
Research Paper

An Extension of the Systems Modeling
Language for Physical Interaction and Signal
Flow Simulation
Conrad Bock,1,∗ Raphael Barbau,2 Ion Matei,3 and Mehdi Dadfarnia1

1U.S. National Institute of Standards and Technology, 100 Bureau Dr, Stop 8263, Gaithersburg, MD 20899
2Engisis, LLC, 10411 Motor City Dr, Ste 750, Bethesda, MD 20817
3Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304

Received 30 May 2013; Revised 17 January 2017; Accepted 13 March 2017, after one or more revisions
Published online in Wiley Online Library (wileyonlinelibrary.com).
DOI 10.1002/sys.21380

ABSTRACT

Computer-interpretable representations of system structure and behavior are at the center of developing
today’s complex systems. Systems engineers create and review these representations using graphicalmod-
eling languages that capture requirements, designs, and tests (such as the Systems Modeling Language,
SysML). However, these languages must be used in conjunction with analysis tools, in particular, with
simulators for physical interaction and numeric signal flow based on ordinary and algebraic differential
equation solvers. These kind of simulation tools are often used separately from system modeling tools,
leading to inconsistencies that require additional work to eliminate, preventing multidisciplinary concerns
from being reflected in the overall system design. As a result, there is an increasing need for integrating
physical interaction and signal flow simulation tools and languages into system modeling under a single
framework. In this article, we first present an abstraction of the constructs and semantics these simulation
tools and languages have in common, based on earlier reviews. Then, we compare SysML to our simulation
abstraction to find the parts of SysML closest to simulation modeling, and to identify simulation concepts
missing from SysML. This leads to extensions of SysML to bridge the gaps, illustrated with an example
application. Next, we address issues in translating extended SysML models to common simulation tools
and languages, including the differences between them. Finally, we validate the approach by applying
the extension to an example SysML model, automating the translations in software, and showing that the
results execute the same way on different simulation platforms. C⃝ 2017 Wiley Periodicals, Inc. Syst Eng 20:
395–431, 2017

Key words: SysML; Analysis; Lumped parameter; Modelica; Simulink/Simscape

1. INTRODUCTION

System modeling helps system engineers coordinate the
work of multiple other engineering disciplines (mechanical,

∗Author to whom all correspondence should be addressed (e-mail:
conrad.bock@nist.gov).

Systems Engineering Vol. 20, No. 5, 2017
C⃝ 2017 Wiley Periodicals, Inc.

material, electrical, software, and so on), many of which use
simulation models to specify system structures and predict
their behavior [van den Bosch and van den Klauw, 1994;
Fritzon, 2011]. Systemmodeling also specifies systems struc-
tures and behaviors, but is often done separately from simu-
lation. This forces engineers to specify portions of their sys-
tems in simulation that are often already available in system
models, and vice versa, leading to inconsistencies that require
additional work to eliminate. System and simulation models

395

396 BOCK, BARBAU, MATEI, DADFARNIA

must be integrated to reduce these inefficiencies and ensure
multidisciplinary concerns are reflected in the overall system
design.
Some simulation tools present graphical interfaces for

linking system components specified by ordinary and
algebraic differential equations (derivatives of functions of
one variable), which are applicable to a wide range of physical
interactions between components (such as mechanical,
electrical, and so on) as well as communication of numeric
signals [Controllab Products, 2015; The MathWorks, Inc,
2016a; Open Source Modelica Consortium, 2016]. These
linked components are referred to as physical interaction
and signal flow models in this article (also known as lumped
parameter, one-dimensional, or network models). Tools for
this kind of simulation generate additional equations from
links between components, solve them, and report the results
as graphs of system property values over time. Simulation
in the rest of this article refers to this particular kind of
simulation.
Behind their graphical interfaces, physical interaction and

signal flow simulation tools treat all engineering disciplines
the same way. They achieve this through commonalities in
the underlying physics, which are all based on exchange
of physical substances in terms of their conserved charac-
teristics (electric charge, momentum, entropy, and so on),
without regard to the particular kind of substance [Payn-
ter 1960; Cellier, Elmqvist, and Otter, 1999]. The mathe-
matics of lumped parameter systems is the same across en-
gineering disciplines, and the equations can be solved by
the same algorithms. Simulation tools also leverage similar-
ities between numeric signal flow and potential for phys-
ical flow, which have the same values on both ends of
links between system components. Simplified physical equa-
tions can be used for signal flow and solved by simplified
algorithms.
Graphical interfaces presented by these kind of simulators

express concepts similar to the Systems Modeling Language
(SysML), an extension of the Unified Modeling Language
(UML) for systems engineering [Object Management Group,
2017a; Object Management Group, 2015a].1 Simulation
tools and SysML show system components and their inter-
connections, and how physical substances and information
flow between components. The graphics of these simulators
use symbols and images specific to each engineering
discipline, while SysML uses symbols that are not discipline
specific. SysML and these simulators have underlying
textual languages to record models in computer-processable
file formats. Simulators translate graphical models into
file-based formats, which are transformed into equations for
solution by numerical analysis. SysML-based tools use their
file-based formats as input to other kinds of analysis and
verification, such as checking completeness of designs against
requirements.
Despite the similarities in modeling approaches and archi-

tecture of SysMLmodeling tools and physical interaction and
signal flow simulators, these simulators are typically used
separately from SysML tools, leading to the problems de-
scribed earlier. Others have noticed these similarities, propos-
ing integrations between SysML and one simulation tool or
language (simulation platform), as described in Section 2.

This forces engineers to respecify simulation-specific infor-
mation for each platform they use, even though these plat-
forms have manymore modeling capabilities in common than
they have differences. Single platform integrations also tend
to surface the platform to systems models without adaptation
or simplification, making them more complicated than neces-
sary for systems engineering.
Our approach to integrating SysML and physical inter-

action and signal flow simulation is to identify modeling
capabilities in common between widely used simulation
platforms, compare these with SysML, and extend SysML
with only the simulation modeling capabilities that SysML
does not already have. This enables redundant elements
in systems models and simulation platforms to be speci-
fied once, rather than manually recoded for each platform,
simplifying translation and synchronization between SysML
and multiple simulation platforms. This provides more ef-
ficient integration of systems engineering models and pro-
cesses with physical interaction and signal flow simula-
tion than platform-specific approaches [Dadfarnia, Bock, and
Barbau, 2016].
The structure of this article is as follows. Section 2 cov-

ers related work, showing it does not address platform-
independent physical interaction and signal flow simulation
modeling in SysML. Section 3 gives an overview of this
kind of simulation, presenting an abstraction of concepts that
widely used platforms have in common, based on earlier re-
views. Section 4 compares this abstraction with SysML con-
cepts, identifying that are equivalent or close to equivalent.
Based on this comparison, Section 5 presents an extension
of SysML that reuses SysML concepts where they are equiv-
alent to simulation concepts, and extends them where they
are close, to match the simulation abstraction developed in
Section 3. Section 6 gives an example of modeling a system
using the extension. Section 7 addresses issues in translating
between extended SysML models and simulation platforms,
including differences between them, illustrated with the ex-
ample in Section 6. Section 7 also describes a publicly avail-
able implementation of the SysML extension and platform
translations, using it for validation on the example. Section
8 summarizes the article and discusses future work.2

2. RELATED WORK

Integration efforts for multiple simulation platforms typically
only address interactions occurring while simulations are
carried out, rather than during development of simulation
models, as in this article. For example, High-Level Architec-
ture, Simulation Modeling Platform, and Functional Mockup
Interface define interfaces and services that enable simulators
of many kinds to be operated with others at the same time
[IEEE Standards Association, 2010; European Cooperation
for Space Standardization, 2011; Modelica Association,
2014a]. These standards give simulators access to each other’s
variable values during simulation, notifications of events as
they occur, and to some other aspects of simulation, such as
time step size. They are not concerned with interoperation of
simulation modeling platforms or integration with systems
engineering.3

Systems Engineering DOI 10.1002/sys

SYSML FOR PHYSICAL INTERACTION AND SIGNAL FLOW SIMULATION 397

Integration of SysML parametric diagrams and general
equation solvers, such as MATLAB R⃝ [The MathWorks, Inc,
2016b], are available in commercial tools. SysML paramet-
rics capture reuse of equations within a system. For exam-
ple, using the equation F=ma in parametric diagrams spec-
ifies which properties of systems or their components cor-
respond to F, m, and a. Parametric diagrams and their tools
do not focus on particular kinds of equations, such as dif-
ferential equations, and consequently are cumbersome to use
for physical interaction and signal flow, because they can-
not provide abstractions specific to these applications. The
same applies to efforts integrating other systems modeling
languages specifically with MATLAB [Dori, Renick, and
Wengrowicz, 2016].
Some UML-based integration with physical interaction

simulation depend on bond graphs [Paynter, 1960], which
model energy flows between components independently of
whatever is carrying the energy [Secchi, Fantuzzi, and Bonfe,
2005; Turki, Thierry, and Sghaier, 2005]. Popular physical
interaction simulation platforms, such as SimscapeTM (an
extension of Simulink R⃝ and MATLAB) and the Modelica R⃝

language [Modelica Association, 2014b; The MathWorks,
Inc, 2016a; The MathWorks, Inc, 2016c], are adapted from
bond graphs [Cellier et al., 1999], andmuchmore widely used
industrially. Due to bond graphs’ low level of practical usage,
they are not considered in this article. The same applies to
other efforts based on less widely used simulation languages
[Berkenkotter et al., 2006].
Despite the benefits of incorporating common physical

interaction and signal flow concepts into system models,
most integration efforts between SysML and physical in-
teraction and signal flow simulation platforms focus on
one platform, usually Modelica or Simulink. Some authors
propose integrating SysML specifically with Simulink ei-
ther by extending SysML for transformation to Simulink
[Kawahara et al., 2009; Liu and Cao, 2010; Snyder, Bock-
taels, and Feigenbaum, 2010; Reichwein, 2011; Rahman and
Mizukawa, 2013], or with SysML modeling patterns that
reproduce Simulink semantics [Bock, 2006; Sjostedt et al.,
2008]. Others propose SysML extensions specifically for
transformation to Modelica [Nytsch-Geusen, 2007; Schamai
et al., 2009; Vasaiely, 2009; Rahman and Mizukawa, 2013],
one standardized by the Object Management Group [Paredis
et al., 2010; Object Management Group, 2012], or attempt
to find SysML modeling patterns that reproduce Modelica
semantics [Sjostedt et al., 2007].
One attempt to extend SysML for multiple simulation

platforms addresses only one signal flow tool (Simulink),
starts its analysis with particular simulation platforms,
rather than creating an abstraction of them first, leading
to common modeling capabilities only within extensions
for specific engineering disciplines [Cao et al., 2013]. In
some cases, this results in terminology derived from sim-
ulation tools, rather than systems modeling, even though
the extension is for the most widely used systems en-
gineering modeling language. This and some of other
integration efforts cited above use SysML version 1.2,
whereas SysML version 1.3 contains significant upgrades
to ports and flow properties that affect integration with
simulators.

3. PHYSICAL INTERACTION AND SIGNAL FLOW
SIMULATION

This section gives an overview of physical interaction and
signal flow simulation (hereafter called simulation) through
an abstraction of simulation concepts that widely used plat-
forms have in common, based on earlier reviews [Matei and
Bock, 2012a] [Matei and Bock, 2012b] (see Section 7 about
differences between platforms). The abstraction is compared
to SysML in Section 1 to identify SysML concepts most ap-
propriate for supporting this kind of simulation. Sections 3.1
and 3.2 cover structural and behavioral modeling concepts,
respectively.
The simulators covered in this section use numerical anal-

ysis techniques to solve differential equations [Iserles, 2008],
but present equation variables to engineers as if they were
properties of system components, rather than showing the
variables only in the context of equations. This gives engi-
neers the benefit of automated equation solvers through the
more familiar concepts of systems, components, and proper-
ties. These concepts are presented in simulationmodels, either
graphically using symbols and images from various engineer-
ing disciplines, or textually, in simulation languages stored as
computer-processable and human-readable files. These files
are translated into equations, solved by numerical integration,
with results reported back on the values of variables over time.
This process is illustrated in Figure 1.

3.1. System Structure in Simulation Modeling

An earlier review of simulation platforms identified similar-
ities in the concepts they use for modeling system structure
[Matei and Bock, 2012a]:

• Components are system elements that process and ex-
change physical substances in terms of their conserved
characteristics (electric charge, momentum, entropy, and
so on) or numeric information (signals) with each other.

• Ports are elements of components enabling exchange
with other components.

• Links are system elements that connect ports across
which exchange occurs between components.

• Properties of components and ports quantify the pro-
cessing and exchange of physical substances or numeric
information.

• Subsystems are components composed of other compo-
nents, which may be other subsystems. Atomic compo-
nents are not composed of other components.

• Models are top-level subsystems or components simu-
lated separately from any other subsystems or compo-
nents that might use them.

Terms for the concepts above differ between simulation
platforms, but the meaning is the same. Simulation plat-
forms sometimes refer to components as blocks, ports as pins
or connectors, links as lines, and properties as variables or
parameters. The terms above are part of an abstraction over
simulation platforms that enable comparison to SysML in
Section 4, development of a simulator-independent extension

Systems Engineering DOI 10.1002/sys

398 BOCK, BARBAU, MATEI, DADFARNIA

Figure 1. Simulation tool process.

of SysML in Section 5, and translation from SysML to simu-
lation platforms in Section 7.
Simulation modeling tools typically provide a graphical

interface showing components and subsystems as symbols
or images specific to each engineering discipline, with links
shown as lines between these symbols, and ports sometimes
shown as smaller symbols and images on component sym-
bols. Properties are typically shown in dialogs or other in-
terfaces accessible from component and port symbols, rather
than directly on diagrams. Some simulation tools enable mod-
elers to specify system structures in text files, and those with
graphical interfaces will generate these text files automati-
cally. Example file formats from some simulation tools are
shown in Section 7.

3.2. System Behavior in Simulation Modeling

Behavior in simulation refers to changes in component and
system property values over time. Behavior of simulation
models is derived from behavior of their components and
links between ports on components. Earlier reviews of sim-
ulation platforms compared the concepts they use for mod-
eling behavior, as described in this section [Matei and Bock,
2012a] [Matei and Bock, 2012b]. Section 3.2.1 covers how
simulation models set limits on changes in property values.
Section 3.2.2 covers the behavior of links between ports,
while Section 3.2.3 covers component behavior. Section 3.2.4
describes the combination of these into behavior of the overall
simulation model.

3.2.1. Property Values
System behavior involves components that process and ex-
change physical substances and numeric information (sig-
nals), but simulating this behavior only predicts variations of
component and system property values over time (see Section
3.1 about properties). This is because property values are the
only things that change during simulation (system structure
cannot change).
Properties in simulation models can place two kinds of

restrictions on how their values change [Matei and Bock,
2012a] [Matei and Bock, 2012b]. The first of these is whether
their values change at all during simulation:

• Constant properties have values that do not change dur-
ing each “run” of a simulator, but might change between
simulation runs, such as the capacity of a pump.

• Variable properties have values that might change during
a single simulation run, such as the rate at which a fluid
is coming out of a pump at a particular time.

Terms for the concepts above differ between simulation
platforms, but the meaning is the same. Simulation platforms
sometimes refer to constants as parameters.4 The terms above
are part of an abstraction over various simulation platforms
that enables comparison to SysML in Section 4, and devel-
opment of a simulator-independent extension of SysML in
Section 7.
The second restriction is on variables, which can change in

two ways during simulation:

• Continuous variables have values that are close to their
values at nearby times in the past and future.5

• Discrete variables have values that are the same as their
values at nearby times in either the past or the future, or
both.6

Informally defined, continuous variables vary smoothly
over time, including the possibility of remaining constant,
while discrete variables are always constant for a period of
time, then change instantaneously to a possibly very different
value for another period of time. Variables being continuous
and discrete do not imply any restriction on the range of
their values, only the way in which those values change over
time. For example, the top line in Figure 2 shows a variable
changing continuously, while the rest show discrete variables.
Discrete variables can be further restricted to change values
only at regular intervals (change cycle). The second line in
Figure 2 has a change cycle lasting as long as the first line
segment on the left. The rest of the segments on that line are
either of the same length or multiples of the first segment’s
length (discrete variables do not need to change at every
interval). The third line is the same, except the change cycle
is smaller, lasting as long as the second line segment on the
left.
Terms for the concepts above differ between simulation

platforms, but the meaning is the same. Simulation platforms
sometimes refer to change cycles as sample times, as in sen-
sors that output measures of continuously varying physical
properties at regular intervals. The terms above are part of
an abstraction over various simulation platforms that enables
comparison to SysML in Section 4, and development of a
simulator-independent extension of SysML in Section 7.

Systems Engineering DOI 10.1002/sys

SYSML FOR PHYSICAL INTERACTION AND SIGNAL FLOW SIMULATION 399

Figure 2. Continuous and discrete variables.

3.2.2. Component Interaction
Simulation models distinguish component interactions based
whether the things being exchanged are physical or informa-
tional [Matei and Bock, 2012b]:

• Physical interaction: Components exchange various
kinds of physical substances in terms of their conserved
characteristics, such as electric charge, momentum, and
entropy.

• Signal flow: Components exchange numeric informa-
tion.

These differ in that physical substances are conserved,
while information is not, and movement of physical sub-
stances affects the mover (bidirectional flow), while send-
ing of information does not affect the sender (unidirectional
flow). The latter difference is reflected inwhether components
specify inputs and outputs, see Signal Flow subsection.
Terms for the concepts above differ between simulation

platforms, but the meaning is the same. Simulation platforms
sometimes refer to signal flow modeling as causal and physi-
cal interaction modeling as acausal, even though the systems
being modeled never have an effect without an earlier cause
(a fundamental law of physics). The terms above are part of
an abstraction over various simulation platforms that enables
comparison to SysML in Section 4, and development of a
simulator-independent extension of SysML in Section 7.
Physical interaction and signal flow are covered in the

Physical Interaction and Signal Flow subsections, respec-
tively, with equations for both given in the Physical Interac-
tion subsection.

Physical Interaction. Physical interactions between sys-
tem components are bidirectional, because physical actions
of components on others might cause reactions back onto the
acting components. For example, components attempting to
output water to other components might be forced to accept
water if the other components put the water under greater
pressure. Physical modeling does not specify inputs and out-
puts for components, since any output can also be an input,
due to reactions back into the output component (compare
to sending information between components, see the Signal
Flow subsection).
Simulation treats movement of physical substances as un-

interrupted movement of their conserved characteristics, such
as electric charge, momentum, and entropy, rather than indi-
vidual movement of the substances themselves, such as elec-
trons, steel, and steam. This makes rates of flow independent
of the time interval over which flow rates are calculated,

which could cause flow rates to vary discontinuously between
objects. For simplicity, physical substances in the rest of this
article refer to their conserved physical characteristics, rather
than the substances themselves.
Simulation platforms generate and solve the same differ-

ential equations for flow of conserved physical substances by
treating them all as carrying energy [Paynter, 1960] [Cellier,
Elmqvist, and Otter, 1999]. The mathematics of energy ex-
change is the same regardless of the kind of substances carry-
ing it, and the equations can be solved by the same algorithms.
Rate of energy exchange (power) is equal to the product of the
following two properties of flowing substances:7

• Flow rate: The amount of substance per time moving in
or out ports, such as current (electric charge per time),
force and torque (linear and angular momentum per
time), and entropy flow rate (entropy per time).

• Potential to flow: An impetus for substances to move in
or out of ports, such as voltage for electric charge, linear
and angular velocity for momentum, and temperature for
entropy.

The potential for substances to flow can only be realized
(as nonzero flow rates) when:

• potentials in the system differ, either between ports of a
component, or between a port and an internal component
(potentials cannot differ across links, see below).

• components allow substances to flow, see resistance to
flow in Section 3.2.3.

For example, fluid can only flow through a pipe (treated as
a component) when pressures on the ends of a pipe (treated as
ports) are different, and this difference in potential becomes
actual flow depending on how much the pipe resists it.
Terms for flow rate and potential differ between physical

disciplines, as illustrated in Table I, but the concepts are the
same from the point of view of simulation [Raven, 1995]
[Cellier et al., 1999].8 Sometimes potential to flow is re-
ferred to as effort, even though forces and torques are not
potentials. The terms above are part of an abstraction that
enables comparison to SysML in Section 4, and development
of a simulator-independent extension of SysML presented in
Section 7.
Links between system components in simulation models

pass along properties of physical flows above in a very re-
stricted way, because links do not correspond to physical
things, they just represent mathematical equations between
variables in separate components. Links do not create, de-
stroy, transform, store, resist, or take up time when physical
substances “flow” across them (compare to components in
Section 3.2.3). This is reflected in restrictions on flow rates
and potentials across links, with flow rates on link ends adding
to zero, and potentials on link ends always being equal, as
illustrated in Figure 3 (compare potentials to information that
can be sent to multiple destinations without being divided
up across them, see the Signal Flow subsection). The bidi-
rectional arrows represent physical substances going into and
out of ports on components. A single flow on the left is split
into two on the right. Flow rates are taken as positive in one
direction and negative in the other, causing flow rates on the
ports to sum up to zero, as indicated by the first equation at the

Systems Engineering DOI 10.1002/sys

400 BOCK, BARBAU, MATEI, DADFARNIA

Table I. Commonality Across Physical Domains (Adapted
from [Raven, 1995])

Domain What is
flowing Flow rate Potential

to flow
Electrical Charge Current Voltage

Mechanical,
translational

Linear
momentum Force Linear

velocity
Mechanical,

angular
Angular

momentum Torque Angular
velocity

Hydraulic Volume Volume
flow rate Pressure

Thermal Entropy Entropy
flow rate Temperature

bottom of the figure. This reflects conservation of substances
flowing between components, which requires changes in flow
rates at each port to balance changes in flow rates at the
other ports. Potentials are the same on all ports, as indicated
by the second equation. This reflects lack of resistance be-
tween components, which requires changes in potential at
each port to be matched by the same changes in the other
ports.
Simulation models distinguish variable properties accord-

ing to the two properties of flowing substances above:

• Conserved variables represent flow rates.
• Nonconserved variables represent potentials to flow.

Terms for the concepts above differ between simulation
platforms, but the meaning is the same. Simulation platforms
sometimes refer to conserved variables as flow, balancing,
or through variables, and nonconserved variables as across
variables. The terms above are part of an abstraction over var-
ious simulation platforms that enable comparison to SysML
in Section 4, and development of a simulator-independent
extension of SysML in Section 7.

Signal Flow. Signal flow between system components is
unidirectional, because sending (numeric) information only
affects the receiver, with no reaction back to the sender as
in physical interactions. This is typical in information move-
ment and manipulation, as needed in control engineering and
signal processing. Signal flow modeling specifies inputs and
outputs for components, with signals moving from outputs of
one component to inputs of others or back to its own inputs
(compare to physical interaction between components, see the
Physical Interaction subsection).
Simulation models distinguish ports by the direction of

flows they support:

• Input ports accept only incoming flows.
• Output ports provide only outgoing flows.
• Bidirectional ports accept incoming flows and provide
outgoing flows (for physical interactions, see the Physi-
cal Interaction subsection).

Signals behave as if they were potentials to flow (noncon-
served variables), because they move along links to multiple
components without change, like information sent to multiple
destinations, as illustrated by Figure 3 in the Physical Inter-
action subsection.9 In this sense, signal flow is a special case
of physical interaction that is concerned only with potentials.
Signal flow ultimately occurs through the medium of physical
substances (electric charge, momentum, fluid, entropy, and so
on), but these substances can have any flow rate, including
zero, and still carry signals, allowing flow rate to be ignored in
signal flow simulation. For example, sound passes along pipes
full of water evenwhen nowater moves through the pipes, and
voltages pass along wires between operational amplifiers with
almost no current.10 Modeling signals over physical media is
useful for modern systems, which usually include physical
processes monitored and controlled by software [Dorf and
Bishop, 2016].
The terms above for input and output ports are the same

across simulation platforms, though both are sometimes in-
formally called causal ports (see Section 3.2.2 about this
terminology). Simulation platforms usually indicate bidirec-
tional ports by the absence of indication that they are input or
output, though they are sometimes informally called acausal

Figure 3. Flow rate and potential to flow between components.

Systems Engineering DOI 10.1002/sys

SYSML FOR PHYSICAL INTERACTION AND SIGNAL FLOW SIMULATION 401

ports. The terms above are part of an abstraction over various
simulation platforms that enables comparison to SysML in
Section 4, and development of a simulator-independent ex-
tension of SysML in Section 7.
Links that have an input port on one end must have an

output port on the other, and vice versa, which also means
links that have a bidirectional port on one end must have a
bidirectional port on the other. However, the same component
can have all three kinds of port in systems that combine signal
flow and physical interaction, as in electronic control of physi-
cal devices. Another restriction ismultiple output ports cannot
link to the same input port in signal flow. This is because
signals have one numeric value each, and merging multiple
outputs into the same input would require different numeric
output values to be combined into one numeric input.11 Phys-
ical systems that implement signal flow do not behave this
way (see the Physical Interaction subsection) and simulators
do not support it.

3.2.3. Component Behavior
Simulation models specify behavior with equations contain-
ing variables named according to properties in the models.
Equations in a component or system can only refer to proper-
ties of itself, its ports, and properties of its subcomponents and
their ports (to any depth). Equations in a component cannot
refer to properties of the components containing it, or to exter-
nal components linked to its ports. This encourages equations
to be defined without dependence on how components are
reused in other components or systems.
Equations in components specify what happens to physical

substances and signals available at their ports (compare to
links in the Physical Interaction subsection of 3.2.2, which
have only predefined equations). Component equations can
specify how flow rate, potential, and signal values are related
across ports and with component properties, according to the
intended processes, such as:

• Passing physical substances and signals between ports.
Equations can relate the values of flow properties of
physical substances at one port to those of the same
substances at another port. For example, the volume flow
rate and pressure of a fluid at one end (port) of a pipe
component can be related to those properties at the other
end. Flow rates have opposite signs at each end and
pressure is lower at the end to which fluid is moving, due
to resistance in the pipe.12 Equations can relate signal
values coming into one port to those going out of another.
For example, an amplifier accepts a varying numeric
signal and emits a signal that varies the same way, but
more widely.13

• Transforming physical substances and signals from port
to port. Equations can relate the values of flow properties
of physical substances at one port to those of different
substances at another port. For example, the torque and
angular velocity of a gear can be related to force and
linear velocity of a rack, transforming angular to linear
momentum. A component for this transformation has
ports for connecting to a gear and rack, and equations
specifying that the power of the momentums (products

of their flow rates and potentials, see the Physical Inter-
action subsection of 3.2.2) will be equal for ideal gears.
Equations can relate numeric signal values coming into
one port to Boolean values going out of another. For ex-
ample, a signal processor can accept a varying numeric
signal and emit true or false values depending onwhether
the input is above some threshold.

• Creating and destroying physical substances. Equations
for transformations as in the previous bullet involve cre-
ation and destruction of physical substances, such as cre-
ating linear momentum. This can involve destruction of
physical substances also, such as differences in angular
and linear momentum due to gear friction. Signal trans-
formation could be considered creation and destruction
in the sense of information lost by filtering or added by
sensing.

• Storing physical substances. Equations can specify that
physical substances flowing into a component are kept
there until a later time. For example, the flow rate of fluid
at a valve on a tank can be mathematically integrated to
calculate the total amount of fluid in the tank. Signals
can be integrated, though this is not the same as storing
signals, because some information about past variations
is lost.

Equations refer to properties of components that are de-
rived from port properties or track internal states. The prop-
erties can be constants and variables, but not flow rates or
potentials, at least not in the same sense as ports. For example,
when a component handles physical substances, it is useful
for the component to have variables for

• Potential difference between ports, because it is potential
differences that cause substances to flow (see the Physi-
cal Interaction subsection of 3.2.2). This variable differs
from potentials at ports, which are only for single points
in the system, and cannot cause flows by themselves.

• Rate at which substances flow through the component.
This variable differs from flow rates at ports, because
it reflects whether substances are created, destroyed,
transformed, stored, or just pass through the component
(compare to flows across links, which must conserve
physical substances, see Figure 3 in the Physical Interac-
tion subsection of 3.2.2). It will have the same value as
the flow rate of one of the ports onlywhen the component
passes the substance between ports without changing
anything in between, except possibly decreased potential
due to resistance. Otherwise it will reflect differences in
flow rates between ports.

Component variables also track internals states, for exam-
ple, how much of a physical substance is stored at a particular
time (and similarly for signal integrators), or the temperature
of a component. Constants are needed for properties that do
not vary during simulation, such as resistance or transforma-
tion ratios between substances.

3.2.4. System Behavior
Simulation tools translate their graphical models into equa-
tions, then use numerical analysis techniques to calculate the

Systems Engineering DOI 10.1002/sys

402 BOCK, BARBAU, MATEI, DADFARNIA

values of variables over time. Variable properties are trans-
lated into mathematical variables in equations, omitting the
relationship of variables to components or other simulation
model elements, or to physical substances (see the introduc-
tion to Section 3). Numerical analysis techniques are only
concerned with mathematical relationships between numeric
values, and do not directly address engineering and even phys-
ical aspects of the systems being modeled. The equations do
not depend on the engineering disciplines involved, though
simpler equations can be used when only signals are ex-
changed between components. The equations do not depend
on the symbols or images used in graphical interfaces.
Equations generated from simulation models include those

specified by the modeler for components, as well as oth-
ers generated automatically from links between components,
see Sections 3.2.3 and the Physical Interaction subsection of
3.2.2, respectively. Simulation tools generate two kinds of
equations from links between components:

• Ordinary differential/difference equations (ODEs) have
a single derivative or difference by itself on one side, for
a function of one variable with respect to time.

• Differential/difference algebraic equations (DAEs) can
have multiple derivatives or differences on both sides,
for functions of one variable with respect to time, and
include unary operators on derivatives or differences,
such as exponentiation.

ODEs are generated for links between output and input
ports, while DAEs are generated for links between bidirec-
tional ports (signal flows and physical interactions, respec-
tively, see the Signal Flow and Physical Interaction subsec-
tions of 3.2.2).

4. SysML COMPARED TO SIMULATION MODELS

This section compares SysML to simulation modeling to find
concepts in SysML that are equivalent or close to those in
simulation. The comparison used to guide development of
a simulator-independent extension of SysML in Section 5.
A brief outline of SysML is given in this section, with more
detail in an extended example in Section 6, but familiarity
with SysML is assumed [Object Management Group 2017a]

Table II. Simulation and SysML Terms

Simulation Concepts SysML

Models
Blocks with internal block diagram,
treated separately from other blocks

they might be components of

Components
Atomic Blocks without internal block diagram

Subsystems Blocks with internal block diagram

Links Connectors

Ports Ports with flow properties

Equations Constraint blocks

[Object Management Group 2015a] [Friedenthal, Moore, and
Steiner, 2014] [Holt and Perry, 2013].
SysML includes diagrams for structure and behavior, as

well as diagrams for requirements and parametric relation-
ships, which can be considered to be structure or behavior
depending on their content. Package diagrams are used to or-
ganize system models, and are considered a kind of structure
diagram that applies to models rather than systems. Figure 4
summarizes the SysML diagram taxonomy (arrows point to
broader categories). Bold outlines indicating diagrams that
include extensions to UML.
Themost basic structural elements of SysML center around

blocks, which represent kinds of systems, subsystems, com-
ponents, and parts (systems and their elements). Blocks ap-
pear primarily in these kinds of diagrams:

• Block definition diagrams show kinds of systems and
their elements, as well as their relationships, including
classification (taxonomies) and containment, and their
quantitative properties.

• Internal block diagrams describe the interconnection of
components and parts used within a single system or
component.

• Parametric diagrams are a kind of internal block diagram
that specify or apply equations involving properties of
subsystems, components, and parts.

Figure 4. SysML diagrams.

Systems Engineering DOI 10.1002/sys

SYSML FOR PHYSICAL INTERACTION AND SIGNAL FLOW SIMULATION 403

System behavior in SysML is specified in these kind of
diagrams:

• Use case diagrams are high-level descriptions of systems
interacting with the environment in which they are used.

• Interaction diagrams specify flow of items between sys-
tems and their environments, and between subsystems,
components, and parts.

• State machine diagrams specify how systems or their
elements react to external stimuli.

• Activity diagrams specify actions taken by systems or
their elements, sequences of those actions, and flow
of items (physical substances or information) between
them.

Among SysML structural diagrams, internal block dia-
grams naturally correspond to simulation models, because
both

• describe systems and their elements (blocks in SysML),
as well as links and directional and bidirectional flows
between them (connectors and ports with flow properties
in SysML, ports with variables in simulation).

• can use equalities to define behavior of components
(constraint blocks in SysML, equations in simulation).

• support reuse of the same element by multiple diagrams,
with reused elements defined once elsewhere (in block
definition diagrams and simulation libraries).

Table II gives correspondences between the abstract struc-
tural simulation concepts in Section 3.1 and SysML terms.
Parametric diagrams are internal structure diagrams useful

in simulation modeling when applying reusable equations
(constraint blocks) to components. Parametric diagrams de-
scribe equalities (binding connectors) between properties of
systems, subsystems, components, parts, and reusable con-
straint blocks expressing equations. These are useful for prop-
erties of the same system or element, but when used for equa-
tions between components, such as flow rate conservation
in Figure 3 in the Physical Interaction subsection of 3.2.2,
the constraints would appear for every interaction between
components, cluttering diagrams with equations that can be
assumed to apply even when they are not shown, as in typical
simulation models.
SysML structural diagrams and simulation models have a

number of similarities and differences:

1. SysML value properties do not indicate whether their
values are constant or variable,14 continuous or discrete,
and conserved or nonconserved (in the simulation sense
of these terms, see the Physical Interaction subsection of
3.2.2).

2. SysML flow properties specify direction of flow, as sim-
ulation ports do, but flow properties specify the kinds
of things that flow, while simulation ports do not. Flow
properties do not specify flow rates and potentials as
simulation ports do. This is illustrated in Figure 5.

3. SysML connectors provide equality semantics for links
between nonconserved variables (bindings), but not
conservation semantics for links between conserved
variables.

The second comparison above regards flow modeling, as
illustrated in Figure 5. The figure breaks up Table I in

Systems Engineering
Simulation

Domain What is
flowing

Direction
f Flow

Flow rate Potential
to flow

Electrical Charge Current Voltage
Mechanical,
translational

Linear
momentum Force Linear

velocity
Mechanical,

angular
Angular

momentum Torque Angular
velocity

Hydraulic Volume Volume
flow rate Pressure

Thermal Entropy Entropy
flow rate Temperature

Figure 5. Overlapping concerns about flows in systems engineering
and simulation.

the Physical Interaction subsection of 3.2.2 to show which
properties of physical flow are of concern to system model-
ing and simulation separately, and adds flow direction as an
element of concern to both. System engineering identifies the
direction flow to indicate whether physical or informational
disciplines will be involved (see Section 3.2.2), and identi-
fies the kind of physical items flowing between components
(charge, momentum, fluid, and so on) to indicate the physical
engineering disciplines needed (electric, mechanical, fluid,
and so on). Simulators require the direction of flow to predict
the evolution of flow rates and potentials over time, but are not
concerned with the kind of things flowing (see the Physical
Interaction subsection of 3.2.2).
Among SysML behavior diagrams, all but activity dia-

grams are unsuitable for physical interaction and signal flow
simulation modeling:

• Use cases diagrams only describe hierarchies of interac-
tions, with no specification of the flows between system
components.

• Interactions diagrams cannot specify continuous flows,
because each flow is a separate element in the model,
shown graphically as a line between interacting ele-
ments.

• State machine diagrams do not explicitly specify flows
between subsystems, components, and parts, because
they are designed to specify sending and receiving for
each subsystem, component, or part separately, rather
than the links between them.

In terms of execution, activity diagrams are very similar to
signal flow simulation models, but less so to physical inter-
action simulation. Activities and signal flow simulation both
express flows between outputs and inputs of elements that
specify detailed behavior (actions in activities, components
in simulation models). Activity diagrams support continuous
and discrete flows, as simulation models do, because there is
no limit to how frequently actions can exchange items or how
rapidly they execute [Bock, 2006]. Activity diagrams support
bidirectional flows at their boundaries, but not when reused
in other activities, making physical interaction modeling
cumbersome.

Systems Engineering DOI 10.1002/sys

404 BOCK, BARBAU, MATEI, DADFARNIA

Regarding terminology, activity diagrams are concerned
with actions, while typical engineering applications are con-
cerned with systems, components, and parts (structure vs. be-
havior). Though this does not affect execution, it is important
in choosing the portions of SysML that are most likely to
be adopted by engineers. Some signal flow applications are
purely behavioral, as in signal processing, but even in these
areas, engineers often imagine physical components perform-
ing the processing.
Despite the semantic (execution) similarity of activity di-

agrams and signal-flow simulation models, the extension de-
scribed in Section 5 is based on structural diagrams in SysML,
because they are more easily adapted to physical interaction
simulation, and engineers aremore likely to see them as fitting
their needs, due to terminology and typical application of
the diagrams. Unification is possible between structural and
behavior diagrams in SysML [Bock and Odell, 2011], but this
is not standardized yet.
The comparison of SysML and simulation models in this

section suggests that SysML internal block diagrams are
the closest to simulation models, but differ in their use of
properties. Internal block diagrams and simulation models
both show interconnected system components between which
flows occur, with system components defined separately for
reuse in multiple diagrams and models. SysML properties
support flow modeling. These overlap simulation models by
indicating direction of flow, but differ by giving the kind of
thing flowing and omitting flow rate and potential variables
needed in simulation. Section 5 fills the gaps between SysML
internal block diagrams and simulation modeling to support
integration.

5. SysML EXTENSION FOR SIMULATION

This section uses the comparison of SysML and simulation
modeling in Section 4 to guide development of SysML exten-
sions. The extensions reuse SysML concepts where they are
equivalent to those in the simulation abstraction developed in
Section 3, and extends them to match the abstraction where
they are close. The extensions are modeled using UML’s

profiling facility, the same one SysML uses to extend UML.
The constructs in profiles used in the simulation extension
are:

• Stereotypes, to add modeling capabilities and constrain
usage.

• Model libraries, to provide reusable model elements.
• Textual languages, for defining expressions and con-
straints.

The extension for simulation defines stereotypes based on
SysML blocks and properties (appearing in SysML block def-
inition and internal block diagrams, see Section 4), reusable
applications of these stereotypes in model libraries, and an
equation language for constraints, shown in Sections 5.1, 5.2,
and 5.3, respectively.

5.1. Stereotypes

The first two stereotypes distinguish constants and variables,
as shown on the left in Figure 6, which can be used to describe
flows between components or behavior within components
(see Sections 3.2.1 through 3.2.3). The SimConstant stereo-
type is applied to SysML properties with values that remain
constant during each simulation execution, while SimVariable
is applied to properties with values that might change during
a simulation. Simulation variables characterize how their val-
ues change:

• isContinuous: If true, the variable’s value can only
change continuously, otherwise the value can only
change discretely, as defined in Section 3.2.3. The de-
fault is continuous.

• changeCycle: Specifies the time cycle at which a discrete
variable (isContinuous=false) might change values. Dur-
ing each cycle, the value must be constant. The value
might change at the end of each cycle, but not necessar-
ily. In the case of continuous variables, changeCycle is
zero, which means the variable value might change at
any time. The default is zero.

• isConserved: For specifying flows between components
only, see below.

Figure 6. SysML stereotypes for physical interaction and signal flow simulation.

Systems Engineering DOI 10.1002/sys

SYSML FOR PHYSICAL INTERACTION AND SIGNAL FLOW SIMULATION 405

The characteristics above are partly dependent on each
other and on the property to which the stereotype is applied.
Values of simulation variables must be numbers or Booleans
(Real, Integer, or Boolean in SysML, or specializations of
them). Continuous variables must have real number values.
The rest of the stereotypes are only for specifying flows be-

tween components. These have two kinds of characteristics:

1. Time-independent: specified by SysML flow properties,
in particular, the kinds of things flowing and their pos-
sible directions. These aspects of flows do not change
during simulation, as those in the next item do.

2. Time-dependent: specified by SysML properties that
have the SimProperty stereotype applied. Simulation
properties can be typed in two ways, depending on
whether the flow is physical or signal:
a. For physical interaction, simulation properties are

typed by blocks with the SimBlock stereotype ap-
plied, to specify flow rates and potentials (see the
Physical Interaction subsection of 3.2.2). All proper-
ties of simulation blocks have SimVariable applied,
and must be real-valued and continuous. The vari-
ables must be defined in pairs of conserved and
nonconserved. When isConserved is true, values are
conserved across flows between components (flow
rate), otherwise the values are the same (potential to
flow), as defined in the Physical Interaction subsec-
tion of 3.2.2. The default is nonconserved.

b. For signal flow, simulation properties have numeric
or Boolean values (see the Signal Flow subsection of
3.2.2).15 To specify that a signal value changes dis-
cretely, including cyclically, the SimVariable stereo-
type is applied to the simulation property (SysML
model elements can have more than one stereotype
applied at the same time). Otherwise, the signal is
assumed to be continuous or discrete based on the
simulation property type (real signals being continu-
ous, integral and Boolean signals being discrete).

Simulation properties bring the two kinds of information
above together by referring to flow properties (via referTo in
Fig. 6). The flow property’s type specifies the kind of things
flowing, which are not Booleans or numbers. The simulation
property referring to it gives (a) real numbers characterizing
the flow of those physical things via simulation variables on
simulation blocks (for physical interaction) or (b) a number or
Boolean that is flowing as the value of the simulation property
(for signal flow). The flow property must be defined on the
same block (port type) as the simulation property, or a more
general block.
Some shorthand phrasing is used in the rest of this article

for brevity:

• Simulation variables on a simulation block typing a sim-
ulation property (or the simulation property itself for
signal flow) are called flow variables of the flow property
referred to by the simulation property.

• Compatible flow properties on the types of connected
ports are said to be connected.16

Additional modeling constraints apply when simulation
properties are on blocks used and connected in internal block
diagrams:

1. Flow variables of connected flow properties must have
the same names (unless they are simulation properties)
and the same types (matching flow variables).

2. Connected flow properties must have opposite direction
or both must be bidirectional.17

3. Flow properties with in direction can be connected to
no more than one other flow property.18

Connectors between flow properties are given the seman-
tics of simulation links (see Fig. 3 in the Physical Interaction
subsection of 3.2.2), restricting values of flow variables. In
the context of each instance of a block containing a connec-
tor [Bock, 2004], and for each collection of connected flow
properties, the values of matching:

1. conserved flow variables sum to zero.
2. nonconserved (including signal) flow variables are

equal.

In the first semantic rule above, all connectors to the same
flow property are viewed as a singlemultiway connection, and
all the matching conserved flow variables together obey the
rule.
Simulation variables on the same simulation block are typ-

ically typed in nonoverlapping ways to avoid redundancy.
For example, if one simulation variable is typed by voltage,
there will not be another simulation variable on the same
simulation block typed by voltage, because they would have
the same value for the flows they describe. Ports in simulation
platforms sometimes have multiple variables with the same
type, where each variable is interpreted as a different flow, and
typically obeying different equations. This would be modeled
with multiple simulation blocks, one for each variable of
the same type, and each simulation block would describe a
separate flow by referring to separate flow properties. The
flow properties could be on the same block used to type ports,
enabling ports in the extended SysML model to be in one-to-
one correspondence with ports in simulation platforms.
Correspondences and differences between the SysML ex-

tension stereotypes above and simulation platforms are dis-
cussed in Section 7.3.

5.2. Model Libraries

Constructing SysML models for simulation is easier when
commonly needed simulation elements are predefined in
model libraries. Model libraries are included in the SysML
extension for component interaction and component behavior
(see Sections 3.2.2 and 3.2.3) in common between the most
widely used platform libraries (Simulink/Simscape and Mod-
elica). The two parts of the extension library (interaction and
behavior) each divide into elements for physical and signal
modeling.
Model libraries for component interaction are shown in

Figures 7 and 8. Features of the blocks are segmented into
compartments labeled according to the kind of feature in
them, such as flow properties or simulation variables. Val-

Systems Engineering DOI 10.1002/sys

406 BOCK, BARBAU, MATEI, DADFARNIA

Figure 7. Physical interaction library.

Figure 8. Signal flow library.

ues of stereotype properties such as isConserved and referTo
appear in curly braces before the names of the properties
they apply to (Boolean stereotype properties are only shown
when their value differs from the default). These libraries
contain SysML interface blocks, which are blocks that do not
define behavior. They can be used as components or ports in
models that do not specify behavior or can be specialized by
regular blocks to add behavior in components or ports. The
two libraries are for:

• Physical interaction (Fig. 7): Each kind of conserved
substance has two related elements, one providing flow
and simulation properties for that substance (in middle
of the diagram vertically), and the other providing flow
rate and potential properties on simulation blocks typing
the simulation properties (at the bottom of the diagram).
Similar elements can be defined for other conserved sub-
stances and reused as necessary, see Section 8. Units are
needed in this model, but are beyond the scope of this

article. To validate the SysML extension, Figure 7 uses
specialized real number value types named according to
the kind of physical quantities being specified, such as
force or angular velocity (see Section 7.3).

• Signal flow (Fig. 8): These are numeric or Boolean,
and flow in or out of components or ports. Signal flow
properties rSignal, iSignal, and bSignal are introduced in
the general blocksRealSignalElement, IntegerSignalEle-
ment, and BooleanSignalElement, respectively, but their
direction is disambiguated in specialized blocks using
property redefinition (a way of restricting properties in-
herited from more general blocks). These library ele-
ments are useful when signal values have no application-
specific meaning, enabling the names (RealSignal, iSig,
and so on) to be reused (compare to the example in
Section 6.3).19

A small portion of the model libraries for component be-
havior are shown in Figure 9. The ones along the top are for

Systems Engineering DOI 10.1002/sys

SYSML FOR PHYSICAL INTERACTION AND SIGNAL FLOW SIMULATION 407

Figure 9. Component behavior library (signal and physical).

signals, while the ones on the lower right are for physical
behavior. On the upper left are real number signal compo-
nents, to calculate derivatives and integrals, generate sine
waves, and display results. On the upper right are Boolean sig-
nal components, for logical operations and displaying results.
The lower right shows three electrical components. Their
behavior is defined in the corresponding simulation platform
libraries, see Section 7.3. Model libraries in the SysML ex-
tension provide many other components for common mathe-
matical operations, discrete and nonlinear behavior, sources
and sinks, routing, and electrical behavior, which are publicly
available [Barbau and Bock, 2017].
Correspondences and differences between the SysML ex-

tension libraries above and simulation platform libraries are
discussed in Section 7.3.

5.3. Equation Language

SysML constraints can be written in any textual language, but
SysML does not define one.20 Fortunately, the equation lan-
guages for most widely used simulation platforms (Simulink,
Simscape, and Modelica) have many constructs in common
and simple correspondences for others. This yields a useful
equation language for SysML models that can be translated
to simulation tools typically used by engineers. The language
includes:

• A subset of Modelica’s equation grammar that includes
only these nonterminals and the terminals they depend
on: simple_expression, expression,
if_equation, name, function_call_args,
logical_expression, logical_term,
logical_factor, relation,
arithmetic_expression, rel_op,
add_op, term, mul_op, factor,
primary, component_reference,
output_expression_list, expression_list,
function_arguments, array_subscripts,

function_argument, for_indices,
named_arguments, named_argument, subscript.

• Predefined mathematical functions: abs, sign,
sqrt, div, mod, rem, ceil, floor, sin,
cos, tan, asin, acos, atan, atan2, sinh,
cosh, tanh, log, log10, exp, der.

Differences between the Modelica subset above and the
equation language for Simulink and Simscape (MATLAB)
are discussed in Section 7.4.

6. EXAMPLE USING THE SIMULATION
EXTENSION

This section applies the SysML extension in Section 5 to an
example combining physical interaction and signal flow. Sec-
tion 6.1 describes the problem andmodels its system structure
and behavioral relationships. Section 6.2 models some of the
physical interactions used in Section 6.1, and Section 6.3
models some of the signals flows.

6.1. System Structure and Behavior

The example is illustrated in Figure 10, an automobile cruise
control system, including its vehicle, the operating environ-
ment of the vehicle, and the physical and informational pro-
cesses involved (total system). Cruise controllers attempt to
keep the speed of their vehicles constant despite environmen-
tal disturbances that might affect it, such as changes in the
slope of the road, rolling resistance of the tires, and wind
effects. Cruise controllers respond to these environmental
disturbances by adjusting the power delivered by the vehicle’s
engine, tomaintain the desired speed initially set by the driver.
Figure 10 shows physical interactions with solid, bidirec-

tional arrows between system components, and signal flows
with dashed, unidirectional arrows. The driver gives the de-
sired speed to the cruise controller, modeled as a signal flow,

Systems Engineering DOI 10.1002/sys

408 BOCK, BARBAU, MATEI, DADFARNIA

Signal flow:
Physical interaction:

Angular
momentum

Desired
speed

Fuel
intake

control

To rolling resistance
(angular momentum

converted to heat)

Between air & car
(linear momentum)

Between gravitational
field & car

(linear momentum)

Wheel rotation
rate

Between wheel and car
(angular momentum
converted from/ to linear
via road)

Figure 10. Total system for a cruise controller.

Figure 11. Internal block diagram for Figure 10.

while a wheel sends a signal giving the current speed of the
vehicle. The cruise controller uses the desired and current
speeds to determine how much fuel to inject into the engine
subsystem and sends this as a signal to the engine. The en-
gine interacts physically with the wheels, involving angular
momentum as the conserved substance. The wheels and road
transform angular momentum to and from the car’s linear
momentum, also a conserved substance. Ideally, this trans-
formation would be complete, but the car interacts with the
surrounding air, transferring momentum depending on their
relative velocity, and it interacts with the earth gravitationally,
reducing or increasing the car’s momentum depending on the
slope of the road. In addition, rolling resistance, caused by

flexing of tires in the wheels, transforms some momentum to
heat.
Figure 11 formalizes the components and relationships in

Figure 10 as a SysML internal block diagram. Signals control
the production of angular momentum by the engine, described
more in Section 6.3. Angular momentum typically flows out
the wheel and is transformed into linear momentum fed back
into the car through interaction with the road. This appears in
Figure 11 as a connector between wheel and car supported by
an association block specifying the transformation. The car’s
linearmomentum is also affected by gravitation and surround-
ing air, appearing in Figure 11 as additional connectors. More
detail about Figure 11 is in Section 6.2.

Systems Engineering DOI 10.1002/sys

SYSML FOR PHYSICAL INTERACTION AND SIGNAL FLOW SIMULATION 409

6.2. Physical Interaction Definitions

Figure 12 models cars, wheels, and roads for the trans-
formation between angular and linear momentum that hap-
pens across the connector between wheel and car in
Figure 11. Figure 12 has some of the same properties (roles)
and blocks (kinds of things playing the roles) as Figure 11,
but they are notated differently because Figure 12 is
a block definition diagram. Property names appear in
Figure 11 to the left of colons in rectangle labels, and in
Figure 12 as names on the ends of the associations, such as
driver for the person controlling the car, or in block com-
partments, such as airVehicleLink for the momentum transfer
between the vehicle and air around it. The kinds of things
(blocks) playing these roles (typing these properties) are
named to the right of colons in property labels in Figure 11
and in the blocks at the ends of associations in Figure 12.21

Similarly, some connectors in Figure 11 are linked by dashed
lines to properties typed by associations that are also blocks.
These association blocks appear in Figure 12 linked by dashed
lines to the associations they represent. This enables them

to have their own properties and internal structure to model
transformation of conserved substances.
Connectors in Figure 11 and associations in Figure 12 in-

dicate the kind of things flowing across them with item flows
(labeled filled triangles), sometimes between ports of compo-
nents (small rectangles with arrows in Fig. 11 and names at the
ends of associations in Fig. 12 indicated as ports). Connectors
to the earth and road in Figure 11 reflect their involvement
in converting between angular and linear momentum and
gravitational potential energy, even though the earth and road
are too large to accept or provide momentum.22 In particular,
connectors to the earth and road provide access to properties
needed by equations specifying the interactions, such as the
gravitation of the earth and slope of the road, and provide a
reference for relative velocity, see Figure 14. Generalizations
in Figure 12 (arrows headed by unfilled triangles pointing to
the more general category) give wheels and cars the charac-
teristics needed for momentum transformation by referring to
blocks detailed in Figure 13, see next.
Figure 13 gives more detail on the transformation between

angular and linear momentum in Figure 12. It shows features

Figure 12. Block definition diagram for some physical elements used in Figure 11.

Figure 13. Simulation extension applied to physical interaction elements of Figure 12.

Systems Engineering DOI 10.1002/sys

410 BOCK, BARBAU, MATEI, DADFARNIA

Figure 14. Constraints for transforming between angular and linear momentum.

of physical interaction model library elements (prefixed
“ML::”), reused from Figure 7 in Section 5.2 (features from
library elements can be omitted for brevity when they are
reused, but are shown here for reference). The transformation
association links the library’s linear momentum interface
block to a specialization of the library’s angular momentum
interface block (AMomFlowComponent). The specialized
block introduces a simulation variable for radius, which
is necessary to transform between angular and linear
momentum.23 Similarly, a block for physical objects too large
to accept or provide linear momentum (LMomentumGround)
specializes the library’s linear momentum interface block.
These specialized blocks inherit flow and simulation
properties from the library, where the flow properties
(aMom and lMom) are typed by the conserved substance

flowing (AngularMomentum and LinearMomentum), and
the simulation properties (aMF and lMF) give flow rate
and potential simulation variables (trq, aV, and f, lV) via
simulation blocks (AMomFlow and LMomFlow). The flow
rate and potential simulation variables are constrained
by equations transforming between angular and linear
momentum (ALMomentumTransformation) in Figure 14,
see next.
The values of properties in Figure 13 are determined by

constraints, which are equations using property names as
variables. SysML makes constraints reusable by enclosing
them in constraint blocks, where parameters are the con-
strained properties. Figure 14 shows a constraint block (AL-
MomTransConstraint) used in a parametric diagram for the
association block that transforms between angular and linear

Systems Engineering DOI 10.1002/sys

SYSML FOR PHYSICAL INTERACTION AND SIGNAL FLOW SIMULATION 411

momentum in previous figures (block definition diagrams
for constraint blocks are omitted for brevity). The constraint
block usage (constraint property aLMT) has a compartment
for equations (written in the language defined in Section 7.3),
which are mathematical relationships between flow rates and
potentials of angular and linear momentum (see Table I in
the Physical Interaction subsection of 3.2.2). Components
reuse constraints by linking their properties (some inherited

as indicated with a caret) to parameters of constraint blocks
(variables in the equations) with binding connectors to indi-
cate the values of the properties are the same. In Figure 14,
a component of the association block (ALMomTransCompo-
nent) binds its properties (mostly simulation variables on
ports) to constraint parameters, while the association block
binds one of them to a property of a participant (the radius of
the wheel).24

Figure 15. Block definition diagram for some signal flow elements used in Figure 11.

Figure 16. Simulation extension applied to signal flow elements of Figure 15.

Systems Engineering DOI 10.1002/sys

412 BOCK, BARBAU, MATEI, DADFARNIA

Figure 17. Parametric diagram for cruise controller in Figure 15.

6.3. Signal Flow Definitions

Figure 15 introduces signal flow to cruise controllers and
components linked to it in Figure 11 (people, engines, and
wheels), using blocks defined in Figure 16. The kinds of
signals flowing in Figure 15 appear as types of flow prop-
erties thSignal and sSignal for throttle settings and speeds in
Figure 16, respectively. These flow properties are referred to
by simulation properties throttleSetting and speed, respec-
tively, which will give numeric values sent during simulation
(this is the same pattern as the signal flow library in Fig. 8
in Section 5.2, using names reflecting the application). Ports
are needed in Figure 15 when the same signal is used for
different purposes. For example, cruise controllers receive
speed signals from their drivers and wheels, but the first is the
goal speed, while the second is the current speed. Ports can
be used even if a signal is used for only one purpose, such as
the throttle setting sent from cruise controllers to engines, but
generalization can also be used in this case. For example, en-
gines receive throttle setting signals for one purpose, and are
modeled as a kind of ThottleInFlowComponent to reflect this.
Equations for the values of properties in Figure 16 appear

in Figure 17 in a constraint block used in a parametric diagram
for cruise controllers (the example is proportional-integral
control [Dorf and Bishop, 2016]). Parameters of the constraint
block are bound to simulation properties in the ports, giv-
ing numeric signal values, and to internal properties of the
controller.

7. TRANSLATING BETWEEN SysML
AND SIMULATION PLATFORMS

SysML models extended according to Section 5 can be trans-
lated to and from text files for simulation platforms, in par-
ticular the widely used Simulink, Simscape, and Modelica
platforms. Issues arising in these translations are:

• Some SysML modeling capabilities are supported on
only some of the simulation platforms above and some-
times only partially, which is addressed in Section 7.1,
while some SysML capabilities are not supported on any
of the platforms, addressed in Section 7.2.

• The model libraries in Section 5.2 have corresponding
libraries on simulation platforms, many of which can be
used in translation, but are different across platforms, as
described in Section 7.2.

• The mathematical equation language in Section 5.3 is
different in minor ways that require translation, as cov-
ered in Section 7.4.

• Input conditions must be provided for simulation, ad-
dressed in Section 7.5.

Section 7.6 describes an implementation of the SysML
extension and Sections 7.1 through 7.4, validating these with
the example in Section 6 and scenario in Section 7.5.

7.1. Platform Modeling

Simulation platforms use various terms corresponding to
SysML extended according to Section 5, as summarized in
Table III. Some differ between platforms and most are differ-
ent than SysML. Some SysML and simulation terms are the
same, but with different meanings. For example, SysML and
Modelica have constructs called connectors, but in SysML
this refers to links between components on internal block dia-
grams, while in Modelica it refers to elements on components
that specify interactions with other components. Another ex-
ample is simulation parameters, which are variables with
values that do not change during simulation, but in SysML
are properties of constraint blocks or inputs and outputs of
behaviors. From a graphical perspective, diagrams in SysML
and simulation tools have some constructs that appear the
same visually, but have different meanings. For example,
both have small rectangles or other shapes that appear on
boundaries of components. In SysML, these are structural

Systems Engineering DOI 10.1002/sys

SYSML FOR PHYSICAL INTERACTION AND SIGNAL FLOW SIMULATION 413

Table III. Correspondences between Terms in Extended SysML and Example Simulation Languages (NA = not available)

Extended SysML Modelica Simulink/Simscape

Blocks without internal block diagrams Models without connections Block types/Components

Blocks with internal block diagrams Models with connections Systems/Components
Part properties Model instances (informal) Reference blocks/Component instances
Connectors Connections Lines/Connections
Generalization Extension NA/Subclassing
Redefinition Redeclaration NA
SimConstants Parameters Parameters
Ports with SimProperties referring to signal flow

properties (in and out direction)
Input, output variables Inport, outport/Input, output variables

Ports with SimProperties referring to physical
(inout) flow properties

Ports (informal) Connection ports/Nodes

Ports without SimProperties NA NA
Flow properties NA NA
SimBlocks Connectors NA/Domains
Conserved SimVariables

(flow property direction inout)
Flow variables NA/Balancing variables

Non-conserved SimVariables
(flow property direction inout)

Variables NA/Variables

ConstraintBlocks NA NA
ConstraintBlock usages Equations S-functions/Equations
Value types Data types Data types

elements (ports) involved in particular interactions with other
components, while in simulation models they only describe
flows, nothing structural.
Simulation platforms differ in support for an equivalent

to SysML generalization. Modelica supports the equivalent
of multiple generalizations for each component definition, as
SysML does, while Simscape supports only a single general-
ization per component, and Simulink does not support any
generalizations. When a generalization in a SysML model
cannot be supported on a simulation platform, the simula-
tion model corresponds to a SysML model that replicates
the properties of general blocks on special ones (except for
properties redefined by the special blocks, see below), and
omits the general blocks (see the Simulink translations in
Section 7.6.2 for the generalizations in Section 7.5). Modelica
treats components that include all features of another compo-
nent as generalizations of that other component, while SysML
and Simscape require generalization to be explicitly included.
This aspect ofModelica depends on consistent feature naming
across components, which is not reliable in large, distributed
projects, making it unsuitable for platform-independent ap-
proaches as in this article.
Simulation platforms differ in support for an equivalent to

SysML property redefinition (a way of restricting properties
inherited from more general blocks). Modelica supports an
equivalent of SysML property redefinition. Simulink does not
support redefinition, because it does not support generaliza-
tion, which is addressed by the correspondences for gener-
alization above. Simscape does not support an equivalent of
property redefinition, though it supports single generalization
per component. Generalizations of SysML blocks with prop-
erty redefinitions correspond to Simscape in the same way

as Simulink (see the Simscape translations in Section 7.6.2
for the redefinitions in Sections 7.5),25 while generalizations
of SysML blocks without redefinitions is addressed by the
correspondences for generalization above.
Simulation platforms differ in support for an equivalent to

SysML properties and operations that that are only accessible
to behaviors and constraints defined on the block owning them
and specializations of that block (protected properties and
operations). Modelica modeling supports the equivalent of
these, while Simscape does not. This is an advanced object-
oriented capability that is not typically used in systems mod-
eling. Simulation models that correspond to SysML models
can equivalently have regular properties corresponding to pro-
tected ones in SysML, assuming SysML models are defined
in tools that ensure protected properties and operations are
accessed properly.
Simulation platforms differ between themselves and with

SysML in data types they support. SysML and Modelica
support integers (at least signed 32-bit in Modelica), reals
(double-precision floating point in Modelica), strings, and
Booleans, enumerations, as well as complex data types (called
records with operators in Modelica, and value types with
properties and operations in SysML). Simulink and Sim-
scape do not support strings or complex data types. Simulink
supports some number types that SysML, Simscape, and
Modelica do not (single precision floating point, fixed point
floating, unsigned/signed 8-/16-bit, and unsigned 32-bit inte-
gers). Simscape only supports real numbers (doubles), though
Simulink’s number types can be used in Simulink models that
contain Simscape components. To enable translation to all
platforms, the extension in Section 5 assumes SysML value
types as they are, excluding strings and complex data types,

Systems Engineering DOI 10.1002/sys

414 BOCK, BARBAU, MATEI, DADFARNIA

and treating reals as doubles and integers as unsigned 32-bit.
For Simscape, integers are treated as reals.
Some simulation platforms have capabilities that SysML

and the other platforms do not, which are not included in the
SysML extension:

• Simulink supports a kind of input port that enables or
prevents components from reacting to the rest of their
inputs.

• Simscape supports automatically setting values for pa-
rameters in domains. Values for parameters in Simscape
domains can be copied in various ways across the model.

7.2. SysML Expressiveness

Translating extended SysML models to simulation platforms
based only on the correspondences in Section 7.1 would pro-
duce unsimulatable models in many cases, because SysML
supports a wider range of system structures than simulation
platforms do. Some SysML structures that simulation model-
ing does not support are:

1. Association blocks. Associations in SysML can have
their own interconnected parts, and be used as the
type of properties, just as blocks can. The example in
Sections 6.1 and 6.2 uses an association block contain-
ing properties and equations specifying the interaction
between cars, wheels, and roads.

2. Defining flow properties with other properties on the
same block, or having them both inherit to a block
used to type ports. For example, wheels on cars support

angular momentum flow as well as other characteristics,
such as their radius. Modelers can separate flow prop-
erties from others by specializing library elements from
Section 5.2, as in the example in Section 6.2, but the
specializations cannot be used to type ports, as wheels
are in that example.

3. Flow/simulation properties on components. For exam-
ple, cars interacting with their environments can be
modeled in SysML as having flow properties for mo-
mentum gained and lost to the environment without
defining ports specifically for these interactions, as in
Figure 11 (item flows imply flow properties on the
linked components).

4. Nested ports. For example, the wheels in Figure 11
could have a port for inflating tires, connected to a pump
in an internal block diagram for car maintenance.

Fortunately, the SysML structures above can be automat-
ically prepared (preprocessed) before using the correspon-
dences in Section 7.1 for translation. This enables modelers to
use the structures above in SysML and still produce working
simulation models. The preprocessing steps are:

1. Change association blocks into components. Figure 18
shows this preprocessing step applied to portions of
Figures 11 and 12 in Sections 6.1 and 6.2. Some of
the associations in those diagrams have their own in-
terconnected parts, which simulation platforms do not
support. The top two diagrams in Figure 18 replace
one of these association blocks with its contents from
Figure 14, making it into a component like the oth-

Figure 18. Replacing association blocks in Figures 11 and 12 with their contents.

Systems Engineering DOI 10.1002/sys

SYSML FOR PHYSICAL INTERACTION AND SIGNAL FLOW SIMULATION 415

Figure 19. Moving simulation/flow properties in Figure 18 from components to ports.

Figure 20. Changes to constraint bindings in Figure 14 for Figure 19.

ers in the total system, which simulation platforms
support. Connectors in the association block are moved
to the total system. The connectors linked to participant
properties in the association block are changed to link
directly to those participants in the total system. The

binding connector in the association block is moved to
a parametric diagram for the total system at the bottom
of Figure 18.

2. Separate flow/simulation properties from others on the
same block and move ports to parts when they are typed

Systems Engineering DOI 10.1002/sys

416 BOCK, BARBAU, MATEI, DADFARNIA

Figure 21. Reducing port nesting in Figure 19.

by blocks inheriting both. The example in Section 6.2
separates flow/simulation properties from others by spe-
cializing component interactionmodel library elements,
see Figure 13. Models that do not specialize from the li-
brary must be preprocessed by moving simulation/flow
property pairs to their own blocks that generalize the
original one. This preprocessing step does not change
the effect of the model, because simulation/flow prop-
erties inherit to the blocks they were defined on before.
The example in Section 6.2 types a port by awheel block
that combines flow/simulation properties with others
by inheritance. This must be moved to be a part, with
a binding to a port that only exposes flow/simulation
properties, see preprocessing steps 3 and 4.

3. Move flow/simulation properties from components to
ports. Figure 19 shows this preprocessing step ap-
plied to cars, wheels, and momentum transformation in
Figure 18 (roads are omitted for brevity). These compo-
nents have simulation/flow properties, which simulation
platforms do not support (wheels are treated as ports in
this model, but theymix flow/simulation properties with
others, which simulation platforms also do not support).
The diagrams in Figure 19 move these properties to new
ports on cars, wheels, and momentum transformation,
and change connectors to link to them, which simula-
tion platforms support. The new port properties replace
generalizations from the component blocks. Constraint
bindings using these flow/simulation properties change
to link to the same properties in their new nested po-
sitions. Figure 20 shows this applied to the constraint
on momentum transformation in Figure 14. Constraint
bindings link to same properties as before, but on the
new ports.

4. Reduce nesting of ports. Figure 21 shows this prepro-
cessing step applied to portions of Figure 19. The port
on wheels in Figure 19 is nested two layers down in the
total system, under the wheel and car, which simulation
platforms do not support. The diagrams in Figure 21

change the wheel to be an internal part, replacing it
with a new port of the same type as the wheel’s, which
simulation platforms support. The two ports are bound
together, and the external connector linked to the new
port, providing the same effect as the nested port in
Figure 19. Nothing else in cars changes, because wheels
are still playing the impeller role.

SysML models using the capabilities described in this sec-
tion can be processed through the steps above, then translated
to simulation platforms according to the correspondences in
Section 7.1 and 7.3. Section 7.6 uses preprocessing in an
example translation.

7.3. Model Libraries

Simulation platforms have model libraries corresponding to
those in Section 5.2, many of which can be reused in transla-
tion and some of which cannot:

• Physical interaction libraries on simulation platforms
have elements corresponding to all the simulation blocks
in Figure 7, but some platforms use flow rates or poten-
tials that do not multiply to rate of energy flow in some
cases, as required for physical interaction models. For
example, Modelica uses linear and angular position for
potential of linear and angular momentum, respectively,
which do not produce energy flow rate when multiplied
by force and torque, respectively. Similarly, Simscape
and Modelica use heat energy flow rate, which does not
produce energy flow rate when multiplied by tempera-
ture like entropy flow rate does. Velocity and entropy
flow rate can be derived from position and heat flow
rate, respectively, to give an energy rate product, but
the SysML extension opts to use velocities and entropy
flow rates to more closely reflect the potential and flow
rate of conserved substances. These choices affect how
component equations are written, which are diffi-
cult to adapt to the platforms during translation. For

Systems Engineering DOI 10.1002/sys

SYSML FOR PHYSICAL INTERACTION AND SIGNAL FLOW SIMULATION 417

Table IV. Property Values for Stereotypes in Figure 22 Applied to Signal Behavior Library Elements in Figure 9

SysML Extension
Block

Simulink Block
Type

Modelica
Block

SysML Extension
Properties

Simulink
Parameters

Modelica
Parameters

Derivative Derivative Continuous.Derivative init InitialCondition y_start
Integrator Integrator Continuous.Integrator
SineWave Sin Sources.Sine amplitude Amplitude amplitude

offset Bias offset
frequency Frequency freqHz
phase Phase phase

RealScope Scope Interaction.
Show.RealValue

AND Logic Logical.And
OR Logic Logical.Or
BooleanScope Scope Interaction.

Show.BooleanValue

Table V. Property Values for Stereotypes in Figure 22 Applied to Physical Behavior Library Elements in Figure 9

SysML Extension
Block

Simscape
Component

Modelica
Model

SysML Extension
Ports

Simscape
Nodes

Modelica
Ports

SysML Extension
Properties

Simscape
Parameters

Modelica
Parameters

Resistor foundation. Electrical. p p p r R R
electrical. Analog. n n n
elements. Basic.
resistor Resistor

Capacitor foundation. Electrical. p p p c c C
electrical. Analog. n n n r=0
elements. Basic. g=0
capacitor Capacitor

Ground foundation. Electrical. p V p
electrical. Analog.
elements. Basic.
reference Ground

simplicity, the physical interaction library is translated
to the platforms as any other model would be, with-
out reusing physical interaction elements in platform
libraries. See Section 8 for other approaches to this.

• Component behavior libraries on simulation platforms
have elements corresponding to all of those in the SysML
extension (some of which are shown in Fig. 9), but the
names of these components and their features vary across
platforms. The stereotypes in Figure 22 are applied to
SysML extension behavior library elements to specify
correspondences with Simulink, Simscape, and Model-
ica libraries. Tables IV and V give values of stereotype
properties applied to the signal and physical components
in Figure 8 and Figure 9, respectively. Columns for port
names do not appear in Table IV because Simulink num-
bers its ports rather than naming them (Modelica’s port
name is used in the SysML extension in this case). Some
of the columns in Table V refer to Simscape, because the
rows are physical components, but Simulink stereotypes
are reused to model this, for simplicity. The capacitor in
Table V shows specification of values for two Simscape
parameters to ensure the behavior is the same as in
Modelica. The multidimensional stereotype on the lower
right of Figure 22 is applied to properties in the SysML
extension behavior library that will have nonscalar val-
ues, such as vectors and matrices. The dimension prop-

erty is given a list of values when applied, where the
length of the list is the nonscalar dimension and the
elements of the list are the size of each dimension. This
enables values of the property to which the stereotype
is applied to form a list that can be parsed into non-
scalar form. The multidimensional stereotype is used
in publicly available SysML extension behavior library
[Barbau and Bock, 2017].

Simulation platforms do not have libraries corresponding
to Figure 8 (signal flow), because platform signal components
only use the equivalent of the simulation properties, not flow
properties (see Fig. 5 in Section 4).
Some simulation platform libraries have elements not

available in others, and are not included in the SysML
extension:

• Simscape and Modelica physical interaction libraries
include elements for specifying fluid and gas interac-
tions with two pairs of flow rate and potential variables,
specifically, mass flow rate and pressure combined with
variable pairs for heat, energy, or enthalpy, depending on
the platform. The differences could be addressed in the
SysML extension libraries (see Section 8).

• Simscape and Modelica physical component behavior
libraries have only electric components in common. For
example, their mechanical libraries are not compatible

Systems Engineering DOI 10.1002/sys

418 BOCK, BARBAU, MATEI, DADFARNIA

Table VI. Correspondences between Modelica and MATLAB
Conditional Syntax

Modelica MATLAB

if ...

then ...

elseif ...

then ...

else ...

end if

if ...

...

elseif ...

...

else ...

end

because they use different potential variables for mo-
mentum (see beginning of this section). Another ex-
ample is the components for friction, which includes a
breaking force in Simscape, where friction drops sig-
nificantly, but not in Modelica (even for zero breaking
force the components behave differently). Simulink sig-
nal component libraries currently have some filter blocks
and signal sources that Modelica does not, for exam-
ple, discrete (in)finite impulse response filters and white
noise generators.

A few Simulink and Modelica signal component behavior
library elements intended for the same purpose have slightly
different behavior. For example, Simulink’s derivative com-
ponent use the simulation time step, whereas Modelica’s uses
a modeler defined step. The behavior of the components will
only be the same when Modelica’s derivative component is
given Simulink’s step value (see Section 8). This does not
affect the der function in the equation language of Section
5.3, which solvers treat as integration, and behaves the same
on both simulation platforms.
Units are beyond the scope of this article, but to validate the

SysML extension, the current implementation (see Section
7.6.1) includes a unit library, because SysML’s library of units
is nonnormative. The implementation uses specialized real
number value types named according to the kind of physical
quantities being specified, such as force or angular velocity,
and giving text for particular units of these in Simscape for-
mat. Modelica does not support units (only modeler-defined
strings indicating units, which are not used by Modelica) and
Simulink only recently began to support units (see Section 8).

7.4. Equation Languages

The equation language for Simulink and Simscape (MAT-
LAB) differs from theModelica subset in Section 5.2 inminor
ways that have simple correspondences:
• The syntax for conditionals (if_equation in the gram-
mar subset) is different in MATLAB, as shown in
Table VI. Modelica uses a then keyword, MATLAB
does not.

• Some terminal symbols for operators in the subset above
are different in MATLAB, as shown in Table VII.

Section 7.6 uses the correspondences in an example
translation.
Many functions are defined in MATLAB or Modelica, but

not both, and several MATLAB operators are not available in

Table VII. Correspondences between Differing Modelica
and MATLAB Operators

Modelica MATLAB

= ==
<> ∼ =
not ∼
and &&

or ||

: = =
div idivide

Modelica (too many to list here). These are not included in
the equation language of Section 5.2 (see Section 8).

7.5. Simulation Scenarios

SysML models often intentionally omit information to widen
their applicability, some of which is required for simulation.
For example, the model in Section 6 does not specify values
for:

• internal constants in the cruise controller used by the
equations in Figure 17, enabling the model to be aug-
mented with any values for these constants.

• wheel radius used by the equations in Figure 14, enabling
the model to be augmented with wheels of any radius.

• speed selected by the driver, enabling the model to be
augmented with any speed or variation of speed.

In general, models might omit values for simulation con-
stants, equations for some simulation variables, and proper-
ties in the operating environment, and these values must be
given for simulation to be carried out.
The additional information above needed for simulation

(scenarios) can be given in separate models that refer to
the original, but do not modify it, enabling the original
model to be reused under multiple scenarios. Figure 23
shows a partial scenario for the example in Section 6.
It defines new elements that add to information inherited
from blocks in the original model. The first of these is for the
scenario’s total system, CruiseControlTotalSystemScenario1,
generalized by the original total system block on the up-
per left. It uses property redefinition (a way of restricting
properties inherited from more general blocks) to restrict the
controlled vehicle to a specialized kind of car, Car1, which is
generalized by the original car block on the lower left. The
specialized kind of car uses property redefinition to provide
values for:

• Internal constants in the cruise controller, by restricting
the speed controller to a specialized kind of cruise con-
trol (CruiseControl1) that assigns the values as defaults.
The default values will not change during simulation,
because the properties are simulation constants.

• Wheel radius, by restricting the impeller to a specialized
kind of wheel (Wheel1) that gives the radius. The radius
is redefined as a simulation constant to ensure the value
does not change during simulation.

Systems Engineering DOI 10.1002/sys

SYSML FOR PHYSICAL INTERACTION AND SIGNAL FLOW SIMULATION 419

Figure 22. Stereotypes for specifying correspondences between component behavior libraries in the SysML extension and simulation platform
libraries.

• Speed selected by the driver, by restricting the driver
to a specialized kind of person (Person1) that gives the
speed as a function of time. This is done with a constraint
(details omitted for brevity) on a signal property of a
port introduced by preprocessing the original block for
persons (see preprocessing step 3 in Section 7.3).

Redefinition requires translation to accommodate simula-
tion platforms that do not support it (see Section 7.1). For ex-
ample, the models on these platforms correspond to a SysML
model that omits CruiseControlTotalSystem, moving its prop-
erties and connectors to CruiseControlTotalSystem1, except
for the controlledVehicle property, which is already redefined
there (see the Listing 2 in Section 7.6.2).
Executable simulation files can be automatically generated

from a SysML model combining the original one in Section 6
and the scenario specializations in Figure 23, as demonstrated
in Section 7.6.

7.6. Validation

This section describes validation of the SysML extension
in Section 5, preprocessing in Section 7.2, and translations
in Sections 7.1, 7.3, and 7.4 to Simulink, Simscape, and
Modelica. Section 7.6.1 covers a software implementation,
while Section 7.6.2 gives some results of applying it to the ex-
ample in Section 1 and scenario in Section 7.5, then executing
the simulation files on their corresponding tools to show the
results are the same.

7.6.1. Implementation
The preprocessing and translations in Sections 7.1 through 7.4
are carried out in software developed by one of the authors
(Barbau), as illustrated in Figure 24 (block arrows along the
top show the generation process, with supporting architecture

Figure 23. Simulation scenario.

Systems Engineering DOI 10.1002/sys

420 BOCK, BARBAU, MATEI, DADFARNIA

Figure 24. Generation process and generator architecture.

below). The example models are drawn in a SysML tool that
supports export to an OMG standards-compliant file format
[NoMagic 2015] [Object Management Group 2015b] [Object
Management Group 2017b]). These files are loaded into a
repository supporting UML’s meta-model (including profiles
such as SysML and the ones in the SysML extension) [Stein-
berg et al., 2008]. Repositories create instances of UMLmeta-
classes and stereotypes according to the input files, includ-
ing links between them for stereotype application, and give
programmatic access to these instances [Bock, 2003]. The
generator program (written in the language of the repository
[Gosling et al., 2014]) accesses the instances, applies the
preprocessing of Section 7.2 to them, and emits simulation
input files according to the correspondences in Sections 7.1,
7.3, and 7.4.
Development of the translation portion of the generator

was facilitated by building meta-models of Simulink,
Simscape, and Modelica in the repository, which supports
meta-model construction and generation of skeleton class
files corresponding to the meta-models, as illustrated in the
lower right of Figure 24. Operations were defined manually
on visitors of each class [Gamma et al., 1998], with methods
for generating files in the format of each simulation language.
The translation program reads instances of UML’s meta-
classes in the repository, as well as SysML and simulation
stereotype instances linked to them, finds instances for
extended SysML concepts that map into simulation
languages, as given Table III, instantiates the corresponding
simulation language meta-classes, and links them together
according to the correspondences in Sections 4 and 5. Once
the simulation model is created, the generation operations
on visitors are invoked to produce files in simulator input
formats.
The software above generates simulation files for the ex-

ample in Section 6 and scenario in Section 7.5 in around
10 seconds on a high-end travel laptop at time of writing this
article (see Section 7.6.2 for portions of these files). Most of
the time is taken in preprocessing, which scans the SysML
model for elements matching the patterns in Section 7.2 and
prepares them for translation. Translation then takes one or

two seconds. The software can also translate from gener-
ated simulation files to extended SysML models and back to
simulation files that execute the same way as the originals.
The generation process and program was developed only to
validate the proposed simulation extension and is not claimed
to be optimal in any respect. The softwarewith documentation
and examples are publicly available, including the simulation
platformmeta-models and source code, as well as translations
for state machines not covered in this article (see Section 8)
[Barbau and Bock, 2017].

7.6.2. Example Simulation Generation and Execution
This section shows portions of Simulink, Simscape, andMod-
elica simulation files generated by the software in Section
7.6.1 for the example in Section 6 and scenario in Sec-
tion 7.5. Listing 1 and Listing 2 show portions relating to
Figure 11 in Section 6.1, under the scenario in Section 7.5.
Simulation languages have a textual syntax for components,
such as cars, playing roles, such as controlledVehicle, in the
total system. Modelica shows the component name before
the role name on each line, while Simscape shows it after,
with an equals sign in between. Simscape requires compo-
nent types to be referenced through a library (appearing as
CCTSLib in the listings), with instances of those types cre-
ated for simulation as needed. Modelica combines links be-
tween components and equations in the same section, while
Simscape separates them, but has the same syntax except
for using a double equals sign in equations. Modelica sup-
ports redefinition with generalization (redeclaration with ex-
tension), but Simscape does not. The translation achieves
the same effect as redefinition in Simscape by moving all
features of the general total system (except the redefined
one) to its scenario and omitting the general system (see
Section 7.1).
The car, wheel, and momentum transformation in Listing

1 and Listing 2 are defined in Listing 3 through Listing 6,
generated from portions of Figure 12 through Figure 14
in Section 6.2, under the scenario in Section 7.5. Modelica
shows the value of simulation constants at the end of the line

Systems Engineering DOI 10.1002/sys

SYSML FOR PHYSICAL INTERACTION AND SIGNAL FLOW SIMULATION 421

in parentheses, while Simscape shows in them in a separate
setup section. Modelica defines port properties like any other
variable, whereas Simscape uses a separate nodes section.
Port types in Modelica are connectors, in Simscape they are
domains. Conserved variables in Modelica are indicated with
a flow keyword, in Simscape they aremarked as balanced. The
momentum transformation equations in Listing 5 and Listing
6 are generated from Figure 14, as preprocessed in Figure 20,
by replacing parameters used in the constraints with
the names of properties (or property paths with simulation
properties removed) bound to them in the parametric diagram.
For example, the variables trq, f, and r in the constraint {trq =
f*r} are replaced by aMomFlow ComponentAMom.trq, aL
MomTransComponentLMom.f, and radius, respectively.26

The cruise controller, person, and engine used in Listing 1
and Listing 2 are defined in Listing 7 and Listing 8, respec-

tively, generated from portions of Figure 15 through Figure 17
in Section 6.3, under the scenario in Section 7.5. Modelica
indicates inputs and outputs individually, while Simscape has
separate sections for them. Both refer to constants as pa-
rameters. The cruise controller and person are purely signal
flow (unidirectional) components, which mean they can be
translated to Simulink, as shown in Listing 9 and Listing
10. However, Simscape does not currently support Simulink
components as parts of Simscape models. Simulink compo-
nents must be used outside Simscape models and linked into
them with specialized connectors at all levels of the Simscape
model down to where the Simulink component is used. This
significantly complicates Simscape models for engineers and
is difficult to automatically produce. For SysML models that
use only signal flow, the preprocessing and translation de-
scribed in this article produces Modelica and Simulink files

model CruiseControlTotalSystem
replaceable Car controlledVehicle;
Earth operatingEnvironment;
LMomPotEngTransComponent gravVehicleLink;
FluidEffect airVehicleLink;
ALMomTransComponent aLMTC;

equation
connect(operatingEnvironment.lMomentumGroundLMom,aLMTC.lMCG);
connect(gravVehicleLink.lMomPotEngTransComponentLMom,

 controlledVehicle.carLMom);
connect(operatingEnvironment.airLMom,airVehicleLink.air);
connect(airVehicleLink.car,controlledVehicle.carLMom);
connect(controlledVehicle.aMomFlowComponentAMom,

 aLMTC.aMomFlowComponentAMom);
connect(controlledVehicle.carLMom,aLMTC.aLMomTransComponentLMom);
aLMTC.radius=controlledVehicle.impeller.radius;

end CruiseControlTotalSystem;

model CruiseControlTotalSystemScenario1
extends CruiseControlTotalSystem(redeclare Car1 controlledVehicle);

end CruiseControlTotalSystemScenario1;

Listing 1. Modelica translation of cruise control total system

component CruiseControlTotalSystemScenario1
components

controlledVehicle=CCTSLib.Car1;
operatingEnvironment=CCTSLib.Earth;
gravVehicleLink=CCTSLib.LMomPotEngTransComponent;
airVehicleLink=CCTSLib.FluidEffect;
aLMTC=CCTSLib.ALMomTransComponent;

end
connections

connect(operatingEnvironment.lMomentumGroundLMom,aLMTC.lMCG);
connect(gravVehicleLink.lMomPotEngTransComponentLMom,

controlledVehicle.carLMom);
connect(operatingEnvironment.airLMom,airVehicleLink.air);
connect(airVehicleLink.car,controlledVehicle.carLMom);
connect(controlledVehicle.aMomFlowComponentAMom,

aLMTC.aMomFlowComponentAMom);
connect(controlledVehicle.carLMom,

aLMTC.aLMomTransComponentLMom);
end
equations

aLMTC.radius==controlledVehicle.impeller.radius;
end

end

Listing 2. Simscape translation for cruise control total system

Systems Engineering DOI 10.1002/sys

422 BOCK, BARBAU, MATEI, DADFARNIA

model Car
replaceable Person driver;
replaceable CruiseController speedController;
Engine powerSource;
replaceable Wheel impeller;
LMomFlowElement carLMom;
AMomFlowElement aMomFlowComponentAMom;

equation
connect(driver.personSSignal,speedController.speedDriverJack);
connect(impeller.wheelSSignal,speedController.speedSensorJack);
connect(speedController.throttleActuatorJack,powerSource.engineThSignal);
connect(powerSource.crankshaft,impeller.hub);
connect(impeller.aMomFlowComponentAMom,aMomFlowComponentAMom);

end Car;

model Car1
extends Car(redeclare Person1 driver,

 redeclare CruiseController1 speedController,
 redeclare Wheel1 impeller,
end Car1;

connector LMomFlowElement
flow Force f;
Velocity lV;

end LMomFlowElement;

connector AMomFlowElement
flow Torque trq;
AngularVelocity aV;

end AMomFlowElement;

Listing 3. Modelica translation for car

component Car1
components

driver=CCTSLib.Person1;
speedController=CCTSLib.CruiseController1;
impeller=CCTSLib.Wheel1;
powerSource=CCTSLib.Engine;

end
nodes

carLMom=CCTSLib.LMomFlowElement;
aMomFlowComponentAMom=CCTSLib.AMomFlowElement;

connections
connect(driver.personSSignal,speedController.speedDriverJack);
connect(impeller.wheelSSignal,speedController.speedSensorJack);
connect(speedController.throttleActuatorJack,

powerSource.engineThSignal);
connect(powerSource.crankshaft,impeller.hub);
connect(impeller.aMomFlowComponentAMom,aMomFlowComponentAMom);

end
end

domain LMomFlowElement
variables(Balancing=true)

f;
end
variables

lV;
end

end

domain AMomFlowElement
variables(Balancing=true)

trq;
end
variables

aV;
end

end

Listing 4. Simscape translation for car

Systems Engineering DOI 10.1002/sys

SYSML FOR PHYSICAL INTERACTION AND SIGNAL FLOW SIMULATION 423

model Wheel
extends AMomFlowComponent;
AMomFlowElement hub;
output LinearVelocity wheelSSignal;

equation
wheelSSignal=-hub.aV*radius;
hub.aV=-aMomFlowComponentAMom.aV;
hub.trq+aMomFlowComponentAMom.trq=0;

end Wheel;

model Wheel1
extends Wheel(redeclare parameter Length radius(start=0.5,fixed=true));

end Wheel1;

model AMomFlowComponent
AMomFlowElement aMomFlowComponentAMom;
replaceable Length radius;

end AMomFlowComponent;

model ALMomTransComponent
extends AMomFlowComponent;
LMomFlowElement lMCG;
LMomFlowElement aLMomTransComponentLMom;

equation
aMomFlowComponentAMom.aV=(aLMomTransComponentLMom.lV-lMCG.lV)/radius;
aMomFlowComponentAMom.trq=aLMomTransComponentLMom.f*radius;
lMCG.f=0;

end ALMomTransComponent;

model LMomentumGround
LMomFlowElement lMomentumGroundLMom;

equation
lMomentumGroundLMom.lV=0;

end LMomentumGround;

Listing 5. Modelica translation for wheel and momentum transformation

component Wheel1
parameters

radius={0.5,'m'};
end
nodes

aMomFlowComponentAMom=CCTSLib.AMomFlowElement;
hub=CCTSLib.AMomFlowElement;

end
outputs

wheelSSignal;
end
equations

wheelSSignal==-hub.aV*radius;
hub.aV==-aMomFlowComponentAMom.aV;
hub.trq+aMomFlowComponentAMom.trq==0;

end
end

component AMomFlowComponent
nodes

aMomFlowComponentAMom=CCTSLib.AMomFlowElement;
end
variables

radius;
end

end

component ALMomTransComponent < CCTSLib.AMomFlowComponent
nodes

lMCG=CCTSLib.LMomFlowElement;
aLMomTransComponentLMom=CCTSLib.LMomFlowElement;

end
equations

aMomFlowComponentAMom.aV==(aLMomTransComponentLMom.lV-lMCG.lV)/radius;
aMomFlowComponentAMom.trq==aLMomTransComponentLMom.f*radius;
lMCGf==0;

end
end

component LMomentumGround
nodes

lMomentumGroundLMom=CCTSLib.LMomFlowElement;
end
equations

lMomentumGroundLMom.lV==0;
end

end

Listing 6. Simscape translation for wheel and momentum transformation

Systems Engineering DOI 10.1002/sys

424 BOCK, BARBAU, MATEI, DADFARNIA

model CruiseController
output Torque throttleActuatorJack;
input LinearVelocity speedDriverJack;
input LinearVelocity speedSensorJack;
replaceable parameter ICoefficient kI;
replaceable parameter PCoefficient kP;
Acceleration accCmd;
Length errorInteg;
replaceable parameter ThrottleAccelerationRatio

 throttleAccRatio(start=1.0,fixed=true);
equation

der(errorInteg)=speedDriverJack-speedSensorJack;
accCmd=kP*(speedDriverJack-speedSensorJack)+kI*errorInteg;
throttleActuatorJack=accCmd*throttleAccRatio;

end CruiseController;

model CruiseController1
extends CruiseController

 (redeclare ICoefficient kI(start=30.0,fixed=true),
 redeclare PCoefficient kP(start=200.0,fixed=true),
 redeclare ThrottleAccelerationRatio
 throttleAccRatio(start=1.0,fixed=true));
end CruiseController1;

model Person
output LinearVelocity personSSignal;

end Person;

model Person1
extends Person;

equation
personSSignal=f(t);

end Person;

model Engine
AMomFlowElement crankshaft;
input Torque engineThSignal;

equation
crankshaft.trq=engineThSignal;

end Engine;

Listing 7. Modelica translation for cruise controller, person, and engine

Systems Engineering DOI 10.1002/sys

SYSML FOR PHYSICAL INTERACTION AND SIGNAL FLOW SIMULATION 425

component CruiseController1
parameters

kI={30.0};
kP={200.0};
throttleAccRatio={1.0};

end
outputs

throttleActuatorJack={0};
end
inputs

speedDriverJack;
speedSensorJack;

end
variables

accCmd;
errorInteg;

end
equations

der(errorInteg)==speedDriverJack-speedSensorJack;
accCmd==kP*(speedDriverJack-speedSensorJack)+kI*errorInteg;
throttleActuatorJack==accCmd*throttleAccRatio;

end
end

component Person
outputs

personSSignal;
end

end

component Person1 < CCTSLib.Person
equations

personSSignal=f(t);
end

end

component Engine
nodes

crankshaft=CCTSLib.AMomFlowElement;
end
inputs

engineThSignal;
end
equations

crankshaft.trq==engineThSignal;
end

end

Listing 8. Simscape translation for cruise controller, person, and engine

Systems Engineering DOI 10.1002/sys

426 BOCK, BARBAU, MATEI, DADFARNIA

<Block BlockType="SubSystem" Name="CruiseController1" SID="1">
<P Name="Ports">[2,1]</P>
<System>

<Block BlockType="Outport" Name="throttleActuatorJack" SID="5">
<P Name="Port">1</P> </Block>

<Block BlockType="Inport" Name="speedDriverJack" SID="6">
<P Name="Port">1</P> </Block>

<Block BlockType="Inport" Name="speedSensorJack" SID="7">
<P Name="Port">2</P> </Block>

<Block BlockType="M-S-Function" Name="cc" SID="8">
<P Name="FunctionName">

CruiseController1_cc_CruiseControllerConstraint</P>
<P Name="Ports">[2,1]</P> </Block>

<Line>
<P Name="Src">6#out:1</P>
<P Name="Dst">8#in:1</P> </Line>

<Line>
<P Name="Src">7#out:1</P>
<P Name="Dst">8#in:2</P> </Line>

<Line>
<P Name="Src">8#out:1</P>
<P Name="Dst">5#in:1</P> </Line>

</System>
</Block>
<Block BlockType="SubSystem" Name="Person1" SID="2">

<P Name="Ports">[0,1]</P>
<System>

<Block BlockType="M-S-Function" Name="pc" SID="3">
<P Name="FunctionName">Person1_pc_Person1Constraint</P>
<P Name="Ports">[0,1]</P> </Block>

<Block BlockType="Outport" Name="personSSignal" SID="4">
<P Name="Port">1</P> </Block>

<Line>
<P Name="Src">3#out:1</P>
<P Name="Dst">4#in:1</P> </Line>

</System>
</Block>

Listing 9. Simulink translation for cruise controller and person

function CruiseControllerConstraint(block)
setup(block);

end
function setup(block)

block.NumInputPorts =2;
block.NumOutputPorts =1;
block.OutputPort(1).SamplingMode = 'sample';
block.NumContStates = 2;
block.RegBlockMethod('Derivatives',@Derivative);
block.RegBlockMethod('Outputs',@Outputs);

end
function Derivative(block)

block.Derivatives.Data(2)=
 block.InputPort(1).Data-block.InputPort(2).Data;

block.ContStates.Data(1)=
 200*(block.InputPort(1).Data-block.InputPort(1).Data)+
 30*block.ContStates.Data(2);
end
function Outputs(block)

block.OutputPort(1).Data=block.ContStates.Data(1)*1.0;
end

Listing 10. Simulink translation for cruise controller constraint

Systems Engineering DOI 10.1002/sys

SYSML FOR PHYSICAL INTERACTION AND SIGNAL FLOW SIMULATION 427

Figure 25. Execution results from example simulation files.

Figure 26. Execution results with different values for cruise con-
troller constants.

that execute the same way (examples of this are publicly
available [Barbau and Bock, 2017]).
Results of executing the automatically produced simulation

files are the same for Modelica and Simscape, illustrated by
the speed of the car over time in Figures 25 and 26. The driver
sets the speed at the beginning, then again half way through
(the scenario’s constraint on the driver’s desired speed in
Fig. 23 is defined as a conditional over time). The road is
flat except in the second section from the left, where the car
is going up a hill. The controller constants kI and kP have
values from the scenario in Figure 23 that cause too much
oscillation in Figure 25. They are changed to reach the desired
speed more quickly and with less variation in Figure 26.
The software in Section 7.6.1 (implementing preprocessing

and translations in Sections 7.1 through 7.4) can also translate
the generated simulation files above back to extended SysML
models, and then generate simulation files that execute the
same way as above. This and other examples are publicly
available, with generated simulation files [Barbau and Bock,
2017].

8. SUMMARY AND FUTURE WORK

This article presents an extension of SysML enabling integra-
tion with physical interaction and signal flow simulation plat-
forms based on ordinary and algebraic differential equation
solvers (also known as lumped parameter, one-dimensional,

or network simulation), see Section 5. The extension is de-
veloped from a comparison of SysML and simulation model-
ing, see Sections 3 and 4. Simulation modeling and SysML
overlap significantly, with both describing systems, subsys-
tems, components, parts, as well as links and directional and
bidirectional flows between them, plus equalities to define the
behavior of components. SysML has additional capabilities
to specify the kinds of things flowing between components,
while simulation languages have additional capabilities to
distinguish properties as constant or variable, continuous or
discrete, and obeying two kinds of physical law (for flow
rate and potential to flow, respectively). The extension adds
these simulation modeling capabilities to SysML, with se-
mantics equivalent to the corresponding simulation concepts.
This enables generation of simulation text files that execute
the same way as those built natively in simulation tools, but
without rewriting simulation files for each tool separately, as
demonstrated in Sections 6 and 7. This increases engineering
efficiency by enabling simulation tools to be used more easily
in systems engineering processes.
The SysML extension could be improved with:

• Platform-independent modeling of solver directives.
Sometimes equivalent simulation models produced ac-
cording to Section 7 from the same extended SysML
model will execute differently due to characteristics of
solvers in simulation tools. Some of these characteristics
are under modeler control, such as time step size or the
increment for derivative library components, and can be
set to ensure equivalent simulation models execute the
same way. It would be useful for the SysML extension
to include a model for solver directives that could be
translated to simulation platforms.

• More abbreviated signal flow modeling. Unidirectional
flow properties could be typed by numbers or Booleans
to indicate signal flow without using simulation prop-
erties. The SimVariable stereotype could be applied to
these flow properties to specify discretely changing
signals.

• Functions and operators in the equation language that
are available in MATLAB or Modelica, but not both.
Missing functions on the platforms could be defined
equivalently to those on the other, and used in translation.

• Component behavior library elements in the SysML
extension that include equations for components avail-
able in Simulink/Simscape or Modelica, but not both.
Translation could reuse the components on the platform
supporting them and translate to the other platform as
normal.

• Physical interaction library elements for other conserved
substances, such as magnetism (characterized by mag-
netic flux and magnetomotive force), as well as for spec-
ifying fluid and gas interactions with two pairs of flow
rate and potential variables. Differences in fluid and gas
units between Simscape and Modelica could be over-
ridden by introducing elements for this in the SysML
extension library (using simulation blocks with two pairs
of simulation variables or supporting multiple values for
simulation properties) and translating to the platforms as

Systems Engineering DOI 10.1002/sys

428 BOCK, BARBAU, MATEI, DADFARNIA

normal, or by generating unit conversions during trans-
lation to the platform libraries.

• Unit models. These are beyond the scope of this arti-
cle, but the implementation in Section 7.6.1 includes
a unit model to validate the SysML extension. The
conserved substances in Figure 7, Section 5.2, cor-
respond to quantity kinds for units in international
standards [International Organization for Standardiza-
tion 2016] [International Organization for Standardiza-
tion 2012], which SysML includes in a nonnormative
model library. Ideally, this library would become norma-
tive, and the SysML extension for simulation could spe-
cialize it to provide translation to simulation platforms,
including Simulink’s recent support for signal units. This
would provide a full set of units and kinds of physical
quantities.

Preprocessing for additional SysML capabilities could be
added for:

• Other kinds of ports:27

◦ Ports typed by blocks with behaviors, constraints,
and other constructs not modeled with properties.
Preprocessing could detect these and carry out the
same transformations it currently does for port types
with nonflow properties.
◦ Behavior ports. These stand in for the objects
that have the port. When they are typed by blocks
that have nonflow/simulation properties, preprocess-
ing could use those properties on the objects having
the ports, rather than moving them to an internal part.

• Properties used in constraints not indicated as simulation
variables. Preprocessing could find these by analyzing
constraints, then apply the stereotype automatically.

• Constraints defined without constraint blocks. Process-
ing could create constraint blocks and bindings for con-
straints that are not reused.

Translation could be improved by:

• Including diagram information. SysML graphical in-
formation (position of nodes and routing of lines on
diagrams) corresponds to at least some graphical infor-
mation in simulation files. These could be translated to
each other to preserve the layout of diagrams between
SysML and simulation platforms.

• Using component physical interaction elements in sim-
ulation libraries when they match elements in the cor-
responding SysML extension library. Translation could
also use simulation library elements that do not match
by translating SysML constraints to reuse these platform
elements.

• The current implementation translates simulation files
generated from SysML models back into SysML, but
cannot recover the original names of flow and simu-
lation properties or the original conserved substances.
These could be recorded in generated simulation files as
comments. In addition, SysMLmodels requiring prepro-
cessing will have a different structure after translation
to simulation and back. Preprocessing operations could
also be recorded in simulation files and reversed when

translating back to SysML. Some additional capabilities
in simulation files might be useful to translate to SysML,
for example, those with MATLAB S-functions that in-
troduce intermediate variables, or that define Modelica
functions and operators for additional data types.

• Documenting the implementation’s support for state ma-
chines. Simulink integrates with StateFlow R⃝, a mod-
eling and simulation tool for state machines [The
MathWorks, Inc 2016d]. Modelica includes a li-
brary for state machines [Modelica Association 2016].
The implementation in Section 7.6.1 translates be-
tween basic SysML state machines and these simu-
lation platforms. Additional preprocessing would be
needed to handle all the expressiveness of SysML state
machines.

Enhancements to SysML could provide more opportunities
to apply this extension. For example, additional support for
variant modeling in SysML would simplify development of
alternative designs. Simulation-based exploration and evalu-
ation of these alternatives would be faster using integrations
enabled by this extension.

ACKNOWLEDGMENTS

The authors thankmembers of the ObjectManagement Group
SysML-Modelica Revision Task Force led by Axel Reich-
wein for helpful discussions on the topics of this paper, as
well as Anantha Narayanan for his comments. Commercial
equipment and materials might be identified to adequately
specify certain procedures. In no case does such identification
imply recommendation or endorsement by the U.S. National
Institute of Standards and Technology, nor does it imply that
the materials or equipment identified are necessarily the best
available for the purpose. This material is based in part on
work supported by U.S. National Institute of Standards and
Technology contract SB1341-13-SU-1055 and grant award
70NANB14H249 to Engisis, LLC, and in part on work
supported by the NIST-ARRA Measurement Science and
Engineering Fellowship Program award 70NANB10H026,
through the University of Maryland, and in part on work
supported by NIST grant award to the University of
Maryland.

1. Many concepts and notations in SysML are shared with
UML, but for brevity this article will describe them all as
SysML.

2. The extension is applied to translation between extended
SysML and simulation platforms for validation only.
Other aspects of interaction between SysML and simu-
lation tools, such as model synchronization, are beyond
the scope of the article [Johnson et al., 2012; Reichwein
et al., 2012].

3. SMP documentation recognizes the importance of inte-
grating systems engineering and simulation information,
but puts it explicitly out of scope, see [European Cooper-
ation for Space Standardization, 2011], Volume 1 (Prin-
ciples and requirements), first paragraph under Figure 4
(SMP high level overview).

Systems Engineering DOI 10.1002/sys

SYSML FOR PHYSICAL INTERACTION AND SIGNAL FLOW SIMULATION 429

4. Simulation tools sometimes use the term “constant” for
properties that have the same value across all simulation
executions, such as the physical constant for gravitational
acceleration, rather than just during each simulation ex-
ecution separately.

5. In mathematical terms, a variable x(t) is continuous if for
every time instant t0, the limit of x(t) as t approaches t0
exists and is equal to x(t0).

6. In mathematical terms, the time evolution of a discrete
variable is piecewise constant. During their constant pe-
riods, discrete variables have the same values at nearby
times in both the future and past, like continuous vari-
ables might, but at the beginning or end of constant
periods, discrete variable values are only the same at
nearby times in the future or past, respectively, but not
both.

7. Potential to flow is also equal to the energy or work
applied to physical substances divided by the amount
of substance acted on, but simulators do not use this
relationship because they are not concerned with the par-
ticular substances involved.

8. Flow rates and potential differences are one-dimensional
vectors (scalars), enabling them to be represented by real
numbers, with sign indicating direction. Direction for
flow rates is in or out of components, while for potentials
it is between one port or internal potential of a component
to another (single potentials can be considered differ-
ences from zero).

9. Physical interactions can be unidirectional in the sense
that flowing substances might happen to pass only in one
direction across links, as in diodes and backflow preven-
ters, but these are still physical interactions, rather than
signal flow. The direction of physical flow is restricted
by additional component equations (see Section 3.2.3),
rather than by ports. This is useful when modeling the
physical basis of signal flow.

10. This is because potential to flow, such as water pressure
or voltage, passes through physical substances in waves,
which are only temporary displacements, resulting in
zero flow rates.

11. This differs from nonnumeric information flow, such as
in software, where signals can be combined in any man-
ner.

12. These constitutive equations are known for many engi-
neering domains, such as Ohm’s law for electric resistors,
Poiseuille’s law for laminar flow in pipes, and Fourier’s
law for heat conduction. They determine changes in po-
tential across a component based on the flow rate through
it and its material characteristics.

13. Splitting and merging physical substances and signals
generalize this by having more than two ports. For ex-
ample, pipes can have more than two ends, for dividing
or combining fluids. Similarly, signal processors can add
varying numeric values into one, or split one intomultiple
based on frequency ranges.

14. SysML properties can be read-only, which means they
cannot be modified after objects are created, but simula-
tion constants can be modified between simulation runs.

15. Simulation properties typed by simulation blocks can be
used for signal flow, but they would typically only have

one (nonconserved) variable. Simulation properties with
numeric or Boolean values are shorthands for simulation
blocks with a single nonconserved variable. See the Sig-
nal Flow subsection of 3.2.2 about modeling signals with
their underlying physical basis.

16. Flow can only occur when flow properties have com-
patible directions and kinds of things flowing (property
types). For example, flow properties providing oil cannot
be connected to flow properties providing oil (direction
mismatch) or to flow properties accepting water (type
mismatch), but can be connected to flow properties for
accepting liquids.

17. SysML is less restrictive, allowing inout flow properties
to be connected to in and out flow properties.

18. Out and inout flow properties are not restricted in the
number of other flow properties they can connect to.

19. The signal flow library enables SysML models to avoid
conjugated ports, which have a semantics that reverses
the direction of flow properties on blocks typing them.
Conjugation simplifies modeling a bit by using the same
block for both directions, but complicates implementa-
tions that analyze and simulate SysML models because
the block typing conjugated ports is not in the model. The
signal flow library can be used with conjugated ports by
using elements for only one direction.

20. A standard constraint language that integrates with
SysML is available [Object Management Group, 2014],
but is not as suitable for specifying equations for simula-
tion as those on simulation platforms.

21. Earth would normally be an instance of a block for plan-
ets, but is treated in Figure 11 as a block for a one-of-a-
kind thing. The model could be generalized to planets, to
support more kinds of vehicles.

22. The transformation between linear momentum and po-
tential energy is not modeled as connector between the
car and earth’s gravitational field to highlight that mo-
mentum converted to potential energy can only be trans-
ferred back to the car, as compared to momentum trans-
ferred to the air, which can be transferred to other objects.

23. The radius is specified as a variable, to support appli-
cations such as cams, even though it is constant in this
example (see Section 7.5 about setting its value).

24. The constraint property cannot be on the association
block directly (without aLMTC), because the connec-
tor implies additional equations that would conflict with
them (see the Physical Interaction subsection of 3.2.2).
This requires nonbinding connectors in parametric dia-
grams (for momentum flows in this example), but para-
metrics are specialized internal block diagrams, which
support general connectors (see Section 4).

25. An alternative for SysML blocks with redefinitions is to
account for multiple generalizations as in the previous
paragraph, then Simscape models would correspond to
SysML models that omit redefined properties from the
one remaining general block (and constructs referring to
them, such as connectors), leaving the specialized block
with redefining properties and constructs moved from the
general block that referred to redefined properties.

26. Simscape requires conserved (balancing) variables
reached through ports (node variables) to be replaced

Systems Engineering DOI 10.1002/sys

430 BOCK, BARBAU, MATEI, DADFARNIA

in equations with a single variable specified in
branch sections. For example, simAMFCAMom.trq
and simAMFCLMom.f in the equations of Listing 5 would
be replaced by simAMFCAMomtrq and simAMFCLMomf,
respectively, which would be defined as equivalent to the
original navigations (dot notations) in a separate branch
section. The original navigations without branches are
used in the listings for brevity.

27. The preprocessing in Section 7.2 also does not support
proxy ports that have multiple bindings to internal parts,
in part because SysML does not currently provide a us-
able semantics for these. Other uses of binding connec-
tors, such as between internal part properties, cannot be
translated to simulation platforms because each object
during simulation is the value of at most one simulation
part property.

REFERENCES

R. Barbau and C. Bock, Implementation of an extension of
the systems modeling language for physical interaction and
signal flow simulation, https://github.com/usnistgov/saismo/
releases/download/sejournal/syspisf.zip, 2017.

K. Berkenkotter, S. Bisanz, U. Hannemann, and J. Peleska, The
HybridUML profile for UML 2.0, Intl J Software Tools Technol
Transfer 8(2) (2006), 167–176.

C. Bock and J. Odell, Ontological behavior modeling, J Object
Technol 10(3) (2011), 1–36.

C. Bock, SysML and UML 2 support for activity modeling, Syst Eng
9(2) (March 2006), 160–185.

C. Bock, UML 2 composition model, J Object Technol 3(10)
(November 2004), 47–73.

C. Bock, UML without pictures, IEEE Software Special Issue
on Model-Driven Dev 20(5) (September/October 2003), 33–
35.

Y. Cao, Y. Liu, H. Fan, and B. Fan, SysML-based uniform behav-
ior modeling and automated mapping of design and simulation
model for complex mechatronics, Computer-Aided Design 45(3)
(March 2013), 764–776.

F. Cellier, H. Elmqvist, andM. Otter, “Modeling from Physical Prin-
ciples,” in W. Levine (Editor), Control System Fundamentals,
CRC Press, Abingdon, UK, 1999, pp. 99–108.

Controllab Products, Getting Started with Sim-20 4.6, http://
www.20sim.com/downloads/files/20simGettingStarted46.pdf,
2015.

M. Dadfarnia, C. Bock, and R. Barbau, An improved method of
physical interaction and signal flow modeling for systems engi-
neering, Conference on Systems Engineering Research, 2016.

R. Dorf and R. Bishop, Modern control systems, 13th edition, Pren-
tice Hall, Upper Saddle River, New Jersey, January 2016.

D. Dori, A. Renick, and N. Wengrowicz, When quantitative meets
qualitative: Enhancing OPM conceptual systems modeling with
MATLAB computational capabilities, Res Eng Design 27(2)
(April 2016), 141–164.

European Cooperation for Space Standardization, Simulation
modeling platform, ECSS-E-TM-40-07, http://www.ecss.nl/
wp-content/uploads/standards/ecss-e/ECSS-E-TM-40-07-
Volume1A25January2011.pdf, January 2011.

S. Friedenthal, A. Moore, and R. Steiner, A practical guide
to SysML, 3rd edition, Morgan Kaufmann, Burlington, Mas-
sachusetts, November 2014.

P. Fritzon, Introduction to modeling and simulation of technical and
physical systems with Modelica, Wiley-IEEE Press, Hoboken,
New Jersey, September 2011.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns:
Elements of reusable object-oriented software, Addison-Wesley,
Boston, Massachusetts, May 1998.

J. Gosling, B. Joy, G. Steele, G. Bracha, and A. Buckley, The Java
language specification, 8th edition, Addison-Wesley, Boston,
Massachusetts, May 2014.

J. Holt and S. Perry, SysML for systems engineering, 2nd edition,
The Institution of Engineering and Technology, Stevenage, UK,
2013.

IEEE Standards Association, 1516-2010 - IEEE Standard for Mod-
eling and Simulation (M&S) High Level Architecture (HLA),
http://standards.ieee.org/findstds/standard/1516-2010.html, Au-
gust 2010.

International Organization for Standardization, ISO 80000,
Quantities and units, https://www.iso.org/committee/46202/x/
catalogue, 2016.

International Organization for Standardization, Joint Committee
on Guides for Metrology, International vocabulary of metrolo-
gy—Basic and general concepts and associated terms (VIM),
3rd edition, http://www.bipm.org/utils/common/documents/
jcgm/JCGM_200_2012.pdf, 2012.

A. Iserles, A first course in the numerical analysis of differential
equations, 2nd edition, Cambridge University Press, Cambridge,
UK, December 2008.

T. Johnson, A. Kerzhner, C. Paredis, and R. Burkhart, Integrating
models and simulations of continuous dynamics into SysML, J
Comput Information Sci Eng 12(1) (March 2012), 011002-1–
011002-11.

R. Kawahara, R. Dotan, T. Sakairi, K. Ono, H. Nakamura, A. Kir-
shin, S. Hirose, and H. Ishikawa, Verification of embedded sys-
tem’s specification using collaborative simulation of SysML and
simulink models, Proceedings of the International Conference on
Model-Based Systems Engineering, March 2009.

X. Liu and Y. Cao, Design of VA V flight control system virtual
prototype using Rhapsody and Simulink, Proceedings of the In-
ternational Conference On Computer Design And Applications,
2010.

I. Matei and C. Bock, An analysis of solver-based simulation tools,
National Institute of Standards and Technology Interagency Re-
port 7846, March 2012a.

I. Matei and C. Bock, Modeling methodologies and simulation for
dynamical systems, National Institute of Standards and Technol-
ogy Interagency Report 7875, August 2012b.

Modelica Association, Functional Mock-up Interface for Model
Exchange and Co-Simulation, http://www.fmi-standard.org/
downloads#version2, July 2014a.

Modelica Association, Modelica R⃝-A Unified Object-Oriented
Language for Systems Modeling, Language Specification,
version 3.3, revision 1, https://www.modelica.org/documents/
ModelicaSpec33Revision1.pdf, July 2014b.

Modelica Association, StateGraph, https://github.com/modelica/
Modelica/blob/v3.2.2/Modelica/StateGraph.mo, 2016.

NoMagic, MagicDraw user manual, http://www.nomagic.com/
files/manuals/MagicDraw%20UserManual.pdf, 2015.

C. Nytsch-Geusen, The use of the UML within the modelling pro-
cess of Modelica-models, Proceedings of the 1st International

Systems Engineering DOI 10.1002/sys

https://github.com/usnistgov/saismo/releases/download/sejournal/syspisf.zip
https://github.com/usnistgov/saismo/releases/download/sejournal/syspisf.zip
http://www.20sim.com/downloads/files/20simGettingStarted46.pdf
http://www.20sim.com/downloads/files/20simGettingStarted46.pdf
http://www.ecss.nl/wp-content/uploads/standards/ecss-e/ECSS-E-TM-40-07-Volume1A25January2011.pdf
http://www.ecss.nl/wp-content/uploads/standards/ecss-e/ECSS-E-TM-40-07-Volume1A25January2011.pdf
http://www.ecss.nl/wp-content/uploads/standards/ecss-e/ECSS-E-TM-40-07-Volume1A25January2011.pdf
http://standards.ieee.org/findstds/standard/1516-2010.html
https://www.iso.org/committee/46202/x/catalogue
https://www.iso.org/committee/46202/x/catalogue
http://www.bipm.org/utils/common/documents/jcgm/JCGM_200_2012.pdf
http://www.bipm.org/utils/common/documents/jcgm/JCGM_200_2012.pdf
http://www.fmi-standard.org/downloads#version2
http://www.fmi-standard.org/downloads#version2
https://www.modelica.org/documents/ModelicaSpec33Revision1.pdf.
https://www.modelica.org/documents/ModelicaSpec33Revision1.pdf.
https://github.com/modelica/Modelica/blob/v3.2.2/Modelica/StateGraph.mo
https://github.com/modelica/Modelica/blob/v3.2.2/Modelica/StateGraph.mo
http://www.nomagic.com/files/manuals/MagicDraw%20UserManual.pdf
http://www.nomagic.com/files/manuals/MagicDraw%20UserManual.pdf

SYSML FOR PHYSICAL INTERACTION AND SIGNAL FLOW SIMULATION 431

Workshop on Equation-Based Object-Oriented Languages and
Tools, July 2007.

Object Management Group, Machine readable file for SysML 1.5,
http://www.omg.org/spec/SysML/20161101/SysML.xmi, May
2017b.

Object Management Group, OMG Systems Modeling
LanguageTM, version 1.5, http://www.omg.org/spec/SysML/1.5,
May 2017a.

Object Management Group, OMG Unified Modeling LanguageTM,
version 2.5, http://www.omg.org/spec/UML/2.5, March 2015a.

Object Management Group, Object constraint language, http://
www.omg.org/spec/OCL, February 2014.

Object Management Group, SysML-Modelica transformation spec-
ification, http://www.omg.org/spec/SyM/1.0, November 2012.

Object Management Group, XML Metadata Interchange, version
2.5.1, http://www.omg.org/spec/XMI/2.5.1, June 2015b.

Open Source Modelica Consortium, OpenModelica User’s Guide,
https://openmodelica.org/doc/OpenModelicaUsersGuide/Open
ModelicaUsersGuide-latest.pdf, January 2016.

C. Paredis, J. Bernard, R. Burkhart, H. de Koning, S. Friedenthal,
P. Fritzson, N. Rouquette, and W. Schamai, An overview of the
SysML-Modelica transformation specification, Proceedings of
the 20th International Council on Systems Engineering Interna-
tional Symposium, July 2010.

H. Paynter, Analysis and design of engineering systems, MIT Press,
Cambridge, Massachusetts, June 1960.

M. Rahman and M. Mizukawa, Modeling and design of mechatron-
ics system with SysML, Simscape and Simulink, Proceedings of
the IEEE/ASME International Conference on Advanced Intelli-
gent Mechatronics, July 2013.

F. Raven, Automatic control engineering, 5th edition, McGraw-Hill,
New York, New York, January 1995.

A. Reichwein, Application-specific UML profiles for multidis-
ciplinary product data integration, PhD thesis, Universität
Stuttgart, 2011.

A. Reichwein, P. Witschel, C. Paredis, P. Stelzig, and R. Wasgint,
Maintaining consistency between system architecture and dy-
namic system models with SysML4Modelica, Proceedings of
the 15th International Conference on Model Driven Engineering

Languages and Systems, 6thWorkshop onMulti-ParadigmMod-
eling, October 2012.

W. Schamai, P. Fritzson, C. Paredis, and A. Pop, Towards unified
system modeling and simulation with ModelicaML: Modeling
of executable behavior using graphical notations, Proceedings of
the 7th Modelica Conference, September 2009.

C. Secchi, C. Fantuzzi, and M. Bonfe, On the Use of UML for Mod-
eling Physical Systems, Proceedings of the IEEE International
Conference on Robotics and Automation, April 2005.

C. Sjostedt, J. Shi, M. Torngren, D. Servat, D. Chen, V. Ahlsten, and
H. Lonn, Mapping Simulink to UML in the design of embedded
systems: Investigating scenarios and transformations, Proceed-
ings of the 4th Workshop on Object-oriented Modeling of Em-
bedded Real-Time Systems, 2008.

C. Sjostedt, D. Chen, P. Cuenot, P. Frey, R. Johansson, H. Lonn,
D. Servat, M. Torngren, Developing dependable automotive em-
bedded systems using the EAST-ADL; representing continuous
time systems in SysML, Proceedings of the 1st International
Workshop on Equation-Based Object-Oriented Languages and
Tools, July 2007.

R. Snyder, D. Bocktaels, and X. Feigenbaum, Functional validation
with a practical SysML/Simulink transformation, Proceedings of
the NEPTUNE Workshop, 2010.

D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks, EMF:
Eclipse modeling framework, 2nd edition, Addison-Wesley,
Boston, Massachusetts, December 2008.

The MathWorks, Inc., MATLAB R⃝ Primer, 2016b.
The MathWorks, Inc., SimscapeTM Language Guide, 2016a.
The MathWorks, Inc., Simulink R⃝ User’s Guide, 2016c.
The MathWorks, Inc., StateFlow R⃝ User’s Guide, 2016d.
S. Turki, S. Thierry, and A. Sghaier, Mechatronic systems model-

ing with SysML: A Bond Graph addendum for energy analysis,
World Sci Eng Acad Soc Trans Syst 4(5) (May 2005), 617–624.

P. Vasaiely, Interactive Simulation of SysML Models using Mod-
elica, Department of Computer Science, Hamburg University of
Applied Sciences, 2009.

P. van den Bosch and A. van den Klauw, Modeling identification
and simulation of dynamical system, CRC-Press, Abingdon, UK,
July 1994.

Systems Engineering DOI 10.1002/sys

http://www.omg.org/spec/SysML/20150709/SysML.xmi
http://www.omg.org/spec/SysML/1.5
http://www.omg.org/spec/UML/2.5
http://www.omg.org/spec/OCL
http://www.omg.org/spec/OCL
http://www.omg.org/spec/SyM/1.0
http://www.omg.org/spec/XMI/2.5.1
https://openmodelica.org/doc/OpenModelicaUsersGuide/OpenModelicaUsersGuide-latest.pdf
https://openmodelica.org/doc/OpenModelicaUsersGuide/OpenModelicaUsersGuide-latest.pdf

	An Extension of the Systems ModelingLanguage for Physical Interaction and SignalFlow Simulation
	1. INTRODUCTION
	2. RELATED WORK
	3. PHYSICAL INTERACTION AND SIGNAL FLOW SIMULATION
	3.1. System Structure in Simulation Modeling
	3.2. System Behavior in Simulation Modeling
	3.2.1. Property Values
	3.2.2. Component Interaction
	Physical Interaction
	Signal Flow

	3.2.3. Component Behavior
	3.2.4. System Behavior

	4. SysML COMPARED TO SIMULATION MODELS
	5. SysML EXTENSION FOR SIMULATION
	5.1. Stereotypes
	5.2. Model Libraries
	5.3. Equation Language

	6. EXAMPLE USING THE SIMULATIONEXTENSION
	6.1. System Structure and Behavior
	6.2. Physical Interaction Definitions
	6.3. Signal Flow Definitions

	7. TRANSLATING BETWEEN SysMLAND SIMULATION PLATFORMS
	7.1. Platform Modeling
	7.2. SysML Expressiveness
	7.3. Model Libraries
	7.4. Equation Languages
	7.5. Simulation Scenarios
	7.6. Validation
	7.6.1. Implementation
	7.6.2. Example Simulation Generation and Execution

	8. SUMMARY AND FUTURE WORK
	ACKNOWLEDGMENTS
	REFERENCES

