
Journal of Object Technology
Published by AITO — Association Internationale pour les Technologies Objets, c© JOT 2011

Online at http://www.jot.fm.

BPMN Profile for Operational
Requirements

Conrad Bocka Raphael Barbaua Anantha Narayanana

a. U.S. National Institute of Standards and Technology
100 Bureau Dr, Stop 8260
Gaithersburg, MD 20899-8260

Abstract An important aspect of systems and products is how they interact
with their environment, including how they are operated. Behaviors
external to systems usually involve people not trained in the details of
how systems are designed and built, but who need to specify or at least
understand the procedures they will be performing. People involved in
external behaviors prefer different languages for specifying and learning
about procedures than languages used by engineers designing the systems
themselves. Significant inefficiency arises when these languages are not
integrated. An emerging trend is for external behaviors to be defined in the
Business Process Model and Notation, especially operational requirements,
while system designs are specified in the Unified Modeling Language, or
extensions to it, such as the Systems Modeling Language. This paper
describes an integration of BPMN and UML as standardized by the Object
Management Group, providing a detailed comparison of what the languages
imply for physical systems and individual people involved in operation,
maintenance, and other activities.

Keywords Process modeling; UML extension; BPMN.

1 Introduction
An important aspect of systems and products is how they interact with their en-
vironment, including how they are operated. For example, operating cars requires
them to be fueled and driven under appropriate conditions. Maintaining cars follows
procedures particular to each kind of car. These behaviors involve entities outside cars,
but are critical to specifying them properly, because car designs must be consistent
with their operation, maintenance, and other interactions with their environment. For
example, some drivers might want to transport more people, which is an operational
behavior that might be accommodated by updates to existing car designs. Changes in
car designs might lead to changes in maintenance procedures, and some designs might
be ruled out because these procedures become too expensive or time-consuming.

Conrad Bock, Raphael Barbau, Anantha Narayanan. BPMN Profile for Operational Requirements. In
Journal of Object Technology, vol. 13, no. 2, 2014, pages 1:1–35. doi:10.5381/jot.2014.13.2.a1

http://www.jot.fm/copyright.html
http://www.jot.fm
http://dx.doi.org/10.5381/jot.2014.13.2.a1
http://dx.doi.org/10.5381/jot.2014.13.2.a1

2 · Conrad Bock, Raphael Barbau, Anantha Narayanan

Behaviors external to systems (external behaviors) usually involve people not
trained in the details of how systems are designed and built, but who need to specify or
at least understand the procedures they will be performing. For example, car drivers
typically are not car designers or engineers, but still expect to perform particular
operational behaviors (operational requirements). Maintenance personnel know more
about car designs, but also are not designers or engineers themselves, and need to
understand maintenance procedures that are consistent with the details of car designs.

People involved in external behaviors prefer different languages for specifying and
learning about procedures than languages used by engineers designing the systems
themselves. Languages for external behaviors are more helpful when they focus on
step-by-step procedures that happen to involve objects, rather than languages focusing
on objects that happen to have behaviors, as in engineering. External behavior
languages are better when they need little training to start using, even if they have
additional depth to be learned over time. This is preferred to languages that require
significant up-front training to use, as in engineering.

Languages for external behavior are used for the same systems as engineering
languages, and this causes significant inefficiency when the languages are not integrated.
Artifacts developed with these languages are part of the same overall system develop-
ment processes, requiring frequent interaction between people using external behavior
languages and engineers using system design languages. This is necessary to ensure
external behaviors and system designs are consistent, as described above. When these
languages are not integrated, comparison and cross-checking of external behaviors and
systems designs is significantly impaired, resulting in errors and confusions leading to
costly rework and ineffective discussions.

Integrating languages for external behavior and system design requires detailed
comparison of what the languages imply for individual systems and people involved
in operation, maintenance, and other activities (language semantics or “meaning”).
In particular, integration identifies when combinations of elements appear different
across the languages, but mean the same thing, and when combinations of elements
appear the same across the languages, but mean different things. Fully integrated
languages enable reliable comparison and cross-checking, because the implications for
physical systems and people are clear regardless of which language is used.

An emerging trend is for external behaviors to be defined in the Business Process
Model and Notation (BPMN) [OMG11b], especially operational requirements, while
system designs are specified in Unified Modeling Language (UML) [OMG11d], or
extensions to it, such as the Systems Modeling Language (SysML) [OMG12b], all
standardized by the Object Management Group (OMG) [DPS+10]. BPMN is the most
widely used modeling standard for enterprise-level processes, including manufacturing
enterprises, and is designed for processes of many kinds, including engineering and
manufacturing processes, despite the name. It provides a readily understandable
notation for subject matter experts, including engineers, and also has a format usable
by computers, enabling automated assistance with process design and implementation.
UML is the most widely used modeling standard for information systems, and its
SysML extension is the most widely used modeling standard for systems engineering.

Other work on integrating BPMN into UML cover only portions of BPMN before
its major upgrade (BPMN 2), do not support round-trip translation, do not give
access to complete formal transformations, and either do not address collaborating
BPMN processes, or translate them incorrectly into UML when they do. The effort
with widest coverage of BPMN concerns only common workflow patterns in the first

Journal of Object Technology, vol. 13, no. 2, 2014

http://dx.doi.org/10.5381/jot.2014.13.2.a1

BPMN Profile for Operational Requirements · 3

version of BPMN, before it had a standard computable format, does not provide
formal transformations or support for collaborating processes, and does not define a
UML extension for BPMN needed for round-trip translation [Whi04]. Other efforts
covering narrower portions of BPMN describe only some of the formal transformations
and do not provide access to the complete set, and are based on the first version of
BPMN [KV06][MR09][AFD10]. The first of these defines a UML extension for BPMN,
but does not describe the transformation to it, while the other two do not extend
UML, preventing them from supporting round-trip translation. The second of these
describes some translations of BPMN elements that require multiple UML elements,
while the other two only cover one-to-one translations.

This paper describes an integration of BPMN 2 into UML developed by the authors
and adopted as a standard by OMG [OMG13e], to facilitate the use of BPMN notation
with UML-based languages, such as SysML. It uses OMG’s mechanisms for extending
UML (profiles and transforms), covering most of them in the paper, with the rest
available electronically. Section 2 reviews the architecture of BPMN, UML, and the
integration presented in the paper. Sections 3 and 4 cover modeling of procedures and
interactions between them, respectively, Section 5 outlines transforms between BPMN
and the profiled UML, and Section 6 summarizes the paper. Section headings use
BPMN terminology.

2 OMG Language Architecture and Integration
BPMN and UML are primarily graphical languages, but also have textual formats
for automated processing and interchange between modeling tools. Both forms have
rules about how they must be constructed (language syntax), and are ways of seeing
these languages on computer screens or in files (concrete syntax). To keep graphical
and textual syntax consistent, BPMN and UML are defined in a way that does not
depend on how they appear on computer screens or in files (using abstract syntax), as
illustrated in Figure 1 [Boc03]. These various kinds of syntaxes give the “grammars”
of BPMN and UML. Graphical concrete syntax is designed for people (typically called
“notation”), textual concrete syntax is designed for information systems (typically called
“interchange format”), and abstract syntax is designed for keeping these consistent
(typically called “metamodel”).1 Modeling tools present graphics to users following
the rules of notation, generate text files following the rules of interchange formats, and
keep these consistent with metamodels.

Graphical
concrete
syntax

<?xml version="1.0" encoding="ISO-8859-1">
<definitions id="_1276276713398">
 <message id="_1276276713758"/>
 <process isExecutable="false" id="_6">
 <startEvent name="Order received">
 <outgoing>_6-139</outgoing>
 </startEvent>
 <task completionQuantity="1" >
 <incoming>_6-139</incoming>
 <outgoing>_6-141</outgoing>
 </task>
 <sequenceFlow sourceRef="_6-117" />
 <sequenceFlow sourceRef="_6-117" />
 </process>
</definitions>

Textual
concrete syntax

Abstract
Syntax

Figure 1 – Syntax

1Some graphical modeling languages have human-readable concrete textual syntaxes [ISO04,
OMG13a]

Journal of Object Technology, vol. 13, no. 2, 2014

http://dx.doi.org/10.5381/jot.2014.13.2.a1

4 · Conrad Bock, Raphael Barbau, Anantha Narayanan

BPMN and UML are designed for ease of use, employing syntactic shorthands
to express complicated procedures in simple ways. These shorthands are defined
by explaining in “long hand” what the shorthands imply for procedures as they are
actually carried out (language semantics, see Section 1). The explanation starts with
abstract syntax, as illustrated in Figure 2, to ensure graphical and textual concrete
syntaxes are given the same meaning. Then the procedures that could be carried
out according to models using the syntax are described informally or semi-formally,
enabling implementers to see how the models should be interpreted.

Abstract
Syntax

Semantics

Actual
Systems

Figure 2 – Semantics

BPMN and UML were developed in parallel with significant communication between
the communities involved. They overlap in modeling:

• Step-by-step procedures, where information and objects are passed between steps
(BPMN processes and UML activities).

• Interactions between procedures or entities performing procedures (collabora-
tions).

BPMN and UML have similarities and differences in syntax and semantics for
the areas above, and the profile and transforms described in this paper address the
differences as follows:

• BPMN or UML concrete graphical syntax notation can be used, but not both in
the same diagram. Modelers defining external system behaviors will typically
use BPMN, while modelers defining systems internals will typically use UML,
see Section 1. UML has a standard notation for showing extensions in profiled
models.

• UML semantics is extended in profiled models to be equivalent to BPMN
semantics when combined with transforms between BPMN and UML. Equivalent
semantics ensures that external system behaviors following BPMN process or
collaboration diagrams will be carried out the same way whether the diagrams
are captured using the BPMN metamodel or the profiled UML metamodel, as
illustrated in Figure 3.

The profile and transforms do not change BPMN notation, metamodel, or semantics,
and only change the notation, metamodel, and semantics of UML models when the
extension is applied, not to all UML models.

Journal of Object Technology, vol. 13, no. 2, 2014

http://dx.doi.org/10.5381/jot.2014.13.2.a1

BPMN Profile for Operational Requirements · 5

BPMN 2 Concrete Syntax UML semantics
extended /constrained

for BPMN

BPMN
 Semantics

BPMN 2
Abstract Syntax

UML Abstract Syntax
and BPMN Profile

Actual
Systems

Figure 3 – Equivalent Semantics

BPMN and UML also have areas that do not overlap:

• UML supports detailed modeling of structure (UML class and internal structure),
while BPMN does not.

• BPMN and UML support detailed modeling of the time order of interactions
between entities without specifying their internal procedures (BPMN choreogra-
phies and UML interactions), but their syntaxes are very different.

The first area above is addressed in the profile because it extends UML for BPMN
in the context of structure modeling capabilities of UML. The second area is not
addressed in the profile.

Within the architecture above, languages can be integrated in at least two ways:

1. Extend the syntax and semantics of one language to accommodate another.

2. Transform models following the syntax of one language into the syntax of another.

The integration described in this paper uses both approaches above. It extends UML
abstract syntax to accommodate BPMN concrete graphical syntax (via UML profiles),
and defines transforms between models expressed in the syntaxes of BPMN and the
extended UML. UML profiles are a technique for extending the UML metamodel by
expanding or restricting UML abstract syntax and semantics as needed, see below in
this section. Transforms are specifications of how to take models following the abstract
or concrete textual syntax of one language and generate models following the abstract
or concrete textual syntax of another. The transforms described in this paper operate
in both directions between models following BPMN and profiled UML syntaxes.

The primary constructs in using profiles to extend UML are stereotypes, which

1. Add capabilities. For example, BPMN supports the capability to specify whether
steps appearing in procedures might happen when the process is carried out,
whereas UML does not. To align with BPMN, stereotypes in the profile add this
capability when they are applied to UML models.

2. Constrain usage. For example, steps in UML procedures can start just by having
their inputs available, whereas BPMN steps also require other steps or events to
occur. To align with BPMN, stereotypes in the profile establish this constraint
when they are applied to UML models.

Journal of Object Technology, vol. 13, no. 2, 2014

http://dx.doi.org/10.5381/jot.2014.13.2.a1

6 · Conrad Bock, Raphael Barbau, Anantha Narayanan

3. Make distinctions. For example, BPMN distinguishes between many kinds
of events that procedures notice and cause, whereas UML has more general
categories. To align with BPMN, stereotypes in the profile are introduced to
make these distinctions when applied to UML models.

Stereotypes identify elements in the UML metamodel they are extending (base
elements, which are always metaclasses). Figure 4 shows the notation for extensions
in the three examples above. The stereotype on the left is for procedures in BPMN
(BPMNProcess), extending the element for procedures in UML (Activity). It adds
the capability to specify whether additional steps might occur when UML activities
are carried out that interact with other activities and are not specified in the model
(isClosed), to align with BPMN. The stereotype in the middle is for steps in BPMN
(Activity), extending the element for steps in UML (Action). It constrains actions to
start after other actions or events occur, not just when inputs are available, to align with
BPMN. The stereotypes on the right are for the kinds of events that procedures can
notice and bring about in BPMN (Event Definition and its specializations), extending
the corresponding element in UML (Event). These stereotypes are introduced to make
distinctions between various kinds of events, to align with BPMN.

Figure 4 – Stereotypes

3 Processes
Procedure models in general determine when each step should start and what its
inputs are [Boc99]. BPMN and UML follow traditional approaches by initiating steps
according to when others finish (Sections 3.2 and 3.4), when inputs are available
(Section 3.3), and when procedures receive things or when particular conditions come
about (Section 3.5). BPMN and UML relate procedures and steps to other elements
in an overall system, such as external stakeholders or system components (Section 3.6).
BPMN and UML also distinguish procedures that specify detailed steps from those
that do not, and between models of procedures from carrying out those procedures at
particular times (Section 3.1).

3.1 Processes and Global Tasks
BPMN and UML distinguish between procedures that specify steps to be taken in
carrying them out (BPMN processes and UML activities) and procedures that are just
given names with no further detail (BPMN global tasks and UML opaque behaviors).
BPMN and UML call these callable elements and behaviors, respectively. Figure 5
shows how the profile models these correspondences. BPMN identifies various kinds
of global tasks, depending on their intended usage (manual global tasks performed
by people, script global tasks performed by computational procedures, business rule

Journal of Object Technology, vol. 13, no. 2, 2014

http://dx.doi.org/10.5381/jot.2014.13.2.a1

BPMN Profile for Operational Requirements · 7

global tasks performed by computational rules, and user global tasks defined by the
modeler). The profile introduces stereotypes extending UML opaque behaviors to
distinguish the various kinds of global tasks.

Figure 5 – UML Extension for BPMN Processes and Global Tasks

BPMN and UML distinguish between models of procedures (processes and ac-
tivities) and procedures as they are carried out at any particular time (instances of
processes and global tasks, of activities and opaque behaviors). Procedure models can
be carried out multiple times, each with potentially different start and end times, and
involving different things. For example, a procedure for building a car in a factory is
carried out many times on different days, involving different cars, parts, and materials.
Activities (and all UML behaviors) are special forms of the primary UML element for
specifying instances (classes), as shown at the top of Figure 5. Each time a procedure
is carried out (each process instance), if it is carried out in a way that follows the
model, such as which step comes before which other (see Section 3.2), then the process
instance is valid, otherwise it is invalid.

See Section 4 for other aspects of BPMN processes.

3.2 Activities and Sequence Flows
The steps specified by BPMN processes and UML activities are called activities and
actions, respectively. The order in which they occur is specified by links from earlier
steps to later ones (BPMN sequence flows and UML control flows), as illustrated in
Figure 6. BPMN and UML have the almost the same notation in this example and
both indicate that the first step finishes before the second begins. Figure 7 shows how
the profile models these correspondences between BPMN and UML (see below about
immediate sequence flows).

Activity 2Activity 1

Action 2Action 1

BPMN

UML

Figure 6 – BPMN activities and sequence flows, UML actions and control flows

Journal of Object Technology, vol. 13, no. 2, 2014

http://dx.doi.org/10.5381/jot.2014.13.2.a1

8 · Conrad Bock, Raphael Barbau, Anantha Narayanan

Figure 7 – UML extension for BPMN activities and sequence flows

Sequence and control flows indicate the order in which activities and actions should
occur, respectively, but not the amount of time between them. For example, the
second step in Figure 6 might need to wait for other inputs before starting, such as
particular data or objects. Even if the step does not need to wait for other input, the
flow from the first step does not specify whether there is any delay or not between
finishing the first step and starting the second.

BPMN and UML distinguish between steps that

• specify further substeps to take and those that do not.

• use separate definitions of what they should do.

These give four combinations, as shown in Table 1. BPMN has a different notation
for the two aspects above, and combines them to give four notations, while UML
uses the same notation when there are no substeps, regardless of whether they are
defined separately. BPMN and UML can show substeps expanded within a procedure,
regardless of whether they are defined separately (the table omits these for brevity,
except for UML on the upper right, which is the only notation it provides in this
case). Figure 8 shows how the profile models these correspondences between BPMN
and UML (see below about activity classes). BPMN identifies various kinds of tasks,
depending on their intended usage, as it does for global tasks, see Section 3.1.

Separately
defined

Not separately
defined

Substeps

BPMN call activities and UML call
behavior actions using separately defined

processes and activities, respectively.

BPMN subprocesses and UML
structured activity nodes (a kind of

action).

No
substeps

BPMN call activities and UML call
behavior actions using separately defined

global tasks and opaque behaviors,
respectively.

BPMN tasks and
UML opaque actions.

Calling
separate
process

Suprocess
defined in
process

Calling
separate

global task

BPMN UML

Calling
separate
activity

BPMN UML

BPMN UML

Calling
opaque
behavior

Task
defined in
process

BPMN UML

Action
defined

in activity

Substep
2

Substep
1

Table 1 – BPMN and UML step refinement

Journal of Object Technology, vol. 13, no. 2, 2014

http://dx.doi.org/10.5381/jot.2014.13.2.a1

BPMN Profile for Operational Requirements · 9

Figure 8 – UML extension for BPMN call activities, subprocesses, and tasks

BPMN distinguishes models of activities from activities as they are carried out
at any particular time (instances of activities). Activities in process models can be
carried out multiple times, each with potentially different start and end times, and
involving different things. For example, an activity in a process model for building
a car in a factory might specify painting the car. This activity is carried out many
times on different days, involving different cars, and different paint. Each instance of
the painting activity occurs in an instance of the process for building cars (see Section
3.1 about process instances). The profile supports this on the stereotype for activities
using classes, the UML element for specifying instances (activityClass in Figure 8, see
Section 3.1 about UML classes). Each time an action with the Activity stereotype
applied is carried out, an instance of the corresponding class is created, providing
semantics equivalent to BPMN’s.

BPMN supports an option to specify whether activities not appearing in process
diagrams may happen during sequence flows when the processes are carried out
(isImmediate, see Section 3.1 about carrying out processes). In Figure 6 if the modeler
indicates the sequence flow is immediate, then no other activities can happen between
the first and second steps when the process is carried out, otherwise other activities can
happen even though they are not specified in the diagram. This is useful for partially
specified processes, such as process diagrams for review outside the organization
performing them, see Section 4. Despite the name, immediate sequence flows do not
specify whether there is a delay between activities or not. The profile supports this
option on the stereotype for sequence flows (IsImmediate in Figure 7), with an effect
equivalent to BPMN on actions taken when activities are carried out.

See Section 4 for other aspects of BPMN activities in general, Section 3.5 for other
aspects of BPMN subprocesses in particular, and Section 3.4 for more about steps
with multiple flows coming into them.

3.3 Data
Steps in BPMN and UML procedures can accept inputs that were output from other
steps or that were inputs to the procedure containing the step, and procedures can
provide outputs that were outputs of steps they contain. Passing outputs and inputs
is specified by links (BPMN data associations and UML object flows) from and to

Journal of Object Technology, vol. 13, no. 2, 2014

http://dx.doi.org/10.5381/jot.2014.13.2.a1

10 · Conrad Bock, Raphael Barbau, Anantha Narayanan

elements indicating the kind of things being provided and accepted (BPMN data
objects and UML object nodes), as illustrated in Figure 9. The arrows have an input
or output at one end, rather than steps at both ends, indicating they are about things
flowing, rather than order of steps (see Section 3.2). Despite the terms “data” and
“object”, BPMN and UML support specification of informational and physical inputs
and outputs.

Special kinds of elements are used for inputs and output of procedures, as compared
to between steps. The top of Figure 9 has a BPMN data input for the process on the
left, data output on the right, and data object in the middle. Data inputs and outputs
of actions are not shown in BPMN diagrams even though they exist in the underlying
model. This means the data object in the middle is neither a data input nor data
output, but acts as a buffer for flow between activities. The bottom of Figure 9 has
an input UML activity parameter node for the activity on the left, an object node in
the middle, and an output activity parameter node on the right. Input and output
pins for actions can be shown as small rectangles on actions, but are omitted in the
figure to align with BPMN. The object node in the middle is a data store node, which
is a kind of object node that is neither input or output, to align with BPMN.

Activity 1

Output of
Activity 1

Input to
Activity 1 Action 1 Action 2

Output of
Action 1,
Input to
Action 2

Process 1

BPMN

UML

Input to
Process 1

Output of
Process 1

Output of
Activity 1,
Input to

Activity 2

Activity 1 Activity 2

Figure 9 – BPMN and UML inputs and outputs

BPMN and UML specify the kinds of things that are input and output by referring
to descriptions of them defined separately from procedures and steps (BPMN item
definitions and UML types). BPMN processes and activities use the same elements to
identify which kinds of things are inputs and which are outputs (data inputs and data
outputs), while UML uses different ones (parameters on opaque behaviors, activity
parameter nodes referring to parameters on activities, and input pins and output pins
on actions). BPMN and UML call these item aware elements and typed elements
respectively. Figure 10 shows how the profile models these correspondences between
BPMN and UML, as well as those in Figure 9. UML classes are kind of type, and are
used for structural as well as behavioral modeling, because structural elements have
instances also (see Section 3.1 about UML classes and instances). For example, when
a process model for building a car in a factory is carried out, each process instance
will take different part instances as input to its assembly steps. BPMN has specialized
data associations for inputs and outputs that are omitted from Figure 10 for brevity.

Journal of Object Technology, vol. 13, no. 2, 2014

http://dx.doi.org/10.5381/jot.2014.13.2.a1

BPMN Profile for Operational Requirements · 11

Figure 10 – UML extension for BPMN inputs and outputs

3.4 Gateways
The order in which steps occur in BPMN and UML procedures can be specified in
more detail using BPMN gateways and UML control nodes. A step (BPMN activity
or UML action) can:

• be followed by

– multiple other steps at the same time (BPMN parallel gateway and UML
fork node), as in the left column of Table 2 (steps are at the open ends of
the arrows, not shown for brevity).

– one other step among multiple possible steps, based on conditions (BPMN
exclusive gateway and UML decision node), as in the middle column of
Table 2.

– some steps among multiple possible steps, based on conditions (BPMN
inclusive gateway and UML fork node with conditions), as in the right
column of Table 2.

Followed by
multiple

Followed by one
among multiple

Followed by some
or all among multiple

BPMN

Parallel Exclusive Inclusive

UML

Fork Decision Fork

condition 1

condition 2

[condition 1]

[condition 2]

condition 1

condition 2

[condition 1]

[condition 2]

Table 2 – BPMN diverging gateways and UML control nodes

Journal of Object Technology, vol. 13, no. 2, 2014

http://dx.doi.org/10.5381/jot.2014.13.2.a1

12 · Conrad Bock, Raphael Barbau, Anantha Narayanan

• follow multiple other steps causing

– one execution of the step (BPMN parallel gateway and UML join node),
as in the left column of Table 3.

– one execution of the step under modeler-specified conditions (BPMN com-
plex gateway and UML join node with join specification), as in the middle
column of Table 3.

– multiple executions of the step (BPMN exclusive gateway and UML merge
node), as in the right column of Table 3.

Single
execution

Single execution
under condition

Multiple
executions

BPMN

Parallel Complex Exclusive

UML

Join Join Merge

condition 1

condition 2

condition

{ joinSpec =
 condition }

Table 3 – BPMN converging gateways and UML control nodes

Figure 11 shows how the profile models these correspondences between BPMN and
UML.

Figure 11 – UML extension for BPMN gateways

Multiple flows coming into the same step have different effects in BPMN and UML,
equivalent to using different gateways and control nodes. Multiple sequence flows into
the same BPMN activity typically cause the activity to be executed multiple times,
once for each sequence flow, as if an exclusive gateway were used. Multiple control
flows into the same UML action cause the action to be executed once, after all actions
on the other ends of the control flows are finished, as if a join were used. To align
BPMN and UML semantics, BPMN and profiled UML models are transformed into
each other as illustrated in Figure 12. Multiple sequence flows coming into the same

Journal of Object Technology, vol. 13, no. 2, 2014

http://dx.doi.org/10.5381/jot.2014.13.2.a1

BPMN Profile for Operational Requirements · 13

activity (on the top left of the figure) is equivalent to multiple control flows coming
into a UML merge node, followed by another control flow to an action (on the bottom
left). The merge node provides semantics equivalent to the BPMN model on top left
by starting the action once for each incoming control flow. Similarly, multiple control
flows coming into the same action (on the lower right of the figure) is equivalent to
multiple sequence flows coming into a BPMN parallel gateway, followed by another
sequence flow to an activity (on the top right). The parallel gateway provides semantics
equivalent to the UML model on bottom right by starting the activity once when all
control flows arrive.

Activity 1 BPMN

UML Action 1 Action 1

Activity 1

Figure 12 – Transforms for multiple flows into activities and actions

3.5 Events
BPMN and UML procedures can detect when something arrives for them or when
particular conditions come about, and can send things to other procedures or cause
conditions to come about. These capabilities require special kinds of steps (“event
steps”) that ask if things have arrived or conditions have come about (BPMN catch
events and UML accept event actions, or UML control nodes in some cases), and
send things to other procedures or to themselves and cause conditions to come about
that other procedures notice (BPMN throw events and UML call operation actions).
Procedures cannot notice that things arrive or conditions come about unless they have
event steps specific to those things or conditions.

The simplest BPMN events and UML control nodes are those for the beginning of
a series of steps (BPMN start events, a kind of catch event, and UML initial nodes)
and those for the end (BPMN end events, a kind of throw event, and UML flow final
nodes), as shown by the circular symbols in Figure 13 on the left and right, respectively.
End events and flow final nodes only indicate the end of a series of steps, rather than
the entire procedure. End events can be augmented to do more than this, see below.

Activity 2 Activity 1

Action 2 Action 1

BPMN

UML

Figure 13 – BPMN start and end events, UML initial and flow final nodes

More complicated BPMN events and UML accept event actions refer to elements
defined separately from the procedures, to enable multiple procedures to refer to the
same kind of arrival or condition (BPMN event definitions and UML events, detected
by catch events and accept event actions referring to them, respectively). BPMN uses

Journal of Object Technology, vol. 13, no. 2, 2014

http://dx.doi.org/10.5381/jot.2014.13.2.a1

14 · Conrad Bock, Raphael Barbau, Anantha Narayanan

these same definitions to send things to other procedures and cause conditions to come
about that other procedures notice (throw events), whereas the profile uses calls to
operations having these effects, which are noticed by accept event actions referring
to events identifying calls to the operation being detected (call events), except for
terminating activities, see below.

Event steps that do more than indicate the beginning and end of a series of steps
include those that:

• Stop procedures in which they occur (BPMN terminate event definitions and
UML activity final nodes, which are kinds of control nodes, see Section 3.4),
as shown by the notations in Figure 14. These kinds of events and control
nodes in BPMN subprocesses and UML structured activity nodes only stop
the subprocesses or structured activity node they are in, rather than the entire
process or activity. There are no corresponding event steps in BPMN or UML
to detect when procedures are stopped this way (compare to detecting errors,
see below).

Activity 2

Action 2

BPMN

UML

Figure 14 – BPMN termination end event and UML activity final node

• Notify the caller of procedures about situations that might need some special
response (BPMN error and escalation event definitions and UML operations
corresponding to these, detected by accept event actions for their call events),
as shown by the notations in Figure 15. Modeler-defined objects are sent with
the BPMN events, including error and escalation codes if needed, and passed to
the corresponding UML operations. If the caller is not concerned with the event
(does not have a step asking for it), then the notification goes to the caller of the
caller, and so on. For error events, procedures that are not concerned with the
event are stopped. In Figure 15, the procedure will continue after the escalation
to the second step, but will stop completely after the error at the end, even if
other steps are happening concurrently. When these kinds of events occur in
BPMN subprocesses, or operations are called in UML structured activity nodes,
they first notify the entire process or activity rather than their caller, and for
errors stop the subprocesses or structured activity node containing them.

BPMN

UML
(extended)

Activity 1

Action 1
«startEvent»

Figure 15 – BPMN escalation and error events, UML call operations

Journal of Object Technology, vol. 13, no. 2, 2014

http://dx.doi.org/10.5381/jot.2014.13.2.a1

BPMN Profile for Operational Requirements · 15

• Specify conditions that might come about, including timing (BPMN conditional
and timer event definitions and UML change events). These can be used in the
middle of a procedure to wait for conditions to come about. For example, Figure
16 shows a procedure that waits for a particular time or elapsed time after the
first step and before the second, and waits for a particular condition after the
second step and before the third.

Activity 2 Activity 1 BPMN

UML Action 1 Action 2
Call
Error

Operation

Call
Escalation
Operation

Figure 16 – BPMN timer and condition events, UML accept time and change event actions

• Start procedures and subprocesses based on arrivals or conditions coming about
(BPMN start events with event definitions and extended UML accept event
actions detecting call events or change events). For example, Figure 17 shows
a procedure that starts at a particular time. The profile supports this with
extended semantics in the Process stereotype (see Section 3.1) that instantiates
activities when an event is detected by an accept event action with StartEvent
applied. Start events can be used this way to start subprocesses in a process
already being carried out, with an option to stop the rest of the procedure
when this happens. The profile supports this with extended semantics in the
SubProcess stereotype (see Section 3.1) that terminates the rest of the activity if
this option is chosen.

Activity 2 Activity1

Action 2 Action 1

BPMN

UML

Activity 3

Action 3
Accept
Change
Event

Figure 17 – BPMN start event with event definition, UML extended accept event action

• Send and receive things from other procedures, see Section 4.

Figure 18, Figure 19, and Figure 20 show how the profile models these corre-
spondences between BPMN and UML. Figure 18 is for elements within the flow of
procedures, while Figure 19 and Figure 20 are for the elements referred to outside pro-
cedures and sharable between them (boundary events and the extending UML accept
event actions for BPMN start events are described below). BPMN conditional event
definitions and UML change events refer to model-defined expressions of conditions.
For BPMN timer event definitions, the expression in UML change events is predefined
by the profile to be “BPMNTimerEvent” to indicate that the semantics aligns with
BPMN’s by detecting the arrival of a particular time with the timeDate property, the
passing of a particular amount of time with the timeDuration property, and the arrival
of a recurring time with the timeCycle property, whichever has a value.

Journal of Object Technology, vol. 13, no. 2, 2014

http://dx.doi.org/10.5381/jot.2014.13.2.a1

16 · Conrad Bock, Raphael Barbau, Anantha Narayanan

Figure 18 – UML extension for BPMN events

Figure 19 – UML call event extensions for BPMN event definition

Figure 20 – UML change event extensions for BPMN event definition

BPMN and UML procedures can detect arrivals and conditions while particular
steps are occurring, with BPMN providing a compact notation for doing this during a
single activity (boundary events), as shown at the top of Figure 21. When the process
starts the activity, it also begins waiting for the error to occur and the condition to
come about, but only for as long as the activity is happening. If the error occurs
during that time before the timing condition comes about, the activity is stopped and
the process continues along the sequence flow going out of the error. If the timing
condition comes about before the error occurs, the activity continues, while the process
also continues along the sequence flow going out of the timer. If neither event occurs

Journal of Object Technology, vol. 13, no. 2, 2014

http://dx.doi.org/10.5381/jot.2014.13.2.a1

BPMN Profile for Operational Requirements · 17

during the activity, the procedure stops waiting for the events, and continues along the
sequence flow going out of the activity as usual, not along either of the other sequence
flows. This is equivalent to the UML construction shown at the bottom of Figure
21. The action is surrounded by a rounded, dashed rectangle (interruptible region),
with accept event actions for the error and timing condition, and control flows exiting
the region, some shown as zigzag lines (interrupting edges). The interrupting region
starts the accept event actions when the step is started, and the interrupting edges
stop the actions in the region when they are traversed. The timer does not have an
interrupting edge going out of it because it does not stop the action when it comes
about. This construction provides semantics equivalent to the BPMN model on the
top.

Activity 1

BPMN UML

Action 1

Accept
Call Error
Operation

Figure 21 – UML transform for BPMN boundary events

BPMN and UML procedures can take different steps depending on what things
arrive for them or which conditions come about, with BPMN providing an expanded
graphical notation for this (BPMN event-based gateways), as shown at the top of
Figure 22. When the process reaches the gateway, it begins waiting for the events after
it to occur, in this case, two conditions, one being a timer. When one of the events
occurs, the procedure stops waiting for the others, and continues along the sequence
flow going out of the error that occurred. This is equivalent to the UML construction
shown at the bottom of Figure 22. The accept event actions are in an interruptible
region, with a fork starting them all at once. The condition to come about stops the
other action, providing semantics equivalent to the BPMN model on the top. Figure
23 shows how the profile adds an additional stereotype to Figure 11 for event-based
gateways.

Accept
Change
Event

BPMN UML

Figure 22 – Transform for BPMN event-based gateways and UML interruptible regions

Journal of Object Technology, vol. 13, no. 2, 2014

http://dx.doi.org/10.5381/jot.2014.13.2.a1

18 · Conrad Bock, Raphael Barbau, Anantha Narayanan

Figure 23 – UML extension for BPMN event-based gateways

3.6 Lanes and Resources
Steps in BPMN and UML can be grouped according to relationships with other
elements, such as resources needed to perform the steps. Diagrams are divided into
rectangular sections (BPMN lanes and UML activity partitions), indicating steps
inside each rectangle have the same relationship to some other element the modeler
chooses. Figure 24 shows an example of steps grouped into lanes and partitions.
Diagrams can have multiple top-level groups, for example, showing the performers
and locations of performance with horizontal and vertical rectangles (BPMN lane sets
and UML dimensions). Figure 25 shows how the profile models these correspondences
between BPMN and UML. BPMN uses a metaclass for lane sets, whereas UML uses a
metaproperty for dimensions, which has a value of true in the profile for top-level lane
sets.

Action 2

Action 1 Action 3

P
ar

tit
io

n
1

P
ar

tit
io

n
2

D
im

en
si

on
 1

Activity 2

Activity 1 Activity 3

La
ne

 S
et

 1

La
ne

 1

La
ne

 2

BPMN

UML

Figure 24 – BPMN lanes and lane sets, UML activity partitions

Figure 25 – UML extension for BPMN lanes and lane sets

Journal of Object Technology, vol. 13, no. 2, 2014

http://dx.doi.org/10.5381/jot.2014.13.2.a1

BPMN Profile for Operational Requirements · 19

The relationships between process elements in a lane and other parts of the model
are often based on resources used by the process elements. BPMN has a kind of
item definition for resources and supports specification of roles they play in processes,
global tasks, and activities (resources and resource roles, respectively). These are
supported by the profile as shown in Figure 26. Item definitions are an extension of
UML classes (see Section 3.3 about item definitions), and classes can specify elements
that have different values in each instance (properties, a kind of UML typed element,
see Section 3.3 about typed elements and classes as types). Processes and global tasks
in the profile are indirect extensions of classes (see Section 3.1), while activities in the
profile are used with classes (see Section 3.2 about activity classes), enabling them to
have properties, including resource role properties, as well as values in their instances.
Lanes can divide activities according to the expected values of resource role properties,
as specified by their types or default values. BPMN and the profile support a kind of
resource role specifically for those performing processes, global tasks, and activities.

Figure 26 – UML extension for BPMN resources and resource roles

3.7 Loop Characteristics
BPMN and UML have elements for repeated performance of the same step without
using flows that cycle back to the same step (BPMN loop characteristics and UML
loop nodes and expansion regions). BPMN and UML support this in two ways, the first
for sequential execution (BPMN standard loop characteristics and UML loop node),
and the second for parallel execution and other capabilities (BPMN multi-instance
loop characteristics and UML expansion regions). BPMN loop characteristics apply
to a single step, adding repetition semantics to that step, whereas UML loop nodes
and expansion regions are structured activity nodes containing separate actions to
be repeated. The profile supports this by transformation, as shown in Figure 27
(only multi-instance loop characteristics are shown because UML loop nodes do not
have notation). Expansion regions support BPMN’s capability to repeat the steps in
multi-instance loops on each element of a collection. The expansion region is inside
a structured activity node along with an accept event action and activity final node
(see Section 3.5), to support BPMN’s capability to stop multi-instance loops when
some condition comes about. BPMN multi-instance loops can also throw events under
certain conditions each time an activity finishes being repeated (implicit events). The
profile supports this by transformation, with additional actions and control nodes in
the expansion region after the action being repeated. Figure 27 shows the case of
multiple possible conditions and events after each repetition. Multi-instance loops
and expansion regions have the option to repeat their steps in parallel, notated as in
Figure 27, or sequentially (notated in BPMN as a marker with horizontal lines and in
UML with the «iterative» keyword). Figure 28 shows how the profile models these
correspondences between BPMN and UML.

Journal of Object Technology, vol. 13, no. 2, 2014

http://dx.doi.org/10.5381/jot.2014.13.2.a1

20 · Conrad Bock, Raphael Barbau, Anantha Narayanan

Activity 1 BPMN

UML

Action 1

Accept
Change
Event

«parallel»

[condition 1]

[condition 2]

Call
Implicit Event

Operation

Call
Implicit Event

Operation

Figure 27 – BPMN loop characteristics and UML expansion regions

Figure 28 – UML extension for BPMN loop characteristics

4 Collaborations
4.1 Participants, Messages, and Message Flows
BPMN and UML collaborations specify the roles played by procedures involved in
collaborations (BPMN participants and UML collaboration roles), as shown in Figure
29. BPMN collaborations specify message flows sent between participants, while
the profile extends UML information flows to have equivalent semantics to BPMN’s
(BPMN and UML support exchange of physical things, despite the names of these
elements). Message flows and information flows refer to elements defined separately
from collaborations to specify the kind of things exchanged (BPMN messages and
UML information items). This enables exchanges to send the same kind of thing
between participants, possibly in multiple collaborations. Figure 30 shows how the
profile models these correspondences between BPMN and UML. Messages are specified
by a kind of item definition (see Section 3.3 about item definitions), because they are
just things that happen to be sent as messages. See below about closed collaborations,
and Sections 4.3 and 4.4 about BPMN participants as extensions of UML properties.

Journal of Object Technology, vol. 13, no. 2, 2014

http://dx.doi.org/10.5381/jot.2014.13.2.a1

BPMN Profile for Operational Requirements · 21

BPMN

UML
(extended)

Participant 1 Participant 2
 Message 1

Message 2

Collaboration
Role 1

 «messageFlow»
 Information Item 1

Collaboration 1

«messageFlow»
Information Item 2

Collaboration
Role 2

Figure 29 – BPMN and extended UML collaborations

Figure 30 – UML extension for BPMN collaborations

BPMN supports an option to specify whether messages not appearing in col-
laboration diagrams may happen when the collaborations are carried out (closed
collaborations). In Figure 29, if the modeler indicates the collaboration is closed, then
only the two messages shown can flow between the participants when the collaboration
is carried out, otherwise other messages can flow even though they are not specified
in the diagram. This is useful for participants that want to review and approve
interactions before collaborations are carried out. The profile supports this option on
the stereotype for collaborations (isClosed in Figure 30), with an effect equivalent to
BPMN on information items flowing when collaborations are carried out. See Section
4.5 for more about closed collaborations.

4.2 Conversations
BPMN and UML manage complicated exchanges between participants by grouping
them together, as shown in Figure 31 (BPMN call conversations and UML collaboration
uses). The two exchanges in Figure 29 are grouped into a single element in between
the participants. The messages in Figure 31 are defined in a separate collaboration
(not shown for brevity) that is called or used in the original collaboration, by analogy
with call activities and call behavior actions, see Section 3.2. BPMN distinguishes
collaborations that specify participants and message flows from collaborations that
are just given names with no further detail (global conversations), while UML does
not (the profile extends UML for this, see below).

Journal of Object Technology, vol. 13, no. 2, 2014

http://dx.doi.org/10.5381/jot.2014.13.2.a1

22 · Conrad Bock, Raphael Barbau, Anantha Narayanan

Separately
defined

Not separately
defined

Sub-
exchanges

BPMN call conversations and UML
collaboration uses using separately

defined collaborations.

BPMN subconversations and
extended UML information flows.

No sub-
exchanges

BPMN call conversations and UML
collaboration uses using separately

defined global conversations.

BPMN conversations and extended
UML information flows.

BPMN UML BPMN UML

BPMN UML BPMN UML

 «subconversation»

 «conversation»

Table 4 – BPMN and UML collaboration refinement

 BPMN

UML

Participant 1 Participant 2

Collaboration
Role 1

Collaboration
Role 2

Collaboration 1

Collaboration
Use 1

Call Conversation1

Figure 31 – BPMN call conversations and UML collaboration

BPMN supports other kinds of conversations that do not require separately defined
collaborations, by analogy with subprocesses and tasks in processes (subconversions
and conversations), whereas UML does not. The profile supports the other BPMN
conversations as extensions of information flows. With the previous option to have
detail within a collaboration or not, this gives four combinations, as shown in Table
4, by analogy with the activity combinations in procedures, see Table 1 in Section
3.2. BPMN supports the visual expansion of conversations into their message flows,
whereas UML does not. The profile supports this with extended information flows
(see Section 4.1).

Figure 32 shows how the profile models these correspondences between BPMN
and UML. The profile extends information flows for all conversations, including
call conversations, to simplify the model. It also extends information flows and
collaborations to identify the message flows and conversations within them, respectively.
Global conversations are modeled as a special kind of collaboration that has no
participants or message flows, as it is in BPMN by analogy with global tasks.

Journal of Object Technology, vol. 13, no. 2, 2014

http://dx.doi.org/10.5381/jot.2014.13.2.a1

BPMN Profile for Operational Requirements · 23

Figure 32 – UML extension for BPMN conversations

4.3 Collaborations with Procedures
BPMN activities can be shown in collaborations to specify the order and conditions
for flows between processes, using activities and events that send and receive messages
(send and receive tasks, and throw and catch events with message event definitions),
as in Figure 33. The two message flows in Figure 29 of Section 4.1 follow the order
of the send and receive tasks and message events in the processes of the participants.
UML concrete syntax does not support showing activities in collaborations, but its
abstract syntax does through collaboration roles played by activities, and this is enough
to support the integration described in this paper (see Section 2 about syntax and
integration). Collaboration roles in UML are properties of collaborations, which can
specify that the values of the properties are instances of activities (activity instances
playing roles in collaborations, see Section 3.6 about properties and their values, and
Section 3.2 about activity instances). The profile supports message flows between
activities through information flows (see Section 4.1), which can link any model
elements, including actions in activities playing different roles in collaborations.

CollabProcessEg

Activity 1 Activity 2

P
ar

tic
ip

an
t 1

BPMN

 Receive
Task 2

Activity 3 Activity 4

P
ar

tic
ip

an
t 2

 M

es
sa

ge
 2

M
es

sa
ge

 1

Send
Task 1

Catch Message 1
Event

Throw Message 2
Event

Figure 33 – BPMN collaboration with processes

BPMN conversations can be used in collaborations showing processes, as shown in
Figure 34. The two message flows in Figure 33 are grouped into one conversation, as
in Figure 31, but with links to the send and receive tasks at the ends of the message
flows. Multiple conversations can be used between participants to show that the
grouped exchanges are for different purposes. The profile supports this with extended

Journal of Object Technology, vol. 13, no. 2, 2014

http://dx.doi.org/10.5381/jot.2014.13.2.a1

24 · Conrad Bock, Raphael Barbau, Anantha Narayanan

information flows (see Section 4.2), to identify message flows within conversations,
including message flows between actions.

ConvProcessEg

Activity 1 Activity 2

P
ar

tic
ip

an
t 1

BPMN

 Receive
Task 2

P
ar

tic
ip

an
t 2

Send
Task 1

Activity 3 Activity 4
Catch Message 1

Event
Throw Message 2

Event

Figure 34 – BPMN collaboration with processes and conversations

Figure 35 shows how the profile models the correspondences between BPMN send
and receive tasks, message event definitions, and UML actions. Send and receive tasks
are based on the same UML elements as throw and catch events in Figure 18 of Section
3.5, because send and receive tasks use messages to specify the kind of thing being
sent or received, similarly to the message sent and received by events with message
event definitions.

Figure 35 – UML extension for BPMN send and receive tasks and message event defini-
tions

4.4 Partner Roles and Partner Entities
Sometimes roles in collaborations are played by those responsible for the procedures,
such as organizations or people performing or supervising the procedures, rather than
being played by procedures directly. BPMN and UML collaborations can specify which
kinds of things are responsible for the procedures (BPMN partner roles and UML
classes) or can specify particular individuals or organizations, such as a particular
company or person (BPMN partner entities and UML instance specifications). BPMN
and UML do not notationally distinguish these ways of specifying participants and
roles, but capture them in their underlying models, see Figure 36. The profile supports
participants specifying partner roles as the kinds of things that can be values of the
collaboration role properties (play the roles, see Section 4.3 about participants as
extensions of UML properties, and compare to activities laying collaboration roles).
Participants specifying partner entities are supported through instance specifications
as default values of the collaboration role properties.

Journal of Object Technology, vol. 13, no. 2, 2014

http://dx.doi.org/10.5381/jot.2014.13.2.a1

BPMN Profile for Operational Requirements · 25

Figure 36 – UML extension for BPMN partner roles and partner entities

4.5 Public and Private Processes
BPMN distinguishes process models that are available to everyone (public) from
process models that are only available inside organizations carrying them out (private,
see Section 3.1 about carrying out processes). Public process models usually omit
proprietary elements, and often only show activities and events that exchange messages
outside the organization. Private process models include proprietary elements, as well
as public activities and events. Carrying out private processes will make organizations
appear from the outside as if they were carrying out the corresponding public processes.
The top of Figure 37 shows a process model that could be a public version of the one
carried out by the first participant in Figure 29 in Section 4.1. The bottom of Figure
37 shows another process model that could be private for the public one at the top.
Carrying out this private process will have the same external effect as carrying out
the public one, because messages are sent and received in the same order and under
the same conditions. The profile supports the distinction between public and private
process models on the stereotype for processes (see processType in Figure 38 below).

 Receive
Task 2

Send
Task 1

Activity 1
Catch Message 1

Event

Throw Message 2
Event

Activity 2

Activity 3

Public

Private

Figure 37 – BPMN public and private processes

BPMN modelers can indicate when private process models are intended to appear
from the outside as public process models (supports). BPMN does not have a notation
for this, but has abstract syntax. When one process model supports others, all the
instances valid for the process model are also valid for the others (see Section 3.1 about
valid process instances). UML has a construct for linking activities that indicates all
valid instances of one activity are valid instances of another (generalization), which is
equivalent semantics to BPMN’s.

Figure 38 shows how the profile models the correspondences for public, private, and
closed process models. The profile does not have a stereotype for process model support
because BPMN does not have a metaclass for it. It is covered by the transforms.

Journal of Object Technology, vol. 13, no. 2, 2014

http://dx.doi.org/10.5381/jot.2014.13.2.a1

26 · Conrad Bock, Raphael Barbau, Anantha Narayanan

Figure 38 – UML extension for BPMN public, private, and closed processes

4.6 Correlation
BPMN supports management of messages when a participant carries out multiple
process instances at the same time (correlation, see Section 3.1 about process in-
stances). Participants must route messages to the particular process instances that
are interacting, based on content of the messages (correlation keys). For example, in
Figure 33 of Section 4.3, the first participant might be carrying out multiple instances
of its process, each sending out its own version of the first message, such as ordering
particular parts. When the second participant replies, the second message should go
(correlate) to same process instance which sent the first message, rather than other
instances being carried out. The first participant identifies the correct process instance
from correlation keys in the second message.

Correlation keys are groups of elements (correlation properties) that are given
particular values in each message. For example, a correlation key in the first message
in Figure 33 might have a property for an order number, which is unique to each
process instance in the first participant. The second participant includes this key in
the second message, and the first participant uses it to identify the process instance
that should receive the message. Correlation keys must be shared between messages,
because they are used to correlate replies to the original sending process instances.

The profile supports correlation with the stereotypes shown in Figure 39. Classes
are extended for correlation keys, using UML properties for correlation properties
(see Section 3.1 about UML classes and instances, Section 3.6 about classes and
properties). The stereotype for correlation keys is used by those for collaborations and
conversations to specify keys for all the messages flowing in particular collaborations
or conversations, respectively.

Figure 39 – UML extension for BPMN correlation

Journal of Object Technology, vol. 13, no. 2, 2014

http://dx.doi.org/10.5381/jot.2014.13.2.a1

BPMN Profile for Operational Requirements · 27

5 Transforms
The integration of BPMN and UML described in this paper includes transforms
between models following the syntax of BPMN and models following the syntax of
profiled UML (see Section 2). The transforms cover areas of integration that profiles
cannot support, in particular, where BPMN or UML have equivalent semantics, but
use combinations of elements that do not match one-to-one, such as the ones in Figure
12 of Section 3.4. Transforms achieve equivalent semantics by adapting models rather
than the semantics of the languages involved.

The transforms in the integration operate on BPMN and profiled UML models
following abstract and textual concrete syntaxes (see Section 2). Transforms between
models following abstract syntaxes have the benefit of being independent of textual
concrete syntax, avoiding the complications of textual grammars, but require additional
mappings between abstract syntax and textual concrete syntax to produce interchange-
able files (mapping from abstract to concrete textual syntax is not addressed in this
paper). Transforms between textual concrete syntaxes enable translation of models
without mappings from abstract syntax, but are tied to particular textual grammars.

The languages used for the two kinds of transforms reflect the syntaxes of the
models they operate on:

• Abstract syntax transforms are expressed in the Query / View / Transformation
Relational language (QVT-R) [OMG11c], an OMG specification for transforms
between metamodels specified in the Meta-Object Facility [OMG13c], a subset
of UML for specifying OMG metamodels, such as BPMN and UML.

• Concrete textual syntax transforms are expressed as eXtensible Stylesheet Lan-
guage Transformations (XSLT) [W3C99], which operate on text files expressed in
the eXtensible Markup Language (XML) [W3C08]. BPMN and UML interchange
files are expressed in XML, but they use XML differently. BPMN’s interchange
files must conform to its XML Schema (BPMN XSD) [W3C12, OMG10b],
while UML’s interchange files must conform to OMG’s XML Model Inter-
change specification (XMI) when applied to the UML metamodels (UML XMI)
[OMG13d, OMG11e].2

The integration includes transformations expressed in both QVT-R and XSLT
because QVT-R provides more compact, readable transform specifications, but does
not currently have tool support for carrying out the transforms automatically, while
XSLT has tool support, but is verbose and difficult to read. This is due in part to
QVT-R’s transforms in each direction being very similar to each other, while XSLT
requires very different transforms for each direction. QVT-R is more declarative and
consequently more compact, but more difficult for tools to support, whereas XSLT
is imperative, but verbose and easier for tools to support. QVT has an imperative
variant that some tools support, but also has the same readability disadvantages as
XSLT, and is not used in the integration.

Section 5.1 describes example abstract syntax transforms between BPMN and
profiled UML using QVT-R, while Section 5.2 covers concrete syntax transforms using
XSLT (the complete transforms are available at [OMG13e]).

2BPMN has an XMI interchange format, but is not used in the integration.

Journal of Object Technology, vol. 13, no. 2, 2014

http://dx.doi.org/10.5381/jot.2014.13.2.a1

28 · Conrad Bock, Raphael Barbau, Anantha Narayanan

5.1 QVT-R Transforms
Transforms expressed in QVT-R consist of relations that map between model elements
expressed in BPMN and UML. Each relation specifies an element to match in a BPMN
or UML model, a new element to create in a new UML or BPMN model, values for
attributes in the new elements, and other relations that hold on the new element.
Each relation also specifies conditions and other relations that must hold before the
relation is applied.

QVT-R specifications designate one relation as the first used during the transfor-
mation (top relation). In Listing 1 the top relation transforms from BPMN definitions
to UML packages. It calls two other relations, which happen to have mutually exclu-
sive conditions. The first of these is defined in Listing 1 (DefinitionsToPackage).
It matches BPMN definitions, and creates a corresponding package in the UML
model. The relation is applied only in the case when the matching BPMN Defi-
nition has no extensions in it. This condition is in the when clause, expressed in
OMG’s Object Constraint Language [OMG12a]. The other relation called from the
top (DefinitionsToProfile, definition not shown) is only applied when the BPMN
Definition has extensions, and creates a corresponding profile in the UML model. The
rest of the relations from BPMN to UML cascade from the two relations called from
the top, because the other model elements are contained in definitions and packages.
top relation TopDefinitionsToPackage
{ checkonly domain bpmn _definitions : Definitions { }
enforce domain uml _package : uml::Package { }
where { DefinitionsToPackage(_definitions, _package);
DefinitionsToProfile(_definitions, _package);
}

}

relation DefinitionsToPackage
//map Definitions to Package if no Extensions are present
{ checkonly domain bpmn _definitions : Definitions {

name = _name : String,
rootElement = _re : RootElement{ },
extensions = _extensionsSet : Set(Extension) };

enforce domain uml _package : uml::Package {
name = _name,
packageableElement = _pe : PackageableElement{ },
profileApplication = _profileApplication : uml::ProfileAppication {
appliedProfile = bpmnprofile } };

//apply stereotype
enforce domain uml _umlDefinition : bpmnprofile::Definition {
base_Package = _package };

where { RootElementToPackageableElement(_re, _pe); }
when { _extensionSet->size() = 0;}

}

Listing 1 – Example QVT-R transform from BPMN to profiled UML

The relation in Listing 2 maps BPMN Send Tasks to UML Call Operation Actions.
When a Send Task is matched in the input BPMN model, a new Call Operation
Action is created in the output UML model. If a BPMN Operation is referenced,
a corresponding Operation is created in the UML model, and attached to the Call
Operation Action. The where clause in the rule ensures that the appropriate stereotype
is attached to the referenced operation.

Journal of Object Technology, vol. 13, no. 2, 2014

http://dx.doi.org/10.5381/jot.2014.13.2.a1

BPMN Profile for Operational Requirements · 29

relation SendTaskToCallOperationAction
//map BPMN SendTask to UML CallOperationAction
{ checkonly domain bpmn _sendTask : SendTask{

name = _name : String,
operationRef = _operaitonRef : BPMNOperation };

enforce domain uml _callOperationAction : uml::CallOperationAction {
name = _name,
operation = _operation : uml::Operation { } };

//apply stereotype
enforce domain uml _bpmnSendTask : bpmnprofile::SendTask {
base_CallOperationAction = _callOperationAction };

where { OperationToOperation(_operationRef, _operation); }
}

Listing 2 – Example QVT-R transform from BPMN to profiled UML

5.2 XSLT Transforms
Transforms expressed in XSLT match portions of XML files and generate new XML
files based on the matches. XSLT is also an XML-based language, enabling transforms
to look similar to the XML they are matching and generating.

The following challenges arise in XSLT transforms between BPMN and UML:

• Many elements of BPMN and UML interchange files reference other elements
using identifiers, resulting in two difficulties:

– To resolve the reference, XLST must be written to search the file for an
element that has the identifier. This is particularly difficult to write and
read when a set of multiple elements with cross references between them
must be matched.

– References in BPMN interchange files can include names with a prefix giving
the namespace of the owning file. This enables BPMN models to refer to
elements in different files. In UML’s interchange files, it is also possible
to refer to elements in other files, but only using the physical location of
the file instead of namespaces. BPMN files that associate multiple physical
locations to a single namespace cannot be transformed to UML files.

• UML’s interchange file conventions allow the same model to be interchanged
with slightly different XML.3 For example, some data can be represented as
an XML attribute or as an XML text node. The transformation from UML to
BPMN must account for these differences in case the UML file being transformed
was created by a UML modeling tool rather than an earlier transformation from
a BPMN file.

• Most BPMN elements transformed into UML require a UML element and a
stereotype instance applied to the UML element. UML elements and stereotype
instances appear very far apart in the interchange files. As a result, it is necessary
to parse the BPMN file twice, once to generate UML elements, and once to
generate stereotype instances.

3OMG is finalizing new XMI constraints that reduce the allowed differences between UML
interchange files. The transformations work with the new constraints, but do not require them
[OMG13b].

Journal of Object Technology, vol. 13, no. 2, 2014

http://dx.doi.org/10.5381/jot.2014.13.2.a1

30 · Conrad Bock, Raphael Barbau, Anantha Narayanan

The example in Listing 3 shows XSLT transforms from BPMN to UML interchange
files. The first template (SendTaskWrapTemplate) matches send tasks. It creates a
node element with parameters from matching the BPMN file (@id) and a constant
(uml:CallOperationAction), generating an ID, UUID, and a type for the XMI
element. Then it calls a second template (SendTaskTemplate), which adds a reference
to an operation if one is present, and it creates an input pin that serves as target for
the a call operation action. Adding the reference transforms qualified names from
BPMN into unqualified names for internal references or URIs for external references.
<xsl:template name="SendTaskWrapTemplate">
<node>
<xsl:call-template name="addAttributes">
<xsl:with-param name="id" select="@id" />
<xsl:with-param name="type" select="’uml:CallOperationAction’" />
</xsl:call-template>
<xsl:call-template name="SendTaskTemplate" />

</node>
</xsl:template>

<xsl:template name="SendTaskTemplate">
<xsl:if test="@operationRef">
<operation>
<xsl:call-template name="addReference">
<xsl:with-param name="ref" select="@operationRef" />

</xsl:call-template>
</operation>

</xsl:if>
<target>
<xsl:call-template name="addAttributes">
<xsl:with-param name="type" select="’uml:InputPin’" />
<xsl:with-param name="suffix" select="’target’" />
</xsl:call-template>
<upperBound xmi:type="uml:LiteralUnlimitedNatural">*</upperBound>

</target>
<xsl:call-template name="TaskTemplate" />

</xsl:template>

Listing 3 – Example XSLT transform from BPMN to profiled UML interchange files

The example in Listing 4 shows XSLT transforms from UML to BPMN inter-
change files, specifically send tasks from call operation actions. The basenode is
the call operation action node. When a call operation is matched, the XSLT needs
to look for a SendTask stereotype instance in the XMI file and check whether it
refers to the call operation action. The XSLT function matchStereotype can re-
solve the reference regardless of whether it is serialized as XML element or as
XML attribute. If the call operation action has a SendTask stereotype applied,
various attributes of the stereotype and of the base node are added to the send
task. The templates AddAsAttribute, AddStereotypeReferenceAsAttribute, and
AddReferenceAsAttributes retrieve values serialized as elements or attributes, and
add them as attributes in the BPMN file. Another template (TaskTemplate) is called
afterwards to add attributes common to any task.
<xsl:template name="CallOperationActionTemplate">
<xsl:param name="basenode" />
<xsl:param name="packagenode" />
<xsl:for-each select=
"/xmi:XMI/BPMNProfile:SendTask[BPMNProfile:matchStereotype(.,

␣␣␣␣␣’CallOperationAction’,␣$basenode/@xmi:id)]">

Journal of Object Technology, vol. 13, no. 2, 2014

http://dx.doi.org/10.5381/jot.2014.13.2.a1

BPMN Profile for Operational Requirements · 31

<bpmn:sendTask>
<xsl:call-template name="AddAsAttribute">
<xsl:with-param name="namein" select="’implementation’" />

</xsl:call-template>
<xsl:call-template name="AddStereotypeReferenceAsAttribute">
<xsl:with-param name="namein" select="’messageRef’" />

</xsl:call-template>
<xsl:call-template name="AddReferenceAsAttribute">
<xsl:with-param name="nodein" select="$basenode" />
<xsl:with-param name="namein" select="’operation’" />
<xsl:with-param name="nameout" select="’operationRef’" />

</xsl:call-template>
<xsl:call-template name="TaskTemplate">
<xsl:with-param name="basenode" select="$basenode" />

</xsl:call-template>
</bpmn:sendTask>

</xsl:for-each> ...

Listing 4 – Example XSLT transform from profile UML to BPMN interchange files

The XSLT transforms are validated on example BPMN files available from OMG
[OMG10a, OMG11a] as follows:

• Concrete syntax check. Valid BPMN interchange files must conform to XML and
to the BPMN XSD. Valid UML files, including profiled UML, must conform to
XML and to UML XMI. BPMN files can be checked with off-the-shelf software,
while UML files can be checked with the NIST Validator [Nat13]. This level of
checking ensures the XML elements and attributes have the correct names and
are used properly.

• Abstract syntax check. BPMN and UML abstract syntax specifies constraints
on the valid models that cannot be represented in XML schema or in XMI. UML
specifies these constraints in OCL, and models can be checked against them with
the NIST validator.

• Round trip check. Transforming from valid BPMN interchange files to profiled
UML files, then transforming these back to BPMN, gives a valid BPMN file.
The original BPMN file is at least a subset of the resulting BPMN file, with
additional elements possibly added in the UML file, such as identifiers (BPMN
identifiers are optional, but aren’t in UML, the transformation adds them).4

To illustrate the validation, the example in Listing 5 is taken from the “Travel
Booking” BPMN file. It shows a send task that has two incoming sequence flows. This
fragment passes the BPMN concrete and abstract syntax checks by conforming to the
BPMN XSD and to additional syntax constraints in BPMN.
<semantic:sendTask messageRef="_1275940518200"

name="Notify␣Customer␣to␣Start␣Again" id="_6-541">
<semantic:incoming>_6-699</semantic:incoming>
<semantic:incoming>_6-705</semantic:incoming>
<semantic:outgoing>_6-592</semantic:outgoing>

</semantic:sendTask>

Listing 5 – Example portion of BPMN interchange file

4The resulting files might not be completely valid because UML or BPMN require some information
that is not present or optional in the other language. The XSLT transforms do not attempt to fill in
missing information, but transform at the same level of completeness as the original file.

Journal of Object Technology, vol. 13, no. 2, 2014

http://dx.doi.org/10.5381/jot.2014.13.2.a1

32 · Conrad Bock, Raphael Barbau, Anantha Narayanan

Applying the XSLT transforms from BPMN to UML to the fragment in Listing
5 results in a portion of UML interchange file shown in Listing 6, as illustrated in
Figure 12 of Section 3.4. The send task is transformed to a call operation action. A
merge node and control flow are inserted so that the two control flows point to the
merge node, and the merge node is connected to the call operation action using a new
control flow. At the end of the example, the SendTask stereotype is applied to the call
operation action. The result in Listing 6 passes UML concrete and abstract syntax
checks, according to the NIST Validator.
<node xmi:id="_6-541"

xmi:uuid="http://example.com/definitions/_1275940517919#_6-541"
xmi:type="uml:CallOperationAction">
<target xmi:id="d1e100_target"
xmi:uuid="http://example.com/definitions/_1275940517919#d1e100_target"
xmi:type="uml:InputPin">
<upperBound xmi:type="uml:LiteralUnlimitedNatural">*</upperBound>

</target>
<name xmi:type="uml:String">Notify Customer to Start Again</name>
<outgoing xmi:idref="_6-592"/>
<incoming xmi:idref="_6-541_from_merge"/>

</node>
<node xmi:id="_6-541_merge"

xmi:uuid="http://example.com/definitions/_1275940517919#_6-541_merge"
xmi:type="uml:MergeNode">
<incoming xmi:idref="_6-699"/>
<incoming xmi:idref="_6-705"/>
<outgoing xmi:idref="_6-541_from_merge"/>

</node>
<edge xmi:id="_6-541_from_merge"

xmi:uuid="http://example.com/definitions/_1275940517919#_6-541_from_merge"
xmi:type="uml:ControlFlow">
<target xmi:idref="_6-541"/>
<source xmi:idref="_6-541_merge"/>
<guard xmi:type="uml:LiteralBoolean">true</guard>
<weight xmi:type="uml:LiteralUnlimitedNatural">1</weight>

</edge>

Listing 6 – Example portion of UML interchange file generated by transforming Listing 5

Applying the XSLT transforms from UML to BPMN to the fragment in Listing 6
produces the original elements in Listing 5, passing the round trip check.

6 Summary
This paper describes the integration of commonly used languages for system specifica-
tion (UML and its extensions, such as SysML) with a language for specifying system
environment behaviors, including how systems are operated, maintained, and repaired
(BPMN). The integration enables personnel involved in external behaviors to specify
and learn these behaviors in a language suited to them (BPMN), and engineers to
specify system internals in their preferred languages (UML and its extensions), without
incurring the inefficiency of unintegrated languages. It extends UML’s underlying
model to accommodate BPMN notation, and defines transforms between UML and
BPMN in cases where extension is not sufficient. The paper covers the specification
of individual processes, such as particular kinds of repair (see Section 3), and of
interaction of multiple processes, such as the interaction of maintenance teams (see
Section 4). The paper provides a detailed comparison of the semantics of the languages

Journal of Object Technology, vol. 13, no. 2, 2014

http://dx.doi.org/10.5381/jot.2014.13.2.a1

BPMN Profile for Operational Requirements · 33

to ensure that models have the same effect regardless of the language used (see Section
2), and gives examples of transforms between UML and BPMN (Section 5).

References
[AFD10] M. Arganaraz, A. Funes, and A. Dasso. An MDA approach to Business

Process Model Transformations. Journal of Informatics and Operations
Research, 9(1):24–48, 2010.

[Boc99] C. Bock. Three Kinds of Behavior Model. Journal Of Object-Oriented
Programming, 12(4):36–39, July/August 1999.

[Boc03] C. Bock. UML without Pictures. IEEE Software Special Issue on Model-
Driven Development, 20(5):33–35, September/October 2003. doi:10.
1109/MS.2003.1231148.

[DPS+10] F. Dandashi, B. Pridemore, S. Semy, J. Valentine, and B. Yost. Oper-
ationalizing the tactical edge framework (tef) for service provisioning
analysis. Technical report, The MITRE Corporation, March 2010.

[ISO04] ISO. The EXPRESS language reference manual, July 2004. URL:
http://www.iso.org/iso/home/store/catalogue_ics/catalogue_
detail_ics.htm?csnumber=38047.

[KV06] A. Kalnins and V. Vitolins. Use of UML and Model Transformations for
Workflow Process Definitions. In Proceedings of International BalticJour-
nal Of Object-Oriented Programming Conference on Databases and In-
formation Systems, July 2006.

[MR09] O. Macek and K. Richta. The BPM to UML activity diagram activity
diagram transformation using XSLT. In Proceedings of the International
Workshop on Databases, Texts, Specifications, and Objects, pages 119–
129, 2009.

[Nat13] National Institute of Standards and Technology. NIST Validator, Decem-
ber 2013. URL: http://validator.omg.org.

[OMG10a] Object Management Group. BPMN 2.0 by Example, June 2010. URL:
http://www.omg.org/spec/BPMN/20100601/10-06-02.pdf.

[OMG10b] Object Management Group. BPMN 2.0 XML Schema, May 2010. URL:
http://www.omg.org/spec/BPMN/20100501/BPMN20.xsd.

[OMG11a] Object Management Group. BPMN 2.0 examples, machine readable
files, January 2011. URL: http://www.omg.org/spec/BPMN/20100602/
2010-06-03.

[OMG11b] Object Management Group. Business Process Model and Notation,
January 2011. URL: http://www.omg.org/spec/BPMN/2.0.

[OMG11c] Object Management Group. Meta Object Facility 2.0 Query/View/-
Transformation Specification, January 2011. URL: http://www.omg.org/
spec/QVT/1.1.

[OMG11d] Object Management Group. OMG Unified Modeling Language, Super-
structure, August 2011. URL: http://www.omg.org/spec/UML/2.4.1.

Journal of Object Technology, vol. 13, no. 2, 2014

http://dx.doi.org/10.1109/MS.2003.1231148
http://dx.doi.org/10.1109/MS.2003.1231148
http://www.iso.org/iso/home/store/catalogue_ics/catalogue_detail_ics.htm?csnumber=38047
http://www.iso.org/iso/home/store/catalogue_ics/catalogue_detail_ics.htm?csnumber=38047
http://validator.omg.org
http://www.omg.org/spec/BPMN/20100601/10-06-02.pdf
http://www.omg.org/spec/BPMN/20100501/BPMN20.xsd
http://www.omg.org/spec/BPMN/20100602/2010-06-03
http://www.omg.org/spec/BPMN/20100602/2010-06-03
http://www.omg.org/spec/BPMN/2.0
http://www.omg.org/spec/QVT/1.1
http://www.omg.org/spec/QVT/1.1
http://www.omg.org/spec/UML/2.4.1
http://dx.doi.org/10.5381/jot.2014.13.2.a1

34 · Conrad Bock, Raphael Barbau, Anantha Narayanan

[OMG11e] Object Management Group. Unified Modeling Language Superstructure
XMI, July 2011. URL: http://www.omg.org/spec/UML/20110701/
Superstructure.xmi.

[OMG12a] Object Management Group. Object Constraint Language, January 2012.
URL: http://www.omg.org/spec/OCL/2.3.1.

[OMG12b] Object Management Group. OMG Systems Modeling Language, June
2012. URL: http://www.omg.org/spec/SysML/1.3.

[OMG13a] Object Management Group. Action Language for Foundational UML
(Alf) Concrete Syntax for a UML Action Language, March 2013. URL:
http://www.omg.org/spec/ALF/1.0.1/Beta3.

[OMG13b] Object Management Group. Canonical XMI, August 2013. URL: http:
//www.omg.org/spec/XMI/CanonicalXMI/Beta2.

[OMG13c] Object Management Group. Meta Object Facility, June 2013. URL:
http://www.omg.org/spec/MOF/2.4.1.

[OMG13d] Object Management Group. MOF 2 XMI Mapping Specification, June
2013. URL: http://www.omg.org/spec/XMI/2.4.1.

[OMG13e] Object Management Group. UML Profile for BPMN 2 Processes, June
2013. URL: http://www.omg.org/spec/BPMNProfile/1.0/Beta1.

[W3C99] W3C. XSL Transformations, November 1999. URL: http://www.w3.
org/TR/1999/REC-xslt-19991116.

[W3C08] W3C. Extensible Markup Language, November 2008. URL: http://www.
w3.org/TR/2008/REC-xml-20081126.

[W3C12] W3C. XML Schema, April 2012. URL: http://www.w3.org/standards/
techs/xmlschema.

[Whi04] S. White. Process Modeling Notations and Workflow Patterns.
BPTrends, March 2004. URL: http://www.bptrends.com/
process-modeling-notations-and-workflow-patterns.

About the authors

Conrad Bock is a Computer Scientist at the U.S. National In-
stitute of Standards and Technology’s Engineering Laboratory,
specializing in formal product and process modeling. He was the
founding editor for Activity and Action modeling in the Unified
Modeling Language and Systems Modeling Language at the Object
Management Group, as well as a primary contributor to interaction
modeling in the Business Process Model and Notation. He can be
reached at conrad dot bock at nist dot gov.

Journal of Object Technology, vol. 13, no. 2, 2014

http://www.omg.org/spec/UML/20110701/Superstructure.xmi
http://www.omg.org/spec/UML/20110701/Superstructure.xmi
http://www.omg.org/spec/OCL/2.3.1
http://www.omg.org/spec/SysML/1.3
http://www.omg.org/spec/ALF/1.0.1/Beta3
http://www.omg.org/spec/XMI/CanonicalXMI/Beta2
http://www.omg.org/spec/XMI/CanonicalXMI/Beta2
http://www.omg.org/spec/MOF/2.4.1
http://www.omg.org/spec/XMI/2.4.1
http://www.omg.org/spec/BPMNProfile/1.0/Beta1
http://www.w3.org/TR/1999/REC-xslt-19991116
http://www.w3.org/TR/1999/REC-xslt-19991116
http://www.w3.org/TR/2008/REC-xml-20081126
http://www.w3.org/TR/2008/REC-xml-20081126
http://www.w3.org/standards/techs/xmlschema
http://www.w3.org/standards/techs/xmlschema
http://www.bptrends.com/process-modeling-notations-and-workflow-patterns
http://www.bptrends.com/process-modeling-notations-and-workflow-patterns
http://dx.doi.org/10.5381/jot.2014.13.2.a1

BPMN Profile for Operational Requirements · 35

Raphael Barbau obtained a M.Sc. and a Ph.D. in Computer
Science at the University of Burgundy. He is currently a Guest
Researcher at the National Institute of Standards and Technology.
His research interests include semantic web, product lifecycle man-
agement, long-term preservation, and systems engineering. He can
be reached at raphael dot barbau at nist dot gov.

Anantha Narayanan is a researcher at the University of Mary-
land, USA. He is currently working as a guest researcher at the Na-
tional Institute of Standards and Technology (NIST). His research
interests are in domain specific modeling, model transformations,
systems engineering, product life cycle modeling, and sustainable
manufacturing. Anantha has a B.Tech. in Mechanical Engineering
from IIT, Madras, India, and an M.S. and Ph.D. in Computer
Science from Vanderbilt University. He can be reached at anantha
dot narayanan at nist dot gov.

Acknowledgments The authors thank Fatma Dandashi for leadership in motivating
this work, and comments on this paper.

Commercial equipment and materials might be identified to adequately specify
certain procedures. In no case does such identification imply recommendation or
endorsement by the National Institute of Standards and Technology, nor does it imply
that the materials or equipment identified are necessarily the best available for the
purpose.

Journal of Object Technology, vol. 13, no. 2, 2014

http://dx.doi.org/10.5381/jot.2014.13.2.a1

	1 Introduction
	2 OMG Language Architecture and Integration
	3 Processes
	3.1 Processes and Global Tasks
	3.2 Activities and Sequence Flows
	3.3 Data
	3.4 Gateways
	3.5 Events
	3.6 Lanes and Resources
	3.7 Loop Characteristics

	4 Collaborations
	4.1 Participants, Messages, and Message Flows
	4.2 Conversations
	4.3 Collaborations with Procedures
	4.4 Partner Roles and Partner Entities
	4.5 Public and Private Processes
	4.6 Correlation

	5 Transforms
	5.1 QVT-R Transforms
	5.2 XSLT Transforms

	6 Summary
	Bibliography
	About the authors

