42 150
10 4 30 145 151 914 657 2256
10 8 117 499 1214 5419 12010 52744
15 2 10 20 24 52 58 130
15 4 33 121 179 672 940 2568
15 8 125 551 1551 6770 16554 60568
20 2 12 23 27 70 66 140
20 4 37 140 209 623 1126 3768
20 8 142 630 1785 8450 19882 59592
25 2 12 34 30 70 74 174
25 4 39 120 233 790 1320 3520
25 8 148 845 1971 7402 22529 61184

Table 11. Summary, ACTS and random test set sizes for 100% t-way combination coverage.

Existing research has shown either no difference (for some problems) or higher failure
detection effectiveness (for most problems) for combinatorial testing. Analyzing random test sets
suggests a number of reasons for this result. In particular, a highly optimized t-way covering array
may include fewer t+1, t+2, and higher degree interaction tests than an equivalent sized random test
set. Similarly, a covering array algorithm that produces a larger, sub-optimal array may provide better
failure detection because the larger array is statistically more likely to include t+1, t+2, and higher
degree interaction tests as a byproduct of the test generation. In some applications, it may make sense
to combine aspects of both approaches. Adaptive random testing is a systematic method that can be
used in this manner.

51

In many systems, the
order of inputs is
important.

10 Sequence-Covering Arrays

In testing event-driven software, the critical condition for triggering failures often is whether or
not a particular event has occurred prior to a second one, establishing a particular state that must be
reached before a given failure can be triggered. For example, a failure might occur when connecting
device A only if device B is already connected, or only if devices B and C were both already
connected. Events may be repeatable in some systems, but this is not always the case. In the testing
problem that motivated this work, the critical issue was the sequence of connecting a large number of
peripherals, so it was physically impossible to connect an already connected device (without
unplugging, which would be a separate event). As a different example, a memory management
function may fail on an attempt to allocate memory if it failed to properly release memory at some
prior time. Another common class of problems of this type occurs with graphical user interfaces that
use callbacks. User actions may trigger the creation or release of resources, or the enabling or
disabling of GUI controls. But the user may invoke these callbacks in any order, and errors may result
if a prior callback left the system in an unexpected state.

10.1 Sequence Covering Array Definition

For this problem we can define a sequence-covering array
[96, 97, 98, 99], which is a set of tests that ensure all t-way
sequences of events have been tested. The t events in the sequence
may be interleaved with others, but all permutations will be tested.
For example, we may have a component of a factory automation system that uses certain devices
interacting with a control program. We want to test the events defined in Table 12.

There are 6! = 720 possible sequences for these six events, and the system should respond
correctly and safely no matter the order in which they occur. Operators may be instructed to use a
particular order, but mistakes are inevitable, and should not result in injury to users or compromise the
enterprise. Because setup, connections and operation of this component are manual, each test can take
a considerable amount of time. It is not uncommon for system-level tests such as this to take hours to
execute, monitor, and complete. We want to test this system as thoroughly as possible, but time and
budget constraints do not allow for testing all possible sequences, so we will test all 3-event sequences.

With six events, a, b, c, d, e, and f, one subset of three is {b, d, e}, which can be arranged in
six permutations: [b d e], [b e d], [d b e], [d e b], [e b d], [e d b]. A test that covers the permutation [d
b e] is: [a d c f b e]; another is [a d c b e f]. A larger example system may have 10 devices to connect,
in which case the number of permutations is 10!, or 3,628,800 tests for exhaustive testing. In that case,
a 3-way sequence covering array with 14 tests covering all 7208910 =⋅⋅ 3-way sequences is a
dramatic improvement, as is 72 tests for all 4-way sequences (see Error! Reference source not
found.).

Event Description
a connect air flow meter
b connect pressure gauge
c connect satellite link
d connect pressure readout
e engage drive motor
f engage steering control

52

Table 12. System events
Definition. A sequence covering array, SCA(N, S, t) is an N x S matrix where entries are from a finite
set S of s symbols, such that every t-way permutation of symbols from S occurs in at least one row; the
t symbols in the permutation are not required to be adjacent. That is, for every t-way arrangement of
symbols x1, x2, ..., xt, the regular expression .*x1.*x2.*xt.* matches at least one row in the array.
Sequence covering arrays, as the name implies, are analogous to standard covering arrays (see Sect.
1.3), which include at least one of every t-way combination of any n variables, where t<n. A variety of
algorithms are available for constructing covering arrays, but these are not usable for generating t-way
sequences because they are designed to cover combinations in any order.

Example 1. Consider the problem of testing four events, a, b, c, and d. For convenience, a t-way
permutation of symbols is referred to as a t-way sequence. There are 4! = 24 possible permutations of
these four events, but we can test all 3-way sequences of these events with only six tests (see Error!
Reference source not found.).

Test
1 a d b c
2 b a c d
3 b d c a
4 c a b d
5 c d b a
6 d a c b

Table 13. Tests for four events.

10.2 Size and Construction of Sequence Covering Arrays

Sequence covering arrays can be constructed with a variety of methods. A 2-way sequence
covering array can be constructed simply by listing the events in some order for one test and in reverse
order for the second test:

1 a b c d
2 d c b a

To see that this procedure generates tests that cover all 2-way sequences, note that for 2-way sequence
coverage, every pair of variables x and y, x..y and y..x must both be in some test (where a..b means that
a is eventually followed by b). All variables are included in each test, therefore any sequence x..y
must be in either test 1 or test 2 and its reverse y..x in the other test. Thus only 2 tests are needed to
cover all 2-way sequences, regardless of the number of events to be included in the tests. This can be
an effective way of doing initial tests on a GUI with multiple buttons, text input boxes, selection lists,
and other features. Invoking each of the features on screen in some order and then reversing the order
may uncover problems in memory management or initialization (often as a result of developers’
assumptions about the order in which the user will interact with the system.)

The number of tests required for t-way coverage of n events is proportional to t! log n., and the lower
bound for a sequence covering array grows logarithmically in n [97]. Therefore, a large number of
events can be tested using a reasonable number of tests for most applications, as can be confirmed in
Error! Reference source not found.. Greedy methods produce good results across a broad range of
problem sizes. Construction methods for sequence covering arrays also include answer-set
programming [11, 58]. Answer set programming can generate more compact test sets than greedy
methods, but this advantage may not hold for larger problem sizes.

53

Generalized t-way Sequence Covering

For t-way sequence test generation, where t > 2, one method is to use a greedy algorithm that
generates a large number of tests, scores each by the number of previously uncovered sequences it
covers, then chooses the highest scoring test. This simple approach produces surprisingly good results,
in both test set size and execution time.

Figure 24. Algorithm t-seq

The complexity of the algorithm is dominated by the selection of a candidate test that covers the
greatest number of previously uncovered sequences. An array of bits for each possible t-way sequence
is used so that marking and testing the array for a particular sequence can be done in constant time for
each of the t-way sequences This selection process checks each of the)1(...)1(+−××−× tnnn
possible t-way sequences to determine if the sequence has previously been covered or is newly
covered by the candidate test. The check is done for each of the N candidate tests, with constant N, so
the time complexity of the algorithm is O(nt). Storage required for the algorithm is O(nt) also,
because of the set chk for keeping track of which sequences have been covered at each step.

It is shown in [97] that the number of tests generated by a greedy algorithm grows logarithmically with
n. At each step, a greedy algorithm that selects the test which covers the largest number of previously
uncovered sequences will progress at a rate of at least 1/t! of the remaining sequences at each iteration.
Thus uncovered sequences are reduced as Ui+1 = Ui(1 - 1/t!), and after k iterations, remaining
uncovered sequences will be U0(1 - 1/t!)k. Initially, U0 =)1(...)1(+−××−× tnnn . For small n, it
may be possible to implement an optimal greedy algorithm that tests all n! possible tests. For larger
values of n, the algorithm may be reasonably close to finding an optimal next test, with sufficient
candidates.

Algorithm t-seq(int t, int n)
// t = interaction strength; n = # parameters, n > t;
 N = # candidate tests to generate
 initialize test set ts to be an empty set;
 initialize set chk of)1(...)1(+−××−× tnnn bits to 0;
 while (all t-way sequences not marked in chk) {

1. tc := set of N test candidates generated with random values of each of the n parameters
2. test1 := test from set tc that covers the greatest number of sequences not marked as covered

in chk;
3. for each new sequence covered in test1, mark corresponding bit in set chk to 1;
4. ts := ts U test1 ;
5. if (symmetry && all t-way sequences not marked in chk) { test2 := reverse(test1);

 ts := ts U test2 ;
 for each new sequence cover in test2,
 mark corresponding bit in set chk to 1; }

 }
return ts;

54

10.3 Using Sequence Covering Arrays

Sequence covering arrays have been incorporated into operational testing for a mission-critical
system that uses multiple devices with inputs and outputs to a laptop computer. The test procedure has
8 steps: boot system, open application, run scan, connect peripherals P-1 through P-5. It is expected
that for some sequences, the system will not function properly, thus the order of connecting peripherals
is a critical aspect of testing. In addition, there are constraints on the sequence of events: can't scan
until the app is open; can't open app until system is booted. There are 40,320 permutations of 8 steps,
but some are redundant (e.g., changing the order of peripherals connected before boot), and some are
invalid (violates a constraint). Around 7,000 are valid, and non-redundant, but this is far too many to
test for a system that requires manual, physical connections of devices.

The system was tested using a seven-step sequence covering array, incorporating the assumption that
there is no need to examine strength-3 sequences that involve boot-up. The initial test configuration
(Error! Reference source not found.) was drawn from the library of pre-computed sequence tests.
Some changes were made to the pre-computed sequences based on unique requirements of the system
test. If 6='Open App' and 5='Run Scan', then cases 1, 4, 6, 8, 10, and 12 are invalid, because the scan
cannot be run before the application is started. This was handled by 'swapping 0 and 1' when they are
adjacent (1 and 4), out of order. For the other cases, several cases were generated from each that were
valid mutations of the invalid case. A test was also embedded to see whether it mattered where each
of three USB connections were placed. The last test case ensures at least strength 2 (sequence of
length 2) for all peripheral connections and 'Boot', i.e., that each peripheral connection occurs prior to
boot. The final test array is shown in Table 15.

Test 1 0 1 2 3 4 5 6
Test 2 6 5 4 3 2 1 0
Test 3 2 1 0 6 5 4 3
Test 4 3 4 5 6 0 1 2
Test 5 4 1 6 0 3 2 5
Test 6 5 2 3 0 6 1 4
Test 7 0 6 4 5 2 1 3
Test 8 3 1 2 5 4 6 0
Test 9 6 2 5 0 3 4 1

Test 10 1 4 3 0 5 2 6
Test 11 2 0 3 4 6 1 5
Test 12 5 1 6 4 3 0 2

Figure 25. Seven-event tests from pre-computed test library.

10.4 Cost and Practical Considerations

As with other forms of combinatorial testing, some combinations may be either impossible or not
exist on the system under test. For example, ‘receive message’ must occur before ‘process message’.
One algorithm for sequence covering arrays makes it possible to specify pairs x,y, where the sequence
x..y is to be excluded from the generated covering array. Typically this will lead to extra tests, but
does not increase the test array significantly.

 Sequence covering can be realtively inexpensive as a test technique. As noted previously,
only two tests are needed to produce 2-way covering, and the number of tests grows only as log n for n
events for t > 2. Error! Reference source not found. shows the number of tests for 3-way and 4-way

55

sequences. Different algorithms may produce slightly fewer or more tests than shown, but numbers
will be similar.

Events 3-seq Tests 4-seq Tests

5 8 29

6 10 38

7 12 50

8 12 56

9 14 68

10 14 72

11 14 78

12 16 86

13 16 92

14 16 100

15 18 108

16 18 112

17 20 118

18 20 122

19 22 128

20 22 134

21 22 134

22 22 140

23 24 146

24 24 146

25 24 152

26 24 158

27 26 160

28 26 162

29 26 166

30 26 166

40 32 198

50 34 214

60 38 238

70 40 250

80 42 264
Table 14. Number of tests for combinatorial 3-way and 4-way sequences.

10.5 Chapter Summary

Sequence covering arrays are a new application of combinatorial methods, developed to solve
problems with interoperability testing. A sequence-covering array is a set of tests that ensures all t-
way sequences of events have been tested. The t events in the sequence may be interleaved with
others, but all permutations will be tested. All 2-way sequences can be tested simply by listing the
events to be tested in any order, then reversing the order to create a second test. Algorithms have
been developed to create sequence covering arrays for higher strength interaction levels. For a given
interaction strength, the number of tests generated is proportional to the log of the number of events.

56

As with other types of combinatorial testing, constraints may be important, since it is very common
that certain events depend on others occurring first. The tools developed for this problem allow the
user to specify constraints in the form of excluded sequences which will not appear in the generated
test array.

57

Table 15. Final sequence covering array used in testing.

Original
Case Case Step1 Step2 Step3 Step4 Step5 Step6 Step7 Step8

1 1 Boot P-1 (USB-RIGHT) P-2 (USB-BACK) P-3 (USB-LEFT) P-4 P-5 Application Scan

2 2 Boot Application Scan P-5 P-4 P-3 (USB-RIGHT) P-2 (USB-BACK) P-1 (USB-LEFT)

3 3 Boot P-3 (USB-RIGHT) P-2 (USB-LEFT) P-1 (USB-BACK) Application Scan P-5 P-4

4 4 Boot P-4 P-5 Application Scan P-1 (USB-RIGHT) P-2 (USB-LEFT) P-3 (USB-BACK)

5 5 Boot P-5 P-2 (USB-RIGHT) Application P-1 (USB-BACK) P-4 P-3 (USB-LEFT) Scan

6A 6 Boot Application P-3 (USB-BACK) P-4 P-1 (USB-LEFT) Scan P-2 (USB-RIGHT) P-5

6B 7 Boot Application Scan P-3 (USB-LEFT) P-4 P-1 (USB-RIGHT) P-2 (USB-BACK) P-5

6C 8 Boot P-3 (USB-RIGHT) P-4 P-1 (USB-LEFT) Application Scan P-2 (USB-BACK) P-5

6D 9 Boot P-3 (USB-RIGHT) Application P-4 Scan P-1 (USB-BACK) P-2 (USB-LEFT) P-5

7 10 Boot P-1 (USB-RIGHT) Application P-5 Scan P-3 (USB-BACK) P-2 (USB-LEFT) P-4

8A 11 Boot P-4 P-2 (USB-RIGHT) P-3 (USB-LEFT) Application Scan P-5 P-1 (USB-BACK)

8B 12 Boot P-4 P-2 (USB-RIGHT) P-3 (USB-BACK) P-5 Application Scan P-1 (USB-LEFT)

9 13 Boot Application P-3 (USB-LEFT) Scan P-1 (USB-RIGHT) P-4 P-5 P-2 (USB-BACK)

10A 14 Boot P-2 (USB-BACK) P-5 P-4 P-1 (USB-LEFT) P-3 (USB-RIGHT) Application Scan

10B 15 Boot P-2 (USB-LEFT) P-5 P-4 P-1 (USB-BACK) Application Scan P-3 (USB-RIGHT)

11 16 Boot P-3 (USB-BACK) P-1 (USB-RIGHT) P-4 P-5 Application P-2 (USB-LEFT) Scan

12A 17 Boot Application Scan P-2 (USB-RIGHT) P-5 P-4 P-1 (USB-BACK) P-3 (USB-LEFT)

12B 18 Boot P-2 (USB-RIGHT) Application Scan P-5 P-4 P-1 (USB-LEFT) P-3 (USB-BACK)

NA 19 P-5 P-4 P-3 (USB-LEFT) P-2 (USB-RIGHT) P-1 (USB-BACK) Boot Application Scan

58

59

With self-testing through
assertions, thousands of
tests can often be run at
very low cost, allowing
high-strength interaction
coverage.

11 Assertion-Based Testing

Built-in self-test is a common feature for integrated circuits in which additional hardware and
software functions allow checking for correct operation while the system is running, in contrast with the
use of externally applied tests. A similar concept – embedded assertions – has been used for decades in
software, and advances in programming languages and processor performance have made this method
even more useful and practical. It can be especially effective with combinatorial testing. If the system is
fully exercised with t-way tests, and assertions are thorough, we can have reasonable confidence that
operation will be correct for up to t-way combinations of input values. In addition to standard
programming language features, a variety of specialized tools have been developed to make this approach
easier and more effective.

Many programming languages include an assert feature that allows the programmer to specify

properties that are assumed true at a particular point in the program. For example, a function that includes
a division in which a particular parameter x will be used as a divisor may require that this parameter may
never be zero. This function may include the C statement assert(x != 0); as the first statement
executed. Note that the assertion is not the same as an input validity check that issues an error message if
input is not acceptable. The assertion specifies conditions that must hold for the function to operate
properly, in this case a non-zero divisor. The distinction between assertions and input validation code is
that assertions are intended to catch programming mistakes, while input validation detects errors in user
or file/database input.

With a sufficient number of assertions derived from a

specification, the program can have a self-checking property [73, 0, 123,
109]. The assertions can serve as a sort of embedded proof of important
properties, such that if the assertions pass for all executions of the
program, then the properties encoded in the assertions can be expected to
hold. Then, if the assertions form a chain of logic that implies a formal
statement of program properties, the program’s correctness with respect
to these properties can be proven. We can take advantage of this scheme in combinatorial testing by
demonstrating that the assertions hold for all t-way combinations of inputs. While this is not the same as
a correctness proof, it is an effective way of integrating formal methods for correctness with program
testing, and an extensive body of research has developed this idea for practical use (for a survey, see [9]).
Modern programming languages, include support for including assertions that encode program properties,
and tools such as the Java Modeling Language [102] have been designed to integrate assertions with
testing. In many cases, using assertions to self-check important properties makes it practical to run
thousands of tests in a fully automated fashion, so high-strength interactions of 4-way and above can be
done in reasonable time. Since important properties of the system are checked with every run, by
executing the code with all t-way combinations of input we can have high confidence that it works
correctly.

11.1 Basic Assertions for Testing

 To clarify this somewhat abstract discussion, we will analyze requirements for a small function
that handles withdrawal processing for an automated teller machine (ATM). Graphical user interface
code for the ATM will not be displayed, as this would vary considerably for different systems. The
decision not to include GUI code in this example also illustrates a practical limitation of this type of
testing: there are many potential sources of error in a software project, and testing may not deal with all
of them at the same time. The GUI code may be analyzed separately, or a more complex verification with

60

assertions may specify properties of the GUI calls, but in the end some human involvement is needed to
ensure that the screen information is properly displayed. However, we can do very thorough testing of
the most critical aspects of the withdrawal module.

Requirements for the module are as follows:

1. Some accounts have a minimum balance requirement, indicated by boolean variable

minflag.
2. The bank allows all customers a basic overdraft protection amount, but for a fee, customers

may purchase overdraft protection that exceeds the default.
3. If the account has a minimum balance, the withdrawal cannot reduce account balance below

(minimum balance – overdraft default) unless overdraft protection is set for
this account and the allowed overdraft amount for this account exceeds the default, in which
case the balance cannot be reduced below (minimum balance – overdraft
amount).

4. No withdrawals may exceed the default limit (to keep the ATM from running out of cash),
although some customers may have a withdrawal limit below this amount, such as minors
who have an account with limits placed by parents.

5. The overdraft privilege can be used only once until the balance is made positive again.
6. Cards flagged as stolen are to be captured and logged in the hot card file. No withdrawal is

allowed for a card flagged as stolen.

The module has these inputs from the user after the user is authorized by another module:

string num: the user card number
int amt: withdrawal amount requested

and these inputs from the system:

int balance: user account balance
boolean minflag: account has minimum balance requirement
int min: account minimum balance
boolean odflag: account has overdraft protection
int odamt: overdraft protection amount,
int oddefault: overdraft default
boolean hot: card flagged as stolen
boolean limflag: withdrawal limit less than default
int limit: withdrawal limit for this account
int limdefault: withdrawal limit default

How should these requirements be translated into assertions and used in testing? Consider requirement 1:
if minflag is set, then the balance before and after the withdrawal must be no less than the minimum
balance amount. This could be translated directly into logic for assertions: minflag => balance
>= min. If the assertion facility does not include logical implication, then the equivalent expression
can be used, for example, in C syntax: !minflag || balance >= min.

However, we must also consider overdraft protection and withdrawal limits, so the assertion above is not
adequate. Collecting conditions, we can develop assertions for each of the eight possible settings of
minflag, odflag, and limflag. If there is a minimum balance requirement, no overdraft protection,

61

The quality of assertion-based testing
with combinatorial methods depends
on the strength of assertions, in
addition to t-way interaction strength.

and a withdrawal limit below the default, what is the relationship between balance and the other
parameters?

minflag && !odflag && limflag

=> balance >= min – oddefault && amt <= limit

This relation must hold after the withdrawal, so to develop an assertion that must hold immediately before
the withdrawal, substitute (balance – amt) for balance in the expression above:

balance0 – amt >= min – oddefault && amt <= limit

Assertions such as this would be placed immediately before the balance is modified, not at the

beginning of the code for the withdrawal function. Code prior to the subtraction from balance should
have ensured that properties encoded by assertions hold immediately before the subtraction, thus any
violation of the assertions indicates an error in the code (or possibly in the assertions!) that must be
investigated. This is illustrated in Figure 26, where “wdl_init.c” and “wdl_final.c” are files containing
assertions such as developed above.

Including the card number, there are 11 parameters for this module. We need to partition the inputs

to determine what values to use in generating a covering array. Partitions should cover valid and invalid
values, minimum and maximum for ranges, and values at and on either side of boundaries. The bank uses
a check digit scheme for card numbers to detect errors such as digit transposition when numbers are
entered manually. A simple partition could be as follows:

string acct: {valid, invalid}
int amt: {0, divisible by 20, not divisible by 20, max}
int balance: {0, negative, positive, max int}
int minflag: {T, F}
int min: {0, negative, positive, max int}
boolean odflag: {T, F}
int odamt: {0, negative, positive, max int}
int oddefault: {0, negative, positive, max int}
boolean hot: {T, F}
int acctlim: {0, negative, positive, max int}
int lim: {0, negative, positive, max int}

Using the equivalence classes above, this is thus a 2447 system, or 262,144 possible inputs. If values on
either side of boundaries are used, the number of possible input combinations will be much larger, but
using combinatorial methods we can cover 3-way or 4-way combinations with only a few hundred tests.

11.2 Stronger Assertion-based Testing

While the method described in the previous section
can be very effective in testing, notice that it will be
inadequate for many problems, because basic assertion
functions such as those provided in the C language library do
not support important logic operators such as ∀ (for all) and
∃ (for some). Thus expressing simple properties such as S is sorted in ascending order =

]1[][:10: +≤−<≤∀ iSiSnii cannot be done without a good deal of additional coding. While it
would be possible to add code to handle these problems in assertions, a better solution is to use an
assertion language that is designed for the purpose and contains all the necessary features.

62

1. while (!valid(acct)) {/* get account number input */}
2. if (amt > lim) { return ERROR; }
3. else {
4. if (odflag) {
5. if (amt > balance + odamt)
6. { return ERROR; }
7. }
8. else {
9. if (amt > balance + oddefault)
10. {return ERROR; }
11. else {
12. if (amt > lim)
13. { return ERROR; }
14. }
15. #include "wdl_init.c"
16. balance -= amt ;
17. #include "wdl_final.c"
18. }
19. }
20. }

Figure 26. Withdrawal function code to be tested.

Tools such as Anna [106] for Ada, the Java Modeling language (JML) [102] and iContract [76] for

Java, and APP [150] or Nana [108] for C, can be used to introduce complex assertions, effectively
embedding a specification within the code. An example of JML [191] can be seen in Figure 27. The
assertions are annotated with “//@”, to indicate statements that are input to the pre-processor. JML
provides a collection of keywords making it possible to specify the behavior of software and have the
specifications checked as the program runs. Other assertion languages may use different keywords, but
usually provide similar functionality. The basic run-time assertion checking features illustrated in the
example are:

• //@ requires: defines a precondition, i.e. a condition that must hold on entry to a module or

section of code
• //@ ensures: defines a postcondition, i.e. a condition that must hold on exit from a module

or section of code
• //@ public invariant: defines and invariant, i.e. a condition that must always hold
• \old: the value of the variable or expression on entry to the method
• \result: the return value of the method

JML and other assertion languages also provide features to make them easy to use for a specific

programming language, and additional logic statements, such as the quantifiers forall, exists (for
some), and logical implications: a ==> b, a <== b, a <=> b.

public class BankingExample {

 public static final int MAX_BALANCE = 1000;
 private /*@ spec_public @*/ int balance;
 private /*@ spec_public @*/ boolean isLocked = false;

 //@ public invariant balance >= 0 && balance <= MAX_BALANCE;

63

 //@ assignable balance;
 //@ ensures balance == 0;
 public BankingExample() { balance = 0; }

 //@ requires 0 < amount && amount + balance < MAX_BALANCE;
 //@ assignable balance;
 //@ ensures balance == \old(balance + amount);
 public void credit(int amount) { balance += amount; }

 //@ requires 0 < amount && amount <= balance;
 //@ assignable balance;
 //@ ensures balance == \old(balance) - amount;
 public void debit(int amount) { balance -= amount; }

 //@ ensures isLocked == true;
 public void lockAccount() { isLocked = true; }

 //@ requires !isLocked;
 //@ ensures \result == balance;
 //@ also
 //@ requires isLocked;
 //@ signals_only BankingException;
 public /*@ pure @*/ int getBalance() throws BankingException {
 if (!isLocked) { return balance; }
 else { throw new BankingException(); }
 }
}

Figure 27. Toy Bank Module Example in JML

11.3 Cost and Practical Considerations

Assertions may be a cost-effective approach to test automation because they can be a simple
extension of coding. In general, use of assertions is correlated with reduced error rates [100], but a very
wide range of effectiveness results from variations in usage. In many applications, assertions are used in
a very basic way, such as ensuring that null pointers are not passed to a function that will use them, or that
parameters that may be used as divisors are non-zero.

More complex assertions can provide stronger assurance, but there are limits to their effectiveness.

For example, invariants (properties that are expected to hold throughout a computation) cannot be assured
without placing an assertion for every line of code. Since assertions must be executed to show the
presence or absence of a property at some point, errors that prevent the assertion from being reached may
not be detected. As an example, consider the code in Figure 26. If a coding error in the first few lines of
the function prevents execution the code at of lines 15 and 17, the assertions will not be executed and it
may be assumed that the test was passed. In this case, an ERROR return for the particular test case might
trigger an investigation that would identify the faulty code, but this may not happen with other
applications. Specialized assertion-checking languages such as JML can alleviate many of these
problems by providing preprocessor statements to generate code that implements such complex checking
without making the program difficult to read.

11.4 Chapter Summary

64

Assertions are one of the easiest to use and most effective approaches to dealing with the oracle
problem. Properties ranging from simple parameter checks to effectively embedded proofs can be
encoded in assertions, but special language support is needed for the stronger forms of assurance. This
support may be provided as language preprocessors, as in the case of Anna [106] and others. Placement
within code is particularly important to assertion effectiveness [0, 183], but if sufficiently strong
assertions are embedded, the code becomes self-checking for important properties. With self-checking
code, thousands of tests can be run at low cost in most cases, greatly improving the chances that faults
will be detected.

65

Model-based testing can
provide very strong
assurance, with a tradeoff of
additional up-front time.

12 Model-Based Testing

Probably the most time-consuming aspect of testing is the oracle problem: determining the
correct results for a given set of inputs. This problem is especially complex when the expected result of a
test requires human intervention. Even if the output can be fully processed and verified correct by
machine, for every test, the expected output must be determined. At first glance, the problem may seem
almost insoluble: how can we check the correctness of complex software without implementing equally
complex software, whose correctness must also be checked, leading to an infinite string of verification
exercises? Assertions and self-checking software can help (Chapter 11), but they are not always
sufficient. In other cases, previous versions of the software may be available to check at least the old
functionality, or the code may be implementing a formal standard (e.g. for network protocols or
cryptography) and other implementations may exist to compare against. In most cases though, the
software is doing something new, and we need to verify that it is working correctly for a large set of
possible inputs. The difficulty of devising a set of complete tests with inputs and expected results is one
of the reasons why somewhat ad hoc approaches such as “use cases” are widespread. Testers use formal
or informal requirements to determine anticipated system uses, plus inputs and outputs for each such use,
a slow and expensive way to develop a test oracle. To make thorough testing practical, more automated
approaches are needed.

One of the most effective ways to produce test oracles is to

use a model of the system under test, and generate complete tests,
including both input data and expected results, directly from the
model. We use the term model in the same way it would be used in
other branches of engineering: the model incorporates aspects of the
system that we want to study, but not every detail just as an aircraft
model might be used in a wind tunnel to evaluate airflow but not all characteristics of a design. Models in
software testing may be used to check calculations or performance, for example, but not other properties
such as the location of a particular numeric value on a screen. (If it did include all details, the model
would be equivalent to the system itself). This chapter provides a step-by-step introduction to model-
based automated generation of tests that provide combinatorial coverage. Procedures introduced in this
tutorial will produce a set of complete tests, i.e., input values with the expected output for each set of
inputs.

In addition to the ACTS covering array generator, (see Error! Reference source not found.), we
use NuSMV [41], a variant of the original SMV model checker. NuSMV is freely available and was
developed by Carnegie Mellon University, Instituto per la Ricerca Scientifica e Tecnolgica (IRST), U. of
Genova, and U. of Trento. NuSMV can be installed on either UNIX/Linux or Windows systems running
Cygwin. Links and instructions for downloading NuSMV are found at http://nusmv.fbk.eu/. The
methods described in this chapter could of course be used with other model checkers as well, with some
adaptation as needed for differences in capabilities of the different tools.

Also needed is a formal or semi-formal specification of the system or subsystem under test
(SUT). This can be in the form of a formal logic specification, but state transition tables, decision tables,
pseudo-code, or structured natural language can also be used, as long as the rules are unambiguous. The
specification will be converted to SMV code, which provides a precise, machine-processable set of rules
that can be used to generate tests.

12.1 Overview

66

To apply combinatorial testing, two tasks must be accomplished:

1. Using ACTS, construct a set of tests that will cover all t-way combinations of parameter values. The
covering array specifies test data, where each row of the array can be regarded as a set of parameter
values for an individual test (see Chapter 4).

2. Determine what output should be produced by the SUT for each set of input parameter values. The
test data output from ACTS will be incorporated into SMV specifications that can be processed by the
NuSMV model checker for this step. In many cases, the conversion to SMV will be straightforward.
The example in Section 12.2 illustrates a simple conversion of rules in the form “if condition then action”
into the syntax used by the model checker. The model checker will instantiate the specification with
parameter values from the covering array once for each test in the covering array. Because the model
checker works to disprove claims, the resulting specification is evaluated against a claim that negates each
specified result Rj to produce the expected result as a counterexample. Thus the model checker evaluates
claims in the following form: Ci => ~Rj, where Ci is a set of parameter values in one row of the covering
array in the form p1 = vi1 & p2 = vi2 & ... & pn = vin, and Rj is one of the possible results. The output of this
step is a set of counterexamples that show how the SUT can reach the claimed result Rj from a given set
of inputs.

The example in the following sections illustrates how these counterexamples are converted into tests.
Other approaches to determining the correct output for each test can also be used. For example, in some
cases we can run a model checker in simulation mode, producing expected results directly rather than
through a counterexample.

The completed tests can be used to validate correct operation of the system for interaction
strengths up to some pre-determined level t. Depending on the system type and level of effort, we may
want to use pairwise (t=2) or higher strength, up to t=6 way interactions. We do not claim this guarantees
correctness of the system, as there may be failures triggered only by interaction strengths greater than t.
In addition, some of the parameters are likely to have a large number of possible values, requiring that
they be abstracted into equivalence classes. If the abstraction does not faithfully represent the range of
values for a parameter, some flaws may not be detected by the equivalence class members used.

12.2 Access Control System Example

Here we present a small example of a very simple access control system. The rules of the system
are a simplified multi-level security system, given below, followed by a step-by-step construction of tests
using a fully automated process.

Each subject (user) has a clearance level u_l, and each file has a classification level, f_l. Levels
are given as 0, 1, or 2, which could represent levels such as Confidential, Secret, and Top Secret. A user
u can read a file f if u_l ≥ f_l (the “no read up” rule), or write to a file if f_l ≥ u_l (the “no write down”
rule).

Thus a pseudo-code representation of the access control rules is:

if u_l >= f_l & act = rd then GRANT;
 else if f_l >= u_l & act = wr then GRANT;
 else DENY;

Tests produced will check that these rules are correctly implemented in a system.

67

SMV Model

This system is easily modeled in SMV as a simple two-state finite state machine. The START state
merely initializes the system (line 8, Figure 28), with the rule above used to evaluate access as either
GRANT or DENY (lines 9-13). For example, line 9 represents the first line of the pseudo-code above:
in the current state (always START for this simple model), if u_l ≥ f_l then the next state is GRANT.
Each line of the case statement is examined sequentially, as in a conventional programming language.
Line 12 implements the “else DENY” rule, since the predicate “1” is always true. SPEC clauses given at
the end of the model are simple “reflections” that duplicate the access control rules as temporal logic
statements. They are thus trivially provable, but we are interested in using them to generate tests rather
than to prove properties of the system.

MODULE main
1. VAR
--Input parameters
2. u_l: 0..2; -- user level
3. f_l: 0..2; -- file level
4. act: {rd,wr}; -- action

--output parameter
5. access: {START_, GRANT,DENY};

6. ASSIGN
7. init(access) := START_;
--if access is allowed under rules, then next state is GRANT
--else next state is DENY
8. next(access) := case
9. u_l >= f_l & act = rd : GRANT;
10. f_l >= u_l & act = wr : GRANT;
11. 1 : DENY;
12. esac;
13. next(u_l) := u_l;
14. next(f_l) := f_l;
15. next(act) := act;

-- if user level is at or above file level then read is OK
SPEC AG ((u_l >= f_l & act = rd) -> AX (access = GRANT));

-- if user level is at or below file level, then write is OK
SPEC AG ((f_l >= u_l & act = wr) -> AX (access = GRANT));

-- if neither condition above is true, then DENY any action
SPEC AG (!((u_l >= f_l & act = rd) | (f_l >= u_l & act = wr))

 -> AX (access = DENY));

Figure 28. SMV model of access control rules

 Separate documentation on SMV should be consulted to fully understand the syntax used, but
specifications of the form “AG ((predicate 1) -> AX (predicate 2))” indicate essentially that for all paths
(the “A” in “AG”) for all states globally (the “G”), if predicate 1 holds then (“->”) for all paths, in the
next state (the “X” in “AX”) predicate 2 will hold. In the next section we will see how this specification

68

If a property cannot be proved,
the model checker produces a
counterexample, giving inputs and
paths that lead to the violation.

can be used to produce complete tests, with test data input and the expected output for each set of input
data.

 Model checkers can be used to perform a variety of
valuable functions, because they make it possible to evaluate
whether certain properties are true of the system model.
Conceptually, the model checker can be viewed as exploring all
states of a system model to determine if a property claimed in a
SPEC statement is true. If the statement can be proved true for the given model, the model checker
reports this fact. What makes a model checker particularly valuable for many applications, though, is that
if the statement is false, the model checker not only reports this, but also provides a “counterexample”
showing how the claim in the SPEC statement can be shown false. The counterexample will include
input data values and a trace of system states that lead to a result contrary to the SPEC claim (Figure 29).
In the process described in this section, the input data values will be the covering array generated by
ACTS.

For advanced uses in test generation, this counterexample generation capability is very useful for
proving properties such as liveness (absence of deadlock) that are difficult to ensure through testing. In
this tutorial, however, we will simply use the model checker to determine whether a particular input data
set makes a SPEC claim true or false. That is, we will enter claims that particular results can be reached
for a given set of input data values, and the model checker will tell us if the claim is true or false. This
gives us the ability to match every set of input test data with the result that the system should produce for
that set of input data.

 The model checker thus automates the work that normally must be done by a human tester –
determining what the correct output should be for each set of input data. In some cases, we may have a
“reference implementation”, that is, an implementation of the functions that we are testing that is assumed
to be correct. This happens, for example, in conformance testing for protocols, where many vendors
implement their own software for the protocol and submit it to a test lab for comparison with an existing
implementation of the protocol. In this case the reference implementation could be used for determining
the expected output, instead of the model checker. Of course before this can happen the reference
implementation itself must be thoroughly tested before it can be the gold standard for testing other
products. The method we describe here may be needed to produce tests for the original reference
implementation.

Checking the properties in the SPEC statements shows that they match the access control rules as
implemented in the FSM, as expected. In other words, the claims we made about the state machine in the
SPEC clauses can be proven. This step is used to check that the SPEC claims are valid for the model
defined previously. If NuSMV is unable to prove one of the SPECs, then either the spec or the model is
incorrect. This problem must be resolved before continuing with the test generation process. Once the
model is correct and SPEC claims have been shown valid for the model, counterexamples can be
produced that will be turned into test cases, by which we mean a set of test inputs with the expected result
for these inputs. In other words, ACTS is used to generate tests, then the model checker determines
expected results for each test.

 -- specification AG((u_l >= f_l & act = rd) -> AX access = GRANT)
 is true

69

-- specification AG((f_l >= u_l & act = wr) -> AX access = GRANT)
 is true
-- specification AG(!((u_l >= f_l & act = rd)|(f_l >= u_l & act = wr))

 -> AX access = DENY) is true
Figure 29. NuSMV output

Integrating Combinatorial Tests into the Model

We will compute covering arrays that give all t-way combinations, with interaction strength = 2
for this example. This section describes the use of ACTS as a standalone command line tool, using a text
file input (see Error! Reference source not found.). The first step is to define the parameters and their
values in a system definition file that will be used as input to ACTS. Call this file “in.txt”, with the
following format:

[System]
[Parameter]

u_l: 0,1,2
f_l: 0,1,2
act: rd,wr

[Relation]
[Constraint]
[Misc]

For this application, the [Parameter] section of the file is all that is needed. Other tags refer to advanced
functions that will be explained in other documents. After the system definition file is saved, run ACTS
as shown below:

java -Ddoi=2 –jar acts_cmd.jar ActsConsoleManager in.txt out.txt

The “-Ddoi=2” argument sets the interaction strength (degree of interaction) for the covering array that
we want ACTS to compute. In this case we are using simple 2-way, or pairwise, interactions. (For a
system with more parameters we would use a higher strength interaction, but with only three parameters,
3-way interaction would be equivalent to exhaustive testing.) ACTS produces the output shown in Figure
30.

Each test configuration defines a set of values for the input parameters u_l, f_l, and act. The
complete test set ensures that all 2-way combinations of parameter values have been covered. If we had a
larger number of parameters, we could produce test configurations that cover all 3-way, 4-way, etc.
combinations. ACTS may output “don’t care” for some parameter values. This means that any
legitimate value for that parameter can be used and the full set of configurations will still cover all t-way
combinations. Since “don’t care” is not normally an acceptable input for programs being tested, a random
value for that parameter is substituted before using the covering array to produce tests.

70

Number of parameters: 3
Maximum number of values per parameter: 3
Number of configurations: 9

Configuration #1:
1 = u_l=0
2 = f_l=0
3 = act=rd

Configuration #2:
1 = u_l=0
2 = f_l=1
3 = act=wr

Configuration #3:
1 = u_l=0
2 = f_l=2
3 = act=rd

Configuration #4:
1 = u_l=1
2 = f_l=0
3 = act=wr

Configuration #5:
1 = u_l=1
2 = f_l=1
3 = act=rd

Configuration #6:
1 = u_l=1
2 = f_l=2
3 = act=wr

Configuration #7:
1 = u_l=2
2 = f_l=0
3 = act=rd

Configuration #8:
1 = u_l=2
2 = f_l=1
3 = act=wr

Configuration #9:
1 = u_l=2
2 = f_l=2
3 = (don't care)

Figure 30. ACTS output

The next step is to assign values from the covering array to parameters used in the model. For
each test, we claim that the expected result will not occur. The model checker determines combinations
that would disprove these claims, outputting these as counterexamples. Each counterexample can then be
converted to a test with known expected result. Every test from the ACTS tool is used, with the model

71

Counterexamples from the model
checker can be post-processed
into complete tests, with inputs
and expected output for each.

checker supplying expected results for each test. (Note that the trivially provable positive claims have
been commented out. Here we are concerned with producing counterexamples.)

Recall the structure introduced in Section 12.1: Ci => ~Rj. Here Ci is the set of parameter values

from the covering array. For example, for configuration #1 in Section:

u_l = 0 & f_l = 0 & act = rd

As can be seen below, for each of the 9 configurations in the covering array

we create a SPEC claim of the form:

SPEC AG((<covering array values>) -> AX !(access = <result>));

This process is repeated for each possible result, in this case either “GRANT” or “DENY”, so we
have 9 claims for each of the two results. The model checker is able to determine, using the model
defined in Section 12.2, which result is the correct one for each set of input values, producing a total of 9
tests.

Excerpt:
...
-- reflection of the assign for access
--SPEC AG ((u_l >= f_l & act = rd) -> AX (access = GRANT));
--SPEC AG ((f_l >= u_l & act = wr) -> AX (access = GRANT));
--SPEC AG (!((u_l >= f_l & act = rd) | (f_l >= u_l & act = wr))
 -> AX (access = DENY));

SPEC AG((u_l = 0 & f_l = 0 & act = rd) -> AX !(access = GRANT));
SPEC AG((u_l = 0 & f_l = 1 & act = wr) -> AX !(access = GRANT));
SPEC AG((u_l = 0 & f_l = 2 & act = rd) -> AX !(access = GRANT));
SPEC AG((u_l = 1 & f_l = 0 & act = wr) -> AX !(access = GRANT));
SPEC AG((u_l = 1 & f_l = 1 & act = rd) -> AX !(access = GRANT));
SPEC AG((u_l = 1 & f_l = 2 & act = wr) -> AX !(access = GRANT));
SPEC AG((u_l = 2 & f_l = 0 & act = rd) -> AX !(access = GRANT));
SPEC AG((u_l = 2 & f_l = 1 & act = wr) -> AX !(access = GRANT));
SPEC AG((u_l = 2 & f_l = 2 & act = rd) -> AX !(access = GRANT));

SPEC AG((u_l = 0 & f_l = 0 & act = rd) -> AX !(access = DENY));
SPEC AG((u_l = 0 & f_l = 1 & act = wr) -> AX !(access = DENY));
SPEC AG((u_l = 0 & f_l = 2 & act = rd) -> AX !(access = DENY));
SPEC AG((u_l = 1 & f_l = 0 & act = wr) -> AX !(access = DENY));
SPEC AG((u_l = 1 & f_l = 1 & act = rd) -> AX !(access = DENY));
SPEC AG((u_l = 1 & f_l = 2 & act = wr) -> AX !(access = DENY));
SPEC AG((u_l = 2 & f_l = 0 & act = rd) -> AX !(access = DENY));
SPEC AG((u_l = 2 & f_l = 1 & act = wr) -> AX !(access = DENY));
SPEC AG((u_l = 2 & f_l = 2 & act = rd) -> AX !(access = DENY));

12.3 Generating Tests from Counterexamples

NuSMV produces counterexamples where the input
values would disprove the claims specified in the previous

72

section. Each of these counterexamples is thus a set of test data that would have the expected result of
GRANT or DENY.

For each SPEC claim, if this set of values cannot in fact lead to the particular result Rj, the model
checker indicates that this is true. For example, for the configuration below, the claim that access will not
be granted is true, because the user’s clearance level (u_l = 0) is below the file’s level (f_l = 2):
-- specification AG (((u_l = 0 & f_l = 2) & act = rd) -> AX !(access =
GRANT)) is true

If the claim is false, the model checker indicates this and provides a trace of parameter input

values and states that will prove it is false. In effect this is a complete test case, i.e., a set of parameter
values and expected result. It is then simple to map these values into complete test cases in the syntax
needed for the system under test.

Excerpt from NuSMV output:

-- specification AG (((u_l = 0 & f_l = 0) & act = rd) -> AX
 access = GRANT)) is false

-- as demonstrated by the following execution sequence
Trace Description: CTL Counterexample
Trace Type: Counterexample
-> State: 1.1 <-
 u_l = 0
 f_l = 0
 act = rd
 access = START_
-> Input: 1.2 <-
-> State: 1.2 <-
 access = GRANT

The model checker finds that 6 of the input parameter configurations produce a result of GRANT and 3
produce a DENY result, so at the completion of this step we have successfully matched up each input
parameter configuration with the result that should be produced by the SUT.

We now strip out the parameter names and values, giving tests that can be applied to the system
under test. This can be accomplished using a variety of methods; a simple script used in this example is
given in the appendix. The test inputs and expected results produced are shown below:

 u_l = 0 & f_l = 0 & act = rd -> access = GRANT
 u_l = 0 & f_l = 1 & act = wr -> access = GRANT
 u_l = 1 & f_l = 1 & act = rd -> access = GRANT
 u_l = 1 & f_l = 2 & act = wr -> access = GRANT
 u_l = 2 & f_l = 0 & act = rd -> access = GRANT
 u_l = 2 & f_l = 2 & act = rd -> access = GRANT
 u_l = 0 & f_l = 2 & act = rd -> access = DENY
 u_l = 1 & f_l = 0 & act = wr -> access = DENY
 u_l = 2 & f_l = 1 & act = wr -> access = DENY

These test definitions can now be post-processed using simple scripts written in PERL, Python, or similar
tool to produce a test harness that will execute the SUT with each input and check the results. While tests
for this trivial example could easily have been constructed manually, the procedures introduced in this
tutorial can, and have, been used to produce tens of thousands of complete test cases in a few minutes,
once the SMV model has been defined for the SUT.

73

Model-based testing can
reduce overall cost because
of the tradeoffs involved.

12.4 Cost and Practical Considerations

Model based test generation trades up-front analysis and
specification time against the cost of greater human interaction for
analyzing test results. The model or formal specification may be
costly to produce, but once it is available, large numbers of
tests can be generated, executed, and analyzed without human
intervention. This can be an enormous cost savings, since testing usually requires 50% or more of the
software development budget. For example, suppose a $100,000 development project expects to spend
$50,000 on testing, because of the staff time required to code and run tests, and analyze results. If a
formal model can be created for $20,000, complete tests generated and analyzed automatically, with
another $10,000 for a smaller number of human-involved tests and analysis, then the project will save
20%. One tradeoff for this savings is the requirement for staff with skills in formal methods, but in some
cases this approach may be practical and highly cost-effective.

One nice property of the model checking approach described in this chapter is that test case

generation can be run in parallel. For each test row of the covering array, we run the model checker to
determine the expected results for the inputs given by that row, and model checker runs are independent
of each other. Thus this task falls into the class of parallelization problems known as “embarrassingly
parallel”; for N covering array rows, we can assign up to N processors. With the widespread availability
of cloud and cluster systems, test generation can run very quickly. In most cases, test execution can be
run in parallel also, although we may be limited by practical concerns such as availability of specialized
hardware.

12.5 Chapter Summary

1. The oracle problem must be solved for any test methodology, and it is particularly important for

thorough testing that produces a large number of test cases. One approach to determining expected
results for each test input is to use a model of the system that can be simulated or analyzed to
compute output for each input.

2. Model checkers can be used to solve the oracle problem because whenever a specified property for a

model does not hold, the model checker generates a counter-example. The counter-example can be
post-processed into a complete working test harness that executes all tests from the covering array
and checks results.

3. Several approaches are possible for integrating combinatorial testing with model checkers, but some

present practical problems. The method reported in this chapter can be used to generate full
combinatorial test suites, with expected results for each test, in a cost effective way.

74

13 Fault Localization

 Developing dependable software requires preventing as many bugs as possible and detecting, then
repairing, those that remain. Testing can identify flaws in software, but after a failed test is discovered, it
is necessary to determine what caused the failure. In most cases this may be accomplished for
combinatorial testing in the same way as other test methodologies, using a debugger or in-circuit
emulator. But one goal of combinatorial testing is to identify the particular t-way combination that
triggered a failure. The problem of fault localization, identifying such combination(s), is an area of active
research, but some basic approaches can be identified. The discussion in this chapter assumes systems are
deterministic, such that a particular input always generates the same output.

 At first glance, fault localization may not appear to be a difficult problem, and in many cases it will
not be, but we want to automate the process as much as possible. To understand the size of the problem,
consider a module that has 20 input parameters. A set of 3-way covering tests passes 100%, but several
tests derived from a 4-way covering array result in failure. (Therefore, at least four parameter values are
involved in triggering the failure. It is possible that a 5-way or higher combination caused the failure,
since any set of t-way tests also includes (t+1)-way and higher strength combinations as well.) A test
with 20 input parameters has C(20, 4) = 4,845 4-way combinations, yet presumably only one (or just a
few) of these triggered the failure. To determine the combination at fault, a variety of strategies can be
used.

13.1 Set-theoretic Analysis

 The analysis presented here applies to a deterministic system, in which a particular set of input
values always results in the same processing and outputs. Let P = {combinations in passing tests} and F
= {combinations in failing tests} and C = {fault-triggering combinations}. Then PF \ , combinations in
failing tests that are not in any passing tests, must contain the fault-triggering combinations C because if
any of those in C were in P, then the test would have failed. So in most cases, PFC \⊆ , as shown in
Figure 31.

PFC \⊆

Figure 31. Combinations in failing tests but not in passing tests.

Continuing with the analysis in this manner, some properties become apparent. For the discussion below,
Pt = {combinations in t-way passing tests}, with Ft and Ct defined analogously. Let Tt = {t-way tests}
and f(x) be a function that indicates whether a test x passes or fails for the system under test. Thus P4 =
{combinations in 4-way passing tests}, T5= {5-way tests}, etc.

Suppose that a particular combination c triggers or causes a failure if whenever c is contained in some test
x, f(x) = fail. (That is, the system is deterministic and the failure-triggering combination is not masked by

P F
PFC \⊆

75

other parameter values.) We can now consolidate these ideas into heuristics for identifying the failure-
triggering combination(s) C.

• Elimination: For a deterministic system, PF \ must contain the fault-triggering combinations C
because if any of those in C were in P, then the test would have failed.

• Interaction level lower bound: If all t-way tests pass, then a t-way or lower strength combination

did not cause the failure. The failure must have been caused by a (t+k)-way combination, for
some k > t. Note that the converse is not necessarily true: if some t-way test fails, we cannot
conclude that a t-way test caused the failure, because any t-way test set contains some k-way
combinations, for k > t.

• Interaction continuity: Now consider Ct. Because t-way tests cover all combinations of t-way or

lower strength (e.g., 4-way tests also cover all 3-way combinations), a combination that triggered
the failure in Ft must also occur in F(t+1), F(t+2), etc. Therefore we can further reduce the
potential failure-triggering combinations by computing)(...)1(ktFtFFt ++ for
whatever interaction strength k we have tests available.

• Value dependence: If tests in Ft cover all values for a t-way parameter combination c, then the

failure is independent of c; i.e., c is not a t-way failure-triggering combination(s).

Example: In the preceding discussion we assumed that a particular combination c triggers or causes a
failure if whenever c is contained in some test x, f(x) = fail. However, in many cases the presence of a
particular combination may trigger a failure, but is not guaranteed to do so (see discussion of interaction
level lower bound above). Consider the following:

1. p(int a, int b, int c, int d, int e) {
2. if (a && b) return 1;
3. else if (c && d) return 2;
4. else if (e) return 3;
5. else return 4;
6. }

If line 3 is incorrectly implemented as “return 7” instead of “return 2”, then p(1,1,1,1,0) =
 1 because “a && b” evaluates to 1, but p(0,1,1,1,0) will detect the error. A complete 3-way covering test
set will detect the error because it must include at least one test with values 0,1,1,1,. and one with 1,0,1,1,.
. Figure 32 shows tests for this example for t = 2, 3, and 4. Failing tests are underlined.

A 2-way test may detect the error, since “c && d” is the condition necessary, but this will only
occur if line 3 is reached, which requires either a=0 or b=0. In the example test set this occurs with the
second test. So in this case, a full 2-way test set has detected the error, and the heuristics above for 2-way
combinations will find that tests with c=1 and d=1 occur in both P and F. In this case, debugging may
identify c=1, d=1 as a combination that triggers the failure, but automated analysis using the heuristics
will find two 3-way combinations that occur in failing tests but not passing tests: a=0, c=1, d=1 and b=0,
c=1, d=1. As Figure 33 illustrates, in most cases we will find more than one combination identified as
possible causes of failure.

76

1 way tests 2 way tests 3 way tests 4 way tests
0,0,0,0,0
1,1,1,1,1

0,0,0,0,0
0,1,1,1,1
1,0,1,0,1
1,1,0,1,0
1,1,1,0,0
1,0,0,1,1

0,0,0,0,0
0,0,1,1,1
0,1,0,1,0
0,1,1,0,1
1,0,0,1,1
1,0,1,0,0
1,1,0,0,1
1,1,1,1,0
0,0,1,1,0
1,1,0,0,0
0,0,0,0,1
1,1,1,1,1
0,1,1,1,0

0,0,0,0,0
0,0,0,1,1
0,0,1,0,1
0,0,1,1,0
0,1,0,0,1
0,1,0,1,0
0,1,1,0,0
0,1,1,1,1
1,0,0,0,1
1,0,0,1,0
1,0,1,0,0
1,0,1,1,1
1,1,0,0,0
1,1,0,1,1
1,1,1,0,1
1,1,1,1,0

Figure 32. Tests for fault location example.

The heuristics above can be applied to combinations in the failed tests to identify possible failure-
triggering combinations, shown in Figure 33.

• The 1-way tests do not detect any failures, but the 2-way tests do, so t=2 is a lower bound for the
interaction level needed to detect a failure.

• The value dependence rule applies to combination “be” – since all four possible values for this

combination occur in failing tests, failure must be independent of combination be. In other
words, we do not consider the pair be to be a cause of failure because it does not matter what
value this pair has. Every test must have some value for these parameters.

t=2 ab

01
00
10

ac
01
11

ad
01
11

ae
01
00
11

bc
11
01

bd
11
01

be
11
01
00
10

cd
11

ce
11
10

de
11
10

t=3 abc
011
001
101

abd
011
001
101

abe
011
001
000
101
010

acd
011
111

ace
011
010
111

ade
011
010
111

bcd
111
011

bce
111
011
010
110

bde
111
011
010
110

cde
111
110

t=4 abcd
0111
0011
1011

abce
0111
0011
0010
1011
0110

abde
0111
0011
0010
1011
0110

bcde
1111
0111
0110
1110

Figure 33. Combinations in failing tests.

• The elimination rule can be applied to determine that there are no 1-way or 2-way combinations
that do not appear in both passing and failing tests. Results for 3-way and 4-way combinations
are shown in Figure 34. These results were produced by an analysis tool which outputs in the

77

format <test number>:<t level> <parameter numbers> = <parameter values>. Two different 3-
way combinations are identified: a=0, c=1, d=1 and b=0, c=1, d=1. A large number of 4-way
combinations are also identified, but we can use the interaction continuity rule to show that one of
the two 3-way combinations occurs in all of the failing 4-way failing tests. Therefore we can
conclude that covering all 3-way parameter interactions would detect the error.

1 :3way 0,2,3 = 0,1,1
2 :3way 0,2,3 = 0,1,1
3 :3way 0,2,3 = 0,1,1
4 :3way 0,2,3 = 0,1,1
1 :3way 1,2,3 = 0,1,1
2 :3way 1,2,3 = 0,1,1
5 :3way 1,2,3 = 0,1,1

1 :4way 0,1,2,3 = 0,0,1,1
2 :4way 0,1,2,3 = 0,0,1,1
3 :4way 0,1,2,3 = 0,1,1,1
4 :4way 0,1,2,3 = 0,1,1,1
5 :4way 0,1,2,3 = 1,0,1,1
1 :4way 0,1,2,4 = 0,0,1,0
1 :4way 0,1,3,4 = 0,0,1,0
4 :4way 0,1,3,4 = 0,1,1,1
1 :4way 0,2,3,4 = 0,1,1,0
2 :4way 0,2,3,4 = 0,1,1,1
3 :4way 0,2,3,4 = 0,1,1,0
4 :4way 0,2,3,4 = 0,1,1,1
1 :4way 1,2,3,4 = 0,1,1,0
2 :4way 1,2,3,4 = 0,1,1,1
5 :4way 1,2,3,4 = 0,1,1,1

Figure 34. 3-way and 4-way combinations in PF \

The situation is more complex with continuous variables. If, for example, a failure-related branch
is taken any time x > 100, y = 3, z < 1000, there may be many combinations implicated in the failure.
Analysis will show that [x = 200, y = 3, z = 120], [x = 201, y = 3, z = 119], [x = 999, y = 3, z = 999], [x =
101, y = 3, z = 0], [x = 200, y = 3, z = 0] are all combinations that trigger the failure. With more than
three input parameters, there may be dozens or hundreds of failure-triggering combinations, even though
there is most likely a single point in the code that is in error.

13.2 Fault Localization Using Fault Identifier Tool

This section describes a method of software fault localization using the Fault Identifier tool. It shows
how, for a failure-triggering fault x containing t variable values, a small set of possible failure-triggering
combinations can be identified with a t-way covering array, and how fault x can be identified uniquely
with a variety of techniques. Simple set operations can identify a small number of suspect t-way
combinations that must contain the failure-triggering combination, if tests from a full t-way covering
array are run on the SUT. Once tests have been run, the test set is augmented with additional tests in one
of three ways described below.

Procedure:
Step 1. Run tests. All tests are run against the system under test, and the rows of the array
divided into two sets, F = tests that produced a failure or other faulty operation, and P = tests that
did not detect faulty operation.

Step 2. Compute set difference F\P, the combinations that occur in failing tests but not in passing
tests. The tool identifies the tests in which these occur.

Step 3. Create augmented passing set. For each failing test identified in Step 2, create additional
tests using either the alternate value or base choice procedures detailed below. Not all failing

78

tests may be included in the list from Step 2 because combinations that have already been
identified will not be repeated. Set P+ = P ∪ {passing base choice tests}.

Step 3 (alternative). Generate a (t+1)-way covering array, and set P+ = (t+1) covering array.

Step 4. Compute F\P+ to identify failure triggering combinations. Select 2-way through 6-way
analysis, depending on the strength of the covering array used in testing, and the type of analysis
desired.

Test augmentation. Additional tests are generated according to one of the methods below. Each new
test is run and those that pass are added to set P to produce set P+. We then compute F\ P+

 = c, detecting
the FT combination.

Alternate value. Let Tf be a failing test. For each of the i=1..n parameters, create one new test for each
parameter i, with all other parameter values held constant. For example, if we have five binary
parameters, Tf = 01011, create 11011, 00011, 01111, 01001, and 01010. This procedure generates kn
new tests, where k = number of tests identified in Step 2; n = number of parameters.

Base choice: Let Tf be a failing test. For each of the i=1..n parameters, create one new test for each
parameter, for each value of parameter i, with all other parameter values held constant. For example, if
each parameter has three possible values, 0, 1, and 2, and Tf = 10212, create 20212, 00212, 11212, 12212,
etc. The base choice procedure creates kn(v-1) new tests, where k = number of tests identified in Step 2; n
= number of parameters; v = number of values per parameter. If parameters have different numbers of
values, vi values for parameter I, then Σ i=1,n (vi -1) new tests are created.

Example, test augmentation:
We have binary variables a through e, and the 2-way combination a=0, b=1 triggers a failure.
A covering array for this system is:

0,0,0,0,0
0,1,1,1,1
1,0,1,0,1
1,1,0,1,0
1,1,1,0,0
0,0,0,1,1

The row containing a=0, b=1 is 0,1,1,1,1, which becomes set F. Set P is combinations from:

0,0,0,0,0
1,0,1,0,1
1,1,0,1,0
1,1,1,0,0
0,0,0,1,1

Now generate the base choice tests, as shown below. Note that not all of the base choice tests may be
necessary, since we only need to disrupt the FT combination c such that T’ passes, so it is not necessary to
run all before recomputing the set difference. An alternative is to generate the supplemental tests one at a
time and do the computation F\P after each test. The choice of procedures depends on the tradeoff
between test execution time.

The additional tests and results are:

79

1,1,1,1,1 (pass)
0,0,1,1,1 (pass)
0,1,0,1,1 (fail)
0,1,1,0,1 (fail)
0,1,1,1,0 (fail)

Using the new information from the base choice tests, we have two additional passing tests: 1,1,1,1,1 and
0,0,1,1,1. Adding these to the previous passing set P to produce P+, we have

0,0,1,1,1
0,0,0,0,0
1,0,1,0,1
1,1,0,1,0
1,1,1,0,0
0,0,0,1,1
1,1,1,1,1

Then computing F\ P+
 = c = (ab = 01), thus correctly identifying the fault. In this case we detected that a

was involved in the failure on the first test, but note that we would need at most n-1 new base choice tests
to find a parameter involved in failure (at worst, the last two parameters would be the fault-triggering
combination). Thus this method requires a total of Σ i=1,n (vi -1) new tests to augment the existing set.

Example, (t+1)-way augmentation: As above we have binary variables a through e, and the 2-way
combination a=0, b=1 triggers a failure.
A covering array for this system is:

0,0,0,0,0
0,1,1,1,1
1,0,1,0,1
1,1,0,1,0
1,1,1,0,0
0,0,0,1,1

The row containing a=0, b=1 is 0,1,1,1,1, which becomes set F. Set P is combinations from:

0,0,0,0,0
1,0,1,0,1
1,1,0,1,0
1,1,1,0,0
0,0,0,1,1

A 3-way covering array for a-e is below (two rows with a=0, b=1 are shown at the end of the array):

0,0,0,0,0
0,0,1,1,1
1,0,0,1,1
1,0,1,0,0
1,1,0,0,1
1,1,1,1,0
0,0,1,1,0

80

1,1,0,0,0
0,0,0,0,1
1,1,1,1,1
0,1,0,1,0
0,1,1,0,1

So P+ is the set of combinations from the array above with the last two lines removed. Now any 2-way
combination that can be made from either a or b and some other variable in 0,1,1,1,1, must be duplicated
in P+. If one of these six contains a=0, then it must not contain b=1, because otherwise it would be in F.
So it must be in P+. If it does not contain either a or b, then there must be more than one (three) 3-way
combinations containing it. Not all of these can be in rows of F because F contains all failing tests.
(end of example)

Tool Example. A hypothetical application has 20 variables with 3 values each, and two failure triggering
faults: v0, v1, v2 = 1,1,2, and v4, v5, v6 = 2,1,1. Tests are run using 3-way and 4-way covering arrays.
Figure 1 shows the tool output for the 3-way test array, and Figure 2 for the 4-way test array. Rows of the
failing test file are shown in the top panel, and 2-way, 3-way, or 4-way combinations that may trigger the
fault are shown in the lower panels. In Fig. 1, there are 138 possible combinations that could have
triggered the failure, i.e., combinations that occurred in 3-way failing tests but not in 3-way passing tests.
Running 3-way analysis with passing tests from a 4-way covering array, shown in Fig. 2, identifies the
two failure-triggering combinations: v0=1, v1=1, v2=2, and v4=2, v5=1, v6=1. In the Background
section below, it is shown how this approach is able to identify failure-triggering combinations exactly.

Figure 1. Tool output for 3-way combinations in the 3-way test array.

81

Figure 2. Tool output for 3-way combinations in the 4-way test array.

Given these sets, F\P will produce a small set of suspect combinations. Examples are given in Table 1.
Loading F with the “Load fault file” and P with “Load nominal file” will display suspect combinations
from F\P in the panels for 2-way through 4-way combinations, as selected on the screen. Loading P+
instead of P will result in the computation of F\P+ = c. This works because c is a t-way combination that
triggers the failure, c is in F but is not in P or P+. For F\P+ = c, P+ must contain at least one of all t-way
combinations except c. To see that all combinations but c are in P+ consider that c contains t values
among the n variables. Any t-way combination d ≠ c must have at least one value different from c. We
know that A+ contains all (t+1)-way combinations, and therefore also all t-way combinations. For c to be
unique in F\P+, we need to show that every combination d ≠ c in F also has a copy in P+. A+ contains
all (t+1)-way combinations, so P+ contains all rows that do not contain c. Any t-way combination d ≠ c
in F must be included in at least n-t (t+1)-way combinations, because d’s variables can be joined with any
of the other variables not in d in order to produce a (t+1)-way combination. Since d differs from c in at
least one variable, there is a (t+1)-way combination in A+ that includes a variable from c (with a different
value for the same variable in c) plus the variables of d. Because it differs from c in at least one variable
value, it is not in F, so must be in P+. This procedure works for up to v-1 faults.

13.3 Cost and Practical Considerations

As shown in the example above, it is a non-trivial matter to determine the failure-triggering
combination(s) from test results alone. When source code is available, the methods described in this
section are probably unnecessary, and can be replaced with conventional debugging techniques. In black-
box testing situations where there is no source code, these methods may be useful in narrowing the search
for failure-triggering combinations. Tools to implement these methods have been developed and are
available from the ACTS project site.

82

Determining the approach to fault location in black-box test situations also depends on cost.
Clearly, if faults are detected at one level of interaction strength, there may be additional faults, including
some that are more complex and only detectable with higher strength test sets. Thus it will usually be
desirable to run a (t+1)-way test set when faults are detected at level t. But going from a t-way array to a
(t+1)-way array requires a much larger set of tests, which may not be practical from a time or cost
standpoint. In these cases, base choice augmentation can be a highly cost-effective alternative for fault
location.

13.4 Chapter Summary

When source code is available, the best way to identify the cause of a failure is with conventional
debugging techniques, since the error must be fixed in code anyway. With pure black-box testing and no
access to source code, the heuristics discussed in this chapter may help to narrow down possible causes.
Usually there will be many combinations identified as possible causes, so substantial additional testing
may be needed to determine the exact cause.

83

84

Appendix A - REFERENCES

1. P. Ammann, P.E. Black, Abstracting Formal Specifications to Generate Software Tests via Model
Checking, Proc. 18th Digital Avionics Systems Conference, Oct. 1999, IEEE, vol. 2. pp. 10.A.6.1-
10

2. P. E. Ammann, Knight, J. C. Data diversity: An approach to software fault tolerance. IEEE
Transactions on Computers, 37(4), (1988), 418–425.

3. Ammann, P. E. & Offutt, A. J. (1994). Using formal methods to derive test frames in category-
partition testing, Proceedings of the Ninth Annual Conference on Computer Assurance
(COMPASS'94),Gaithersburg MD, IEEE Computer Society Press, pp. 69-80.

4. P. Ammann, J. Offutt, Introduction to Software Testing, Cambridge University Press, New York,

2008.

5. Apilli, B. S., L. Richardson, C. Alexander, Fault-based combinatorial testing of web services. In

Proc. 24th ACM SIGPLAN Conference Companion on Object Oriented Programming Systems
Languages and Applications (Orlando, October 25 - 29, 2009)

6. A. Arcuri, L. Briand, Adaptive Random Testing: An Illusion of Effectiveness, International
Symposium on Software Testing and Analysis 2011

7. A. Arcuri, L. Briand, "Formal Analysis of the Probability of Interaction Fault Detection Using
Random Testing," IEEE Transactions on Software Engineering, 18 Aug. 2011. IEEE Computer
Society, http://doi.ieeecomputersociety.org/10.1109/TSE.2011.85

8. J. Bach, P. Shroeder, Pairwise Testing - A Best Practice That Isn't. Proceedings of 22nd Pacific
Northwest Software Quality Conference, 2004, pp. 180-196

9. W.A. Ballance, S. Vilkomir, W. Jenkins, Effectiveness of Pair-wise Testing for Software With

Boolean Inputs, Workshop on Combinatorial Testing (CT), April 17, 2012, International
Conference on Software Testing, (ICST 2012, April 17-21)Montreal, Canada.

10. W. Ballance, W. Jenkins, and S. Vilkomir, “Probabilistic Assessment of Effectiveness of

Software Testing for Safety-Critical Systems,” Proceedings of the 10th International
Probabilistic Safety Assessment & Management Conference (PSAM 10), Seattle, Washington,
USA, 7-11 June (2010).

11. M. Banbara, N. Tamura, and K. Inoue, Generating event-sequence test cases by answer set
programming with the incidence matrix, in Technical Communications of the 28th International
Conference on Logic Programming (ICLP12), 2012, pp. 86-97.

12. L. Baresi, M. Young, Test Oracles, Dept. of Computer and Information Science, Univ. of Oregon,
2001. http://www.cs.uoregon.edu/michal/pubs/oracles.html

13. B. Beizer, Software Testing Techniques, Van Nostrand Reinhold, New York, 2nd edition, 1990.

85

14. K. Z. Bell and Mladen A. Vouk. On effectiveness of pairwise methodology for testing network-
centric software. Proceedings of the ITI Third IEEE International Conference on Information &
Communications Technology, pages 221–235, Cairo, Egypt, December 2005.

15. K.Z. Bell, Optimizing Effectiveness and Efficiency of Software Testing: a Hybrid Approach, PhD

Dissertation, North Carolina State University, 2006.

16. P. G. Bishop, The variation of software survival times for different operational input profiles. In
Proceedings of the 23rd International Symposium on Fault-Tolerant Computing (FTCS-23) (pp.
98–107). IEEE Computer Society Press.

17. P. E. Black, V. Okun, Y. Yesha, "Testing with Model Checkers: Insuring Fault Visibility",
WSEAS Trans. Sys., 2 (1): 77-82, Jan. 2003.

18. P. E. Black, V. Okun, Y. Yesha, "Mutation Operators for Specfications", Automated Software

Engineering, 2000

19. B.W. Boehm, Software Engineering Economics, Prentice Hall, 1981.

20. George E. P. Box, W. G. Hunter, and J. Stuart Hunter (1978) Statistics for Experimenters, New

York: Wiley

21. R. Brownlie, J. Prowse, and M. S. Phadke (1992) “Robust testing of AT&T PMX/Starmail using
OATS,” AT&T Technical Journal, 71, pp 41-47

22. R. Bryce, C.J. Colbourn. The Density Algorithm for Pairwise Interaction Testing, Journal of
Software Testing, Verification and Reliability, August 2007

23. Bryce, R. C.J. Colbourn, M.B. Cohen. A Framework of Greedy Methods for Constructing
Interaction Tests. The 27th International Conference on Software Engineering (ICSE), St. Louis,
Missouri, pages 146-155. (May 2005).

24. [Bryce IST06] R. Bryce and C. Colbourn. Prioritized interaction testing for pair-wise coverage
with seeding and constraints. Journal of Information and Software Technology, 48(10):960–970,
2006.

25. R. Bryce, A. Rajan, M.P.E. Heimdahl, Interaction Testing in Model Based Development: Effect

on Model Coverage, IEEE, 13th Asia Pacific Software Engineering Conference (APSEC'06) pp.
259-268.

26. R. Bryce, S. Sampath, A. Memon. Developing a Single Model and Test Prioritization Strategies

for Event-Driven Software, Transactions on Software Engineering, (January 2011), 37(1):48-64.

27. Renee C. Bryce and Atif M. Memon, Test Suite Prioritization by Interaction Coverage. In
Proceedings of The Workshop on Domain-Specific Approaches to Software Test Automation
(DoSTA 2007); co-located with the 6th joint meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on the Foundations of Software Engineering,
(Dubrovnik, Croatia), pp 1-7, September 2007.

86

28. R. Bryce, S. Sampath, J. Pedersen, S. Manchester. Test Suite Prioritization by Cost-based
Combinatorial Interaction Coverage, International Journal on Systems Assurance Engineering
and Management (Springer), (April 2011), 2(2): 126-134.

29. R. Bryce, Y. Lei, D.R. Kuhn, R. Kacker, "Combinatorial Testing", Chap. 14, Handbook of
Research on Software Engineering and Productivity Technologies: Implications of
Globalization, Ramachandran, ed. , IGI Global, 2009.

30. Burners-Lee, T. (1994). Uniform resource locators (URL). Retrieved June 2012, from IETF:

http://www.ietf.org/rfc/rfc1738.txt

31. K. Burr and W. Young Combinatorial Test Techniques: Table-Based Automation, Test
Generation, and Test Coverage, International Conference on Software Testing, Analysis, and
Review (STAR), San Diego, CA, October, 1998.

32. K. Burroughs, A. Jain, and R. L. Erickson. Improved quality of protocol testing through

techniques of experimental design. In Proceedings of the IEEE International Conference on
Communications (Supercomm/ICC'94), May 1-5, New Orleans, Louisiana, USA. IEEE, May
1994, pp. 745-752

33. K. A. Bush (1952) “Orthogonal arrays of index unity,” Annals of Mathematical Statistics, 23, pp
426-434

34. T. Y. Chen, H. Leung, and I. K. Mak. Adaptive random testing. Advances in Computer Science,
pages 320–329, 2004.

35. T.Y. Chen, Adaptive Random Testing, Eighth Intl. Conf. on Quality Software, 2008. IEEE, pp.
443.

36. T. Y. Chen, F.C. Kuo, R. G. Merkel, T.H. Tse. Adaptive random testing: The art of test case
diversity. Journal of Systems and Software (JSS), 2010. (also HKU-CS Tech Rpt.TR-2009-07.)

37. B. Chen, J. Yan, J. Zhang, Combinatorial Testing with Shielded Parameters, APSEC '10
Proceedings of the 2010 Asia Pacific Software Engineering Conference, IEEE Computer Society,
pp. 280-289.

38. B. Chen, J. Zhang, Tuple Density: A New Metric for Combinatorial Test Suites, Proceedings of

the 33rd International Conference on Software Engineering, ICSE 2011, Waikiki, Honolulu , HI,
USA, May 21-28, 2011. ACM 2011, ISBN 978-1-4503-0445-0

39. J. J. Chilenski, An Investigation of Three Forms of the Modified Condition Decision Coverage
(MCDC) Criterion, Report DOT/FAA/AR-01/18, April 2001, 214 pp.

40. A. Cimatti, E. Clarke, F. Giunchiglia and M. Roveri. NuSMV: a new symbolic model verifier. In

N. Halbwachs and D. Peled, editors. Proceeding of International Conference on Computer-Aided
Verification (CAV'99). In Lecture Notes in Computer Science, no. 1633, pp. 495-499, Trento,
Italy, July 1999. Springer Verlag.

41. I. Ciupa, A. Leitner, M. Oriol and B. Meyer: ARTOO: Adaptive Random Testing for Object-

Oriented Software, in ICSE 2008: Proceedings of 30th International Conference on Software
Engineering, Leipzig, 10-18 May 2008, IEEE Computer Society Press, 2008,

87

42. E. M. Clarke, K. L. McMillan, S. Campos, and V. Hartonas-Garmhausen.

Symbolic model checking. In Rajeev Alur and Thomas A. Henzinger, editors, Proceedings of the
Eighth International Conference on Computer Aided Verification CAV, volume 1102 of Lecture
Notes in Computer Science, pages 419-422, New Brunswick, NJ, USA, July/August 1996.
Springer Verlag.

43. L. Clarke, H. Hassell, and D. Richardson. "A Close Look at Domain Testing." IEEE Transactions
on Software Engineering, 1982: 380–392.

44. William G. Cochran and M. G. Cox (1950) Experimental Designs, New York: Wiley

45. [Codd 1972] E.F. Codd. Further normalization of the data base relational model. R. Rustin,

editor, Data Base Systems, pages 33-64, Prentice-Hall, 1972.

46. M.B. Cohen, J. Snyder, G. Rothermel. Testing Across Configurations: Implications for
Combinatorial Testing, Workshop on Advances in Model-based Software Testing, Raleigh, Nov.
2006, pp. 1-9

47. D. M. Cohen, S. R. Dalal, J. Parelius, G. C. Patton The Combinatorial Design Approach to

Automatic Test Generation, IEEE Software, Vol. 13, No. 5, pp. 83-87, September 1996

48. L. Copeland, A Practitioner’s Guide to Software Test Design, Artech House Publishers, Boston,

2004.

49. M. Cohen, M. Dwyer, J. Shi. Interaction testing of highly-configurable sys-tems in the presence
of constraints. International Symposium on Software Testing and Analysis, vol 4961/2008,
pp 129–139, 2007.

50. M. Cohen, M. Dwyer, J. Shi. Coverage and adequacy in software product line testing.
International Symposium on Software Testing and Analysis, pp 53–63, 2006.

51. D.M. Cohen, S.R. Dalal, J. Parelius, and G.C. Patton, “The Combinatorial Design Approach to
Automatic Test Generation”, IEEE Software, Vol. 13, No. 5, pp. 83-87, (1996).

52. D.M. Cohen, S.R. Dalal, M.L. Fredman, and G.C. Patton, “The AETG System: An Approach to
Testing Based on Combinatorial Design”, IEEE Transactions on Software Engineering, Vol. 23,
No. 7, pp. 437–444, (1997).

53. Jacek Czerwonka (webpage) http://www.pairwise.org/

54. J. Czerwonka, “Pairwise testing in real world: Practical extensions to test case generator”,
Proceedings of 24th Pacific Northwest Software Quality Conference, October 9–11, 2006,
Portland, Oregon, USA, pp. 419–430, (2006).

55. Dalal, S.R., C.L. Mallows, Factor-covering Designs for Testing Software, Technometrics, v. 40,
1998, pp. 234-243.

56. S. Dunietz, W. K. Ehrlich, B. D. Szablak, C. L. Mallows, A. Iannino. Applying design of

experiments to software testing, Proceedings of the Intl. Conf. on Software Engineering, (ICSE
’97), 1997, pp. 205-215, New York

88

57. L. du Bousquet, Y. Ledru, O. Maury, C. Oriat, J.-L. Lanet, A case study in JML-based software

validation. Proceedings of 19th Int. IEEE Conf. on Automated Sofware Engineering, pp. 294-297,
Linz, Sep. 2004

58. E. Erdem, K. Inoue, J. Oetsch, J. Puhrer, H. Tompits, C. Yilmaz, Answer Set Programming as a
new Approach to Event Sequence Testing, VALID 2011, Third Intl. Conference on Advances in
System Testing and Validation Lifecycle, IARIA, Oct. 23, 2011, pp. 25-34.

59. R. A. Fisher (1925) Statistical Methods for Research Workers, Edinburgh: Oliver and Boyd

60. R. A. Fisher (1935) The Design of Experiments, Edinburgh: Oliver and Boyd

61. G. B. Finelli, NASA software failure characterization experiments. Reliability Engineering and

System Safety, 32(1–2), (1991). pp. 155–169.

62. Michael Forbes, J. Lawrence, Yu Lei, R. N. Kacker, D. R. Kuhn (2008) “Refining the In-
Parameter-Order strategy for constructing covering arrays,” Journal of Research of NIST, 113, pp
287-297

63. Michael Forbes (webpage) http://math.nist.gov/coveringarrays/

64. Angelo Gargantini and Paolo Vavassori, CitLab: a Laboratory for Combinatorial Interaction
Testing in Workshop on Combinatorial Testing (CT) International Conference on Software
Testing (ICST 2012, April 17-21)IEEE Computer Society (2012): 559-568 ISBN 978-0-7695-
4670-4

65. D. Giannakopoulou, D.H. Bushnell, J. Schumann, H. Erzberger, K. Heere, "Formal Testing for
Separation Assurance", Ann. Math. Artif. Intell., 2011. DOI: 10.1007/s10472-011-9224-3

66. M. Grindal, J. Offutt, S.F. Andler, Combination Testing Strategies: a Survey, Software Testing,
Verification, and Reliability, v. 15, 2005, pp. 167-199.

67. M. Grindal, J. Offutt, J. Mellin. "Managing Conflicts when Using Combination Strategies to Test
Software." Proceedings of the 2007 Australian Software Engineering Conference (ASWEC'07).
IEEE, 2007.

68. Grochtmann, M. "Test Case Design Using Classification Trees." STAR’94. Washington, 1994.

69. M. GROCHTMANN, K. GRIMM. "Classification Trees for Partition Testing." SOFTWARE
TESTING, VERIFICATION AND RELIABILITY, 1993: VOL. 3, 63-82.

70. Guo, Y. a. (2008). Web application fault classification-an exploratory study. Proceedings of the
Second ACM-IEEE international symposium on Empirical software engineering and
measurement (pp. 303-305).

71. David Harel. Statecharts: A visual formalism for complex systems. Science of Computer
Programming, 8(3):231–274, June 1987.

72. A. Hartman. Software and hardware testing using combinatorial covering suites. Graph Theory,
Combinatorics and Algorithms: Interdisciplinary Applications, pp. 327–266, 2005.

89

73. A. Hartman and L. Raskin, Problems and algorithms for covering arrays. Discrete Math. 284

(2004), 149–156.

74. A. S. Hedayat, N. J. A. Sloan, and J. Stufken (1999) Orthogonal Arrays: Theory and
Applications, New York: Springer

75. C.A.R. Hoare, “Assertions, a Personal Perspective”, IEEE Annals of the History of Computing,
vol. 25, no. 2, pp. 14-25, 2003.

76. Ari Jaaksi. Developing mobile browsers in a product line. IEEE Software, 19(4):73–80,

July/August 2002.

77. Raine Kauppinen and Juha Taina. Rita environment for testing framework-based software
product lines. In Proceedings of the Eighth Symposium on Programming Languages and
Software Tools, pages 58–69, June 2003.

78. Chang Hwan Peter Kim , Don S. Batory , Sarfraz Khurshid, Reducing combinatorics in testing
product lines, Proc. 10th international conference on Aspect-oriented software development,
March 21-25, 2011, Porto de Galinhas, Brazil

79. Kamsties, E. & Lott, C. (1995a). An Empirical Evaluation of Three Defect Detection Techniques,
Technical Report ISERN 95-02, Dept of Computer Science, University of Kaiserslauten.

80. Kamsties, E. & Lott, C. (1995b). An empirical evaluation of three defect detection techniques,
Proceedings of the 5th European Software Engineering Conference (ESEC95), Barcelona, Spain,
September 25-28, 1995.

81. Oscar Kempthorne (1952) Design and Analysis of Experiments, New York: Wiley

82. Daniel J. Kleitman, and J. Spencer (1973) “Families of k-independent sets,” Discrete

Mathematics, 6, pp 255-262

83. R. Kramer, “iContract – The Java Design by Contract Tool”. In Proceedings of TOOLS26:
Technology of Object-Oriented Languages and Systems, pp. 295-307, IEEE, 1998.

84. V. Hu, D.R. Kuhn, T. Xie, "Property Verification for Generic Access Control Models",

IEEE/IFIP International Symposium on Trust, Security, and Privacy for Pervasive Applications,
Shanghai, China, Dec. 17-20, 2008.

85. Institute of Electrical and Electronics Engineers, IEEE Standard Glossary of Software

Engineering Terminology, ANSI/IEEE Std. 729-1983.

86. C. W. Krueger. New Methods in Software Product Line Practice. Communications of the ACM,

49(12):37–40, 2006.

87. P.M. Kruse, J. Wegener, Test Sequence Generation from Classification Trees. 2012 IEEE Fifth
International Conference Software Testing, Verification and Validation (ICST),. 17-21 April
2012, pp. 539-548

90

88. D.R. Kuhn, "Fault Classes and Error Detection Capability of Specification Based Testing," ACM
Transactions on Software Engineering and Methodology, Vol. 8, No. 4 (October,1999).

89. R. Kuhn, R. Kacker, Y. Lei, J. Hunter, "Combinatorial Software Testing", IEEE Computer, vol.

42, no. 8 (August 2009).

90. D.R. Kuhn, R. Kacker, Y. Lei, "Automated Combinatorial Test Methods: Beyond Pairwise

Testing", Crosstalk, Journal of Defense Software Engineering, vol. 21, no. 6, June 2008

91. D.R. Kuhn and V. Okun, “Pseudo-exhaustive Testing for Software,” Proceedings of 30th

NASA/IEEE Software Engineering Workshop, pp. 153-158, 2006

92. D.R. Kuhn, M.J. Reilly, An Investigation of the Applicability of Design of Experiments to
Software Testing, 27th NASA/IEEE Software Engineering Workshop, NASA Goddard Space
Flight Center, 4-6 December, 2002 .

93. D.R. Kuhn, D.R. Wallace, and A. Gallo, “Software Fault Interactions and Implications for

Software Testing,” IEEE Transactions on Software Engineering, 30(6): 418-421, 2004

94. D.R. Kuhn, R. Kacker, Y.Lei, "Random vs. Combinatorial Methods for Discrete Event

Simulation of a Grid Computer Network", Proceedings, Mod Sim World 2009, Oct. 14-17 2009,
Virginia Beach, pp. 83-88, NASA CP-2010-216205, National Aeronautics and Space
Administration.

95. D.R. Kuhn, R. Kacker, Y. Lei, "Combinatorial and Random Testing Effectiveness for a Grid

Computer Simulator" NIST Tech. Rpt. 24 Oct 2008.

96. D.R. Kuhn, R. Kacker, Y.Lei, Practical Combinatorial Testing, NIST SP 800-142, October,
2010.

97. D. R. Kuhn, J. M. Higdon, J. F. Lawrence, R. N. Kacker, and Y. Lei, Combinatorial methods for

event sequence testing, in IEEE Fifth International Conference on Software Testing, Veri_cation
and Validation (ICST), 2012, pp. 601-609.

98. D. R. Kuhn, J. M. Higdon, J. F. Lawrence, R. N. Kacker, and Y. Lei, Combinatorial methods for

event sequence testing, CrossTalk: The Journal of Defense Software Engineering, 25 (2012), pp.
15-18.

99. D.R. Kuhn, J.M. Higdon, Testing Event Sequences,
http://csrc.nist.gov/groups/SNS/acts/sequence_cov_arrays.html Oct., 2009.

100. D.R. Kuhn, Combinatorial Measurement Tool User Guide, Available online at

http://csrc.nist.gov/groups/SNS/acts/documents/ComCoverage110130.pdf, Published on January
30, 2011 and last accessed on May 14, 2012.

101. G. Kundrajavets, N. Nagappan, T. Ball, Assessing the Relationship between Software
Assertions and Faults: an Empirical Investigation, Proceedings of 17th International Symposium
on Software Reliability Engineering, IEEE, pp. 204-212, Raleigh, 2006.

91

102. G.T. Leavens, A.L. Baker, and C. Ruby. JML: A notation for detailed design. In H.
Kilov, B. Rumpe, and I. Simmonds, editors, Behavioral Specifications of Businesses and Systems.
Kluwer, 1999

103. Y. Lei, R. Kacker, D.R. Kuhn, V. Okun, J. Lawrence, “IPOG/IPOG-D: Efficient Test

Generation for Multi-Way Combinatorial Testing”, Software Testing, Verification, and
Reliability.

104. Y. Lei and K.C. Tai, “In-Parameter-Order: A Test Generation Strategy for Pairwise
Testing”, Proceedings of the 3rd IEEE international Symposium on High-Assurance Systems
Engineering, November 13-14, 1998, pp. 254-261, (1998)

105. J. Leyden, “Symantec update killed biz PCs in three-way software prang”, The Register,
July 16, 2012, http://www.theregister.co.uk/2012/07/16/symantec_update_snafu/.

106. D.C. Luckham, F.W. von Henke. “Overview of Anna, a Specification Language for

Ada”, IEEE Software, vol. 2, no. 2, pp. 9-22, March 1985.

107. M. Lyu, ed. Software Reliability Engineering, McGraw Hill, 1996.

108. P.J. Maker, GNU Nana – User’s Guide (version 2.4). Technical report, School of

Information Technology – Northern Territory Univ., July 1998.

109. B.A. Malloy, J.M. Voas, “Programming with Assertions – a Prospectus”, IEEE IT

Professional, vol. 6, no. 5, pp. 53-59, Sept./Oct. 2004.

110. Robert Mandl (1985) “Orthogonal Latin squares: an application of experiment design to
compiler testing,” Communications of the ACM, 28, pp 1054-1058

111. B. Marick, The Craft of Software Testing, Simon & Schuster, 1995.

112. Marick, B. "Test Requirement Catalog: Generic Clues, Developer Version."
www.exampler.com. 1995. http://www.exampler.com/testing-com/writings/catalog.pdf (accessed
Sept. 2012).

113. A.P. Mathur, Foundations of Software Testing, Addison-Wesley, New York, 2008.

114. Maughan, C. (2012). TEST CASE GENERATION USING COMBINATORIAL BASED

COVERAGE FOR RICH WEB APPLICATIONS . Logan, UT: Utah State University.

115. J.R. Maximoff, M.D. Trela, D.R. Kuhn, R. Kacker, “A Method for Analyzing System
State-space Coverage within a t-Wise Testing Framework”, IEEE International Systems
Conference 2010, Apr. 4-11, 2010, San Diego.

116. E.J. McCluskey, S. Bozorgui-Nesbat, “Design for Autonomous Test”, IEEE Trans. On

Computers, vol. C-30, no. 11, Nov. 1981, pp. 866-875.

117. M. Memon and Q. Xie. Studying the fault-detection effectiveness of GUI test cases for
rapidly evolving software. IEEE Trans. Softw. Eng., 31(10):884–896, 2005.

92

118. C. Montanez, D.R. Kuhn, M. Brady, R.M. Rivello, J. Reyes, and M.K. Powers.
“Evaluation of Fault Detection Effectiveness for Combinatorial and Exhaustive Selection of
Discretized Test Inputs”. Software Quality Professional , Volume 14, Issue 3, p. 32-38 (June
2012).

119. Douglas C. Montgomery (2004) Design and Analysis of Experiments, 4-th edition, New
York: Wiley

120. J. Musa, G. G. Fuoco, N. Irving, D. Kropfl, B. Jublin, The Operational Profile, Chapter 5
in Handbook of Software Reliability Engineering, M.R. Lyu, ed. McGraw-Hill, 1996.

121. J. Musa, A. Iannino, K. Okumoto, Software Reliability – Measurement, Prediction,
Application, McGraw-Hill, 1987.

122. B. Meyer, Object-Oriented Software Construction, Second Edition, Prentice Hall, 1997,
ISBN 0-13-629155-4

123. B. Meyer, I. Ciupa, A. Leitner, A. Fiva, Y. Wei and E. Stapf: Programs that Test

Themselves, IEEE Computer, vol. 42, no. 9, pages 46-55, September 2009,
124. G. Myers, The Art of Software Testing, John Wiley and Sons, New York, 1979.

125. National Aeronautics and Space Administration, Meteorological Measurement System,

http://geo.arc.nasa.gov/sgg/mms/Integration/dc8/mission_manager.htm

126. National Institute of Standards and Technology. Dictionary of Algorithms and Data
Structures.
 http://xlinux.nist.gov/dads/HTML/greedyalgo.html

127. National Institute of Standards and Technology. Test Accelerator. .
http://www.itl.nist.gov/div897/docs/testacc.html

128. National Institute of Standards and Technology. Number of interactions involved in
software failures – empirical data. http://csrc.nist.gov/groups/SNS/acts/ftfi.html

129. Linda M. Northrop. SEI’s software product line tenets. IEEE Software, 19(4):32–40,
July/August 2002.

130. K. Nurmela (2004) “Upper bounds for covering arrays by tabu search,” Discrete Applied
Mathematics, 138, pp 143–152

131. K. Nurmela (webpage) http://www.tcs.hut.fi/∼kjnu/covarr.html

132. Ocariza Jr, F. P. (2011). JavaScript errors in the wild: An empirical study. Software
Reliability Engineering (ISSRE), 2011 IEEE 22nd International Symposium (pp. 100–109).

133. V. Okun, P. E. Black, “Issues in Software Testing with Model Checkers”, Proceedings of
the International Conference on Dependable Systems and Networks (DSN-2003), June 2003

134. V. Okun, "Specification Mutation for Test Generation and Analysis", PhD Dissertation,

U of Maryland Baltimore Co., 2004

93

135. [OMG 2010] Object Management Group. OMG Unified Modeling Language (OMG
UML), Superstructure Version 2.3.

136. Sebastian Oster , Florian Markert , Philipp Ritter, Automated incremental pairwise testing
of software product lines, Proceedings of the 14th international conference on Software product
lines: going beyond, September 13-17, 2010, Jeju Island, South Korea

137. T.J. Ostrand, M.J. Balcer, “The Category Partition Method for Specifying and Generating
Functional Tests”, Communications of the ACM, vol. 31, no. 6 (June, 1988), pp. 676-686.

138. M. Pezze, M. Young. Software Testing and Analysis—Process, Principles and
Techniques. John Wiley & Sons, 2008.

139. M.S. Phadke. Quality Engineering Using Robust Design. Prentice-Hall Inc., New Jersey,

1989.

140. Alexander Pretschner, Tejeddine Mouelhi, Yves Le Traon. Model Based Tests for
Access Control Policies, 2008 International Conference on Software Testing, Verification, and
Validation pp. 338-347

141. Damaraju Raghavarao (1971) Constructions and Combinatorial Problems in Design of
Experiments, Dover: New York

142. C. R. Rao (1947) “Factorial experiments derivable from combinatorial arrangements of
arrays,” Journal of Royal Statistical Society (Supplement), 9, pp 128-139

143. Alfred Renyi (1971) Foundations of Probability, New York: Wiley

144. G. Roux (1987) “k–propriétés dans les tableaux de n colonnes: cas particulier de la k–
surjectivité et de la k–permutivité,” Unpublished PhD dissertation, University of Paris

145. X. Qu, M. B. Cohen, and K. M. Woolf. Combinatorial interaction regression testing: A
study of test case generation and prioritization. In Intl. Conference on Software Maintenance,
pages 255–264, Oct. 2007.

146. Rudolf Ramler, Theodorich Kopetzky and Wolfgang Platz, Combinatorial Test Design in
the TOSCA Testsuite: Lessons Learned and Practical Implications, Workshop on Combinatorial
Testing (CT) International Conference on Software Testing (ICST 2012, April 17-21)IEEE
Computer Society (2012)

147. E. Reisner, C. Song, K.K. Ma, J.S. Foster, A. Porter, Using Symbolic Evaluation to
Understand Behavior in Configurable Software Systems, Proceeding ICSE '10 Proceedings of the
32nd ACM/IEEE International Conference on Software Engineering - Volume 1 Pages 445-454.

148. Andreas Reuys, Sacha Reis, Erik Kamsties, and Klaus Pohl. Derivation of domain test

scenarios from activity diagrams. In Proceedings of the International Workshop on Product Line
Engineering The Early Steps: Planning, Modeling, and Managing (PLEES’03), 2003.

149. D. Richardson, L. Clarke, “A Partition Analysis Method to Increase Program
Reliability”, Proc. 5th Intl. Conf. Software Eng., IEEE, Mar. 9-12, 1981, pp. 244-253.

94

150. D.S. Rosenblum. A Practical Approach to Programming with Assertions, IEEE Trans. on

Software Eng., vol. 21, no. 11, pp. 777-793, Jan. 1995.

151. G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold. Prioritizing test cases for
regression testing. IEEE Trans. on Software Engineering, (October 2011), 27(10):929–948.

152. Sampath, S. S. (2007). Applying concept analysis to user-session-based testing of web

applications. Transactions on Software Engineering. 33(10), pp. 643-658.

153. Sreedevi Sampath, Renée Bryce, Gokulanand Viswanath, Vani Kandimalla, A. Günes
Koru, "Prioritizing User-Session-Based Test Cases for Web Application Testing", International
Conference on Software Testing, Verification, and Validation (ICST) (April 2008), pp..141-150.

154. S. Sampath, R. Bryce, S. Jain, S. Manchester. A Tool for Combinatorial-based
Prioritization and Reduction of User-Session-Based Test Suites, Proceedings of the International
Conference on Software Maintenance (ICSM) - Tool Demonstration Track, Williamsburg, VA
(September 2011), pp. 574-577.

155. S. Sampath, R. Bryce. Improving the effectiveness of test suite reduction for user-
session-based testing of web applications, Information and Software Technology Journal (IST,
Elsevier), (July 2012), 54(7): 724-738.

156. Shinobu Sato and H. Shimokawa (1984) “Methods for setting software test parameters
using the design of experiments method (in Japanese),” Proceedings of the 4-th Symposium on
Quality Control in Software, Japanese Union of Scientists and Engineers (JUSE), pp 1-8

157. Patrick J. Schroeder, Pankaj Bolaki, and Vijayram Gopu. Comparing the fault detection
effectiveness of n-way and random test suites. In Proceedings of the IEEE International
Symposium on Empirical Software Engineering, pages 49–59, 2004.

158. I. Segall, R. Tzoref-Brill, A. Zlotnick, Simplified Modeling of Combinatorial Test
Spaces, Workshop on Combinatorial Testing (CT) International Conference on Software Testing
(ICST 2012, April 17-21)IEEE Computer Society (2012):

159. G. Sherwood. Efficient testing of factor combinations. Proc. Third International

Conf.Software Testing, Analysis, and Review (Jacksonville FL), 1994.

160. [Sherwood 2011] George B. Sherwood. Getting the Most from Pairwise Testing: A Guide
for Practicing Software Engineers. CreateSpace, 2011.

161. N. Sloane. Covering arrays and intersecting codes. Journal of Combinatorial Designs,
1(1):51–63, 1993.

162. Hiroki Shimokawa (1985) “Method of generating software test cases using the
experimental design (in Japanese),” Report on Software Engineering SIG, Information Processing
Society of Japan (IPSJ) No.1984-SE-040

163. Neil J. A. Sloan (webpage) http://www2.research.att.com/~njas/oadir/

95

164. George W. Snedecor, and W. G. Cochran (1967) Statistical Methods, Iowa State
University Press

165. Software Engineering Institute. Catalog of Software Product Lines.
http://www.sei.cmu.edu/productlines/casestudies/catalog/?location=tertiary-nav&source=10755

166. Software Engineering Institute. Software Product Lines,
http://www.sei.cmu.edu/productlines/. 19 July 2012.

167. Charles Song, Adam Porter, Jeffrey S. Foster: iTree: Efficiently discovering high-
coverage configurations using interaction trees. 34th International Conference on Software
Engineering, ICSE 2012, June 2-9, 2012, Zurich, Switzerland. IEEE 2012, ISBN 978-1-4673-
1067-3 pp. 903-913

168. M. Sutton, A. Greene, P. Amini, Fuzzing: Brute Force Vulnerability Discovery, Addison-
Wesley, 2007

169. Genichi Taguchi (1986) Introduction to Quality Engineering, White Plains New York:

UNIPUB, Kraus International

170. Genichi Taguchi (1987) System of Experimental Design, Vol. 1 and Vol. 2, White Plains
New York: UNIPUB, Kraus International (English translations of the 3-rd edition of Jikken
Keikakuho (Japanese) published in 1977 and 1978 by Maruzen)

171. Genichi Taguchi (1993) Taguchi on Robust Technology Development, New York:
ASME Press

172. K. C. Tai and Yu Lei (2002) “A test generation strategy for pairwise testing,” IEEE
Transactions on Software Engineering, 28, pp 109-111

173. Keizo Tatsumi (1987) “Test-case design support system” Proceedings of the International
Conference on Quality Control (ICQC 87), Tokyo, 20-23 October 1987, pp 615-620

174. Keizo Tatsumi, S. Watanabe, Y. Takeuchi, and H. Shimokawa (1987) “Conceptual
support for test case design,” Proceedings of 11-th IEEE Computer Software and Applications
Conference (COMPSAC 87), Tokyo, 7-9 October 1987, pp 285-290

175. [Tatsumi 1987] K. Tatsumi. Test case design support system. Proceedings of the
International Conference on Quality Control (ICQC), Tokyo, 1987, pages 615–620, 1987.

176. [Testcover.com 2012] www.testcover.com.

177. Jose Torres-Jimenez and E. Rodriguez-Tello (2012) “New bounds for binary covering
arrays using simulated annealing,” Information Sciences, 185, pp 137-152

178. Jose Torres-Jimenez (webpage) http://www.tamps.cinvestav.mx/~jtj/CA.php

179. J.G. Udell, E.J. McCluskey, “Efficient Circuit Segmentation for Pseudoexhaustive Test”,
Proc. Intl. Conf. on Computer-Aided Design, 1987, pp. 148-151.

96

180. University of Nebraska Lincoln. Software Artifact Infrastructure Repository. Siemens
Traffic Collision Avoidance System code. http://sir.unl.edu/portal/bios/tcas.php

181. S. Vilkomir, O. Starov, R. Bhambroo, Evaluation of t-wise Approach for Testing Logical
Expressions in Software, (submitted for publication).

182. J.M. Voas, K.W. Miller, “Putting Assertions in their Place”, Proceedings of International
Symposium on Software Reliability Engineering, IEEE, pp. 152-157, 1994.

183. J. Voas, Schatz, M., Schmid, M., "A Testability-based Assertion Placement Tool for

Object-Oriented Software," National Institute for Standards and Technology NIST GCR 98-735,
1998.

184. Wenhua Wang, Yu Lei, D. Liu, D. Kung, C. Csallner, D. Zhang, R. N. Kacker and D. R.

Kuhn (2011) “A combinatorial approach to detecting buffer overflow vulnerabilities,”
Proceedings of 41st Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), Hong Kong, 27-30 June 2011, pp 269-278

185. Wenhua Wang, S. Sampath, Yu Lei, and R. N. Kacker (2008) “An interaction-based test
sequence generation approach for testing web applications,” Proceedings of 11-th IEEE
International Conference on High Assurance Systems Engineering, Nanjing China, 3-5 December
2008, pp 209-218

186. Wenhua Wang, Yu Lei, S. Sampath, R. N. Kacker, D. R. Kuhn, and J. Lawrence (2009)
“A combinatorial approach to building navigation graphs for dynamic web applications,”
Proceedings of 25th IEEE International Conference on Software Maintenance, Edmonton
Canada, 20-26 September 2009, pp 211-220

187. Wenhua Wang, Yu Lei, D. Liu, D. Kung, C. Csallner, D. Zhang, R. N. Kacker and D. R.
Kuhn (2011) “A combinatorial approach to detecting buffer overflow vulnerabilities,”
Proceedings of 41st Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), Hong Kong, 27-30 June 2011, pp 269-278

188. X. Yuan, M.B. Cohen, A. Memon, “Covering Array Sampling of Input Event Sequences
for Automated GUI Testing”, November 2007 ASE '07: Proceedings of the 22nd IEEE/ACM Intl.
Conf. Automated Software Engineering, pp. 405-408.

189. X. Yuan and A. M. Memon. Using GUI run-time state as feedback to generate test cases.

In ICSE’07, Proceedings of the 29th International Conference on Software Engineering, pages
396–405, Minneapolis, MN, USA, May 23–25, 2007.

190. D.R. Wallace, D.R. Kuhn, Failure Modes in Medical Device Software: an Analysis of 15

Years of Recall Data, International Journal of Reliability, Quality, and Safety Engineering, Vol.
8, No. 4, 2001.

191. E. Weyuker, using Failure Cost Information for Testing and Reliability Assessment,
ACM Trans. on Software Engineering and Methodology, v. 5, n. 2, apr. 1996, pp. 87-90.

192. E. Weyuker, Testing Component-Based Software: a Cautionary Tale, IEEE Software,
Sept./Oct. 1998, IEEE.

97

193. E. Weyuker, T. Goradia, and A. Singh, “Automatically generating test data from a
Boolean specification”, IEEE Transactions on Software Engineering, Vol. 20, No. 5, pp. 353–
363, (1994).

194. L. White, E. Cohen. "A domain strategy for computer program testing." IEEE
Transactions on Software Engineering (IEEE Transactions on Software Engineering), 1980: 247-
257

195. Wikipedia. Java Modeling Language,
http://en.wikipedia.org/wiki/Java_Modeling_Language.

196. A.W. Williams, R.L. Probert. A practical strategy for testing pair-wise coverage of

network interfaces The Seventh International Symposium on Software Reliability Engineering
(ISSRE '96) p. 246

197. World Wide Web Consoritum, DOM Level 3 Events Specification, 8 Sept 2009.
http://www.w3.org/TR/DOM-Level-3-Events/

198. World Wide Web Consoritum, Document Object Model Conformance Test Suites.
http://www.w3.org/DOM/Test/

199. Zhang, Z., X. Liu, and J. Zhang, Combinatorial Testing on ID3v2 Tags of MP3 Files,
Workshop on Combinatorial Testing, at Software Testing, Verification and Validation (ICST),
2012 IEEE Fifth International Conference, 17-21 April 2012, pp. 587-590.

	1 Combinatorial Methods in Testing
	1.1 Software Failures and the Interaction Rule
	1.2 Two Forms of Combinatorial Testing
	Configuration Testing
	Input Testing

	1.3 Covering Arrays
	Covering Array Definition
	Size of Covering Arrays

	1.4 The Test Oracle Problem
	1.5 Quick Start – How to Use the Basics of Combinatorial Methods Right Away
	1.6 Chapter Summary

	2 Combinatorial Testing Applied
	3 Configuration Testing
	3.1 Runtime Environment Configurations
	3.2 Highly Configurable Systems and Software Product Lines
	3.3 Invalid Combinations and Constraints
	Constraints Among Parameter Values
	Constraints Among Parameters

	3.4 Cost and Practical Considerations
	3.5 Chapter Summary

	4 Input Testing
	4.1 Partitioning the Input Space
	4.2 Input Variables vs. Test Parameters
	4.3 Fault Type and Detectability
	4.4 Building Tests to Match an Operational Profile
	4.5 Scaling Considerations
	4.6 Cost and Practical Considerations
	4.7 Chapter Summary

	5 Test Parameter Analysis (E. Miranda)
	6 Managing System State in Combinatorial Test Designs (G. Sherwood)
	7 Measuring Combinatorial Coverage
	8 Test Suite Prioritization by Combinatorial Coverage (R. Bryce and S. Sampath)
	[non NIST authors]
	9 Combinatorial Testing and Random Test Generation
	9.1 Coverage of Random Tests
	9.2 Adaptive Random Testing
	9.3 Tradeoffs: Covering Arrays and Random Generation
	9.4 Cost and Practical Considerations
	9.5 Chapter Summary

	10 Sequence-Covering Arrays
	10.1 Sequence Covering Array Definition
	10.2 Size and Construction of Sequence Covering Arrays
	Generalized t-way Sequence Covering

	10.3 Using Sequence Covering Arrays
	10.4 Cost and Practical Considerations
	10.5 Chapter Summary

	11 Assertion-Based Testing
	11.1 Basic Assertions for Testing
	11.2 Stronger Assertion-based Testing
	11.3 Cost and Practical Considerations
	11.4 Chapter Summary

	12 Model-Based Testing
	12.1 Overview
	12.2 Access Control System Example
	SMV Model
	Integrating Combinatorial Tests into the Model

	12.3 Generating Tests from Counterexamples
	12.4 Cost and Practical Considerations
	12.5 Chapter Summary

	13 Fault Localization
	13.1 Set-theoretic Analysis
	13.2 Fault Localization Using Fault Identifier Tool
	13.3 Cost and Practical Considerations
	13.4 Chapter Summary

	Appendix A - References

