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Abstract. In this article, we study the quartic Diophantine equation x4 + 
4y4 − 2z4 − 2w = 0. We find non-trivial integer solutions. Furthermore, we 

show that when a solution has been found, a series of other solutions can be 
derived. We do so using two different techniques. The first is a geometric 
method due to Richmond, while the second involves elliptic curves. 

1. Introduction 

Diophantine equations have long been of interest to mathematicians. In this 
work, we consider the quartic surface 

4 4(1.1) ax + by4 + cz + dw4 = 0, a, b, c, d ∈ Z \ {0}. 
For arbitrary values of a, b, c, and d, there does not appear to be many results on 
finding integral solutions [5, 10, 14]. From Dickson’s History [5], it appears that 
the first equation of the form (1.1) that has been extensively investigated is the 
classical one proposed by Euler, in which a = 1, b = 1, c = −1, and d = −1. 
See for example, [2, 12, 13, 18]. Bernstein [1] found there are 518 solutions with 
0 ≤ x ≤ y ≤ 106 and 0 ≤ z ≤ w ≤ 106 . 

The other special case of (1.1) to receive much interest is when a = 1, b = 1, 
c = 1, and d = −1. Euler had conjectured there were no integer solutions, however 
Elkies found a solution in [6] despite early attempts by [13, 17] which had failed to 
find one. Subsequently a few other solutions have been found [1, 9]. We note other 
specific cases have been studied [3, 8]. There have also been computations to find 
the smallest integer solutions when max{|a|, |b|, |c|, |d|} ≤ 15 [7]. 

In this work we study the particular equation with a = 1, b = 1, c = −2, and 
d = −2, namely 

4(1.2) x + y 4 − 2z 4 − 2w 4 = 0. 

It is easy to see if (x0, y0, z0, w0) is a solution to (1.2), then so is (kx0, ky0, kz0, kw0) 
for any integer k. We call an integral solution (x, y, z, w) primitive if 0 ≤ x ≤ y, 
0 ≤ z ≤ w, and in addition no integer k > 1 divides each of x, y, z, and w. It is 
trivial to see the first primitive solution is (1, 1, 0, 1). The next primitive solution is 
(19, 21, 7, 20). Searching for solutions with 0 ≤ x ≤ y ≤ 3000 found the additional 
solutions (181, 2077, 1247, 1620) and (607, 1999, 951, 1640). Computer searches can 
be used to find all solutions below a given bound, however it is challenging to find 
an infinite family of solutions. 

Our main result is the computation of new primitive solutions of (1.2). We 
use two different methods to find these solutions, each of which lead to an infinite 
number of primitive solutions. The first method is from Richmond [15]. Under 
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the condition that abcd is a square, he showed that if a rational solution to (1.1) 
is known then others can be found. The second method uses the theory of elliptic 
curves. We will show that every rational point on a certain elliptic curve E leads 
to an integral solution to (1.2). Since E has an infinite number of rational points 
(i.e., rank(E) = 1), this will yield an infinite number of solutions. 

2. Determination of Primitive Solutions 

In this section we compute primitive integral solutions to the quartic Diophantine 
equation 

x 4 + y 4 − 2z 4 − 2w 4 = 0. 

We first show how starting with the solution (19, 21, 7, 20), Richmond’s method can 
be used to generate more primitive solutions. We then show how to find solutions 
from rational points on the elliptic curve Y 2 = X3 − 36X. 

2.1. Richmond’s method. Richmond [15] considered the surface (1.1) with the 
additional constraint that abcd is a square number. Suppose P = (x0, y0, z0, w0) is 
a rational point on this surface. Richmond showed that the condition abcd being 
square implies that a rational line £ can be drawn through P to meet the surface 
in three points at P . Hence if the line does not lie on the surface, then the fourth 
point of intersection, will also be rational. Thus starting with a single point P , 
other rational points can be found. We note that while Richmond’s proof is almost 
entirely geometric, Mordell was able to reprove the same result in a different way 
[14]. 

For the curve (1.2) this work focuses on, we have abcd = 4. We can thus use 
Richmond’s technique, with P = (19, 21, 7, 20). It is easy to calculate the equation 
of the tangent plane at P : 

193 x + 213 y − 2 · 73 z − 2 · 203 w = 0. 

We likewise compute the inflectional tangent at P : 

192 x 2 + 212 y 2 − 2 · 72 z 2 − 2 · 202 w 2 = 0. 

Let Q be any point, and following Richmond, we write it in the form Q = (19p, 21q, 7r, 20s), 
for some p, q, r, s. Then if Q lies on both the tangent and inflectional tangents at 
P , we have 

(2.1) 194 p + 214 q − 2 · 74 r − 2 · 204 s = 0, 

(2.2) 194 p 2 + 214 q 2 − 2 · 74 r 2 − 2 · 204 s 2 = 0.
 

Note that for any value of t, if we replace (p, q, r, s) by (p + t, q + t, r + t, s + t) then
 
(2.1) and (2.2) remain valid. We can thus assume p+q +r+s = 0, or s = −p−q −r.
 
Solving for r in (2.1) we find r = −(450321p + 514481q)/315198. Substituting into
 
(2.2), we obtain a quadratic equation in p and q:
 

1276746718401p 2 − 4052230076802pq + 1112497118401q 2 = 0. 

The condition abcd being square ensures that the quadratic factors: 

(188391p − 57191q)(6777111p − 19452311q) = 0. 

Taking the first factor, we set q = 188391p/57191 and hence r = −389209p/57191, s = 
143627p/57191. This leads to the rational solution (19p, 3956211p/57191, −2724463p/57191, 
2872540p/57191). If we let p = 57191 we obtain the primitive integral solution 
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(1086629, 3956211, 2724463, 2872540). If instead we take the second factor, we end 
up with the primitive solution (142319331, 369593909, 252477340, 271973023). 

We see that beginning with the rational point P , we have found two new primitive 
solutions to (1.2). Richmond’s method can be applied repeatedly to obtain new 
solutions. 

2.2. Solutions from a congruent elliptic curve. We assume a basic familiarity 
with elliptic curves (see, for example, [11]). Our second method uses birational 
transformations to relate the surface (1.2) to an elliptic curve. Let x = z + t and 
y = z − t, where t is a (rational) parameter. Then (1.2) becomes 

(2.3) w 4 − t4 = 6(tz)2 . 

We need the following result of Cohen. 

Proposition 2.1. [4, Prop. 6.5.6] Let c be a nonzero integer. The equation X4 − 
Y 4 = cZ2 has a solution with XY Z  0 if and only if |c| is a congruent number.= 
More precisely, if X4 − Y 4 = cZ2 with XY Z  = U(U2 − c2) with= 0 then V 2 

(U, V ) = (−cY 2/X2 , c 2Y Z/X3), 

and conversely if V 2 = U(U2 − c2) with V  = 0 then X4 − Y 4 = cZ2 , with  P
2U2 + 2cU − c 2 , U2 − 2cU − c , 4V (U2 + c 2)(X, Y, Z) = . 

An integer c is congruent if it is the area of a right triangle with rational side 
lengths and area c. It is well-known that the elliptic curve V 2 = U(U2 − c2) has 
a rational point (with V  = 0) if and only if c is a congruent number [11]. For this 
reason we refer to V 2 = U(U2 − c2) as a congruent elliptic curve. 

Since the area of a 3-4-5 right triangle is 6, then 6 is a congruent number. Using 
Proposition 2.1 on the curve (2.3), we have mapped our surface into the congruent 
elliptic curve 

E6 : V 2 = U(U2 − 36). 

on an elliptic curve V 2P For our next result, recall that any rational point P 
U3 

= 
C
A
 , with A, B, C ∈ Z.+ aU + b can be written in the form P = 2 , 3B BP 

C
A
 
 
B2 , B3Corollary 2.2. Suppose is a rational point on the elliptic curve E6, with 

A, B, C ∈ Z. Let ⎧ ⎪⎪⎨ ⎪⎪⎩ 

x = 1296B8 + 864B6A + 144B5C + 72B4A2 − 24B2A3 + 4BA2C + A4 ,
 
y = 1296B8 + 864B6A − 144B5C + 72B4A2 − 24B2A3 − 4BA2C + A4 ,
 
z = 144B5C + 4BA2C,
 
w = 1296B8 − 216B4A2 + A4 .
 

4Then (x, y, z, w) is an integral solution to the Diophantine equation x + y4 − 2z4 − 
2w4 = 0. 

Proof. We have w = U2 + 12U − 36, t = U2 − 12U − 36, tz = 4V (U2 + 36) by the 
rational transformations used in Proposition 2.1. Since x = z + t and y = z − t we 
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have 
4U2V + 144V + U4 − 24U3 + 72U2 + 864U + 1296 

x = ,
U2 − 12U − 36 

−4U2V − 144V + U4 − 24U3 + 72U2 + 864U + 1296 
y = ,

U2 − 12U − 36 

4V (U2 + 36) 
z = ,

U2 − 12U − 36
 

w = U2 + 12U − 36.
 

3 , we get 

4C BA2 + 144C B5 + A4 − 24A3B2 + 72A2B4 + 864AB6 + 1296B8 

x = ,
B4(A2 − 12AB2 − 36B4)
 

−4C BA2 − 144C B5 + A4 − 24A3B2 + 72A2B4 + 864AB6 + 1296B8
 

y = ,
B4(A2 − 12AB2 − 36B4) 

4C(A2 + 36B4) 
z = ,

B3(A2 − 12AB2 − 36B4) 

C 

A2 + 12AB2 − 36B4 

w = . 
B4 

Using the fact that (kx, ky, kz, kw) is a solution to (1.2) if (x, y, z, w) is, we can 
eliminate the denominators. The result now follows immediately. D 

The elliptic curve E6 is of rank 1, with the generator P = (−3, 9) [16]. There are 
thus an infinite number of rational points on E6. By Corollary 2.2, we see there will 
be infinitely many integer solutions of the Diophantine equation (1.2). By suitably 
changing the signs and swapping x and y (or z and w), we can make each solution 
primitive. 

Computations show that this corollary yields new solutions. For example, the 
( 25 

4 , − 35point 2P = ) on E6 leads to (1661081, 988521, 336280, 1437599) on (1.2), 8 
which is smaller than the solutions obtained by using Richmond’s method once. 
The point 3P = (−1587/1369, −321057/50653) gives the solution (x, y, z, w) = 
(22394369951939, 59719152671941, 41056761311940, 43690772126393). 

3. Conclusion 

In this work, we have shown two different ways to find infinitely many integer 
solutions to the quartic Diophantine equation (1.2). While computer searches can 
find all solutions below a given bound, it is non-trivial to find infinitely many. 

The equation (1.2) we have focused on is the n = 4 case of the more general 
equation 

ASubstituting in U and V= =B2 B

(3.1) x n + y n − 2z n − 2w n = 0. 

When n = 2, the identity 
2(z + w)2 + (z − w)2 = 2(z + w 2) 

gives an infinite parameterized family of solutions. 
For n = 3, the strong version of Conjecture 6.4.26 of [4] implies that for any 

3 3integer N , then N = x + y3 + 2z for some integers x, y, z. So for any integer w, 
if we let N = 2w3, there is a solution to (3.1) (assuming the conjecture). More 
concretely, we can show there are an infinite number of primitive solutions using 
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the elliptic curve method of Section 2.2. If we let z = y −t and w = y +t, then some 
simple algebra shows we can simplify to the elliptic curve Y 2 = X3 − 81, where 
X = 3x/y and Y = 18t/y. This is a rank 1 curve, with generator (13,46). Each 
rational point (X, Y ) on the curve leads to the solution (6X, 18, 18 − Y , 18 + Y ). 
We can make these solutions integral by scaling. 

We note that Manin conjectured that all rational solutions of the n = 3 case of 
(3.1) can be obtained from a finite number of solutions (xi, yi, zi, wi) by a succession 
of secant and tangent processes [4, Conj. 6.4.1]. Future work could involve finding 
these finite number of generating solutions. It would also be interesting to find 
integer solutions to (3.1), for n ≥ 5. Preliminary computer searches have not found 
any non-trivial solutions. 
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