NISTIR 7955

Dietary Supplement Laboratory Quality Assurance Program: Exercise I Final Report

Melissa M. Phillips Catherine A. Rimmer Laura J. Wood

> Karen E. Murphy Thomas W. Vetter

NISTIR 7955

Dietary Supplement Laboratory Quality Assurance Program: Exercise I Final Report

Melissa M. Phillips Catherine A. Rimmer Laura J. Wood

Karen E. Murphy Thomas W. Vetter Chemical Sciences Division Material Measurement Laboratory

August 2013

U.S. Department of Commerce Penny Pritzker, Secretary

National Institute of Standards and Technology Patrick D. Gallagher, Under Secretary of Commerce for Standards and Technology and Director

ABSTRACT	1
INTRODUCTION	1
OVERVIEW OF DATA TREATMENT AND REPRESENTATION	
Statistics	2
Individual Data Table	3
Summary Data Table	4
Graphs	
Data Summary View	
Sample/Control Comparison View	5
TRACE NUTRITIONAL ELEMENTS IN FOODS AND SUPPLEMENTS	~
Study Overview	
Sample Information Multivitamin/multielement tablets	
Whole egg powder Study Results	
Technical Recommendations	
Table 1. Individual data table (NIST) for trace nutritional elements in foods and dietary	
supplements	
Table 2. Data summary table for chromium in foods and dietary supplements	
Table 3. Data summary table for molybdenum in foods and dietary supplements	
Table 4. Data summary table for selenium in foods and dietary supplements	
Figure 1. Chromium in SRM 3280 Multivitamin/Multielement Tablets (method	
comparison data summary view – digestion method)	13
Figure 2. Chromium in whole egg powder (data summary view).	14
Figure 3. Molybdenum in SRM 3280 Multivitamin/Multielement Tablets (data summa view).	ry
Figure 4. Molybdenum in whole egg powder (data summary view)	
Figure 5. Selenium in SRM 3280 Multivitamin/Multielement Tablets (data summary	10
view)	17
Figure 6. Selenium in whole egg powder (data summary view)	
Figure 7. Chromium in whole egg powder and SRM 3280 Multivitamin/Multielement	
Tablets (sample/control comparison view)	
Figure 8. Molybdenum in whole egg powder and SRM 3280 Multivitamin/Multieleme	
Tablets (sample/control comparison view)	
Figure 9. Selenium in whole egg powder and SRM 3280 Multivitamin/Multielement	
Tablets (sample/control comparison view)	21
TOXIC ELEMENTS (CD) IN FOODS AND SUPPLEMENTS	

TABLE OF CONTENTS

Study Overview		
•	on	
1	reakfast cereal	
i ortifica or		······································

VITAMIN B₅ IN FOODS

VITAMIN A IN FOODS

Study Overview	39
Sample Information	39
Multivitamin/Multielement Tablets	39
Egg powder	39
Study Results	39
Technical Recommendations	
Table 9. Individual data table (NIST) for vitamin A in foods	41
Table 10. Data summary table for retinol in foods.	42
Table 11. Data summary table for retinyl acetate in foods	43
Table 12. Data summary table for retinyl palmitate in foods	44
Figure 18. Retinol in SRM 3280 Multivitamin/Multielement Tablet (data summary	
view)	45
Figure 19. Retinol in whole egg powder (data summary view)	46
Figure 20. Retinyl acetate in SRM 3280 Multivitamin/Multielement Tablets (data	

summary view)	47
Figure 21. Retinol in whole egg powder and SRM 3280 Multivitamin/Multielement	
Tablets (sample/control comparison view)	48

CATECHINS IN GREEN TEA

Study Overview
Sample Information
Green tea extract
Green tea leaves
Study Results
Technical Recommendations
Table 13. Individual data table (NIST) for catechins in green tea 51
Table 14. Data summary table for catechin in green tea 52
Table 15. Data summary table for epicatechin in green tea 53
Table 16. Data summary table for epicatechin gallate in green tea 54
Table 17. Data summary table for epigallocatechin in green tea 55
Table 18. Data summary table for epigallocatechin gallate in green tea 56
Table 19. Data summary table for gallocatechin in green tea
Table 20. Data summary table for gallocatechin gallate in green tea 58
Table 21. Data summary table for total catechins in green tea 59
Figure 22. Catechin in SRM 3255 Camellia sinensis (Green Tea) Extract (data summary
view)60
Figure 23. Catechin in SRM 3254 Camellia sinensis (Green Tea) (data summary view)61
Figure 24. Epicatechin in SRM 3255 Camellia sinensis (Green Tea) Extract (data
summary view)62
Figure 25. Epicatechin in SRM 3254 Camellia sinensis (Green Tea) (data summary
view)63
Figure 26. Epicatechin gallate in SRM 3255 <i>Camellia sinensis</i> (Green Tea) Extract (data summary view)
Figure 27. Epicatechin gallate in SRM 3254 Camellia sinensis (Green Tea) (data
summary view)
Figure 28. Epigallocatechin in SRM 3255 Camellia sinensis (Green Tea) Extract (data
summary view)
Figure 29. Epigallocatechin in SRM 3254 Camellia sinensis (Green Tea) (data summary
view)
Figure 30. Epigallocatechin gallate in SRM 3255 Camellia sinensis (Green Tea) Extract
(data summary view)
Figure 31. Epigallocatechin gallate in SRM 3254 Camellia sinensis (Green Tea) (data
summary view)
Figure 32. Gallocatechin in SRM 3255 Camellia sinensis (Green Tea) Extract (data
summary view)70
Figure 33. Gallocatechin in SRM 3254 Camellia sinensis (Green Tea) (data summary
view)
Figure 34. Gallocatechin gallate in SRM 3255 Camellia sinensis (Green Tea) Extract
(data summary view)
Figure 35. Gallocatechin gallate in SRM 3254 <i>Camellia sinensis</i> (Green Tea) (data

	summary view)73
Figure	36. Total catechins in SRM 3255 Camellia sinensis (Green Tea) Extract (data
	summary view)74
Figure	37. Total catechins in SRM 3254 <i>Camellia sinensis</i> (Green Tea) (data summary
	view)75
Figure	38. Catechin in SRM 3254 <i>Camellia sinensis</i> (Green Tea) Leaves and SRM 3255
	Camellia sinensis (Green Tea) Extract (sample/control comparison view)76
-	39. Epicatechin in SRM 3254 <i>Camellia sinensis</i> (Green Tea) Leaves and SRM
	3255 Camellia sinensis (Green Tea) Extract (sample/control comparison view) .77
0	40. Epicatechin gallate in SRM 3254 <i>Camellia sinensis</i> (Green Tea) Leaves and
	SRM 3255 Camellia sinensis (Green Tea) Extract (sample/control comparison
	view)
Figure	41. Epigallocatechin in SRM 3254 Camellia sinensis (Green Tea) Leaves and
	SRM 3255 Camellia sinensis (Green Tea) Extract (sample/control comparison
	view)
Figure	42. Epigallocatechin gallate in SRM 3254 <i>Camellia sinensis</i> (Green Tea) Leaves
	and SRM 3255 Camellia sinensis (Green Tea) Extract (sample/control
	comparison view)
0	43. Gallocatechin in SRM 3254 <i>Camellia sinensis</i> (Green Tea) Leaves and SRM
	3255 <i>Camellia sinensis</i> (Green Tea) Extract (sample/control comparison view) .81
Figure	44. Gallocatechin gallate in SRM 3254 <i>Camellia sinensis</i> (Green Tea) Leaves
	and SRM 3255 <i>Camellia sinensis</i> (Green Tea) Extract (sample/control
	comparison view)
	45. Total catechins in SRM 3254 <i>Camellia sinensis</i> (Green Tea) Leaves and
	SRM 3255 <i>Camellia sinensis</i> (Green Tea) Extract (sample/control comparison
	view)

ABSTRACT

The NIST Dietary Supplement Laboratory Quality Assurance Program (DSQAP) was established in collaboration with the National Institutes of Health (NIH) Office of Dietary Supplements (ODS) in 2007 to enable members of the dietary supplements community to improve the accuracy of measurements for demonstration of compliance with various regulations. Exercise I of this program offered the opportunity for laboratories to assess their inhouse measurements of nutritional elements (Cr, Mo, and Se), contaminants (Cd), water-soluble vitamins (pantothenic acid), fat-soluble vitamins (retinol), and catechins in foods and/or botanical dietary supplement ingredients and finished products.

INTRODUCTION

The dietary supplement industry in the US is booming, with two-thirds of adults considering themselves to be supplement users.¹ Consumption of dietary supplements, which includes vitamin and mineral supplements, represents an annual US expenditure of more than \$25 billion. These figures represent an increasing American trend, and as a result, it is critically important that both the quality and safety of these products are verified and maintained.

The Dietary Supplement Health and Education Act of 1994 (DSHEA) amended the Food, Drug and Cosmetic Act to create the regulatory category called dietary supplements. The DSHEA also gave the FDA authority to write current Good Manufacturing Practices (cGMPs) that require manufacturers to evaluate the identity, purity, and composition of their ingredients and finished products. To enable members of the dietary supplements community to improve the accuracy of the measurements required for compliance with these and other regulations, NIST established the Dietary Supplement Laboratory Quality Assurance Program (DSQAP) in collaboration with the NIH ODS in 2007.

The program offers the opportunity for laboratories to assess their in-house measurements of active or marker compounds, nutritional elements, contaminants (toxic elements, pesticides, mycotoxins), and fat- and water-soluble vitamins in foods as well as in botanical dietary supplement ingredients and finished products. Reports and certificates of participation are provided and can be used to demonstrate compliance with the cGMPs. In addition, NIST and the DSQAP assist the ODS Analytical Methods and Reference Materials program (AMRM) at the NIH in supporting the development and dissemination of analytical tools and reference materials. In the future, results from DSQAP exercises could be used by ODS to identify problematic matrices and analytes for which an Official Method of Analysis would benefit the dietary supplement community.

NIST has experience in the area of quality assurance programs, but the DSQAP takes a unique approach. In other NIST quality assurance programs, a set of analytes is measured repeatedly over time in the same or similar matrices to demonstrate laboratory performance. In contrast, the wide range of matrices and analytes under the "dietary supplement" umbrella means that not

¹ Walsh, T. (2012) Supplement Usage, Consumer Confidence Remain Steady According to New Annual Survey from CRN. Council for Responsible Nutrition, Washington, DC.

every laboratory is interested in every sample or analyte. The constantly changing dietary supplement market, and the enormous diversity of finished products, makes repeated determination of a few target compounds in a single matrix of little use to participants. Instead, participating laboratories are interested in testing in-house methods on a wide variety of challenging, real-world matrices to demonstrate that their performance is comparable to that of the community and that their methods provide accurate results. In an area where there are few standard methods, the DSQAP offers a unique tool for assessment of the quality of measurements, provides feedback about performance, and can assist participants in improving laboratory operations.

This report summarizes the results from the ninth exercise of the DSQAP, Exercise I. Eightyfive laboratories responded to the call for participants distributed in October 2012. Samples were shipped to participants in December 2012, and results were returned to NIST by March 2013. This report contains the final data and information to be disseminated to the participants in July 2013.

OVERVIEW OF DATA TREATMENT AND REPRESENTATION

Statistics

The individual data table and graphs contain information about the performance of each laboratory relative to that of the other participants in this study and relative to a target around the expected result (if available). The consensus mean and standard deviation are calculated according to the robust algorithm outlined in ISO 13528:2005(E), Annex C.² The algorithm is summarized here in simplified form.

Initial values of the consensus mean, x^* , and consensus standard deviation, s^* , are estimated as

$x^* = $ median of x_i	(i = 1, 2,, n)
$s^* = 1.483 \times \text{median of } x_i - x^* $	(i = 1, 2,, n).

These initial values for x^* and s^* are updated by first calculating the expanded standard deviation, δ , as

 $\delta = 1.5 \times s^*$.

Then each x_i is compared to the expanded range and adjusted to x_i^* as described below to reduce the effect of outliers.

If $x_i < x^* - \delta$, then $x_i^* = x^* - \delta$. If $x_i > x^* + \delta$, then $x_i^* = x^* + \delta$. Otherwise, $x_i^* = x_i$.

New values of x^* , s^* , and δ are calculated iteratively until the process converges. Convergence is taken as no change from one iteration to the next in the third significant figure of s^* and in the equivalent digit in x^* :

$$x^* = \frac{\sum_{i=1}^{n} x_i^*}{n}$$

$$s^* = 1.134 \times \sqrt{\frac{\sum_{i=1}^{n} (x_i^* - x^*)}{n-1}}.$$

Individual Data Table

The data in this table is individualized to each participating laboratory and is provided to allow participants to directly compare their data to the summary statistics (consensus or community data as well as NIST certified, reference, or estimated values). The upper left of the data table includes the randomized laboratory code. Tables included in this report are generated using NIST data to protect the identity and performance of participants.

Section 1 of the data table contains the laboratory results as reported, including the mean and standard deviation when multiple values were reported. A blank indicates that NIST does not have data on file for that laboratory for a particular analyte or matrix. An empty box for standard deviation indicates that only a single value was reported and therefore that value was not included in the calculation of the consensus data.²

Also in Section 1 are two Z-scores. The first Z-score, Z_{comm} , is calculated with respect to the community consensus value, using x^{*} and s^{*}:

$$Z_{comm} = \frac{x_i - x_*}{s_*}.$$

The second Z-score, Z_{NIST} , is calculated with respect to the target value (NIST certified, reference, or estimated value), using x_{NIST} and U_{95} (the expanded uncertainty) or s_{NIST} , the standard deviation of NIST measurements:

$$Z_{NIST} = \frac{x_i - x_{NIST}}{U_{95}}$$

or

$$Z_{NIST} = \frac{x_i - x_{NIST}}{s_{NIST}}.$$

The significance of the Z-score is as follows:

- |Z| < 2 indicates that the laboratory result is considered to be within the community consensus range (for Z_{comm}) or NIST target range (for Z_{NIST}).
- 2 < |Z| < 3 indicates that the laboratory result is considered to be marginally different from the community consensus value (for Z_{comm}) or NIST target value (for Z_{NIST}).
- |Z| > 3 indicates that the laboratory result is considered to be significantly different from the community consensus value (for Z_{comm}) or NIST target value (for Z_{NIST}).

² ISO 13528:2005(E), Statistical methods for use in proficiency testing by interlaboratory comparisons, pp 14-15.

Section 2 of the data table contains the community results, including the number of laboratories reporting more than a single value for a given analyte¹, the mean value determined for each analyte, and a robust estimate of the standard deviation of the reported values.³ Consensus means and standard deviations are calculated using the laboratory means; if a laboratory reported a single value, the reported value is not included.¹ Additional information on calculation of the consensus mean and standard deviation can be found in the previous section.

Section 3 of the data table contains the target values for each analyte. When possible, the target value is a certified or reference value determined at NIST. Certified values and the associated expanded uncertainty (U_{95}) have been determined with two independent analytical methods at NIST, by collaborating laboratories, or in some combination. Reference values are assigned using NIST values obtained from the average and standard deviation of measurements made using a single analytical method. For both certified and reference values, at least six samples have been tested and duplicate preparations from the sample package have been included, allowing the uncertainty to encompass variability due to inhomogeneity within and between packages. For samples in which a NIST certified or reference value is not available, the analytes are measured at NIST using an appropriate method. The NIST-assessed value represents the mean of at least three replicates. For materials acquired from another proficiency testing program, the consensus value and uncertainty from the completed round is used as the target range.

Summary Data Table

This data table includes a summary of all reported data for a particular analyte in a particular study. Participants can compare the raw data for a single laboratory to data reported by the other participating laboratories or to the consensus data. A blank indicates that the laboratory signed up and received samples for that particular analyte and matrix, but NIST does not have data on file for that laboratory.

Graphs

Data Summary View (Method Comparison Data Summary View)

In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). Data points that are unfilled represent laboratories that only reported a single value for that analyte and therefore were not included in the consensus mean. The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST certified, reference, or estimated value bounded by twice its uncertainty (U_{95}) or standard deviation. For the purpose of the DSQAP, a target range spanning twice the uncertainty in the NIST value is selected because participants are only asked to make a limited number of observations. The size of the y-axis on the data summary view graph represents the consensus mean bounded by 2δ . In this view, the relative locations of individual laboratory data and consensus zones with respect to the target zone can be compared easily. In most cases, the target zone and the consensus zone overlap, which is the expected result. One program goal is to reduce the size of the consensus zone and center the consensus zone about the target value.

³ ISO 13528:2005(E), Statistical methods for use in proficiency testing by interlaboratory comparisons, Annex C.

Analysis of an appropriate reference material as part of a quality control scheme can help to identify sources of bias for laboratories reporting results that are significantly different from the target zone. In the case in which a method comparison is relevant, different colored data points may be used to indicate laboratories that used a specific approach to sample preparation, analytical method, or quantitation.

Sample/Control Comparison View (Sample/Sample Comparison View)

In this view, the individual laboratory results for a control (NIST SRM with a certified value) are compared to the results for an unknown (another NIST SRM with a more challenging matrix, a commercial sample, etc.). The error bars represent the individual laboratory standard deviation. The solid red box represents the target zone for the control (x-axis) and unknown sample (y-axis). The dotted blue box represents the consensus zone for the control (x-axis) and the unknown sample (y-axis). This view emphasizes trends in the data that may indicate potential calibration issues or method biases. One program goal is to identify such calibration or method biases and assist participants in improving analytical measurement capabilities. In some cases, when two equally challenging materials are provided, the same view (sample/sample comparison) can be helpful in identifying commonalities or differences in the analysis of the two materials.

TRACE NUTRITIONAL ELEMENTS IN FOODS AND SUPPLEMENTS

Study Overview

In this study, participants were provided with one NIST SRM, SRM 3280 Multivitamin/Multielement Tablets, and a powdered whole egg material. Participants were asked to use in-house analytical methods to determine the mass fractions of three nutritional elements (chromium, molybdenum, and selenium) in each of the matrices and report values on an as-received basis.

Sample Information

Multivitamin/multielement tablets. Participants were provided with one packet containing 15 multivitamin/multielement tablets. The material was produced by blending a vitamin and mineral pre-mix with a direct-compression tablet formulation. Intact tablets were heat-sealed inside 0.1 mm (4 mil) polyethylene bags, which were then sealed inside Mylar bags. Before use, participants were instructed to grind all tablets together, mix the resulting powder thoroughly, and use a sample size of at least 0.5 g. Participants were asked to store the material at controlled room temperature, 10 °C to 30 °C, prepare three samples, and report three values from the resulting ground material. Approximate analyte levels were not provided to participants prior to the study. NIST certified values in SRM 3280 were determined using inductively coupled plasma mass spectrometry (ICP-MS), inductively coupled plasma optical emission spectrometry (ICP-OES), instrumental neutron activation analysis (INAA), and X-ray florescence spectroscopy (XRF). The certified values and uncertainties for Cr, Mo, and Se in SRM 3280 are outlined in the table below, both on a dry-mass basis and an as-received basis following adjustment for the moisture content of the material (1.37 %).

	Certified Mass Fraction (mg/kg)	Adjusted Mass Fraction (µg/g)				
<u>Analyte</u>	(dry-mass basis)	(as-received basis)				
Cr	93.7 ± 2.7	92.4 ± 2.7				
Mo	70.7 ± 4.5	69.7 ± 4.4				
Se	17.42 ± 0.45	17.2 ± 0.4				

Whole egg powder. Participants were provided with one packet containing approximately 10 g of commercially available whole egg powder. The whole egg powder is a free-flowing, fine powder prepared from USDA-inspected eggs. The powder was heat-sealed inside nitrogen-flushed 0.1 mm (4 mil) polyethylene bags, which were then sealed inside aluminized plastic bags. Before use, participants were instructed to thoroughly mix the contents of the packet and use a sample size of at least 0.5 g. Participants were asked to store the material at controlled room temperature, 10 °C to 30 °C and report three values from the single packet provided. Approximate analyte levels were not provided prior to the study. NIST reported values for Cr, Mo, and Se using microwave digestion and inductively coupled plasma mass spectrometry (ICP-MS) with standard additions as the method of quantitation. The NIST values in whole egg powder are reported in the table below with an estimated relative uncertainty of 5 %.

	Estimated Mass Fraction (mg/kg)
<u>Analyte</u>	(as-received basis)
Cr	0.687 ± 0.034
Мо	0.581 ± 0.029
Se	1.40 ± 0.07

Study Results

- Fifty-three laboratories enrolled in this exercise and received samples with a minimum of 37 laboratories reporting results for one or more elements (70 % participation).
- The consensus means for chromium and molybdenum in the multivitamin/multielement tablets were within the target range with an acceptable variability (14 % and 16 % relative standard deviation (RSD), respectively). The consensus mean for selenium in the multivitamin/multielement tablets was below the target range, with a slightly higher variability (19 % RSD).
- The consensus means for molybdenum and selenium in the whole egg powder were within the target range. While molybdenum had an acceptable variability (14 % RSD), the variability for selenium was higher (26 % RSD). The consensus mean for chromium in the whole egg powder was above the target range with an unacceptable variability of 63 % RSD.
- A majority of the laboratories reported using either open-beaker digestion (29 % to 36 %, depending on the element) or microwave digestion (52 % to 58 %) for sample preparation. The remaining laboratories reported using hot block digestion (11% to 13 %).
- A majority of the laboratories reported using either ICP-MS (72 % to 81 %, depending on the element) or ICP-OES (18 % to 23 %) as their analytical method. Less than 5 % of the laboratories reported using atomic absorption spectroscopy (AAS) or total reflection X-ray fluorescence (TXRF).

Technical Recommendations

The following recommendations are based on results reported by the participants in this study.

- There did not seem to be a difference in results based on either open-beaker digestions or microwave digestions for the elements in this study. There also did not appear to be any difference in results based on either ICP-OES or ICP-MS analytical methods. (Too few results were reported by other methods to identify any trends).
 - Laboratories that reported high values for one material and low values for the second material for any particular element (see **Figure 7**, **Figure 8**, and **Figure 9**) may have more trouble digesting one sample matrix over the other. SRM 3280 Multivitamin/Multielement Tablets are very difficult to digest, requiring relatively high temperatures, regardless of digestion method, to get complete sample dissolution. Laboratories using higher temperatures for digestions were more consistent at reporting values within consensus or target ranges for all elements.
 - It is important to note that with different sample matrices, there may also be different interferences to take into consideration during sample analysis.
- The elongated consensus box in **Figure 7** is due to several high values reported for the whole egg powder. There are several possibilities for this, one being calibration errors.

- The concentrations of these three elements in whole egg powder was approximately 10 to 100 times less than those in SRM 3280 Multivitamin/Multielement Tablets so there was the possibility of contamination if the two materials were prepared together.
- With both ICP-OES and ICP-MS, it is important to check the calibration curve for linearity within the range of the sample solutions.
- With ICP-OES, some elements will not be linear beyond an upper limit. Make sure solution concentrations fall within that linear range.
- With ICP-MS, many instruments run in pulse mode, which is more sensitive. If the calibration curve extends beyond the dynamic range for pulse mode then the instrument will use both the pulse and analog mode. The ICP-MS must be calibrated for both modes in this case. It is often easier and more accurate to have a narrower range of calibration points, making sure the calibration curve is linear in the pulse mode.
- Run a quality control sample of known accuracy to ensure your method is performing as expected.
- Double-check all calculations for any errors.

Table 1. Individual data table (NIST) for trace nutritional elements in foods and dietary supplements.

National Institute of Standards & Technology

	Lab Code:	NIST	1. Your Results			1. Your Results2. Community Results		3. Target			
Analyte	Sample	Units	$\mathbf{x}_{\mathbf{i}}$	s _i	Z_{comm}	Z _{NIST}	Ν	x*	s*	X _{NIST}	U_{95}
Cr	Multivitamin Tablet	µg/g	92.4	2.7	0.2	0.0	41	89.8	12.7	92.4	2.7
Cr	Egg Powder	µg/g	0.687	0.034	-0.2	0.0	38	0.808	0.511	0.687	0.034
Мо	Multivitamin Tablet	µg/g	69.7	4.4	-0.1	0.0	39	70.4	11.2	69.7	4.4
Mo	Egg Powder	µg/g	0.581	0.029	0.0	0.0	35	0.580	0.083	0.581	0.029
Se	Multivitamin Tablet	µg/g	17.2	0.4	0.4	0.0	39	16.1	3.0	17.2	0.4
Se	Egg Powder	µg/g	1.40	0.07	-0.1	0.0	36	1.44	0.38	1.40	0.07

Exercise I – October 2012 – Nutritional Elements

x_i Mean of reported values

- $s_i \quad \mbox{Standard deviation of reported} \\ values \label{eq:simple}$
- Z_{comm} Z-score with respect to community consensus
- Z_{NIST} Z-score with respect to NIST value
- N Number of quantitative values reported
- x* Robust mean of reported values
- s* Robust standard deviation

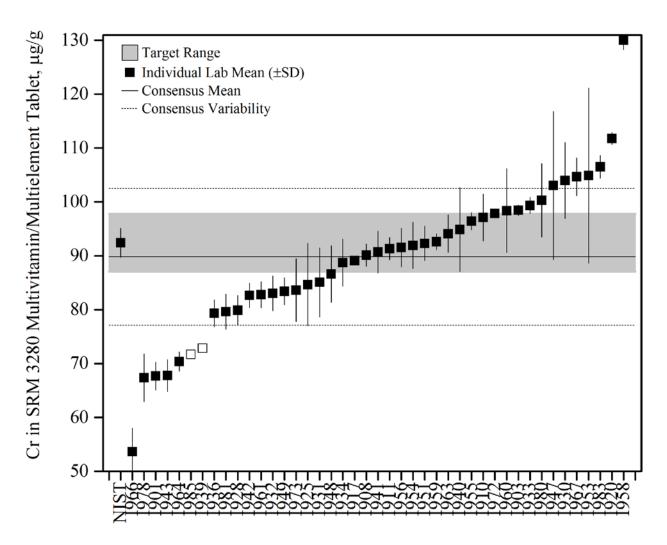
NIST-assessed value

X_{NIST}

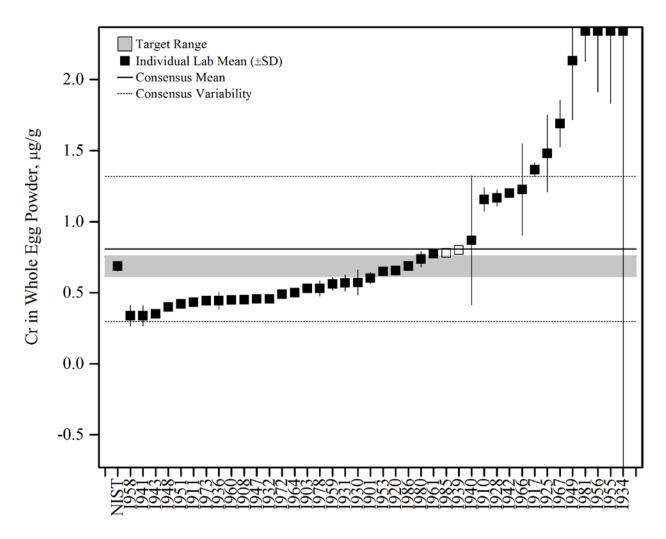
 U_{95}

 $\pm 95\%$ confidence interval about the assessed value or standard deviation (s_{NIST})

. 24							omium		<u>rr-0110</u>				
		SI	RM 3280 M	lultivitamir	Tablet (µg/		Whole Egg Powder (µg/g)						
	Lab	Α	В	С	Avg	SD	Α	В	С	Avg	SD		
	NIST				92.4	2.7				0.687	0.034		
	I901	70.3	65.1	67.6	67.7	2.6	0.610	0.560	0.640	0.603	0.040		
	1903	99.5	97.6	98.2	98.4	1.0	0.536	0.527	0.528	0.530	0.005		
	I904												
	I906												
	I907												
	1908	92.5	89.2	88.7	90.1	2.1	0.451	0.444	0.454	0.450	0.005		
	I910	92.4	101.0	97.9	97.1	4.4	1.060	1.190	1.220	1.157	0.085		
	I911	89.9	90.4	93.7	91.3	2.1	0.450	0.410	0.440	0.433	0.021		
	I915												
	I917	89.5	88.2	89.7	89.1	0.8	1.318	1.368	1.414	1.367	0.048		
	I920	111.5	110.8	113.0	111.8	1.1	0.660	0.656	0.650	0.655	0.005		
	1925	77.3	84.0	92.6	84.7	7.7	1.280	1.372	1.789	1.480	0.271		
	1928	82.1	76.8	80.8	79.9	2.8	1.200	1.100	1.200	1.167	0.058		
	I920 I930	95.9	108.8	107.3	104.0	7.0	0.518	0.522	0.675	0.572	0.090		
	I930 I931	77.7	89.5	88.1	85.1	6.4	0.631	0.553	0.520	0.568	0.057		
	I931 I932	79.3	84.7	85.1	83.0	3.2	0.450	0.450	0.469	0.456	0.011		
	1932	98.0	99.0	101.0	99.3	1.5	0.450	0.450	0.402	0.450	0.011		
	1933 1934	98.0 89.5	84.0	92.7	88.7	4.4	8.873	9.132	3.049	7.018	3.439		
	1935	07.5	04.0	2.1	00.7		0.075	9.152	5.047	7.010	5.457		
	1935 1936	79.0	77.0	82.0	79.3	2.5	0.430	0.390	0.510	0.443	0.061		
	1930	79.0	77.0	82.0	19.5	2.3	0.430	0.390	0.510	0.443	0.001		
		72.9			72.9		0.801			0.801			
Individual Results	I939	72.8	102.4	96.0	72.8	7.0	0.801	0.557	0.650	0.801	0.450		
Res	I940	95.3	102.4	86.9	94.9	7.8	1.393	0.557	0.659	0.869	0.456		
ual	I941	93.2	92.7	86.2	90.7	3.9	0.418	0.315	0.279	0.337	0.072		
ivid	I942	80.0	84.0	84.0	82.7	2.3	1.200	1.200	1.200	1.200	0.000		
Ind	I943	67.4	65.0	70.9	67.8	3.0	0.360	0.350	0.340	0.350	0.010		
	I944	07.4	100.0	112.0	102.0	12.7	0.422	0.462	0.474	0.456	0.022		
	I947 I948	87.4	108.9	112.9	103.0	13.7	0.432	0.463	0.474	0.456	0.022		
	1948 1949	81.4 84.8	86.6 84.9	91.9 80.5	86.6 83.4	5.3 2.5	0.400	0.400 2.000	0.400 2.600	0.400 2.133	0.000 0.416		
	1949	04.0	04.9	80.5	05.4	2.5	1.000	2.000	2.000	2.135	0.410		
	I951	93.0	88.8	95.1	92.3	3.2	0.434	0.417	0.409	0.420	0.013		
	I953	89.3	121.8	103.5	104.9	16.3	0.638	0.631	0.683	0.651	0.028		
	I954	93.9	94.9	87.0	91.9	4.3							
	1955 1056	95.9	98.2	95.1	96.4	1.6	2.621	3.323	3.612	3.185	0.510		
	1956 1958	87.7 147.9	92.1 151.3	94.8 149.2	91.5 149.5	3.6 1.7	2.917 0.200	3.646 0.200	2.896 0.200	3.153 0.200	0.427 0.000		
	1959	91.0	93.0	93.8	92.6	1.5	0.569	0.515	0.601	0.562	0.044		
	I960	92.9	103.9		98.4	7.8	0.461	0.461	0.425	0.449	0.021		
	I961	84.1	84.3	80.0	82.8	2.4	0.807	0.775	0.745	0.776	0.031		
	I963	98.1	92.2	91.9	94.1	3.5	0.400	0.520	0.500	0.500	0.020		
	1964 1965	71.9	68.4	70.8	70.4	1.8	0.480	0.520	0.500	0.500	0.020		
	1965 1966	55.9	56.4	48.6	53.7	4.4	1.600	1.040	1.040	1.227	0.323		
	1900 1967	101.0	105.0	108.0	104.7	3.5	1.770	1.500	1.800	1.690	0.323		
	1972	97.1	98.4	98.2	97.9	0.7	0.472	0.505	0.489	0.489	0.017		
	I973	79.0	81.7	90.2	83.6	5.8	0.465	0.432	0.431	0.443	0.019		
	I978	62.3	70.3	69.5	67.4	4.4	0.518	0.484	0.589	0.530	0.054		
	I980	108.0	95.0 76.2	97.9 70.8	100.3	6.8	0.795	0.683	0.730	0.736	0.056		
	I981 I983	82.9 108.0	76.3 105.0	79.8	79.6 106.5	3.3 2.1	2.280	2.650	2.280	2.403	0.214		
	1985 1985	71.7	105.0		71.7	2.1	0.780			0.780			
	1986				,		0.673	0.714	0.674	0.687	0.023		
ty		Consensus	Mean		89.8		Consensus			0.808			
uni Its		Consensus	Standard De	viation	12.7		Consensus	Standard De	eviation	0.511			
Community Results		Maximum			149.5		Maximum			7.018			
Co		Minimum			53.7		Minimum			0.200			
		Ν			41		Ν		38				


 Table 2. Data summary table for chromium in foods and dietary supplements.

		, i					Molybdenum							
		SI	RM 3280 M	lultivitamir	n Tablet (µg/		Whole Egg Powder (µg/g)							
	Lab	Α	В	С	Avg	SD	Α	В	С	Avg	SD			
	NIST				69.7	4.4				0.581	0.029			
	I901													
	1903	71.3	68.7	66.3	68.8	2.5	0.615	0.598	0.608	0.607	0.009			
	I904													
	I906													
	1907													
	1908	86.5	71.5	84.4	80.8	8.1	0.716	0.495	0.440	0.550	0.146			
	I910	65.0	62.5	70.2	65.9	3.9	1.090	0.632	0.511	0.744	0.305			
	I911	66.7	65.6	63.2	65.2	1.8	0.556	0.522	0.554	0.544	0.019			
	I915													
	I917	72.8	72.3	70.6	71.9	1.1	0.581	0.582	0.591	0.585	0.006			
	I920	76.7	62.1	69.3	69.3	7.3	0.606	0.622	0.600	0.609	0.011			
	1925	64.9	69.9	74.5	69.8	4.8	1.386	1.352	1.756	1.498	0.224			
	1928	89.1	81.7	83.8	84.9	3.8	0.500	0.500	0.500	0.500	0.000			
	I930	55.4	58.2	56.1	56.6	1.4	0.531	0.523	0.492	0.515	0.021			
	I931	78.7	67.6	75.6	74.0	5.7	0.578	0.570	0.575	0.574	0.004			
	1932	94.2	108.4	108.7	103.8	8.3	0.640	0.640	0.633	0.638	0.004			
	1933	70.0	74.0	72.0	72.0	2.0								
	1934	66.6	55.7	64.9	62.4	5.9	0.678	0.747	0.598	0.674	0.074			
	1935													
	1936	86.0	73.0	74.0	77.7	7.2	0.570	0.550	0.560	0.560	0.010			
	1938	00.0	7510	7 110	,,,,,	7.2	0.070	0.000	01000	0.000	01010			
	1939	52.8			52.8		0.361			0.361				
Individual Results	1939	74.4	110.1	70.5	85.0	21.8	0.774	0.604	0.540	0.639	0.121			
Re	I940 I941	61.7	61.9	62.6	62.1	0.5	0.186	0.159	0.146	0.164	0.021			
lual	1942	61.0	65.0	68.0	64.7	3.5	0.550	0.550	0.530	0.543	0.021			
livić	1943	65.5	65.2	67.8	66.2	1.4	0.520	0.520	0.510	0.517	0.0012			
Inc	I944	05.5	05.2	07.0	00.2	1.4	0.520	0.520	0.510	0.517	0.000			
	1947	76.2	80.7	78.3	78.4	2.3	0.544	0.498	0.527	0.523	0.023			
	I948	71.1	72.4	77.9	73.8	3.6	0.570	0.580	0.580	0.577	0.006			
	I949	49.5	54.6	53.1	52.4	2.6	0.900	0.500	0.700	0.700	0.200			
	I950													
	I951	87.5	81.0	70.4	79.6	8.6	0.695	0.658	0.686	0.680	0.019			
	I953	88.0	78.8	71.4	79.4	8.3	0.566	0.581	0.585	0.577	0.010			
	I954 I955	60.0 72.0	67.7 65.6	60.7 72.7	62.8 70.1	4.3	0.449	0.453	0.447	0.450	0.003			
	1955	67.0	90.7	56.0	71.2	17.8	0.467	0.472	0.459	0.466	0.007			
	1958	87.5	84.8	82.2	84.8	2.7								
	1959	61.5	55.7	55.9	57.7	3.3	0.606	0.579	0.607	0.597	0.016			
	I960	64.8	87.2	15.0	76.0	15.8	0.514	0.548	0.488	0.517	0.030			
	I961 I963	63.0 76.3	62.2 79.8	15.0 76.7	46.7 77.6	27.5 1.9	0.798	0.776	0.366	0.647	0.244			
	1963 1964	76.3 84.4	79.8 86.3	/6./ 85.8	85.5	1.9	0.600	0.620	0.600	0.607	0.012			
	1965		- 510	2210	2010									
	I966													
	I967	70.4	58.5	79.9	69.6	10.7	0.630	0.530	0.630	0.597	0.058			
	1972	67.5	60.4	71.4	66.4	5.6	0.557	0.559	0.549	0.555	0.005			
	I973 I978	72.3 47.8	82.1 52.3	75.1 52.9	76.5 51.0	5.0 2.8	0.515 0.622	0.494 0.541	0.507 0.698	0.505 0.620	0.011 0.078			
	1978 1980	77.0	72.9	80.2	76.7	3.7	0.602	0.613	0.698	0.606	0.078			
	1981	82.8	70.3	77.8	77.0	6.2	0.820	0.640	0.590	0.683	0.121			
	I983	53.0	56.0		54.5	2.1								
	1985	50.1			50.1		0.460			0.460				
	I986	2					0.592	0.581	0.571	0.581	0.011			
uity ;		Consensus		wiation	70.4 11.2		Consensus		wiation	0.580				
Community Results		Maximum	Standard De	viauon	11.2		Maximum	Standard De	eviation	0.083 1.498				
om		Minimum			47		Minimum			0.164				
1.7		N			39		N			35				


 Table 3. Data summary table for molybdenum in foods and dietary supplements.

. Du	u sum			serem			enium	i j bup	riemen					
		SI	RM 3280 M	lultivitamir	n Tablet (µg/			Whole Egg Powder (µg/g)						
	Lab	Α	В	С	Avg	SD	Α	В	С	Avg	SD			
	NIST				17.2	0.4				1.40	0.07			
	I901													
	1903	16.4	15.7	17.0	16.4	0.7	1.39	1.40	1.42	1.40	0.02			
	I904													
	I906													
	I907													
	1908	18.4	17.9	16.0	17.4	1.3	1.65	1.59	1.57	1.60	0.04			
	I910	17.7	18.0	16.2	17.3	1.0	0.93	1.50	1.13	1.19	0.29			
	I911	17.0	14.8	15.6	15.8	1.1	1.60	1.50	1.50	1.53	0.06			
	I915													
	I917	14.9	15.1	14.6	14.9	0.2	2.14	2.20	2.06	2.13	0.07			
	I920	12.7	11.6	11.2	11.8	0.8	1.45	1.49	1.44	1.46	0.03			
	I925	17.8	17.7	17.5	17.7	0.1	1.40	1.37	1.46	1.41	0.05			
	I928	24.9	20.6	22.7	22.7	2.2	1.80	1.90	1.90	1.87	0.06			
	1930	14.0	14.9	13.8	14.2	0.6	1.67	1.53	1.49	1.56	0.09			
	I931	16.2	15.4	15.7	15.7	0.4	1.74	1.57	1.68	1.66	0.09			
	I932	11.7	12.2	13.6	12.5	1.0	1.58	1.60	1.48	1.55	0.07			
	I933													
	I934	18.7	17.5	18.1	18.1	0.6	1.43	0.95	0.94	1.11	0.28			
	I935													
	I936	20.0	18.0	19.0	19.0	1.0	1.50	1.70	1.60	1.60	0.10			
	I938													
s	1939	8.8			8.8		1.81			1.81				
Individual Results	I940	11.0	13.2	12.2	12.1	1.1	0.97	0.09	0.97	0.68	0.51			
ΙRe	I941	14.9	15.1	15.2	15.0	0.1	0.73	0.76	0.76	0.75	0.02			
qua	I942	15.0	16.0	17.0	16.0	1.0	1.70	1.70	1.60	1.67	0.06			
divi	I943	18.6	15.9	16.4	17.0	1.4	1.36	1.40	1.20	1.32	0.11			
In	I944													
	I947	23.1	22.5	20.7	22.1	1.3	1.47	1.37	1.49	1.44	0.06			
	I948	16.3	15.5	17.8	16.5	1.2	1.40	1.40	1.40	1.40	0.00			
	I949	15.3	15.3	14.5	15.0	0.5	1.20	1.00	1.30	1.17	0.15			
	I950	19.3	15.6	17.5	17.4	1.9	1.44	1.35	1.39	1.39	0.05			
	I951 I953	6.5	9.3	6.4	7.4	1.9	0.83	0.83	0.82	0.83	0.05			
	1955 1954	16.2	17.1	15.4	16.2	0.9	0.05	0.05	0.02	0.05	0.01			
	I955	17.8	16.3	16.8	17.0	0.8	1.69	1.71	1.70	1.70	0.01			
	I956	19.5	17.1	17.4	18.0	1.3	1.76	1.82	1.74	1.77	0.04			
	1958 1959	19.9	19.8	21.1	20.3 11.5	0.7 1.4	0.90	1.00	1.00	0.97	0.06			
	1959 1960	13.1 21.1	10.3 19.9	11.2	20.5	0.9	1.39	1.44	1.32	1.39	0.06			
	I961	16.0	15.0	15.4	15.4	0.5								
	1963	18.8	18.4	17.4	18.2	0.7	2.21	2.23	2.19	2.21	0.02			
	I964	13.0	15.4	13.2	13.9	1.3								
	1965 1966	21.2	22.1	10.0	20.9	1.6	0.90	0.49	1.04	0.77	0.29			
	I966 I967	21.3 15.6	22.1 20.1	19.0 17.1	20.8 17.6	1.6 2.3	0.80	0.48	1.04 1.86	0.77 1.78	0.28			
	1907	19.5	14.5	17.0	17.0	2.5	1.30	1.02	1.43	1.33	0.08			
	1973	15.7	14.9	15.1	15.2	0.4	1.23	1.31	1.37	1.30	0.07			
	1978	2.8	2.3	3.2	2.8	0.5	1.00	1.08	1.01	1.03	0.05			
	I980	14.4	12.4	12.9	13.2	1.0	2.04	1.99	1.98	2.00	0.03			
	I981 I983	16.9 17.5	16.0 16.0	14.4 16.0	15.8 16.5	1.3 0.9	1.37	1.41 1.50	1.43 1.50	1.40 1.47	0.03			
	1985 1985	9.4	10.0	10.0	9.4	0.9	2.00	1.50	1.50	2.00	0.00			
	1986	2.1					1.43	1.41	1.37	1.40	0.03			
ty		Consensus	Mean		16.1		Consensus			1.44				
uni ults			Standard De	viation	3.0			Standard De	eviation	0.38				
Community Results		Maximum			22.7		Maximum			2.21				
Co F		Minimum N			2.8 39		Minimum N			0.68 36				
		IN			39		IN			36				

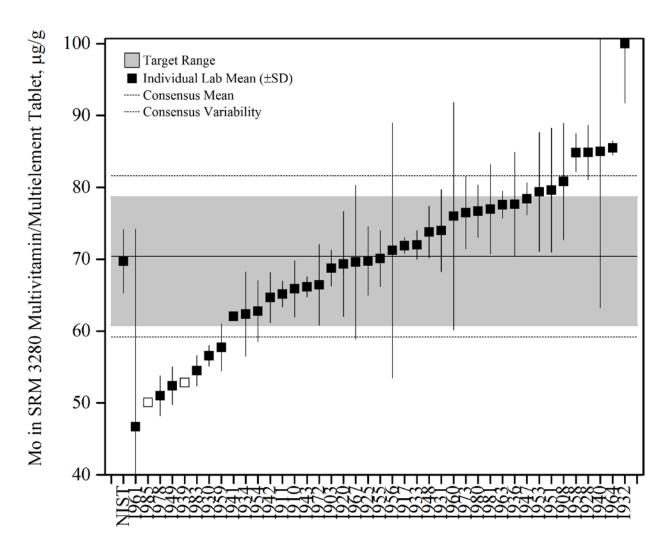
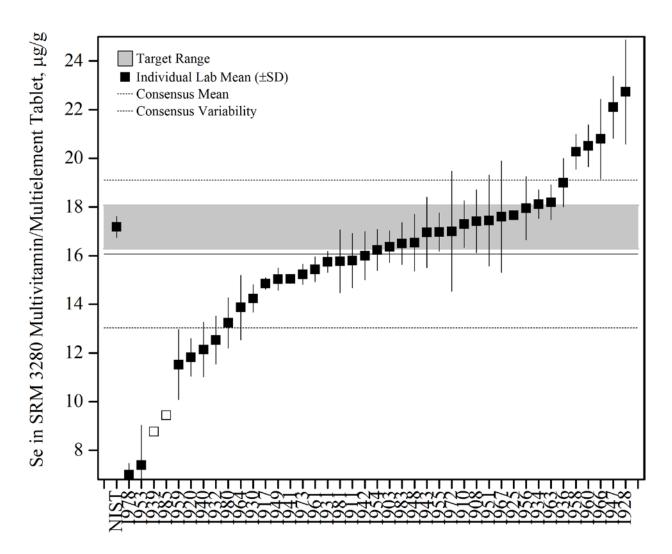
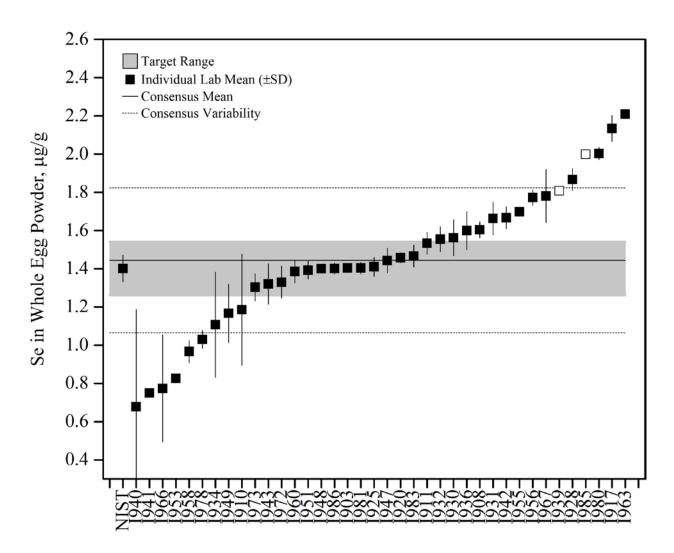
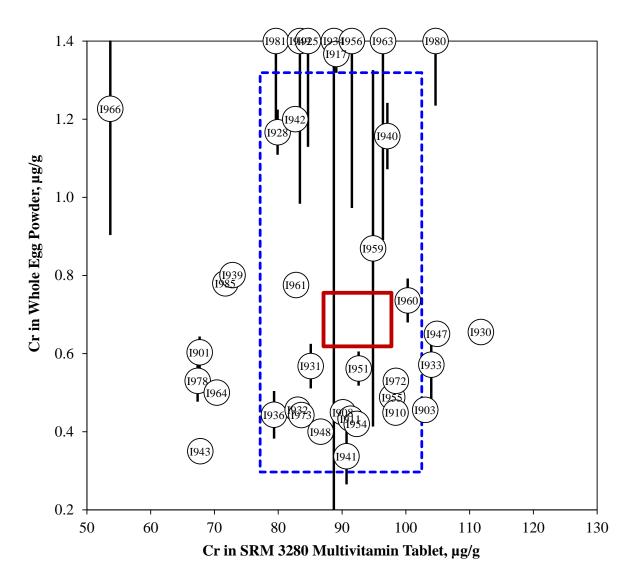
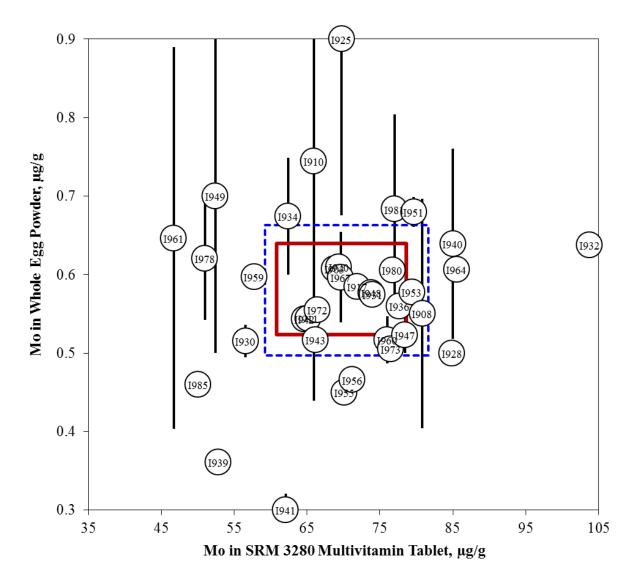

 Table 4. Data summary table for selenium in foods and dietary supplements.

Figure 1. Chromium in SRM 3280 Multivitamin/Multielement Tablets (method comparison data summary view – digestion method). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). Data points that are unfilled represent laboratories that only reported a single value for that analyte and therefore were not included in the consensus mean. The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST certified value bounded by twice its uncertainty (U_{95}).


Figure 2. Chromium in whole egg powder (data summary view). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). Data points that are unfilled represent laboratories that only reported a single value for that analyte and therefore were not included in the consensus mean. The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST-assessed value bounded by an uncertainty of 5 %. The NIST value is the mean of three results determined by ICP-MS.


Figure 3. Molybdenum in SRM 3280 Multivitamin/Multielement Tablets (data summary view). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). Data points that are unfilled represent laboratories that only reported a single value for that analyte and therefore were not included in the consensus mean. The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST certified value bounded by twice its uncertainty (U_{95}).


Figure 4. Molybdenum in whole egg powder (data summary view). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). Data points that are unfilled represent laboratories that only reported a single value for that analyte and therefore were not included in the consensus mean. The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST-assessed value bounded by an uncertainty of 5 %. The NIST value is the mean three of results determined by ICP-MS.


Figure 5. Selenium in SRM 3280 Multivitamin/Multielement Tablets (data summary view). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). Data points that are unfilled represent laboratories that only reported a single value for that analyte and therefore were not included in the consensus mean. The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST certified value bounded by twice its uncertainty (U_{95}).

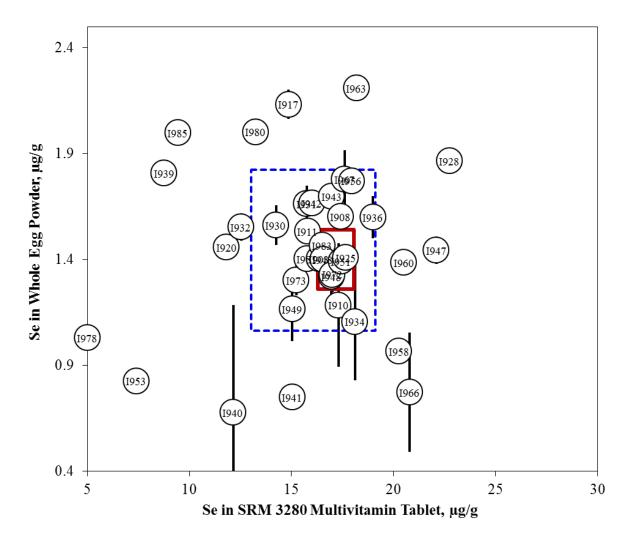

Figure 6. Selenium in whole egg powder (data summary view). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). Data points that are unfilled represent laboratories that only reported a single value for that analyte and therefore were not included in the consensus mean. The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST-assessed value bounded by an uncertainty of 5 %. The NIST value is the mean of three results determined by ICP-MS.

Figure 7. Chromium in whole egg powder and SRM 3280 Multivitamin/Multielement Tablets (sample/control comparison view). In this view, the individual laboratory results for the control (SRM 3280 Multivitamin/Multielement Tablets) with a certified value for the analyte are compared to the results for a sample (whole egg powder). The error bars represent the individual laboratory standard deviation. The solid red lines represent the target zone for the control (x-axis) and the unknown sample (y-axis). The dotted blue box represents the consensus zone for the control (x-axis) and the unknown sample (y-axis).

Figure 8. Molybdenum in whole egg powder and SRM 3280 Multivitamin/Multielement Tablets (sample/control comparison view). In this view, the individual laboratory results for the control (SRM 3280 Multivitamin/Multielement Tablets) with a certified value for the analyte are compared to the results for a sample (whole egg powder). The error bars represent the individual laboratory standard deviation. The solid red lines represent the target zone for the control (x-axis) and the unknown sample (y-axis). The dotted blue box represents the consensus zone for the control (x-axis) and the unknown sample (y-axis).

Figure 9. Selenium in whole egg powder and SRM 3280 Multivitamin/Multielement Tablets (sample/control comparison view). In this view, the individual laboratory results for the control (SRM 3280 Multivitamin/Multielement Tablets) with a certified value for the analyte are compared to the results for a sample (whole egg powder). The error bars represent the individual laboratory standard deviation. The solid red lines represent the target zone for the control (x-axis) and the unknown sample (y-axis). The dotted blue box represents the consensus zone for the control (x-axis) and the unknown sample (y-axis).

TOXIC ELEMENTS (Cd) IN FOODS AND SUPPLEMENTS

Study Overview

In this study, participants were provided with two NIST SRMs, SRM 3233 Fortified Breakfast Cereal and candidate SRM 3532 Calcium Dietary Supplement. Participants were asked to use in-house analytical methods to determine the mass fraction of cadmium (Cd) in each of the matrices and report values on an as-received basis.

Sample Information

Fortified breakfast cereal. Participants were provided with one packet containing approximately 10 g of fortified breakfast cereal. This material is a wheat-based fortified flake cereal that was ground to 180 μ m, blended, and packaged. Before use, participants were instructed to mix the contents of the packet thoroughly and use a sample size of at least 0.5 g. Participants were asked to store the material at controlled room temperature, 10 °C to 30 °C, prepare three samples, and report three values from the single packet provided. Approximate analyte levels were not provided to participants prior to the study. The NIST certified value in SRM 3233 was determined using isotope dilution inductively coupled plasma mass spectrometry (ID-ICP-MS). The certified value for Cd in SRM 3233 is (81.9 ± 2.0) ng/g on a dry-mass basis. Following adjustment for moisture content of the material of 1.70 %, the as-received target value for Cd in SRM 3233 is (80.5 ± 2.0) ng/g.

Calcium dietary supplement. Participants were provided with one packet containing approximately 10 g of a powdered calcium dietary supplement. The calcium dietary supplement was prepared from commercially purchased calcium tablets that were ground to 180 μ m, blended, and packaged. Before use, participants were instructed to thoroughly mix the contents of the packet and use a sample size of at least 0.5 g. Participants were asked to store the material at controlled room temperature, 10 °C to 30 °C, prepare three samples, and report three values from the single packet provided. Approximate analyte levels were not provided to participants prior to the study. The NIST-estimated value for Cd in candidate SRM 3532 was determined by ID-ICP-MS. The estimated value, based on the mean and expanded uncertainty of duplicate measurements from six packets, is (94.7 ± 1.7) ng/g.

Study Results

- Fifty-three laboratories enrolled in this exercise and received samples, and forty-two laboratories reported results for Cd (79 % participation).
- The consensus mean for Cd in the fortified breakfast cereal was within the target range with an acceptable variability (11 % RSD).
- The consensus mean for Cd in the calcium dietary supplement was slightly below the target range but had acceptable variability (16 % RSD).
- A majority of the laboratories reported using either microwave digestion (62 %) or open beaker digestion (29 %) for sample preparation. Four laboratories reported using hot block digestion (9 %).
- A majority of the laboratories (88 %) reported using ICP-MS as their analytical method for analysis. Only four laboratories reported using either ICP-OES or AAS for their analytical measurements for fortified breakfast cereal and five laboratories reported to

have used either ICP-OES or AAS for their analytical measurements for calcium dietary supplement (< 12 %).

Technical Recommendations

The following recommendations are based on results provided by the participants in this study.

- While twice as many laboratories reported using microwave digestion for sample preparation than other methods reported, there did not seem to be a difference in results based on the sample preparation method used.
- Cadmium can be difficult to measure by ICP-OES because of low sensitivity. Using AAS to measure Cd should not pose any significant problems but sometimes an extraction or separation step is included.
- Spectral interferences can make Cd difficult to measure by ICP-MS if there are high concentrations of certain elements, mainly Mo, Sn, or Zr, but the calcium dietary supplement presents the special case of having a high ratio of Ca to Cd⁴.
 - A scan of the sample beforehand will indicate if there are potential interferences in the sample that will need to be addressed.
 - There can be interferences with commonly used masses of Cd (¹¹¹Cd, ¹¹²Cd, ¹¹³Cd, and ¹¹⁴Cd). Examples of molecular interferences include: ^{95, 96, 97 and} $^{98}Mo^{16}O^+$, ^{94, 95, 96, and ⁹⁷Mo¹⁶O¹H⁺, ⁹⁶Zr¹⁶O⁺, ^{94 and 96}Zr¹⁶O¹H⁺, ⁴⁰Ar₂ ¹⁶O₂, ⁴⁰Ca₂ ¹⁶O₂, ⁴⁰Ca₂ ¹⁶O₂, ⁴⁰Ca₂ ¹⁶O₂, ⁴⁰Ca₂ ¹⁶O₂, ⁴⁰Ca₂ ¹⁶O₂, ⁴⁰Ca₂ ¹⁶O₂, ¹¹³In, and ¹¹⁴Sn.}
 - Chemical separations by anion chromatography can reduce interferences but because of the labor intensive work involved it is usually impractical for laboratories to do a chemical separation on each sample.
 - Collision cell technology, available on most newer-model ICP-MS instruments, can be used to remove many of the molecular interferences that may be found in these two materials.
 - Interference equations inherent to the software provided on some ICP-MS instruments are designed to correct for interferences, and these equations can also be applied off-line. Both are less labor-intensive alternatives to chemical separations.
- Many ICP-MS instruments run in either pulse mode or analog mode.
 - If sample solutions fall outside of the dynamic range for pulse mode, then the instrument will use both the pulse and analog mode. In this case, the ICP-MS must be calibrated for both modes.
 - It is often easier and more accurate to ensure that the calibrants are linear in the pulse mode and that the samples are within this linear range.
 - As shown in **Figure 14**, many laboratories reported either high values for both samples or low values for both samples. High values may indicate spectral interference or contamination. Low values may indicate matrix-induced signal suppression which may be avoided with the use of an internal standard. Dilution of sample solutions can also decrease matrix-induced signal suppression as long as solutions are not diluted below the detection limit. Additionally, high or low

⁴ Murphy, K.E., Vetter, T.W. (2013) *Recognizing and overcoming analytical error in the use of ICP-MS for the determination of cadmium in breakfast cereal and dietary supplements*. Anal Bioanal Chem **405** 4579-4588.

results can be an indication of a calibration error. A calibration curve needs to tightly bracket expected working solutions and be linear in that region. More accurate measurements can be achieved by making sure the sample concentrations fall within the middle of the calibration curve.

- Run a well-documented quality control sample with your unknown samples to ensure your method is performing as expected.
- Double-check all calculations for errors. Compare these to your quality assurance samples to make sure all calculations have been done correctly.

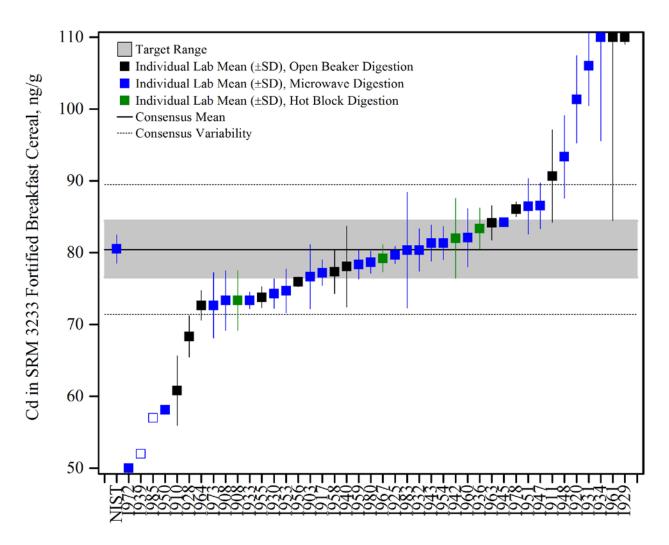
Table 5. Individual data table (NIST) for cadmium in foods and dietary supplements.

National Institute of Standards & Technology

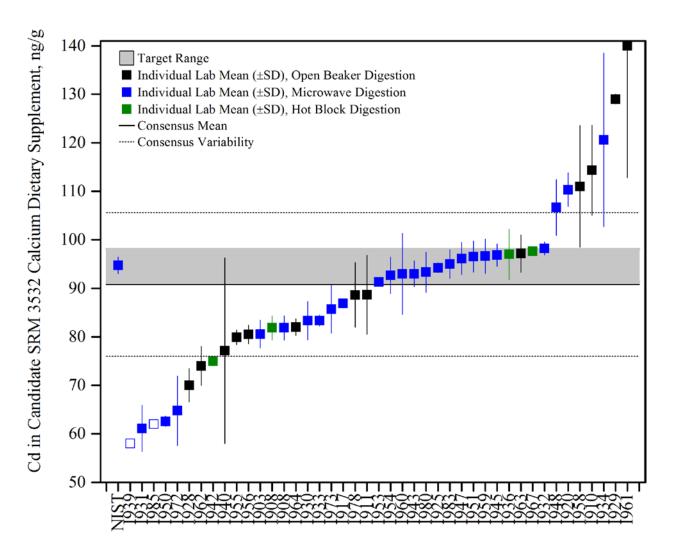
Lab Code: NIST				1. You	r Results		2. Community Results			3. Target	
nalyte	Sample	Units	X _i	s _i	Z_{comm}	Z _{NIST}	Ν	x*	s*	X _{NIST}	U_{95}
Cd	Breakfast Cereal	ng/g	80.5	2.0	-0.7	0.0	39	80.4	9.0	80.5	2.0
Cd	Ca Supplement	ng/g	94.7	1.7	0.3	0.0	40	90.8	14.8	94.7	1.7
Cd	Ca Supplement	ng/g	94.7	1.7	0.3	0.0	40	90.8	14.8		94.7

Exercise I – October 2012 – Cd

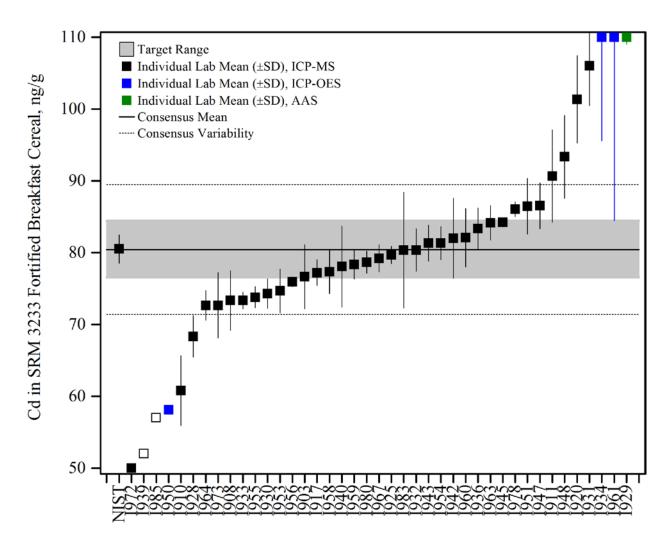
x_i Mean of reported values

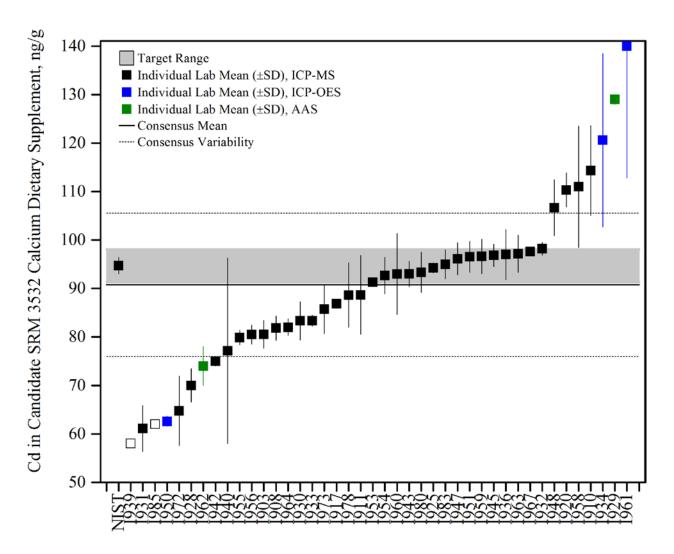

- s_i Standard deviation of reported values
- Z_{comm} Z-score with respect to community consensus
- Z_{NIST} Z-score with respect to NIST value
- N Number of quantitative X_{NIST} values reported x* Robust mean of reported U_{95}
- values s* Robust standard deviation

±95% confidence
interval about the
assessed value or
standard deviation
(s _{NIST})


NIST-assessed value

		Cadmium Cadmium SRM 3233 Fortified Breakfast Cereal (ng/g) Candidate SRM 3532 Ca Supplement (ng/g)										
г						00,	Candidate SRM 3532 Ca Supplement (ng/g)					
	Lab	Α	В	С	Avg	SD	Α	В	С	Avg	SD	
	NIST				80.5	2.0				94.7	1.7	
	I901											
	1903	80.4	71.7	77.8	76.6	4.5	83.8	78.2	79.7	80.6	2.9	
	I904											
	I906											
	1907											
	1908	72.0	70.0	78.0	73.3	4.2	79.5	81.5	84.5	81.8	2.5	
	I910	65.0	55.5	61.9	60.8	4.8	117.0	104.0	122.0	114.3	9.3	
	I911	88.0	98.0	86.0	90.7	6.4	98.0	85.0	83.0	88.7	8.1	
	I915											
	I917	75.7	79.2	76.7	77.2	1.8	86.9	86.9	86.9	86.9	0.0	
	1920	108.0	96.0	100.0	101.3	6.1	107.0	114.0	110.0	110.3	3.5	
	I925	78.4	80.8	79.9	79.7	1.2	95.1	94.5	93.1	94.2	1.0	
	1928 1929	65.0 144.0	70.0 145.0	70.0 146.0	68.3 145.0	2.9 1.0	72.0 128.0	66.0 129.0	72.0 130.0	70.0 129.0	3.5 1.0	
	1929 1930	72.2	76.3	74.4	74.3	2.1	87.9	81.0	81.1	83.3	4.0	
	I931	100.0	107.0	111.0	106.0	5.6	66.5	57.4	59.5	61.1	4.8	
	1932	81.3	77.1	82.8	80.4	3.0	99.2	96.7	98.7	98.2	1.4	
	1933	74.0	74.0	72.0	73.3	1.2	84.0	82.0	84.0	83.3	1.2	
	I934	126.0	97.4	115.6	113.0	14.4	119.2	139.2	103.5	120.6	17.9	
	1935											
	I936	80.0	85.0	85.0	83.3	2.9	91.0	100.0	100.0	97.0	5.2	
ts	1938										_	
esul	I939	52.0	04.2	72.0	52.0	5.6	58.0	(0.2	00.0	58.0	10.1	
IR	I940 I942	76.7 77.0	84.3 81.0	73.2 88.0	78.1 82.0	5.6 5.6	63.1 75.0	69.3 74.0	99.0 76.0	77.1 75.0	19.1 1.0	
Individual Results	1942 1943	84.0	79.0	81.0	82.0	2.5	96.0	92.0	91.0	93.0	2.6	
livi	1943 1944	04.0	79.0	01.0	01.5	2.5	70.0	92.0	71.0	75.0	2.0	
Inc	1945	83.7	84.6	84.4	84.2	0.5	98.1	98.3	94.2	96.8	2.3	
	I947	89.9	86.3	83.5	86.5	3.2	96.7	99.2	92.6	96.1	3.3	
	I948	100.0	90.0	90.0	93.3	5.8	110.0	100.0	110.0	106.7	5.8	
	I949											
	1950	58.7	58.1	57.6	58.1	0.6	61.5	62.7	63.6	62.6	1.1	
	I951	83.3	90.8	85.3	86.5	3.9	95.6	93.9	100.1	96.5	3.2	
	I953	72.0	78.0	74.0	74.7	3.1	91.0	91.0 97.0	92.0	91.3 92.7	0.6	
	1954 1955	80.0 73.5	84.0 72.4	80.0 75.4	81.3 73.8	2.3 1.5	90.0 78.2	97.0 81.0	91.0 80.5	92.7 79.9	3.8 1.5	
	1956	75.2	76.3	76.4	75.9	0.7	78.3	82.0	81.1	80.5	2.0	
	1958	74.0	80.0	78.0	77.3	3.1	110.0	99.0	124.0	111.0	12.5	
	I959	80.6	77.7	76.7	78.3	2.0	100.7	95.1	94.1	96.6	3.6	
	I960	83.3	77.5	85.4	82.1	4.1	86.0	102.3	90.7	93.0	8.4	
	I961	162.2	127.2	112.4	134.0	25.6	254.9	204.7	211.6	223.7	27.2	
	I962						74.6	69.7	77.6	74.0	4.0	
	I963	85.4	85.6	81.4	84.1	2.4	101.3	93.7	96.4	97.2	3.8	
	I964	72.0	75.0	71.0	72.7	2.1	81.0	81.0	84.0	82.0	1.7	
	1966 1967	81.4	78.0	78.2	79.2	1.9	98.0	97.8	97.1	97.6	0.5	
	1967 1972	49.3	48.5	48.6	48.8	0.4	60.2	61.1	73.0	64.8	7.2	
	1972 1973	77.7	68.8	71.5	72.7	4.6	87.8	80.0	89.3	85.7	5.0	
	1978	86.0	85.0	87.1	86.0	1.1	94.5	90.0	81.4	88.6	6.7	
	I979											
	I980	80.0	79.0	77.0	78.7	1.5	98.0	90.0	92.0	93.3	4.2	
	I983	73.0	79.0	89.0	80.3	8.1	95.0	92.0	98.0	95.0	3.0	
	I985	57.0			57.0		62.0			62.0		
lity		Consensus			80.4		Consensus		• .•	90.8		
Community Results			Standard De	eviation	9.0			Standard De	eviation	14.8		
ommuni Results		Maximum			145.0		Maximum			223.7		
5 2		Minimum N			48.8 39		Minimum N			58.0 40		


Table 6. Data summary table for cadmium in foods and dietary supplements.


Figure 10. Cadmium in SRM 3233 Fortified Breakfast Cereal (method comparison data summary view – digestion method). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The color of the data point represents the sample preparation (digestion) procedure employed. Data points that are unfilled represent laboratories that only reported a single value for that analyte and therefore were not included in the consensus mean. The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST certified value bounded by twice its uncertainty (U_{95}).

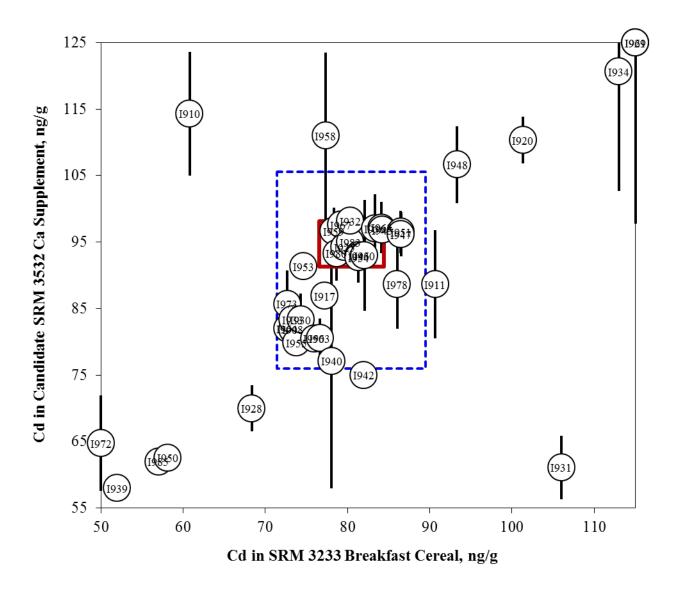

Figure 11. Cadmium in candidate SRM 3532 Calcium Dietary Supplement (method comparison data summary view – digestion method). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The color of the data point represents the sample preparation (digestion) procedure employed. Data points that are unfilled represent laboratories that only reported a single value for that analyte and therefore were not included in the consensus mean. The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST value determined by ID-ICP-MS, bounded by twice the estimated uncertainty observed for six duplicate measurements.

Figure 12. Cadmium in 3233 Fortified Breakfast Cereal (method comparison data summary view – instrumental method). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The color of the data point represents the instrumental method employed. Data points that are unfilled represent laboratories that only reported a single value for that analyte and therefore were not included in the consensus mean. The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST certified value bounded by twice its uncertainty (U_{95}).

Figure 13. Cadmium in candidate SRM 3532 Calcium Dietary Supplement (method comparison data summary view – instrumental method). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The color of the data point represents the instrumental method employed. Data points that are unfilled represent laboratories that only reported a single value for that analyte and therefore were not included in the consensus mean. The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST value determined by ID-ICP-MS, bounded by twice the estimated uncertainty observed for six duplicate measurements.

Figure 14. Cadmium in candidate SRM 3532 Calcium Dietary Supplement and SRM 3233 Fortified Breakfast Cereal (sample/control comparison view). In this view, the individual laboratory results for the control (SRM 3233 Fortified Breakfast Cereal) with a certified value for the analyte are compared to the results for a sample (candidate SRM 3532 Calcium Dietary Supplement). The error bars represent the individual laboratory standard deviation. The solid red lines represent the target zone for the control (x-axis) and the unknown sample (y-axis). The dotted blue box represents the consensus zone for the control (x-axis) and the unknown sample (y-axis).

VITAMIN B₅ IN FOODS

Study Overview

In this study, participants were provided with two NIST SRMs, SRM 3234 Soy Flour and SRM 3287 Blueberries, neither of which has been fortified with vitamin B_5 (pantothenic acid). Participants were asked to use in-house analytical methods to determine the mass fractions of vitamin B_5 in each of the matrices and report values on an as-received basis. Participants were asked to report the vitamin B_5 content as pantothenic acid; NIST values are reported as pantothenic acid.

Sample Information

Soy Flour. Participants were provided one packet containing approximately 15 g of defatted soy flour. The flour was heat-sealed inside 0.1 mm (4 mil) polyethylene bags, which were then sealed inside Mylar bags. Before use, participants were instructed to thoroughly mix and homogenize the contents of the packet and use a sample size of at least 2 g. Participants were asked to store the soy flour at controlled room temperature, 10 °C to 30 °C, prepare three samples, and report three values from the single packet provided. Approximate analyte levels were not provided to participants in the study. The NIST certified value for pantothenic acid in SRM 3234 was determined using acidic solvent extraction followed by ID-LC-MS/MS with confirmation using data from external collaborating laboratories. The certified value for pantothenic acid in SRM 3234 is (11.45 ± 0.12) mg/kg on a dry-mass basis. After adjustment for moisture content of the material of 6.13 %, the as-received target value for pantothenic acid in SRM 3234 is (10.75 ± 0.11) mg/kg.

Blueberries. Participants were provided with three packets, each containing approximately 5 g of freeze-dried, powdered blueberries. The blueberries were blended, aliquotted, and heat-sealed inside nitrogen-flushed 0.1 mm (4 mil) polyethylene bags, which were then sealed inside nitrogen-flushed aluminized plastic bags along with two packets of silica gel each. Before use, participants were instructed to thoroughly mix and homogenize the contents of the packet and use a sample size of at least 2.5 g. Participants were also notified that this material was packaged as a powder, but that over time the powder may become a solid mass. For hardened samples, participants were instructed to remove an appropriate test portion using a knife. Participants were asked to report a single value from each packet provided and to store the blueberries at controlled room temperature, 10 °C to 30 °C. Approximate analyte levels were not provided to participants prior to the study. The NIST certified value for pantothenic acid in SRM 3287 was determined using acidic solvent extraction followed by ID-LC-MS in combination with data from external collaborating laboratories. The certified value of pantothenic acid in SRM 3287 is (3.36 ± 0.19) mg/kg. After adjustment for moisture content of the material of 1.41 %, the asreceived target value for pantothenic acid in SRM 3287 is (3.31 ± 0.19) mg/kg.

Study Results

- Thirty-three laboratories enrolled in this exercise and received samples, and thirteen laboratories reported results for the soy flour and/or blueberries (39 % participation).
- For both materials, the consensus ranges were very wide. For the soy flour, the consensus mean was higher than the NIST target range, while the consensus mean for the blueberries was contained within the NIST target range (**Figure 15** and **Figure 16**).

- The dispersion of the data could be a result of challenges in completely extracting the pantothenic acid from the samples or from chromatographic coelutions.
- In the soy flour, nine of the thirteen laboratories (69 %) reported values that were reasonably close to the target range. Three of the remaining four laboratories reported values that were significantly higher than the target range (10 times higher and almost 300 times higher). This could indicate an interference in the analytical method (LC-absorbance with external standard calibration) caused by matrix components. When using a low wavelength (205 nm to 210 nm) to detect pantothenic acid (a molecule without a strong chromophore), the method will be highly susceptible to matrix interferences. More information is needed about the analytical methods to draw more conclusions.
- In the blueberries, eight of the eleven laboratories (73 %) reported values that were reasonably close to the target range. Two of the remaining three laboratories reported values that were significantly higher than the target range (150 to 200 times higher). These were the same laboratories that reported high values for the soy flour, indicating a potential interference in the analytical method or possibly a calibration error.
- One laboratory reported values that were 10 times lower than the target value for the soy flour and 35 times lower for the blueberries. This could be the result of ion suppression in the MS, as this laboratory reported using LC-MS with an external standard calibration approach. For accurate quantitation from matrix-based samples, the use of isotope dilution for internal standard calibration is critical.
- In general, the analytical approach used did not correlate with any trend in the data. In this case, variability in the data is more likely related to the combination of sample preparation, instrumental method, and calibration approach, as any method must be careful to account for interferences. A larger data set and more information from participants is necessary to draw any strong correlations between method and result.

Technical Recommendations

The following are recommendations based on results provided by the participants in this study.

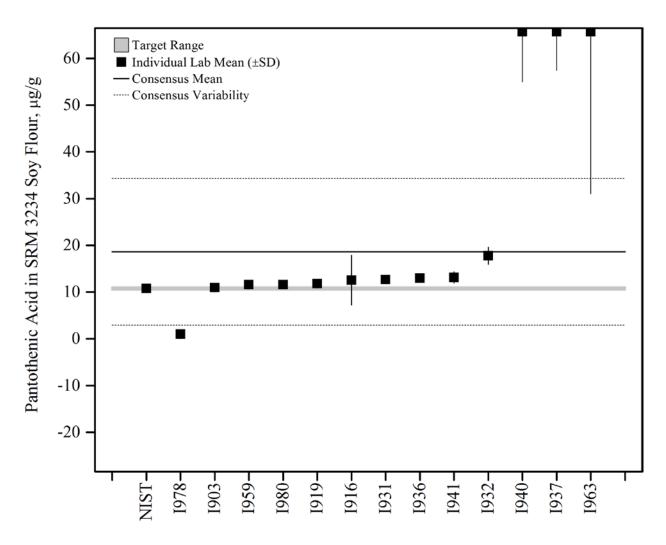
• No analytical method was identified as being exceptionally good or problematic. When using LC-absorbance for a molecule like pantothenic acid without a chromophore, care must be taken to remove matrix interferences. The same is true when using LC-MS, as matrix components can cause ion suppression leading to results that are biased low unless an isotopically labeled analog is used for internal standard calibration.

Table 7. Individual data table (NIST) for vitamin B₅ (pantothenic acid) in foods.

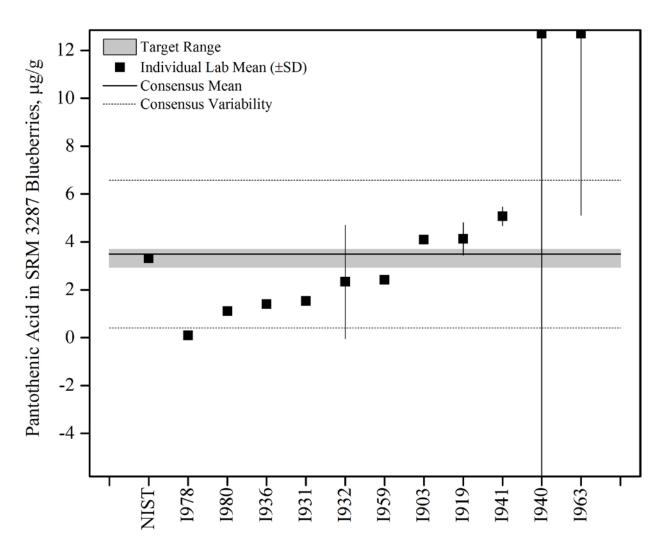
National Institute of Standards & Technology

	Lab Code: NIST		_	1. You	r Results		2. Co	mmunity R	esults	3. Ta	rget
Analyte	Sample	Units	Xi	$\mathbf{s}_{\mathbf{i}}$	Z_{comm}	Z _{NIST}	Ν	X*	s*	X _{NIST}	U_{95}
B ₅	Soy Flour	µg/g	10.7	0.10	2.3	-0.4	13	18.6	15.7	10.7	0.1
B_5	Blueberries	µg/g	3.31	0.19	-0.1	0.0	11	3.49	3.08	3.31	0.19

Exercise I – October 2012 – Pantothenic Acid


x_i Mean of reported values

- s_i Standard deviation of reported values
- Z_{comm} Z-score with respect to community consensus
- $Z_{\text{NIST}} \quad \text{Z-score with respect to NIST value}$
- NNumber of quantitative
values reported x_{NIST}
 x^* x*Robust mean of reported U_{95}
- values s* Robust standard deviation
- s* Robust standard deviation
- ±95% confidence interval about the assessed value or standard deviation (s_{NIST})


NIST-assessed value

						Pantoth	enic Acid				
			SRM 32	34 Soy Flo	ur (µg/g)			SRM 328	87 Blueberr	ies (µg/g)	
	Lab	Α	В	С	Avg	SD	Α	В	С	Avg	SD
	NIST				10.7	0.1				3.31	0.19
	1903	11.1	11.0	10.8	11.0	0.2	4.20	3.90	4.20	4.10	0.17
	1905										
	I907										
	I910										
	I911										
	I914										
	I914 I916										
	I910 I919	11.6	12.0	11.8	11.8	0.2	4.61	3.35	4.42	4.13	0.68
		11.0	12.0	11.0	11.0	0.2	4.01	5.55	4.42	4.15	0.08
	I924										
	1928	10.0	10 5	10.0	10.5	0.7	1 - 1 - 1		1 10	1.70	0.1.6
	I931	13.3	12.5	12.3	12.7	0.5	1.71	1.41	1.48	1.53	0.16
	I932	16.1	17.5	19.8	17.8	1.9	1.10	5.06	0.83	2.33	2.37
ults	I933										
Resi	I935										
l la l	I936	13.0	13.0	13.0	13.0	0.0	1.20	1.50	1.50	1.40	0.17
vidı	I937	210.0	226.0	214.0	216.7	8.3					
Individual Results	I938										
Ι	I940	120.9	133.2	142.3	132.1	10.8	540.17	510.45	462.82	504.48	39.02
	I941	12.4	14.6	12.4	13.1	1.2	4.82	5.53	4.87	5.07	0.40
	I946										
	I950										
	I958	10.0	11 6	11.0	11.6	0.6	0.50	2.27	0.07	2.42	0.00
	I959 I961	12.2	11.6	11.0	11.6	0.6	2.53	2.37	2.37	2.42	0.09
	1901 1963	2904.6	2846.0	2907.4	2886.0	34.7	642.17	656.83	652.90	650.63	7.58
	I903 I971	2704.0	2040.0	2907.4	2000.0	54.7	042.17	050.05	052.90	050.05	7.50
	I974										
	I975										
	I976										
	1978	1.1	0.9	1.0	1.0	0.1	0.10	0.10	0.09	0.09	0.01
	I979	11.0	11.4	11.6	11.6	0.0	1.00	1.00	1.00	1.10	0.17
	I980 I983	11.8	11.4	11.6	11.6	0.2	1.30	1.00	1.00	1.10	0.17
~	1983	Consensus	Mean		14.7		Consensus	Mean		3.41	
Community Results			Standard De	eviation	6.0			Standard De	eviation	2.92	
ommuni Results		Maximum			2886.0		Maximum	D		650.63	
Re		Minimum			1.0		Minimum			0.09	
5		Ν			12		Ν			11	

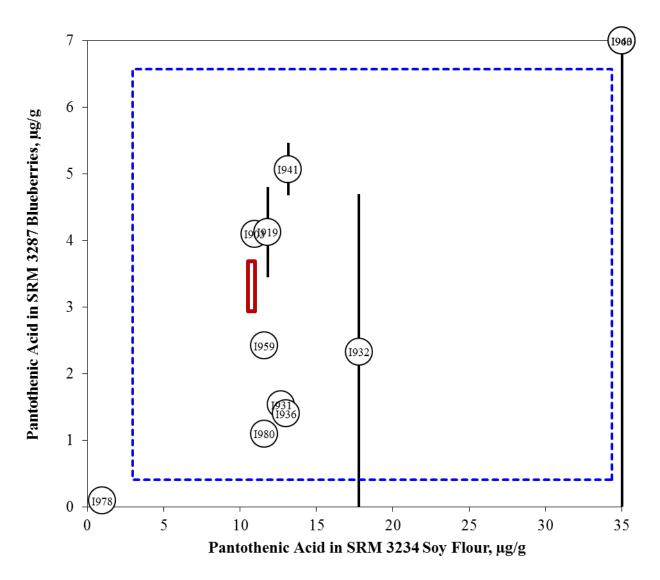

Table 8. Data summary table for vitamin B_5 (pantothenic acid) in foods.

Figure 15. Vitamin B₅ (pantothenic acid) in SRM 3234 Soy Flour (data summary view). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST certified value determined by ID-LC-MS/MS and external collaborating laboratories bounded by twice the uncertainty (U_{95}).

Figure 16. Vitamin B₅ (pantothenic acid) in SRM 3287 Blueberries (data summary view). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST certified value determined by ID-LC-MS and external collaborating laboratories bounded by twice the uncertainty (U_{95}).

Figure 17. Vitamin B_5 (pantothenic acid) in SRM 3234 Soy Flour and SRM 3287 Blueberries (sample/sample comparison view). In this view, the individual laboratory results for one sample (SRM 3287 Blueberries) with a certified value for the analyte are compared to the results for a second sample (SRM 3234 Soy Flour). The error bars represent the individual laboratory standard deviation. The solid red lines represent the target zone for the control (x-axis) and the unknown sample (y-axis). The dotted blue box represents the consensus zone for the control (x-axis) and the unknown sample (y-axis).

VITAMIN A IN FOODS AND SUPPLEMENTS

Study Overview

In this study, participants were provided with SRM 3280 Multivitamin/Multielement Tablets and a whole egg powder. Participants were asked to use in-house analytical methods to determine the mass fractions of vitamin A (as retinol, retinyl acetate, and retinyl palmitate) in each of the matrices and report values on an as-received basis.

Sample Information

Multivitamin/Multielement Tablets. Participants were provided with one bottle containing 30 multivitamin/multielement tablets. Before use, participants were instructed to grind all tablets together, mix the resulting powder thoroughly, and use a sample size of at least 0.6 g. Participants were asked to store the material at controlled room temperature, 10 °C to 30 °C, prepare three samples, and report three values from the single bottle provided. Approximate analyte levels were not provided to participants prior to the study. The NIST reference values and uncertainties for vitamin A in SRM 3280 were determined by LC-MS following solvent extraction and are reported in the table below, both on a dry-mass basis and after correction for moisture of the material (1.37 %).

Egg powder. Participants were provided with one packet containing approximately 10 g of whole egg powder. The material is a free-flowing, fine powder prepared from USDA-inspected whole eggs. Before use, participants were instructed to mix thoroughly the contents of the packet and use a sample size of at least 1 g. Participants were asked to store the material at controlled room temperature, 10 °C to 30 °C, prepare three samples, and report three values from the single packet provided. Approximate analyte levels were not provided to participants prior to the study, and NIST-assessed values and uncertainties were not determined for the whole egg powder.

Study Results

- Thirty-seven laboratories enrolled in this exercise and received samples, and 19 laboratories reported results for at least one of the samples (51 % participation).
- NIST target values are available for retinol equivalents and retinyl acetate in the multivitamin sample.
 - The consensus mean for retinol and retinyl acetate were within the target range.
 - The consensus ranges were acceptable for both compounds in the multivitamin sample (19 % for both compounds).
 - Two laboratories reported values for retinyl palmitate in the multivitamin sample. The value from one laboratory appeared to be a conversion of the measured mass fraction of retinyl acetate to retinyl palmitate using the relative molecular masses of the compounds.
- NIST target values are not available for retinol in the egg powder sample. The consensus range for retinol in the egg powder was quite wide (83 % RSD).
- Ten laboratories (53 %) reported using saponification followed by extraction, while nine laboratories (47 %) reported using solvent extraction to prepare samples.
- A majority of laboratories (95 %) used LC-absorbance for analysis. One laboratory reported using spectrophotometry.

• All laboratories reported using an external standard approach to calibration.

Technical Recommendations

The following recommendations are based on results provided by the participants in this study.

- It is important to determine that saponification methods are appropriate for a given sample. Conditions that are too extreme may result in degradation of the analyte of interest and conditions that are too gentle may not fully extract the analyte of interest. In future exercises, more survey information from participants will be collected about saponification to help aid in making recommendations.
- Always be certain that calibrants match the measured analyte (e.g., do not measure retinyl acetate with a retinol calibrant).
- Due to the nature of the calibrant materials, a spectrophotometric determination of calibrant concentration is essential for accurate measurements.

Table 9. Individual data table (NIST) for vitamin A in foods and supplements.

National Institute of Standards & Technology

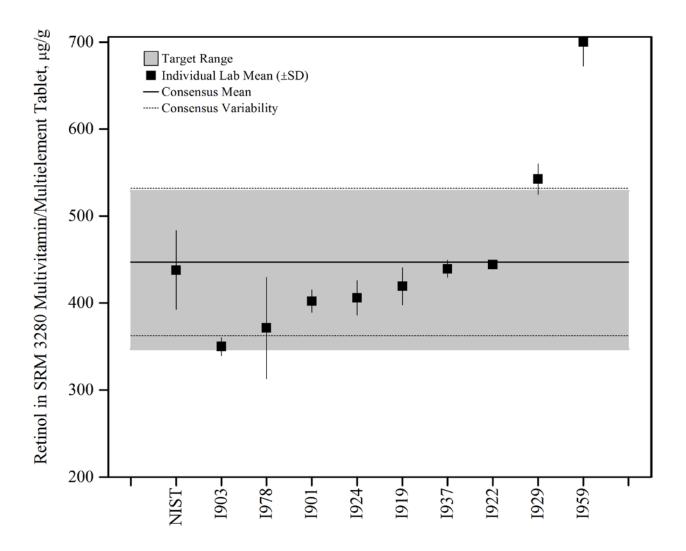
	Lab Code:	NIST		1. You	r Results		_	2. Co	mmunity R	esults	3. Ta	rget
Analyte	Sample	Units	x _i	s _i	Z_{comm}	Z _{NIST}	_	Ν	X*	s*	X _{NIST}	U_{95}
Retinol	Vitamin	µg/g	438	45	-0.1	0.0	-	9	447	85	438	45
Retinol	Egg Powder	µg/g						9	1.600	1.330		
Retinyl Acetate	Vitamin	µg/g	502	52	0.5	0.0	-	13	460	88	502	52
Retinyl Acetate	Egg Powder	µg/g						2	3.570	1.300		
Retinyl Palmitate	Vitamin	µg/g					-	2	392	464		
Retinyl Palmitate	Egg Powder	µg/g					_	1				
		Xi	Mean of r	reported va	lues		N	Number of values rep	f quantitative	x _{NIST}	NIST-assess	sed value
		s _i	Standard values	deviation of	of reported		х*	-	ean of reporte	ed U_{95}	±95% confi interval abo	
		Z_{comm}		-	to communit	У	s*		ndard deviat	ion	assessed val standard de	lue or

(s_{NIST})

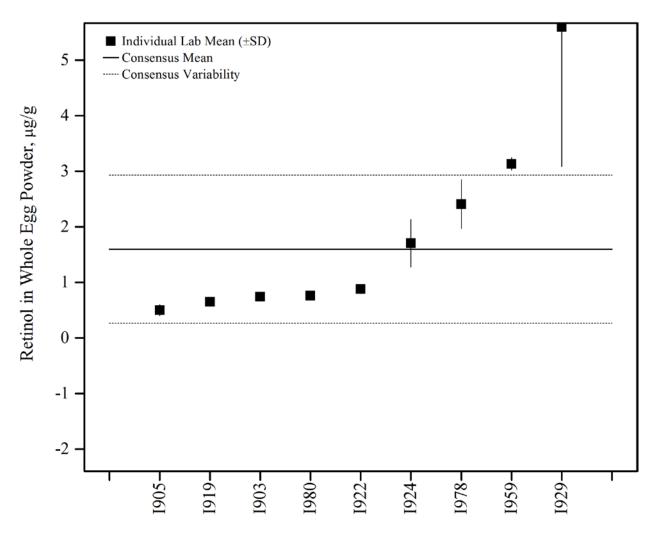
Exercise I – October 2012 – Vitamin A

Z_{NIST} Z-score with respect to NIST value

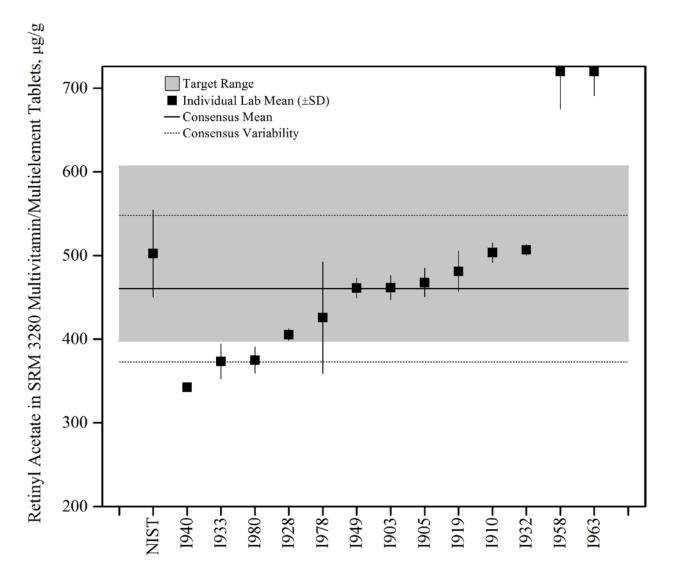
						Re	etinol				
		SF	RM 3280 M	ultivitamin	Tablet (µg/g			Whole	Egg Powde	r (µg/g)	
	Lab	Α	В	С	Avg	SD	Α	В	С	Avg	SD
	NIST				438	45					
	I901	387	410	409	402	13					
	I903	357	355	338	350	10	0.760	0.721	0.755	0.745	0.021
	I905						0.600	0.500	0.400	0.500	0.100
	1907										
	I910										
	I911										
	I914										
	I915										
	I916										
	I919	408	444	406	419	21	0.622	0.655	0.675	0.651	0.027
	I919 I922	100		100	115	21	0.022	0.055	0.075	0.051	0.027
	I922 I924	425	408	385	406	20	2.100	1.770	1.250	1.707	0.429
	I928	125	100	505	100	20	2.100	1.770	1.250	1.707	0.129
	I920 I929	560	543	524	542	18	25.000	28.000	23.000	25.333	2.517
	1929	500	545	524	542	10	25.000	20.000	25.000	25.555	2.317
ults	1932 1933										
Individual Results	1935 1936										
al I	1930 1937	434	451	433	439	10					
vidu	1937 1938	434	431	435	439	10					
ibu											
-	I940										
	I946 I949										
	1950 1958										
	1958	774	774	726	750	20	2 200	2 000	2 200	2 1 2 2	0.115
	I959	774	774	726	758	28	3.200	3.000	3.200	3.133	0.115
	I961										
	1963										
	I965										
	I971 I974										
	1975										
	1977										
	I978	400	304	409	371	58	2.874	2.001	2.351	2.409	0.439
	I979										
	I980						0.763	0.712	0.810	0.762	0.049
	I983 I984										
v	1707	Consensus 1	Mean		449		Consensus	Mean		1.73	
Community Results		Consensus S	Standard Dev	viation	94		Consensus	Standard De	viation	1.47	
ommuni Results		Maximum			758		Maximum			25.33	
C01 R		Minimum			350		Minimum			0.50	
L		Ν			8		Ν			8	


 Table 10.
 Data summary table for retinol in foods.

						Retinv	l Acetate				
		SI	RM 3280 M	ultivitamir	Tablet (µg/s	-		Whole	Egg Powde	r (µg/g)	
1	Lab	Α	В	С	Avg	SD	Α	В	C	Avg	SD
	NIST			-	502	52			-	8	~_
	I901										
	1903	472	468	445	462	15					
	1905	452	486	465	468	17					
	1907										
	I910	490	508	512	503	12					
	I911										
	I914										
	I915										
	I916										
	I919	468	509	466	481	24					
	1922										
	I924										
	1928	399	413	404	405	7					
	1929										
	1932	501	514	505	507	7					
Individual Results	1933	1670	1700	1660	1677	21					
Re	1936										
lual	1937										
livid	1938										
Inc	I940	342	343	343	342	0	5.147	4.202	3.787	4.379	0.697
	I946										
	I949	475	456	453	461	12					
	1950										
	1958	700	789	760	750	45					
	1959										
	I961										
	1963	807	751	793	784	29					
	1965										
	I971										
	I974										
	I975 I977										
	1977	459	349	469	426	67	3.296	2.294	2.696	2.762	0.504
	I979										
	I980	384	384	357	375	16					
	I983 I984										
~	1984	Consensus	Mean		493		Consensus 1	Mean		3.57	
unit; ts			Standard De	viation	120		Consensus S		viation	1.30	
Community Results		Maximum			1677		Maximum			4.38	
Cor		Minimum			342		Minimum			2.76	
		Ν			13		Ν			2	


 Table 11. Data summary table for retinyl acetate in foods.

						Retinyl	Palmitate				
		SI	RM 3280 M	ultivitamin	Tablet (µg/			Whole	Egg Powder	r (µg/g)	
	Lab	Α	В	С	Avg	SD	Α	В	С	Avg	SD
	NIST										
	I901										
	I903										
	I905										
	I907										
	I910										
	I911										
	I914										
	I915										
	I916										
	I919										
	I922										
	I924										
	I928										
	I929										
	I932										
ults	1933										
Res	I936										
ual	1937										
Individual Results	1938										
Ind	I940										
	I946										
	I949										
	1950										
	1958										
	1959										
	I961										
	1963	85	144	78	102	36					
	1965			10	102	20					
	I971										
	I974										
	I975										
	I977										0.01
	1978 1979	734	558	750	681	107	5.27	3.67	4.31	4.42	0.81
	1979 1980										
	I983										
	I984										
ity		Consensus			392		Consensus I				
nun ults			Standard De	viation	464		Consensus S	Standard De	viation	4.40	
Community Results		Maximum Minimum			681 102		Maximum Minimum			4.42 4.42	
ວົ		N			2		N			4.42 1	
L		11			4		11			1	


 Table 12. Data summary table for retinyl palmitate in foods.

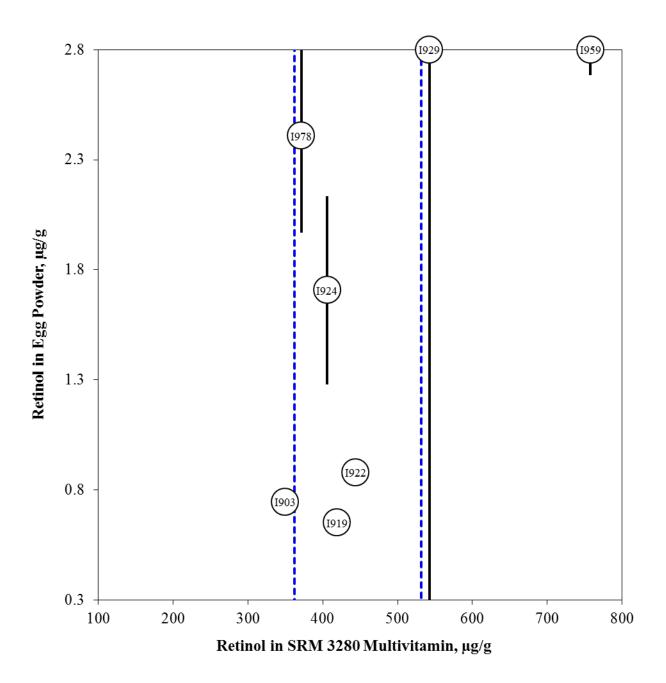

Figure 18. Retinol in SRM 3280 Multivitamin/Multielement Tablet (data summary view). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). Data points that are unfilled represent laboratories that only reported a single value for that analyte and therefore were not included in the consensus mean. The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST reference value determined by LC-MS (measured as retinyl acetate, expressed as retinol equivalents) bounded by twice the uncertainty (U_{95}).

Figure 19. Retinol in whole egg powder (data summary view). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean.

Figure 20. Retinyl acetate in SRM 3280 Multivitamin/Multielement Tablets (data summary view). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST reference value determined by LC-MS bounded by twice the uncertainty (U_{95}) .

Figure 21. Retinol in whole egg powder and SRM 3280 Multivitamin/Multielement Tablets (sample/control comparison view). In this view, the individual laboratory results for the control (SRM 3280 Multivitamin/Multielement Tablets) with a reference value for the analyte are compared to the results for an unknown (whole egg powder). The error bars represent the individual laboratory standard deviation. The dotted blue box represents the consensus zone for the control (x-axis) and the unknown sample (y-axis).

CATECHINS IN GREEN TEA

Study Overview

In this study, participants were provided with two NIST SRMs, SRM 3255 *Camellia sinensis* (Green Tea) Extract and SRM 3254 *Camellia sinensis* (Green Tea) Leaves. Participants were asked to use in-house analytical methods to determine the mass fractions of seven catechins (catechin, epicatechin, epicatechin gallate, epigallocatechin, epigallocatechin gallate, gallocatechin, and gallocatechin gallate), as well as the total amount of catechins, in each of the matrices and report values on an as-received basis.

Sample Information

Green tea extract. Participants were provided with three packets, each containing approximately 1 g of an extract of green tea extract. The spray-dried extract of green tea leaves was heat-sealed inside nitrogen-flushed 0.1 mm (4 mil) polyethylene bags, which were then sealed inside aluminized plastic bags with two packets of silica gel. Before use, participants were instructed to thoroughly mix the contents of each packet and use a sample size of at least 50 mg. Participants were asked to store the extract at controlled room temperature, 10 °C to 30 °C, and report a single value from each packet. Approximate analyte levels were not provided to participants prior to the study. The NIST certified values in SRM 3255 were determined by LC-UV, LC-MS, and data from external collaborating laboratories. The certified values and their associated uncertainties, corrected for the moisture content of the material (3.13 %), are provided on an asreceived basis in the table below.

Green tea leaves. Participants were provided with three packets, each containing approximately 3 g of green tea leaves. The ground green tea leaves were heat-sealed inside nitrogen-flushed 0.1 mm (4 mil) polyethylene bags, which were then sealed inside aluminized plastic bags with 2 packets of silica gel. Before use, participants were instructed to thoroughly mix the contents of the packet and use a sample size of at least 0.4 g. Participants were asked to store the material at controlled room temperature, 10 °C to 30 °C, and report a single value from each packet. Approximate analyte levels were not provided to participants prior to the study. The NIST certified values in SRM 3254 were determined by LC-UV, LC-MS, and data from external collaborating laboratories. The certified values and their associated uncertainties, corrected for the moisture content of the material (5.19 %), are provided on an as-received basis in the table below.

	Certified Mass Fraction	Certified Mass Fraction
	in SRM 3255 (mg/g)	in SRM 3254 (mg/g)
<u>Analyte</u>	(as-received basis)	(as-received basis)
Catechin	$8.88 \hspace{0.1 cm} \pm \hspace{0.1 cm} 0.90$	$0.958 \hspace{0.2cm} \pm \hspace{0.2cm} 0.389$
Epicatechin	45.8 ± 6.5	8.53 ± 1.5
Epicatechin Gallate	97.2 ± 7.6	12.0 ± 1.1
Epigallocatechin	79.2 ± 6.3	23.9 ± 4.3
Epigallocatechin Gallate	409 ± 18	49.3 ± 2.1
Gallocatechin	21.3 ± 1.6	2.28 \pm 1.0
Gallocatechin Gallate	37.8 ± 1.9	0.939 ± 0.20
Total Catechins	699 ± 22	97.9 ± 5.2

Study Results

- Forty-nine laboratories enrolled in this exercise and received samples, and twenty-eight laboratories reported results (57 % participation).
- The consensus means for catechin, epicatechin, epicatechin gallate, and epigallocatechin gallate in the extract were within the target range, with acceptable consensus ranges (9 % to 24 % RSD).
- The consensus mean for epigallocatechin was slightly below the target range, while the consensus means for gallocatechin and gallocatechin gallate were slightly above the target range. The consensus ranges were quite wide for all three (25 % to 72 % RSD).
- The consensus means for catechin, epicatechin, epicatechin gallate, epigallocatechin, and epigallocatechin gallate in the ground tea leaves were within the target range, with acceptable consensus ranges for epicatechin, epicatechin gallate, and epigallocatechin gallate (21 % to 23 % RSD). The consensus ranges for catechin and epigallocatechin were significantly wider (67 % RSD and 59 % RSD, respectively).
- The consensus means for gallocatechin and gallocatechin gallate were higher than the target range with wide consensus ranges (65 % to 112 % RSD).
- The consensus means for total catechins in both the extract and the leaves were within the target range, with acceptable consensus ranges (11 % and 24 % RSD, respectively).
- Laboratories that reported low values typically reported low values for all of the analytes in both matrices. The same is true for those laboratories reporting high values.
- Twenty-seven (96 %) of the laboratories reported using solvent extraction followed by LC-absorbance with external standard calibration. One laboratory reported using solvent extraction with LC-MS and external standard calibration.
- This study was previously conducted in Exercise E of the DSQAP (2010). The results for this study are significantly improved, with twice as many laboratories participating and more consistent results for nearly all of the individual catechins.

Technical Recommendations

The following recommendations are based on results provided by the participants in this study.

- Some laboratories (those reporting all high or low values) may have a calibration or sample preparation issue. Calibrant materials should be subjected to the same preparation procedure as the samples (derivatization, hydrolysis, etc.), and individual calibration standards should be used for each compound to improve accuracy.
- When sample preparation is extensive, an internal standard approach may be required to improve accuracy and precision.
- If an internal standard approach is used, it is best to add the internal standard at the earliest possible point (i.e. prior to extraction, saponification, and/or derivatization).

Table 13. Individual data table (NIST) for catechins in green tea.

National Institute of Standards & Technology

				EACT CLOC I			11113				
	Lab Code:	NIST		1. Your	Results		2. Co	ommunity R	esults	3. Ta	arget
Analyte	Sample	Units	Xi	$\mathbf{s}_{\mathbf{i}}$	Z_{comm}	Z _{NIST}	Ν	X*	s*	X _{NIST}	U_{95}
Catechin	Extract	mg/g	8.88	0.90	-0.4	0.0	24	9.84	2.37	8.88	0.90
Catechin	Tea	mg/g	0.958	0.389	-0.6	0.0	20	1.54	1.04	0.958	0.389
Epicatechin	Extract	mg/g	45.8	6.5	0.5	0.0	26	43.2	5.8	45.8	6.5
Epicatechin	Tea	mg/g	8.53	1.52	0.6	0.0	25	7.57	1.6	8.53	1.5
Epicatechin Gallate	Extract	mg/g	97.2	7.6	0.2	0.0	25	95.1	13.4	97.2	7.6
Epicatechin Gallate	Tea	mg/g	12.0	1.1	0.0	0.0	24	11.9	2.7	12.0	1.1
Epigallocatechin	Extract	mg/g	79.2	6.3	0.5	0.0	24	62.9	34.8	79.2	6.3
Epigallocatechin	Tea	mg/g	23.9	4.3	0.3	0.0	23	20.6	12.2	23.9	4.3
Epigallocatechin Gallate	e Extract	mg/g	409	18	0.0	0.0	28	408	39	409	18
Epigallocatechin Gallate	e Tea	mg/g	49.3	2.1	0.1	0.0	27	48.4	10.6	49.3	2.1
Gallocatechin	Extract	mg/g	21.3	1.6	-0.3	0.0	17	28.0	20.2	21.3	1.6
Gallocatechin	Tea	mg/g	2.28	1.04	-0.6	0.0	17	6.66	7.5	2.28	1.0
Gallocatechin Gallate	Extract	mg/g	37.8	1.9	-0.5	0.0	22	43.1	10.6	37.8	1.9
Gallocatechin Gallate	Tea	mg/g	0.939	0.199	-0.5	0.0	19	1.380	0.90	0.939	0.20
Total Catechins	Extract	mg/g	699	22	0.1	0.0	24	691	73	699	22
Total Catechins	Tea	mg/g	97.9	5.2	0.0	0.0	23	98.0	23.3	97.9	5.2

Exercise I - October 2012 - Catechins

x_i Mean of reported values

consensus

si Standard deviation of reported values Z_{comm} Z-score with respect to community

 Z_{NIST} Z-score with respect to NIST value

- x*
 - s* Robust standard deviation

N Number of quantitative

Robust mean of reported

values reported

values

±95% confidence interval about the assessed value or standard deviation (s_{NIST})

NIST-assessed value

X_{NIST}

 U_{95}

51

	ala su				chin in g	/	echin				
		S	RM 3255 G	reen Tea I	Extract (mg/g			SRM 32	54 Green T	ea (mg/g)	
1	Lab	Α	В	С	Avg	SD	Α	В	С	Avg	SD
	NIST				8.88	0.90				0.958	0.389
	I901										
	1902	11.80	11.50	11.70	11.67	0.15	0.970	1.140	1.000	1.037	0.091
	1903	8.48	8.42	8.61	8.50	0.10	0.886	0.905	0.911	0.901	0.013
	I904										
	1905	10.30	10.20	10.20	10.23	0.06	1.700	1.700	1.700	1.700	0.000
	I906										
	I907										
	1909	4.71	5.10	5.22	5.01	0.27	0.201	0.205	0.188	0.198	0.009
	I911										
	I912	12.40	12.40	12.20	12.33	0.12	2.170	2.130	2.110	2.137	0.031
	I913	0.23	0.18	0.25	0.22	0.04					
	I914										
	I916										
	I918	10.09	10.45	10.43	10.32	0.20	1.159	1.037	0.968	1.055	0.097
	I921										
	1922										
	I923	8.73	8.81	8.77	8.77	0.04	0.780	0.870	0.770	0.807	0.055
	I926	12.20	12.30	12.60	12.37	0.21					
	I927	12.60	12.90	12.73	12.75	0.15	0.894	1.154	1.262	1.104	0.189
	I928										
	I930										
lts	1933	141.63	141.30	140.54	141.16	0.56	62.380	62.900	62.740	62.673	0.266
Individual Results	I934	10.20	10.09	10.28	10.19	0.10	1.964	2.676	15.283	6.641	7.493
al R	1938										
idu:	1939	10.23	10.12	10.07	10.14	0.08	2.816	2.772	2.863	2.817	0.045
vibr	I940		_			_		_	_		
Г	I943	10.76	10.88	11.06	10.90	0.15	1.962	1.857	1.849	1.890	0.063
	I944										
	I946	10.70	10.59	10.61	10.63	0.06	0.907	0.907	0.914	0.909	0.004
	I947		_			_		_			
	1950										
	1952	9.22	9.32	9.72	9.42	0.26	1.240	1.180	1.190	1.203	0.032
	1953	111.63	113.17	111.07	111.96	1.09	59.450	60.930	62.330	60.903	1.440
	I954	4.83	4.73	4.75	4.77	0.05	0.617	0.602	0.624	0.614	0.011
	I956										
	1957										
	I958										
	I963	10.18	10.23	10.12	10.18	0.06	2.302	2.326	2.260	2.296	0.033
	I964	7.70	7.63	7.76	7.70	0.07	0.530	0.500	0.470	0.500	0.030
	I965										
	I966	8.40	7.80	8.00	8.07	0.31	1.000	1.200	1.100	1.100	0.100
	1968										
	I969										
	1970										
	I976										
	I979										
	I982	8.03	7.00	7.63	7.55	0.52		0.100		0.100	
	I984					_					
	I985	9.86	10.01	10.02	9.97	0.09	3.031	2.998	3.048	3.026	0.025
ţ		Consensus			9.87		Consensus			1.602	
uni Its			Standard De	viation	2.68			Standard De	eviation	1.229	
Community Results		Maximum			111.96		Maximum			60.903	
°C		Minimum			4.77		Minimum			0.100	
		Ν			11		Ν			10	

Table 14. Data summary table for catechin in green tea.

5. L	vala su			n epic	atecnin	<u> </u>	atechin				
		S	RM 3255 G	reen Tea l	Extract (mg/g	-		SRM 32	54 Green To	ea (mø/ø)	
ſ	Lab	A	В	C	Avg	SD	Α	B	C	Avg	SD
	NIST	1	D	C	45.8	6.5	A	b	C	8.53	1.52
	1901				15.0	0.5				0.55	1.52
	1901	179.0	87.8	179.0	148.6	52.7	77.50	77.70	77.40	77.53	0.15
	1902	45.3	45.2	45.5	45.3	0.2	8.60	8.36	8.35	8.44	0.13
	1903 1904	45.5	+3.2	45.5	45.5	0.2	0.00	0.50	0.55	0.44	0.14
	1904	47.4	47.3	47.2	47.3	0.1	8.40	8.50	8.30	8.40	0.10
	1905 1906	47.4	47.5	47.2	47.5	0.1	0.40	0.50	0.50	0.40	0.10
	1900										
	1907	34.3	37.4	41.5	27.7	3.6	7.72	7.40	7.42	7.51	0.18
	I909 I911	54.5	57.4	41.5	37.7	5.0	1.12	7.40	7.42	7.51	0.18
	1911 1912	15.5	15.6	45.1	45.4	0.2	0.21	7 72	7.66	7 07	0.20
		45.5	45.6	45.1	45.4	0.3	8.21	7.73	7.66	7.87	0.30
	I913	2.5	2.0	2.7	2.4	0.4	0.20	0.18	0.20	0.19	0.01
	I914										
	I916	47.1	16.5	46.1	16.6	0.5	9.05	7.74	7.27	7 70	0.24
	I918	47.1	46.5	46.1	46.6	0.5	8.05	7.74	7.37	7.72	0.34
	I921										
	I922	15 1	47.0	10.2	47.2	16	5.96	6 1 2	5 15	5 91	0.24
	1923 1926	45.4 33.6	47.9 33.9	48.3 34.1	47.2 33.9	1.6 0.3	5.86	6.12	5.45	5.81	0.34
	I920 I927	48.3	48.8	48.3	48.5	0.3	6.01	8.24	8.11	7.45	1.25
	1927 1928	+0.5	-0.0	40.5	+0.5	0.5	0.01	0.24	0.11	7.45	1.25
	1920										
~	1933	46.2	45.6	45.5	45.8	0.4	6.43	6.69	6.54	6.55	0.13
Individual Results	I934	43.5	44.3	43.8	43.9	0.4	6.24	6.07	6.79	6.37	0.37
Re	I938										
ual	I939	42.6	42.4	42.3	42.4	0.2	7.35	7.27	7.26	7.29	0.05
ivid	I940										
II	I943	43.2	43.8	43.8	43.6	0.4	7.65	7.50	7.50	7.55	0.09
	I944										
	I946	43.9	44.3	44.3	44.2	0.2	7.76	7.77	7.72	7.75	0.02
	I947										
	1950										
	1952	46.8	47.3	48.4	47.5	0.9	9.14	10.08	10.17	9.80	0.57
	1953	22.3	24.4	21.8	22.8	1.4	3.47	4.40	4.29	4.05	0.51
	1954	23.7	23.6	23.6	23.6	0.1	4.37	4.44	4.39	4.40	0.04
	1956										
	1957										
	1958										
	1963	47.6	48.5	47.1	47.7	0.7	11.29	9.34	11.08	10.57	1.07
	1963 1964	40.1	39.7	40.4	40.1	0.4	7.17	6.84	6.71	6.91	0.24
	1965		5711			0.1		0.01	0.71	0.71	0.2.
	1965	9.7	8.8	8.6	9.0	0.6	8.60	9.50	8.90	9.00	0.46
	1968	49.2	49.1	45.7	48.0	2.0	9.70	9.60	9.40	9.57	0.15
	1908	77.2	77.1	тJ.1	+0.0	2.0	5.10	2.00	2.40	9.51	0.15
	1909 1970										
	1970 1976										
	1979	42.2	44.1	12.7	42.0	1.0	7.60	8.20	7.20	7.70	0.46
	I982	42.2	44.1	42.7	43.0	1.0	7.60	8.20	7.30	7.70	0.46
	I984	42.0	42.0	42.0	42.1	0.1	7.67	7.50	7.41	7.52	0.10
	I985	43.0	42.9	43.2	43.1	0.1	7.57	7.58	7.41	7.52	0.10
ity		Consensus			42.8		Consensus			7.59	
ults			Standard De	viation	6.4			Standard De	viation	1.74	
Community Results		Maximum			48.0		Maximum			10.57	
ŭΓ		Minimum			9.0		Minimum			4.05	
		Ν			12		Ν			12	

 Table 15. Data summary table for epicatechin in green tea.

	atu bu	iiiiiai y					hin gallate				
		S	RM 3255 G	reen Tea I	Extract (mg/g		Sunate	SRM 32	54 Green Te	ea (mg/g)	
[Lab	Α	В	С	Avg	SD	А	В	С	Avg	SD
	NIST				97.2	7.6				12.0	1.1
	I901										
	I902	94.5	94.4	95.3	94.7	0.5	12.2	12.6	12.3	12.4	0.2
	I903	99.8	99.9	101.0	100.2	0.7	15.6	15.5	15.7	15.6	0.1
	I904										
	I905	98.9	99.5	98.5	99.0	0.5	14.1	14.2	14.2	14.2	0.1
	I906										
	I907										
	1909	111.3	107.0	116.1	111.4	4.5	12.3	12.8	12.6	12.6	0.2
	I911										
	I912	93.6	93.9	91.0	92.8	1.6	6.8	6.9	6.0	6.6	0.5
	I913	20.4	16.3	22.2	19.6	3.0	1.3	1.2	1.3	1.3	0.1
	I914			_		_					_
	I916										
	I918	91.6	88.8	88.3	89.6	1.8	13.9	11.8	11.6	12.4	1.3
	I921										
	I922 I923	85.8	85.0	84.8	85.2	0.5	10.4	10.7	9.6	10.2	0.6
	1923 1926	83.8 81.4	83.0	84.8 82.9	83.2	0.5	10.4	10.7	9.0	10.2	0.0
	1920	97.5	104.0	105.9	102.5	4.4	6.9	10.1	10.9	9.3	2.1
	1928										
	I930										
tz -	I933	108.5	106.2	107.0	107.2	1.1	11.0	11.0	11.0	11.0	0.0
esul	I934	95.9	97.1	96.7	96.6	0.6	12.8	13.3	13.5	13.2	0.4
al R	I938										
Individual Results	I939	128.4	128.6	126.6	127.9	1.1	10.5	10.8	10.7	10.6	0.1
ndiv	I940										
-	I943	90.6	94.1	93.8	92.8	1.9	12.8	12.3	12.2	12.4	0.3
	I944	100.0	101.6	101 6	101.2	0.5	10.4	10.5	10.5	10.4	0.1
	I946	100.8	101.6	101.6	101.3	0.5	10.4	10.5	10.5	10.4	0.1
	I947 I950										
	1950 1952	101.1	102.3	105.4	102.9	2.2	12.5	13.7	15.8	14.0	1.6
	1952 1953	88.5	87.6	88.3	88.1	0.5	11.5	12.2	11.9	11.9	0.3
	1953 1954	3.3	3.3	3.3	3.3	0.0	0.5	0.5	0.5	0.5	0.0
	1956	5.5	5.5	5.5	5.5	0.0	0.5	0.5	0.5	0.5	0.0
	1950										
	1958										
	1963	81.6	81.7	81.0	81.4	0.4	9.9	9.8	9.7	9.8	0.1
	I964	100.0	99.1	101.0	100.0	1.0	12.4	11.9	11.7	12.0	0.4
	I965										
	I966	21.7	19.8	18.9	20.1	1.4	16.0	15.9	15.7	15.9	0.2
	1968	104.1	101.7	100.6	102.1	1.8	14.9	15.2	15.0	15.0	0.2
	I969										
	1970										
	I976										
	I979										
	I982	85.0	88.3	88.7	87.3	2.0	14.2	14.2	13.4	13.9	0.5
	I984										
	1985	121.4	121.4	122.0	121.6	0.4	11.0	10.5	10.5	10.7	0.3
¢.		Consensus	Mean		94.6		Consensus	Mean		11.8	
uni lts			Standard De	viation	13.8			Standard De	viation	2.8	
Community Results		Maximum			127.9		Maximum			15.9	
L C		Minimum			3.3		Minimum			0.5	
		Ν			12		Ν			12	

 Table 16. Data summary table for epicatechin gallate in green tea.

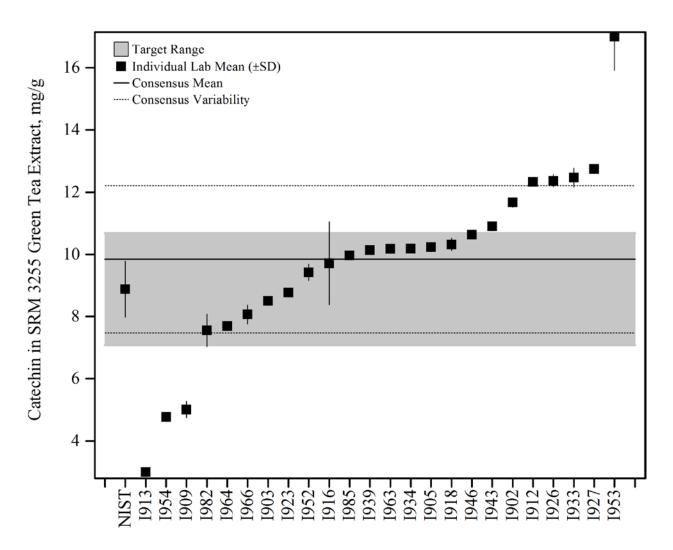
	alu bu				unocuto		ocatechin	icu.			
		s	RM 3255 G	Freen Tea I	Extract (mg/g			SRM 32	54 Green T	ea (mg/g)	
[Lab	Α	В	С	Avg	SD	Α	В	С	Avg	SD
	NIST				79.2	6.3				23.9	4.3
	I901										
	1902	88.5	87.8	89.1	88.5	0.7	19.8	20.0	20.3	20.0	0.3
	1903	77.3	76.6	77.7	77.2	0.6	27.9	26.5	27.3	27.2	0.7
	I904										
	1905	88.7	88.7	88.3	88.6	0.2	29.0	29.5	29.2	29.2	0.3
	I906										
	I907										
	1909	78.0	79.9	80.5	79.5	1.3	18.2	20.1	19.8	19.4	1.0
	I911										
	I912	30.1	30.1	29.3	29.8	0.5	4.7	4.6	4.6	4.6	0.1
	I913	1.3	1.0	1.4	1.3	0.2	0.2	0.2	0.2	0.2	0.0
	I914										
	I916										
	I918	68.2	70.0	71.3	69.8	1.6	24.6	22.6	21.3	22.8	1.7
	I921										
	1922	70.7	72.0	70.7	70.1	1.2	10.0	10.1	17.0	10.0	1.0
	1923 1926	72.7 64.9	72.9 64.7	70.7 66.0	72.1 65.2	1.3 0.7	18.0	19.1	17.0	18.0	1.0
	I920 I927	92.4	94.6	93.2	93.4	1.1	19.9	28.9	27.9	25.6	4.9
	1928	,2	2110	70.2	,,,,,			20.5	27.5	2010	,
	I930										
s	1933	75.5	75.3	75.8	75.5	0.3	20.2	21.3	20.8	20.8	0.6
esult	I934	79.5	80.9	80.5	80.3	0.7	23.3	25.8	26.3	25.1	1.6
l R	1938						_				
Individual Results	I939	14.0	13.9	13.9	13.9	0.1	4.4	4.4	4.4	4.4	0.0
ndiv	I940						_				
ц	I943	68.4	70.5	70.4	69.8	1.2	24.6	23.3	22.9	23.6	0.9
	I944		= 4 0								0.0
	I946	74.1	74.9	75.1	74.7	0.5	25.1	25.1	25.0	25.1	0.0
	I947										
	I950	74.6	74.9	77.2	75.6	1.4	26.4	27.6	26.6	26.0	0.7
	I952 I953	74.6 49.6	51.0	77.2 50.3	75.6 50.3	1.4 0.7	26.4 15.5	27.6 16.7	26.6 16.6	26.9 16.2	0.7
	1955 1954	15.7	15.6	15.5	15.6	0.7	4.2	4.3	4.3	4.3	0.7
	1954 1956	15.7	15.0	15.5	15.0	0.1	4.2	4.5	4.5	4.5	0.1
	1950										
	1958										
	1963	123.1	123.5	126.4	124.3	1.8	36.0	36.2	35.4	35.9	0.4
	1963 1964	89.0	88.4	89.8	89.1	0.7	27.2	25.7	25.2	26.0	1.0
	1965	0,10	00.1	0710	07.1	0.7	27.2	2017	20.2	20.0	110
	I966	2.0	1.8	2.0	1.9	0.1	44.2	43.7	43.5	43.8	0.4
	1968	94.7	86.5	83.1	88.1	6.0	38.0	37.2	36.7	37.3	0.7
	I969										
	1970										
	I976										
	I979										
	I982										
	I984										
	I985	11.7	11.8	11.8	11.8	0.1	3.8	3.8	3.7	3.8	0.0
Ŷ		Consensus	Mean		63.8		Consensus	Mean		20.8	
Community Results		Consensus	Standard De	viation	33.3		Consensus	Standard De	eviation	12.5	
ommuni Results		Maximum			124.3		Maximum			43.8	
C ₀		Minimum			1.9		Minimum			3.8	
		Ν			11		Ν			11	

 Table 17. Data summary table for epigallocatechin in green tea.

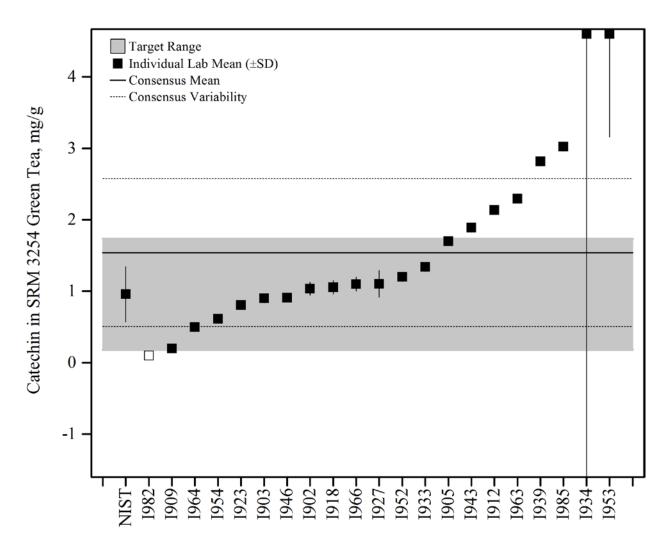
		j		<u>, op 19</u>			techin gallate		tou.			
		SRM 3255 Green Tea Extract (mg/g)						echin gallate SRM 3254 Green Tea (mg/g)				
	Lab	A	B	C	Avg	SD	Α	B	C	Avg	SD	
	NIST			-	409	18			-	49.3	2.1	
	I901											
	1902	409	407	408	408	1	43.3	43.6	44.5	43.8	0.6	
	I903	420	418	422	420	2	58.9	58.1	59.2	58.7	0.6	
	I904											
	I905	458	462	457	459	3	59.6	60.1	60.5	60.1	0.5	
	I906											
	I907											
	I909	358	375	394	376	18	65.2	63.5	64.4	64.4	0.8	
	I911											
	I912	415	420	409	415	5	31.7	36.5	28.1	32.1	4.2	
	I913	56	45	60	54	8	2.7	2.6	2.8	2.7	0.1	
	I914											
	I916											
	I918	424	412	410	416	8	51.9	49.1	47.5	49.5	2.2	
	I921											
	I922											
	I923	373	365	365	368	5	35.9	37.7	33.2	35.6	2.3	
	I926	349	351	354	351	2						
	I927	402	411	408	407	4	34.2	50.1	50.1	44.8	9.2	
	I928 I930	428	426	432	429	3	57.3	54.8	56.3	56.1	1.3	
	1930 1933	404	402	400	402	2	37.1	38.3	37.8	37.7	0.6	
Individual Results	1933 1934	404	402	400	402	2	52.5	52.6	53.6	52.9	0.6	
Res	1938	-07	712	411	711	2	52.5	52.0	55.0	52.7	0.0	
ual	1930	462	464	460	462	2	39.5	40.6	40.2	40.1	0.6	
ivid	I940	437	429	434	434	4	45.5	45.1	46.5	45.7	0.7	
Ind	I943	395	400	399	398	2	49.0	47.5	46.8	47.8	1.1	
	I944					_						
	I946	402	407	407	405	3	41.9	42.1	42.2	42.1	0.2	
	I947											
	I950											
	1952	404	409	421	411	9	48.7	53.1	58.3	53.4	4.8	
	I953	356	367	358	360	6	38.0	42.2	42.1	40.8	2.4	
	I954	438	437	434	436	2	59.5	60.6	59.5	59.9	0.6	
	I956											
	I957											
	I958											
	I963	408	403	399	403	5	45.6	45.5	45.5	45.5	0.1	
	I964	436	433	441	437	4	49.2	46.8	46.1	47.4	1.6	
	I965											
	I966	89	82	78	83	6	54.6	53.4	51.7	53.2	1.5	
	I968	406	406	399	404	4	60.2	59.6	58.5	59.4	0.9	
	I969											
	I970											
	I976											
	I979											
	I982	449	465	463	459	9	66.3	67.5	62.5	65.4	2.6	
	I984											
	I985	463	464	466	464	1	40.3	39.3	38.8	39.4	0.8	
y		Consensus	Mean		409		Consensus Mean			48.3		
Community Results		Consensus	Standard De	viation	39				eviation	11.0		
ommun Results		Maximum			464		Maximum			65.4		
C01 R		Minimum			83	83 Minimum				39.4		
		Ν			13		Ν			13		

 Table 18. Data summary table for epigallocatechin gallate in green tea.

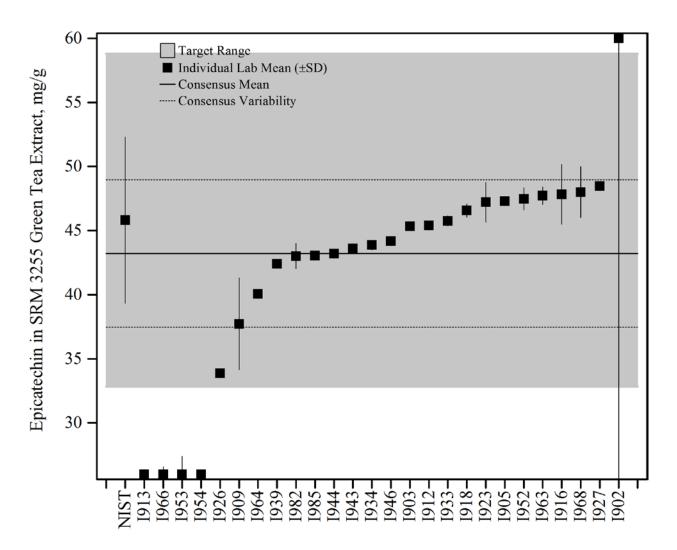
, L	ata sul			л gan	bcatechi		cell tea	•				
		S	RM 3255 G	reen Tes I	Extract (mg/g		SRM 3254 Green Tea (mg/g)					
ſ	Lab	A	B	C		, SD	Α	r	SD			
	NIST	A	D	t	Avg 21.3	1.6	A	В	С	Avg 2.28	1.04	
					21.3	1.0				2.20	1.04	
	I901											
	1902	12.0	10.6	10.5	10.7	0.0	6.57	6.0.1	7.15	6.05	0.00	
	I903	12.9	12.6	12.5	12.7	0.2	6.57	6.84	7.15	6.85	0.29	
	I904	24.2	24.2	24.2	24.2	0.1	1.00	4.10	4.20	4.17	0.06	
	I905	24.3	24.2	24.3	24.3	0.1	4.20	4.10	4.20	4.17	0.06	
	I906											
	I907	11.6		10.0	160		1.12	1.10	1.07	1.10	0.00	
	I909	14.6	17.1	18.8	16.8	2.1	1.13	1.12	1.07	1.10	0.03	
	I911	00.0	100.1	100.4	100.1	0.0	01.15	20.02	20.11	20.54	1.00	
	I912	99.9	100.1	100.4	100.1	0.3	31.15	29.03	29.11	29.76	1.20	
	I913	0.1		0.1	0.1	0.0	0.02	0.02		0.02	0.00	
	I914											
	I916											
	I918	5.9	5.7	5.8	5.8	0.1	0.30	0.26	0.29	0.28	0.02	
	I921											
	I922	10.1		10.0	10.0	0.0	1 = 0		4.00	1.00		
	I923	18.1	19.7	19.3	19.0	0.8	1.78	2.17	1.82	1.92	0.21	
	I926	28.2	20.2	20.1	28.0	0.6	2.14	1.00	4.50	2.90	0.70	
	1927 1928	28.2	29.3	29.1	28.9	0.6	3.14	4.00	4.52	3.89	0.70	
	1928 1930											
	1930 1933	113.7	113.2	115.6	114.2	1.2	17.48	17.07	17.61	17.39	0.28	
Individual Results	I933 I934	22.6	23.3	22.5	22.8	0.4	2.41	2.43	2.61	2.48	0.28	
Res	1938	22.0	23.5	22.0	22.0	0.1	2.11	2.15	2.01	2.10	0.11	
ual	I939											
ivid	I940											
Ind	I943											
	1944											
	I946	26.1	26.4	26.4	26.3	0.2	4.08	4.09	4.07	4.08	0.01	
	I947	20.1	20.1	20.1	20.5	0.2	1.00	1.07	1.07	1.00	0.01	
	1950											
	1950 1952	22.8	22.9	23.6	23.1	0.5	3.72	5.40	3.66	4.26	0.99	
	1952 1953	15.4	24.5	22.2	20.7	4.8	6.13	5.86	6.34	6.11	0.24	
	1955 1954	131.0	131.0	129.0	130.3	1.2	19.40	19.70	19.30	19.47	0.24	
	1954 1956	131.0	131.0	129.0	130.3	1.2	19.40	19.70	19.30	19.47	0.21	
	1950 1957											
	1957											
		29.7	28.0	28.6	29.7	0.2	4.50	4.51	4.46	4.50	0.02	
	I963	28.7	28.9	28.6	28.7	0.2	4.52	4.51	4.46	4.50	0.03	
	I964											
	I965											
	I966	47.0		45.0	40.0		25.50	07.04	20.04	20.07	0.00	
	I968	47.9	55.5	45.9	49.8	5.1	27.78	27.36	29.06	28.07	0.89	
	I969											
	I970											
	I976											
	I979										0.77	
	I982	22.3	23.4	22.9	22.9	0.6	3.30	2.60	2.21	2.70	0.55	
	I984											
	I985											
£⊳		Consensus			26.6		Consensus		5.42 4.99			
lts l			Standard De	viation	16.9			Consensus Standard Deviation				
Community Results		Maximum			130.3	130.3 Maximum				28.07		
°° °°		Minimum			20.7		Minimum			2.70		
		Ν			7		Ν			7		

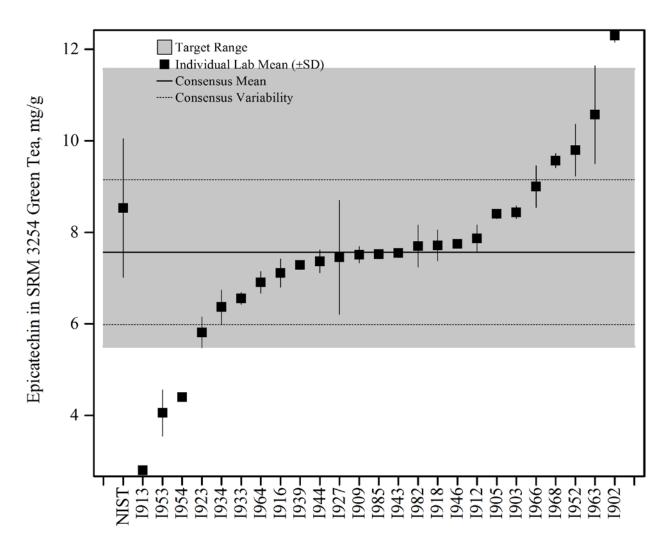

 Table 19. Data summary table for gallocatechin in green tea.

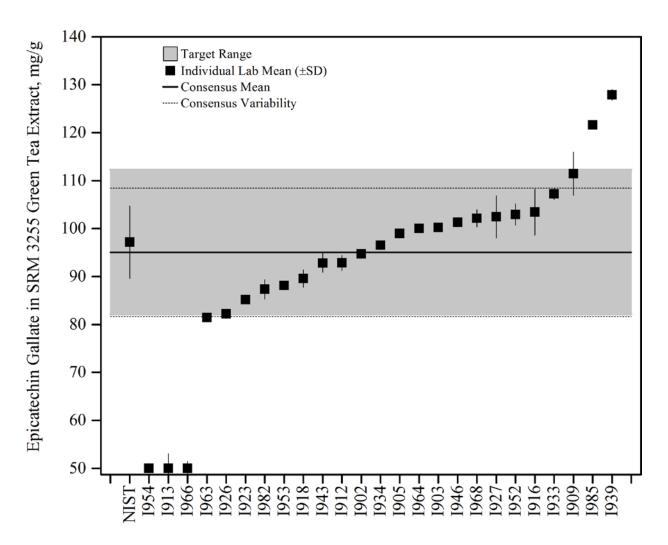
•• -		j		Ji guile	cateenn		echin gallate		•		
		SRM 3255 Green Tea Extract (mg/g)					SRM 3254 Green Tea (mg/g)				
[Lab	Α	В	С	Avg	SD	Α	В	С	Avg	SD
	NIST				37.8	1.9				0.939	0.199
	I901										
	I902	44.8	45.2	46.2	45.4	0.7	1.910	1.840	2.090	1.947	0.129
	I903	42.8	42.8	42.9	42.8	0.1	1.260	1.190	1.160	1.203	0.051
	I904										
	I905	1.4	1.4	1.5	1.4	0.1	0.100	0.100	0.100	0.100	0.000
	I906										
	I907										
	I909	37.7	37.2	49.1	41.3	6.7	1.279	1.303	1.282	1.288	0.013
	I911										
	I912	36.0	36.5	35.2	35.9	0.7					
	I913	7.0	5.5	7.5	6.7	1.0	0.060	0.060	0.060	0.060	0.000
	I914										
	I916	10.0									
	I918	43.0	42.2	42.1	42.4	0.5	1.129	1.163	1.281	1.191	0.080
	I921										
	I922 I923	41.6	41.2	41.1	41.3	0.3	1.120	1.140	1.030	1.097	0.059
	1925 1926	41.0	41.2	41.1	41.3	0.3	1.120	1.140	1.050	1.097	0.059
	1920	101.5	106.1	105.2	104.3	2.5	2.700	2.473	4.277	3.150	0.983
	I928										
	I930										
ts	I933	61.2	52.3	52.6	55.4	5.1	1.310	1.380	1.360	1.350	0.036
esul	I934	53.4	54.2	54.1	53.9	0.4	1.205	1.147	1.266	1.206	0.060
Individual Results	I938										
idu:	I939	39.2	38.6	38.4	38.7	0.4	0.877	0.990	1.044	0.971	0.085
vibr	I940										
7	I943										
	I944										0.040
	I946	55.3	55.3	55.6	55.4	0.2	1.776	1.795	1.785	1.786	0.010
	I947										
	I950	42.4	42.9	42.0	42.0	0.9	2.000	2.020	2.510	2 107	0.272
	1952 1953	42.4 15.8	42.8 16.9	43.9 15.4	43.0	0.8	2.060 0.414	2.020 0.041	2.510 0.381	2.197 0.279	0.272
			47.1	46.6	16.0 47.0	0.8	1.420	1.440			0.206
	1954 1956	47.2	47.1	40.0	47.0	0.5	1.420	1.440	1.370	1.410	0.030
	1950 1957										
	1957										
	1963	57.8	55.3	55.0	56.0	1.5	2.616	2.430	2.560	2.535	0.095
	1964	41.9	41.7	42.6	42.1	0.5	1.040	1.000	0.950	0.997	0.045
	I965			.2.0	.2.1	0.0	1.0.10	1.000	0.700	0.777	0.0.0
	I966										
	I968	52.7	53.0	49.0	51.6	2.2	4.266	4.268	3.085	3.873	0.682
	1960 1969										
	I970										
	I976										
	I979										
	I982	37.1	37.8	38.4	37.7	0.7		0.800		0.800	
	I984										
	I985	35.4	35.7	35.9	35.7	0.2	1.314	1.234	1.116	1.221	0.100
v		Consensus	Mean		43.1		Consensus Mean			1.342	
Community Results		Consensus	Standard De	viation	10.6		Consensus Standard Deviation			0.847	
ommuni Results		Maximum			56.0		Maximum			3.873	
Col R		Minimum			16.0		Minimum 0.27				
		Ν			10		Ν			9	

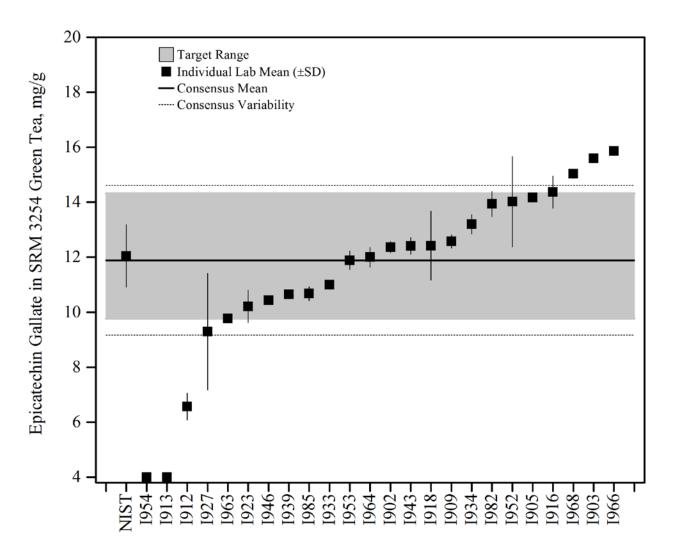

 Table 20. Data summary table for gallocatechin gallate in green tea.

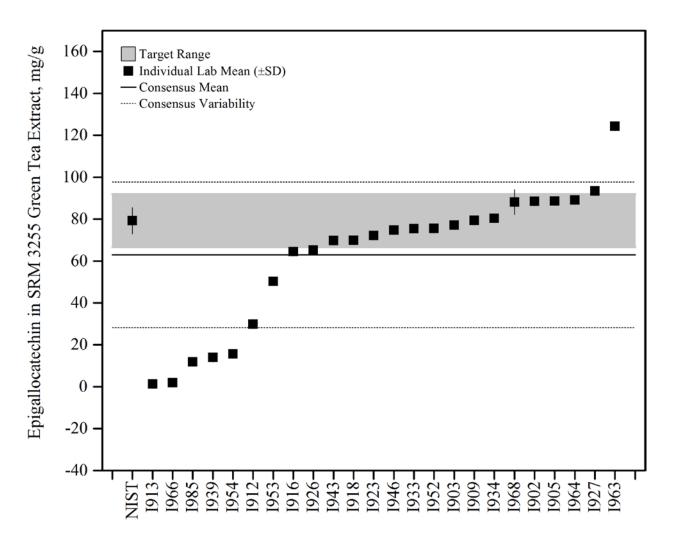
	alu bu				cateein		atechins	а .			
		S	RM 3255 G	reen Tea	Extract (mg/g			SRM 32	ea (mo/o)		
	Lab	A	B	C	Avg	SD	А	B	C	Avg	SD
	NIST		Б	U	699	22		D	e	97.9	5.2
	I901										
	1902	828	825	829	827	2	155.7	156.9	157.6	156.7	1.0
	1903	712	709	715	712	3	120.0	118.0	120.0	119.3	1.2
	1904										
	1905	734	739	732	735	3	117.4	118.5	118.5	118.1	0.6
	1906										
	1907										
	1909	638	659	705	668	34	106.0	106.4	106.8	106.4	0.4
	I911					-					
	I912	733	739	722	731	8	84.8	86.8	77.6	83.1	4.8
	1913	88	70	94	84	13	4.5	4.2	4.6	4.4	0.2
	I914	00	70		0.	10		2			0.2
	I916										
	1918	690	676	674	680	9	101.0	93.6	90.3	95.0	5.5
	1921	0,0	0/0	0/1	000	,	10110	,,,,,	7015	2010	010
	1921										
	1922	645	640	638	641	4	73.9	77.8	68.8	73.5	4.5
	1926	583	586	592	587	4	,5.5	7710	0010	7010	110
	I927	783	807	802	797	13	73.7	104.9	107.2	95.3	18.7
	1928										
	I930										
ts	1933	951	936	937	941	8	156.0	158.7	157.8	157.5	1.4
Individual Results	I934	714	722	72	503	373	100.5	104.0	105.6	103.3	2.6
l Re	I938										
dua	I939	696	697	691	695	3	65.5	66.8	66.4	66.2	0.7
divi	I940										
In	I943	608	619	618	615	6	96.0	92.4	91.2	93.2	2.5
	I944										
	I946	713	720	721	718	4	91.9	92.3	92.2	92.1	0.2
	I947										
	I950										
	I952	701	708	729	713	15	103.7	113.1	118.2	111.7	7.3
	1953	663	687	670	673	13	135.2	143.2	144.6	141.0	5.1
	I954	664	662	657	661	4	90.0	91.6	90.0	90.5	0.9
	I956										
	1957										
	I958										
	I963	753	751	747	750	3	112.2	110.1	109.9	110.7	1.3
	I964	715	710	723	716	7	97.5	92.8	91.1	93.8	3.3
	1965										
	I966										
	I968	755	752	723	743	17	154.9	153.3	151.8	153.3	1.5
	I969										
	1970										
	I976										
	I979										
	I982	649	671	669	663	12	91.4	93.4	85.4	90.1	4.2
	I984										
	1985	684	685	689	686	2	66.9	65.4	64.6	65.7	1.2
		Consensus			694		Consensus Mean			102.0	
nity s			Standard De	viation	73		Consensus Standard Deviation			29.7	
ommuni Results		Maximum			750		Maximum			153.3	
Community Results		Minimum			615						
-		N			11		N			65.7 11	

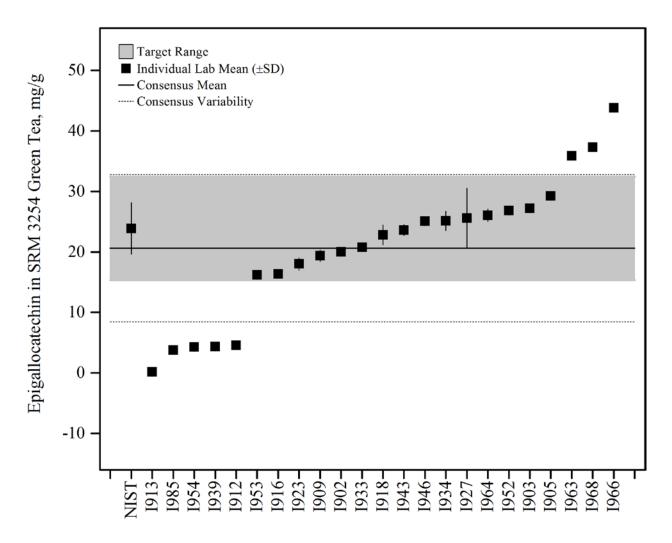

 Table 21. Data summary table for total catechins in green tea.

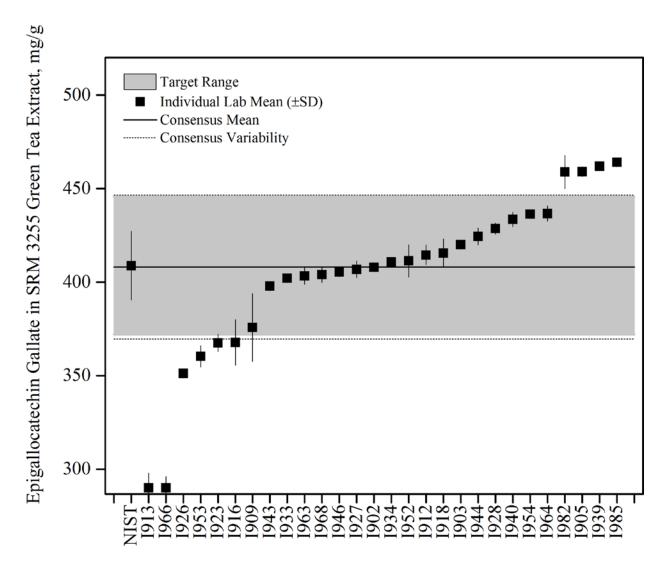

Figure 22. Catechin in SRM 3255 *Camellia sinensis* (Green Tea) Extract (data summary view). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST certified value bounded by twice its uncertainty (U_{95}).

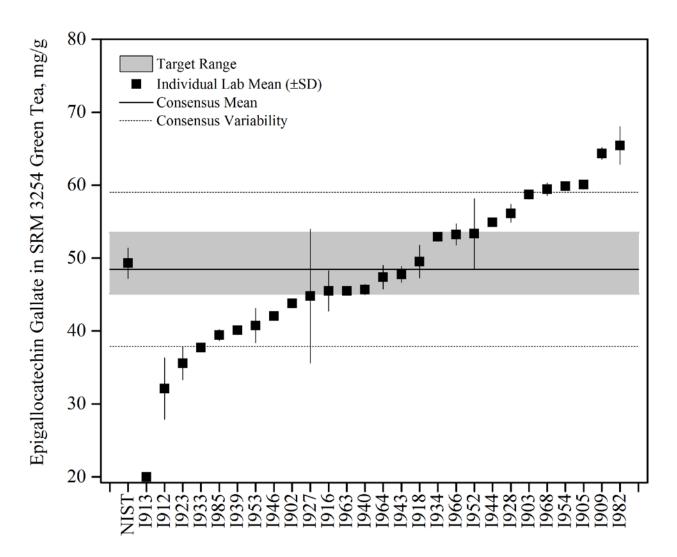

Figure 23. Catechin in SRM 3254 *Camellia sinensis* (Green Tea) (data summary view). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). Data points that are unfilled represent laboratories that only reported a single value for that analyte and therefore were not included in the consensus mean. The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST certified value bounded by twice its uncertainty (U_{95}).

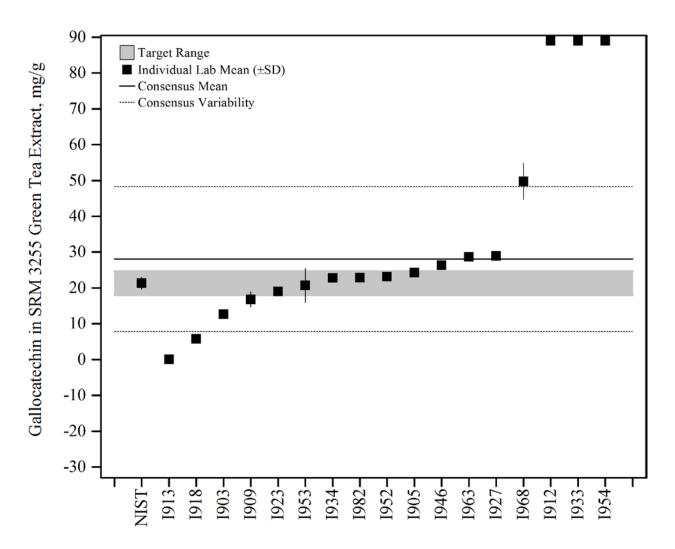

Figure 24. Epicatechin in SRM 3255 *Camellia sinensis* (Green Tea) Extract (data summary view). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST certified value bounded by twice its uncertainty (U_{95}).

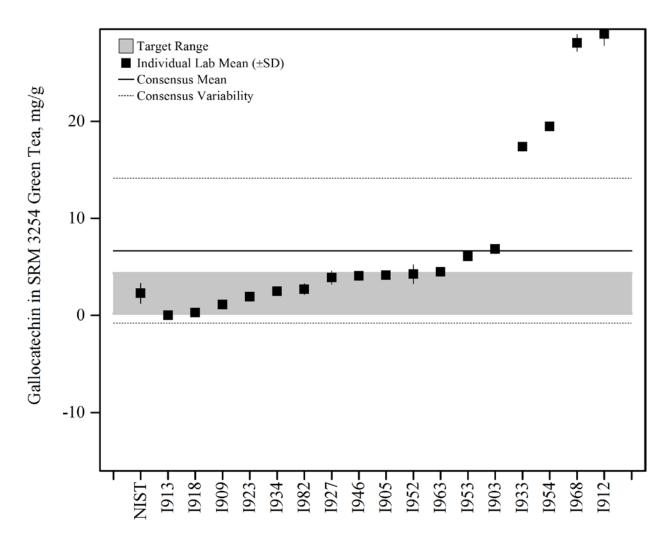

Figure 25. Epicatechin in SRM 3254 *Camellia sinensis* (Green Tea) (data summary view). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST certified value bounded by twice its uncertainty (U_{95}).

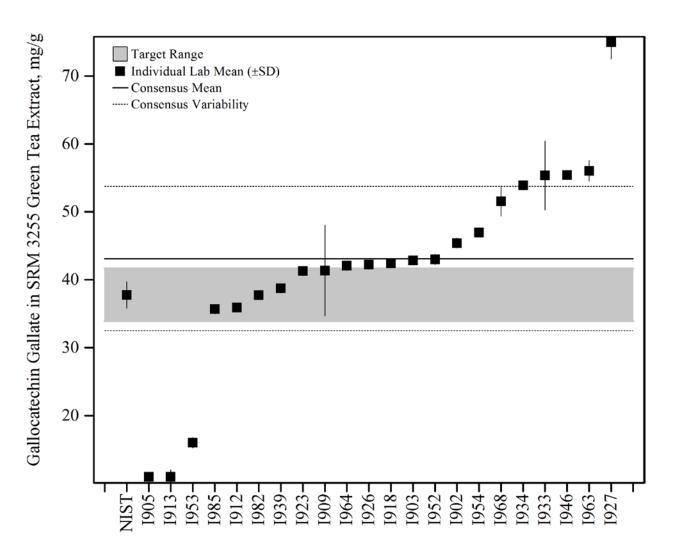

Figure 26. Epicatechin gallate in SRM 3255 *Camellia sinensis* (Green Tea) Extract (data summary view). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST certified value bounded by twice its uncertainty (U_{95}) .

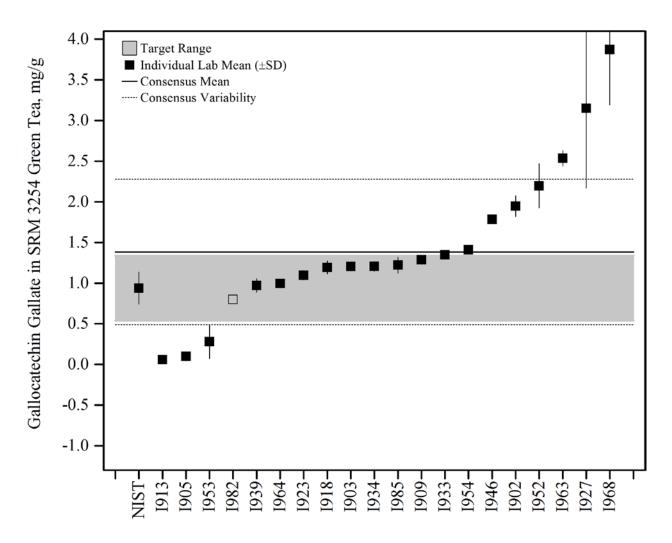

Figure 27. Epicatechin gallate in SRM 3254 *Camellia sinensis* (Green Tea) (data summary view). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST certified value bounded by twice its uncertainty (U_{95}).

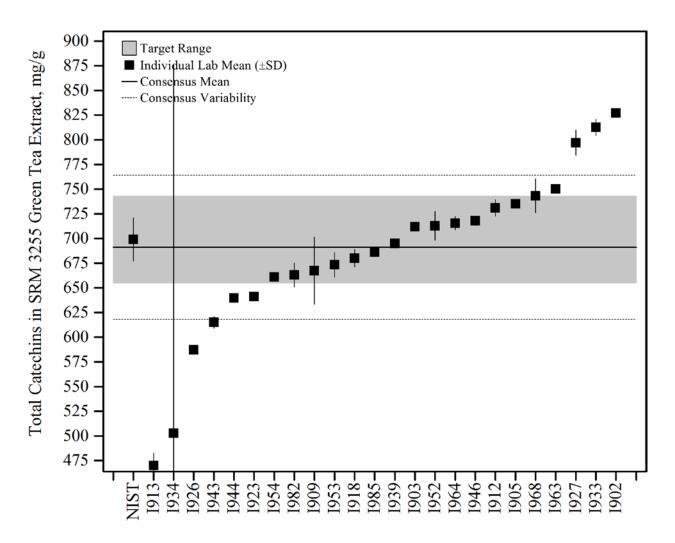

Figure 28. Epigallocatechin in SRM 3255 *Camellia sinensis* (Green Tea) Extract (data summary view). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST certified value bounded by twice its uncertainty (U_{95}).

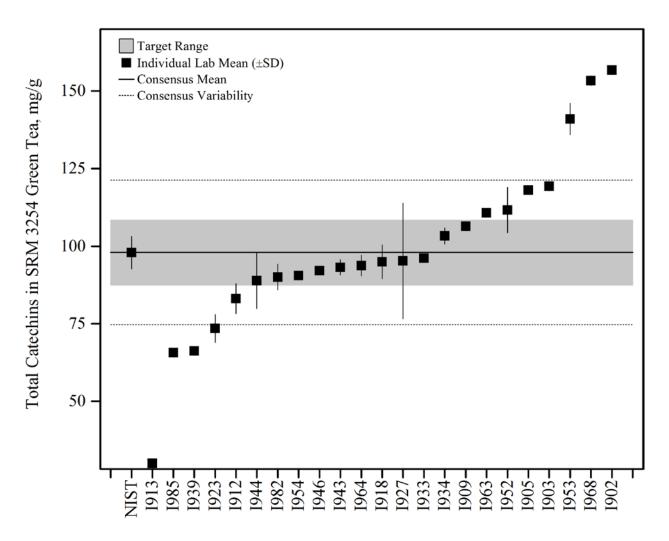

Figure 29. Epigallocatechin in SRM 3254 *Camellia sinensis* (Green Tea) (data summary view). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST certified value bounded by twice its uncertainty (U_{95}).

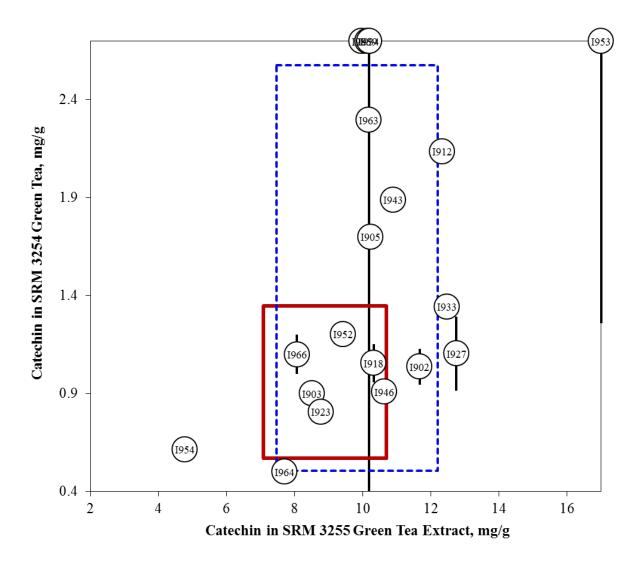

Figure 30. Epigallocatechin gallate in SRM 3255 *Camellia sinensis* (Green Tea) Extract (data summary view). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST certified value bounded by twice its uncertainty (U_{95}) .

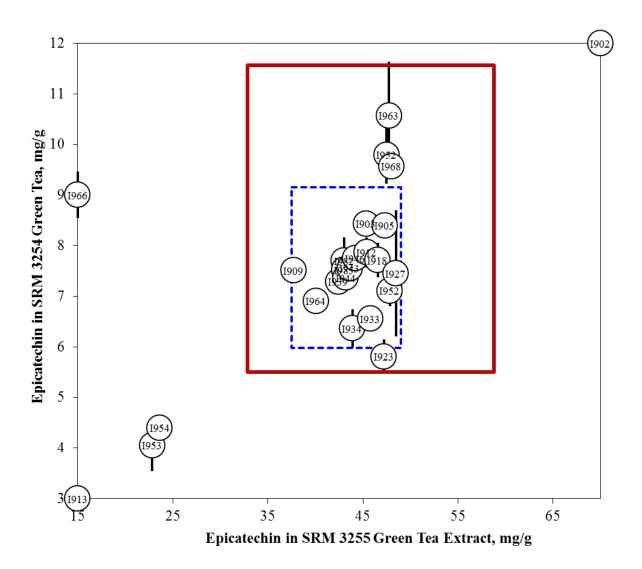

Figure 31. Epigallocatechin gallate in SRM 3254 *Camellia sinensis* (Green Tea) (data summary view). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST certified value bounded by twice its uncertainty (U_{95}).

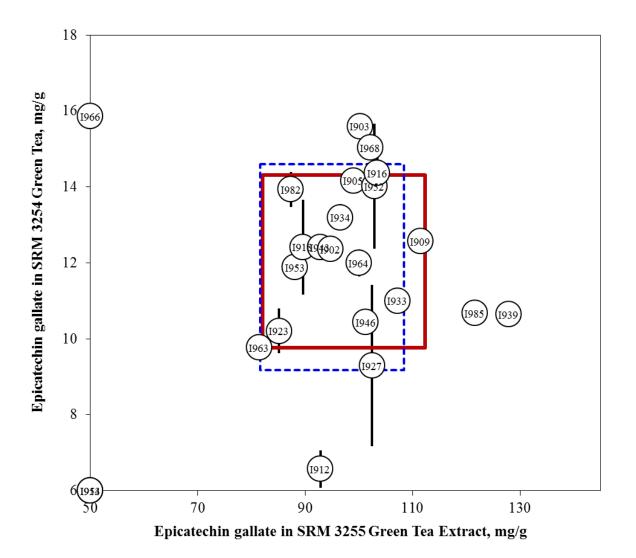

Figure 32. Gallocatechin in SRM 3255 *Camellia sinensis* (Green Tea) Extract (data summary view). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST certified value bounded by twice its uncertainty (U_{95}).

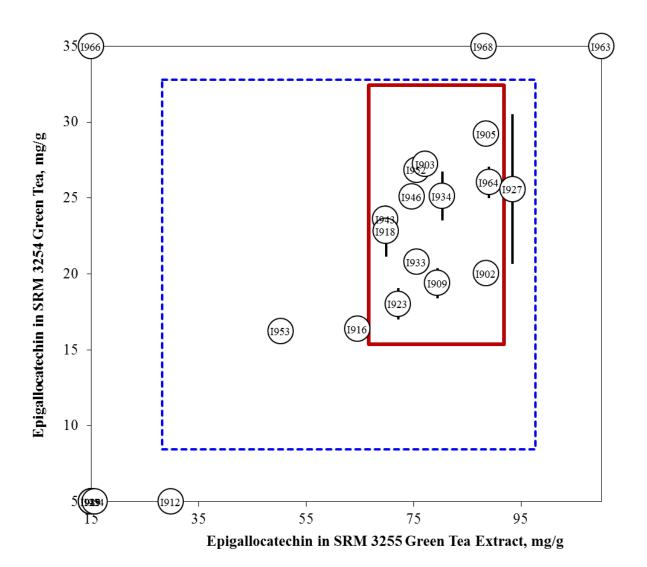

Figure 33. Gallocatechin in SRM 3254 *Camellia sinensis* (Green Tea) (data summary view). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST certified value bounded by twice its uncertainty (U_{95}).

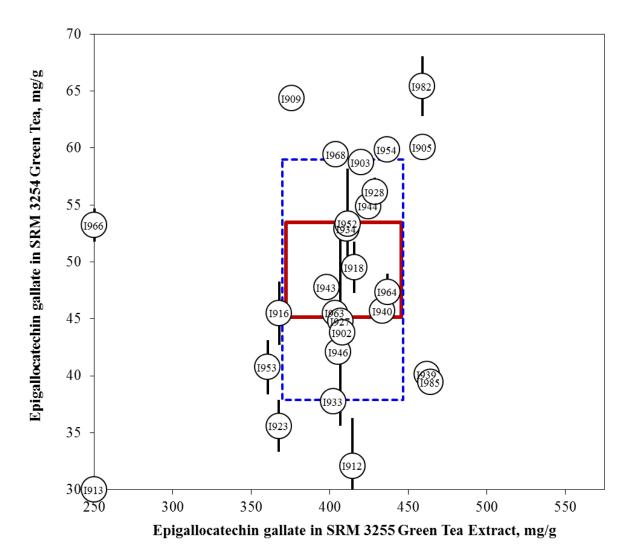

Figure 34. Gallocatechin gallate in SRM 3255 *Camellia sinensis* (Green Tea) Extract (data summary view). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST certified value bounded by twice its uncertainty (U_{95}) .

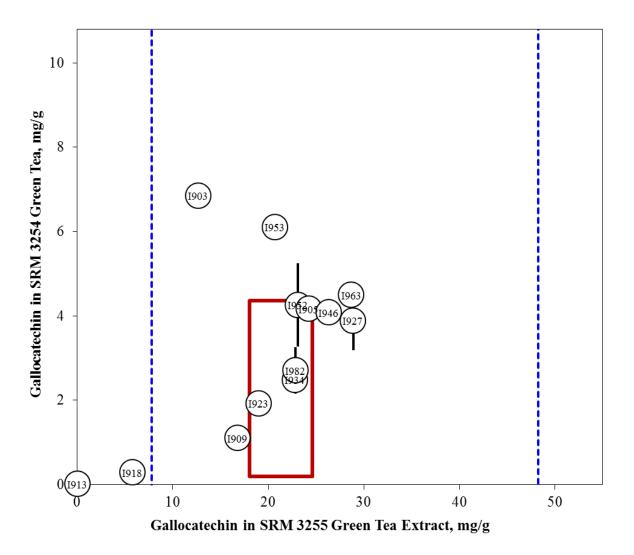

Figure 35. Gallocatechin gallate in SRM 3254 *Camellia sinensis* (Green Tea) (data summary view). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). Data points that are unfilled represent laboratories that only reported a single value for that analyte and therefore were not included in the consensus mean. The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST certified value bounded by twice its uncertainty (U_{95}).

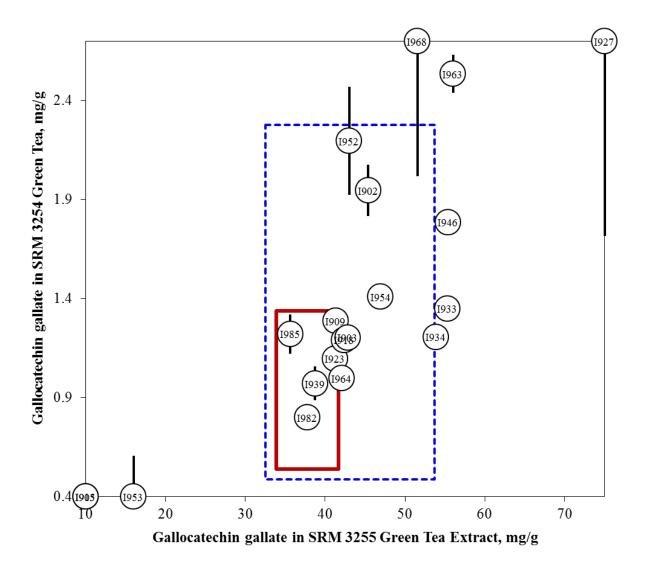

Figure 36. Total catechins in SRM 3255 *Camellia sinensis* (Green Tea) Extract (data summary view). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST certified value bounded by twice its uncertainty (U_{95}).


Figure 37. Total catechins in SRM 3254 *Camellia sinensis* (Green Tea) (data summary view). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST certified value bounded by twice its uncertainty (U_{95}).


Figure 38. Catechin in SRM 3254 *Camellia sinensis* (Green Tea) Leaves and SRM 3255 *Camellia sinensis* (Green Tea) Extract (sample/control comparison view). In this view, the individual laboratory results for the control (SRM 3255 *Camellia sinensis* Extract) with a certified value for the analyte are compared to the results for an unknown (SRM 3254 *Camellia sinensis* Leaves). The error bars represent the individual laboratory standard deviation. The solid red lines represent the target zone for the control (x-axis) and the unknown sample (y-axis). The dotted blue box represents the consensus zone for the control (x-axis) and the unknown sample (y-axis).


Figure 39. Epicatechin in SRM 3254 *Camellia sinensis* (Green Tea) Leaves and SRM 3255 *Camellia sinensis* (Green Tea) Extract (sample/control comparison view). In this view, the individual laboratory results for the control (SRM 3255 *Camellia sinensis* Extract) with a certified value for the analyte are compared to the results for an unknown (SRM 3254 *Camellia sinensis* Leaves). The error bars represent the individual laboratory standard deviation. The solid red lines represent the target zone for the control (x-axis) and the unknown sample (y-axis). The dotted blue box represents the consensus zone for the control (x-axis) and the unknown sample (y-axis).


Figure 40. Epicatechin gallate in SRM 3254 *Camellia sinensis* (Green Tea) Leaves and SRM 3255 *Camellia sinensis* (Green Tea) Extract (sample/control comparison view). In this view, the individual laboratory results for the control (SRM 3255 *Camellia sinensis* Extract) with a certified value for the analyte are compared to the results for an unknown (SRM 3254 *Camellia sinensis* Leaves). The error bars represent the individual laboratory standard deviation. The solid red lines represent the target zone for the control (x-axis) and the unknown sample (y-axis). The dotted blue box represents the consensus zone for the control (x-axis) and the unknown sample (y-axis).


Figure 41. Epigallocatechin in SRM 3254 *Camellia sinensis* (Green Tea) Leaves and SRM 3255 *Camellia sinensis* (Green Tea) Extract (sample/control comparison view). In this view, the individual laboratory results for the control (SRM 3255 *Camellia sinensis* Extract) with a certified value for the analyte are compared to the results for an unknown (SRM 3254 *Camellia sinensis* Leaves). The error bars represent the individual laboratory standard deviation. The solid red lines represent the target zone for the control (x-axis) and the unknown sample (y-axis). The dotted blue box represents the consensus zone for the control (x-axis) and the unknown sample (y-axis).

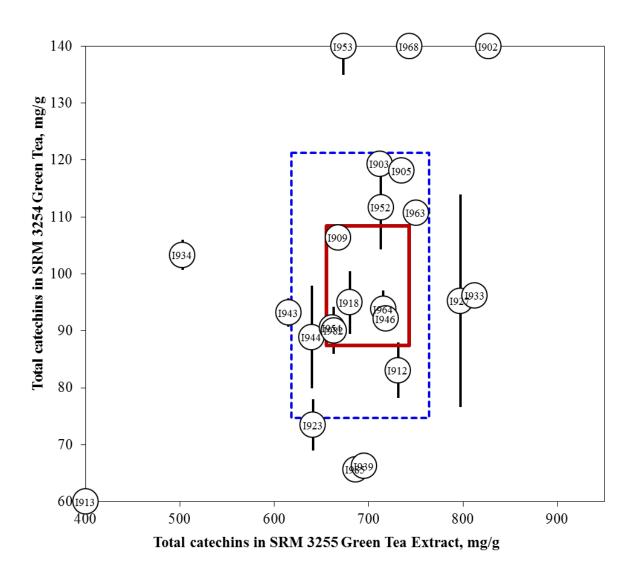

Figure 42. Epigallocatechin gallate in SRM 3254 *Camellia sinensis* (Green Tea) Leaves and SRM 3255 *Camellia sinensis* (Green Tea) Extract (sample/control comparison view). In this view, the individual laboratory results for the control (SRM 3255 *Camellia sinensis* Extract) with a certified value for the analyte are compared to the results for an unknown (SRM 3254 *Camellia sinensis* Leaves). The error bars represent the individual laboratory standard deviation. The solid red lines represent the target zone for the control (x-axis) and the unknown sample (y-axis). The dotted blue box represents the consensus zone for the control (x-axis) and the unknown sample (y-axis).

Figure 43. Gallocatechin in SRM 3254 *Camellia sinensis* (Green Tea) Leaves and SRM 3255 *Camellia sinensis* (Green Tea) Extract (sample/control comparison view). In this view, the individual laboratory results for the control (SRM 3255 *Camellia sinensis* Extract) with a certified value for the analyte are compared to the results for an unknown (SRM 3254 *Camellia sinensis* Leaves). The error bars represent the individual laboratory standard deviation. The solid red lines represent the target zone for the control (x-axis) and the unknown sample (y-axis). The dotted blue box represents the consensus zone for the control (x-axis) and the unknown sample (y-axis).

Figure 44. Gallocatechin gallate in SRM 3254 *Camellia sinensis* (Green Tea) Leaves and SRM 3255 *Camellia sinensis* (Green Tea) Extract (sample/control comparison view). In this view, the individual laboratory results for the control (SRM 3255 *Camellia sinensis* Extract) with a certified value for the analyte are compared to the results for an unknown (SRM 3254 *Camellia sinensis* Leaves). The error bars represent the individual laboratory standard deviation. The solid red lines represent the target zone for the control (x-axis) and the unknown sample (y-axis). The dotted blue box represents the consensus zone for the control (x-axis) and the unknown sample (y-axis).

Figure 45. Total catechins in SRM 3254 *Camellia sinensis* (Green Tea) Leaves and SRM 3255 *Camellia sinensis* (Green Tea) Extract (sample/control comparison view). In this view, the individual laboratory results for the control (SRM 3255 *Camellia sinensis* Extract) with a certified value for the analyte are compared to the results for an unknown (SRM 3254 *Camellia sinensis* Leaves). The error bars represent the individual laboratory standard deviation. The solid red lines represent the target zone for the control (x-axis) and the unknown sample (y-axis). The dotted blue box represents the consensus zone for the control (x-axis) and the unknown sample (y-axis).