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1. Introduction: meta-analysis model

One of the important applications of random effects models is meta-analysis where
one has to combine information in multivariate measurements made in several studies
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which commonly exhibit not only non-negligible between-study variability, but also have
different within-study precision.

Consider a model where several independent sources provide the estimates of
q-dimensional parameter θ (representing the treatment effect or the common mean).
Let the i-th study vector estimate of θ be Xi, i = 1, . . . , n. In the random effects model
of meta-analysis

Xi = θ + �i + εi, (1)

where the independent vectors �i represent random between-study effects with zero mean
and some unknown q × q covariance matrix Ξ (which may have rank smaller than q).
If the errors εi are assumed to be independent and normally distributed, εi ∼ N(0, Si),
then Xi ∼ N(θ,Ξ + Si).

This model appears under scenario where each study measures its linear functions
of θ, i.e., when the i-th study data vector consists of ni measurements,

Yi = Bi[θ + �i] + εi. (2)

Here Bi is the known i-th laboratory design matrix having the rank q and the size
ni × q. The meaning of θ, �i and εi remains the same as in (1), and statistics Xi =
(BT

i Bi)−1BT
i Yi (the classical least squares estimators) satisfy this model. Unlike the

general mixed effects model, the condition in (2) is that the random between-study
effect with probability one belongs to the space spanned by columns of Bi. See [9] for
further motivation of (2) and for some examples.

In many applications, e.g. [4,5,8], estimates of the full covariance matrices Si are not
available but estimators Vi of the variances are given. In view of the lack of appropriate
data, simplifying assumptions are to be made. For example, one may impose the condition
that Si = V

1/2
i RV

1/2
i for some given correlation matrix R and a diagonal matrix Vi. Then

the results obtained for several correlation matrices R can be compared (see Section 5).
The assumption made in this work is that all given matrices Si as well as unknown Ξ

commute.
In the setting with known covariance matrices Si’s, the parameters to be estimated

are the matrix Ξ and θ itself. If Ξ is known, the best linear unbiased estimator of θ is

X̃ =
[∑

i

(Si + Ξ)−1
]−1 ∑

i

(Si + Ξ)−1Xi, (3)

so the traditional methods seek to estimate Ξ using a plug-in estimator of θ afterwards.
We discuss some of these traditional estimators in Section 3 where a wider class

of θ-estimators is suggested. This class is motivated by the form of Bayes procedures
and by the representation of the restricted likelihood function derived in Section 2. This
canonical representation makes use of the polynomials determined by the matrices Si,
i = 1, . . . , n.
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The main statistical goal is not only to estimate the parameter θ but to give a con-
fidence region for this parameter or for a function thereof. These objectives are also
touched upon in Section 3. It is noticed in Section 4 that when the number of studies
exceeds three the sample mean exhibits the Stein-type effect being an inadmissible es-
timator under the quadratic loss. A practical example in Section 5 and the discussion
Section 6 conclude the paper.

2. Sufficient statistics and restricted likelihood function

The model (1) leads to the (negative) log-likelihood function having the form

1
2

[
n∑
1

(Xi − θ)T (Ξ + Si)−1(Xi − θ) +
n∑
1

log |Ξ + Si|
]
.

Then with X̃ defined by (3) the (negative) restricted log-likelihood function has the form

L = 1
2

[
n∑
1

(Xi − X̃)T (Ξ + Si)−1(Xi − X̃)

+
n∑
1

log |Ξ + Si| + log

∣∣∣∣∣
n∑
1

(Ξ + Si)−1

∣∣∣∣∣
]
,

[12, Sec. 6.6]. The classical maximum likelihood estimators as well as the restricted likeli-
hood estimators of θ can be found as roots of polynomial equations and thus are amenable
to the methodology of algebraic statistics [1]. However the degrees of these polynomials
grow fast, the corresponding Groebner basis gets very complicated, which makes effi-
cient determination of the likelihood estimators via solving polynomial equations quite
difficult even for moderate n [3,11].

We pursue a different approach to estimate θ which is also based on polynomial
algebra. Our main condition is that all matrices S1, . . . , Sn and Ξ commute. Of course this
assumption is quite restrictive but it holds automatically when q = 1 or when all matrices
are diagonal. After an orthogonal transform, one can assume that Si = diag(si1, . . . , siq),
Ξ = diag(ξ1, . . . , ξq). We write Xi = (xi1, . . . , xiq)T , i = 1, . . . , n, for the vector which
corresponds to the same basis as the diagonal matrices Si and Ξ, i.e., for the orthogonal
transform of the original Xi.

For k, 1 � k � q, denote by νik, νik � 1, the multiplicity of sik in the series
s1k, . . . , snk, so that

∑
i νik = n. Put pk, 1 � pk � n, to be the number of distinct

sik, and let x̂ik =
∑

m: smk=sik
xmk/νik represent the average of νik x·k’s correspond-

ing to the particular sik, i = 1, . . . , pk. Denote by vik their sample variance, vik =∑
m: smk=sik

(xmk − x̂ik)2/(νik − 1), when νik > 1.
In this notation the k-th coordinate of X̃ is
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x̃k =
∑

i
νikx̂ik

ξk+sik∑
i

νik

ξk+sik

,

with the index i varying from 1 to pk. Then Var(x̃k) = [
∑

i νik(ξk + sik)−1]−1.
The following representation of L obtains

L = 1
2

[∑
k

∑
i

νik(x̂ik − x̃k)2

ξk + sik
+

∑
k

∑
i

νik log(ξk + sik)

+
∑
k

log
(∑

i

νik
ξk + sik

)
+

∑
k

∑
i

(νik − 1)vik
ξk + sik

]
.

To keep the number of subscripts to the minimum we write e for a vector with unit
coordinates whose dimension is clear from context with the same convention for the
identity matrix I. The pk-dimensional vector X̂k, k = 1, . . . , q, with coordinates x̂ik,
i = 1, . . . , pk, has the diagonal covariance matrix Ck whose non-zero elements are (ξk +
sik)/νik, i = 1, . . . , pk, and x̃k = (eTC−1

k X̂k)/(eTC−1
k e) (with pk-dimensional e). Clearly

eT X̂k =
∑

i xik is the k-th coordinate of the q-dimensional vector
∑

i Xi.
Then L can be written in the following form:

L = 1
2

[∑
k

(X̂k − x̃ke)TC−1
k (X̂k − x̃ke) +

∑
k

log
(∑

i

νik
ξk + sik

)

+
∑
k

∑
i

νik log(ξk + sik) +
∑
k

∑
i

(νik − 1)vik
ξk + sik

]
.

Theorem 2.1. In the model (1) assume that the matrices S1, . . . , Sn and Ξ are diagonal.
Under the notation above let k = 1, . . . , q, X̂k ∼ Npk

(θ, Ck), and

Yk =
(
AT

kN
−1
k Ak

)−1/2
AT

k X̂k

with pk×(pk−1) matrix Ak determined by its elements in (9), Nk = diag(ν1k, . . . , νpkk),
and Tk = diag(t1k, . . . , tpk−1k). Here −tik denote the roots of the polynomial Qk defined
in (5). Then Yk ∼ Npk−1(0, Tk + ξkI), and the restricted log-likelihood function L for
model (1) admits the representation

L = 1
2

{∑
k

[
Y T
k (Tk + ξkI)−1Yk + log |Tk + ξkI|

]

+
∑
k

∑
i

(νik − 1)
[

vik
ξk + sik

+ log(ξk + sik)
]}

. (4)

The (pk − 1) × (pk − 1) matrices AT
kN

−1
k Ak and AT

kCkAk are diagonal, AT
kN

−1
k Ak =

diag(b(k)
1 , . . . , b

(k)
pk−1), AT

kCkAk = diag(b(k)
1 (ξk + t1k), . . . , b(k)

pk−1(ξk + tpk−1k)) with b
(k)
j

given in (10).
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Proof. For fixed k each polynomial Pk(v) =
∏

i(v + sik)νik has the degree n =
∑

i νik.
Let Mk(v) =

∏
i(v + sik) be the minimal annihilating polynomial (of degree pk). Define

Qk(v) = Mk(v)
P ′
k(v)

Pk(v)
=

∑
i

νik
∏
�:��=i

(v + s�k). (5)

Thus Qk is a degree pk − 1 polynomial which has only real (negative) roots, say,
−t1k, . . . ,−tpk−1k (coinciding with the roots of P ′

k(v) different from −s1k, . . . ,−spkk).
Thus t1k, . . . , tpk−1k interlace s1k, . . . , spkk, P ′

k(−tjk) = 0, and Qk(v) = n
∏pk−1

j=1 (v+tjk).
If ν1k = · · · = νpkk = 1, Mk(v) = Pk(v), and Qk(v) = P ′

k(v).
It follows from (5) that for all positive v,

∑
i

log(v + sik) + log
(∑

i

νik
v + sik

)
=

∑
j

log(v + tjk) + log n, (6)

where the index j varies from 1 to pk − 1.
The comparison of the coefficients at vpk−2 in (5) gives

∑
j

tjk =
∑
i

sik −
∑

i νiksik
n

. (7)

We show now that for any i, k and v different from −tjk, j = 1, . . . , pk − 1,

νik
v + sik

[∑
�

ν�k
v + s�k

]−1

= νik
n

−
∑
j

A
(k)
ij

v + tjk
, (8)

where for i = 1, . . . , pk,

A
(k)
ij = νikMk(−tjk)

Q′
k(−tjk)(tjk − sik)

. (9)

Indeed by the definition of the polynomial Qk,

νik
n

− νik
v + sik

[∑
�

ν�k
v + s�k

]−1

= νik
n

− νikPk(v)
(v + sik)P ′

k(v)

= νik
n

− νikMk(v)
(v + sik)Qk(v)

=
νik[

∏
j(v + tjk) −

∏
��=i(v + s�k)]

Qk(v)
,

with the right-hand side of this identity being the ratio of two polynomials of degrees
pk − 2 and pk − 1 respectively. The formulas (8) and (9) follow now from the classical
results on partial fraction decomposition for such ratios.
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For any fixed k and j

∑
i

νik
sik − tjk

= P ′
k(−tjk)

Pk(−tjk)
= 0,

so that

∑
i

A
(k)
ij = Mk(−tjk)

Q′
k(−tjk)

∑
i

νik
sik − tjk

= 0.

This means that for the pk×(pk−1) matrix Ak is determined by its elements A(k)
ij in (9),

AT
k e = 0. The formula for the coordinates of AT

k e,

∑
j

A
(k)
ij = νik

n

(
sik −

∑
� ν�ks�k
n

)
,

follows directly from (8).
Since

0 =
∑
i

νik
sik − tjk

−
∑
i

νik
sik − t�k

= (tjk − t�k)
∑
i

νik
(sik − tjk)(sik − t�k)

,

when j �= �,

∑
i

A
(k)
ij A

(k)
i�

νik
= Mk(−tjk)Mk(−t�k)

Q′
k(−tjk)Q′

k(−t�k)
∑
i

νik
(sik − tjk)(sik − t�k)

= 0.

For any j = 1, . . . , pk − 1,

d

dv

(
P ′
k

Pk

)
(−tjk) = Q′

k(−tjk)
Mk(−tjk)

= −
∑
i

νik
(sik − tjk)2

,

and by using (9) one obtains that

b
(k)
j =

∑
i

(A(k)
ij )2

νik
=

∑
i

νikM
2
k (−tjk)

[Q′
k(−tjk)]2(tjk − sik)2

= −Mk(−tjk)
Q′

k(−tjk)
. (10)

Thus AT
kN

−1
k Ak = diag(b(k)

1 , . . . , b
(k)
pk−1).

Using (7), we can see that the polynomial (v+
∑

i νiksik/n)Qk(v)/n−M(v) has degree
pk − 2. The values of this polynomial at v = −tjk coincide with −M(−tjk). Therefore,

∑
j

b
(k)
j

ξk + tjk
= −

∑
j

M(−tjk)
Q(−tjk)(ξk + tjk)

= 1
n

(
ξk +

∑
i νiksik
n

)
− M(ξk)

Q(ξk)

= Var(x̄k) − Var(x̃k). (11)
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In particular,

∑
j

b
(k)
j = lim

v→∞
v

[
1
n

(
v +

∑
i νiksik
n

)
− M(v)

Q(v)

]

=
∑

i νik(sik −
∑

� ν�ks�k/n)2

n2 .

If

Uk = Ck − ξkN
−1
k = diag

(
s1k

ν1k
, . . . ,

spkk

νpkk

)
,

then the matrix AT
kUkAk = diag(b(k)

1 t1k, . . . , b
(k)
pk−1tpk−1k) is also diagonal. Indeed for

j �= m,

∑
i

νiksik
(sik − tjk)(sik − tmk)

= tjk
∑
i

νik
(sik − tjk)(sik − tmk)

= 0,

implying that

∑
i

sikA
(k)
ij A

(k)
im

νik
= 0.

For j = m,

1
tjk

∑
i

sik(A(k)
ij )2

νik
= −

∑
i

νiksik
(sik − tjk)2

=
∑
i

νik
(sik − tjk)2

= Mk(−tjk)
Q′

k(−tjk)
= b

(k)
j . (12)

Since the vector X̂k has the diagonal pk×pk covariance matrix, Ck = ξkN
−1
k +Uk, the

normal random vector Yk = (AT
kN

−1
k Ak)−1/2AT

k X̂k, has the (pk−1)×(pk−1) covariance
matrix

(
AT

kN
−1
k Ak

)−1/2
AT

kCkAk

(
AT

kN
−1
k Ak

)−1/2 = diag(ξk + t1k, . . . , ξk + tpk−1k)

= ξkI + Tk.

We prove next that

Ak

(
AT

kN
−1
k Ak

)−1/2(ξkI + Tk)−1(AT
kN

−1
k Ak

)−1/2
AT

k

= C−1
k − C−1

k eeTC−1
k

T −1 . (13)

e Ck e
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The (i, �)-th element of the matrix in the right-hand side of (13) is of the form

∑
j

A
(k)
ij A

(k)
�j

(ξk + tjk)b(k)
j

= −νik
∑
j

A
(k)
�j

(ξk + tjk)(tjk − sik)

= νik
ξk + sik

[∑
j

A
(k)
�j

tjk − sik
−

∑
j

A
(k)
�j

ξk + tjk

]
.

The formula (8) implies that

∑
j

A
(k)
�j

ξk + tjk
= ν�k

n
− ν�k

(ξk + s�k)eTC−1
k e

,

and

∑
j

A
(k)
�j

tjk − sik
= ν�k

n
− δi�,

where δi� is the Kronecker symbol (δi� = 1, if i = �; δi� = 0 otherwise). Therefore, (13)
is true.

To complete the proof of (4) we need to show that

(X̂k − x̃ke)TC−1
k (X̂k − x̃ke) = X̂kC

−1
k X̂k −

(
x̃TC−1

k e
)2
/
(
eTC−1

k e
)

= Y T
k (Tk + ξkI)−1Yk. (14)

It suffices to prove that

C−1
k − C−1

k eeTC−1
k

eTC−1
k e

= Ak

(
AT

kN
−1
k Ak

)−1/2(Tk + ξkI)−1(AT
kN

−1
k Ak

)−1/2
AT

k ,

which follows from (13). Combination of (6) and (14) completes the proof of Theo-
rem 2.1. �

The numerical check-up on formulas (9) and (10) can be performed by verifying the
equalities

∏
ij

A
(k)
ij = [R(Mk, Qk)

∏
νik]pk−1

[R(Qk, Q′
k)]pk

,

and

∏
b
(k)
j = (−1)pk−1 R(Mk, Qk)

n2R(Qk, Q′
k)

.

j
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Here R(Mk, Qk) denotes the resultant of the polynomials Mk and Qk. Another useful
identity is

∑
i

A
(k)
ij sik = nb

(k)
j .

Thus, the representation (4) of the restricted likelihood function corresponds to q

independent zero mean, normal (pk − 1)-dimensional random vectors Yk with covariance
matrices ξkI+Tk. In addition it includes independent vik, each being a scaled χ2-random
variable with νik − 1 degrees of freedom. When νik > 1, vik is an unbiased estimator of
ξk + sik, vik ∼ (ξk + sik)χ2

νik−1/(νik − 1). For νik = 1, with probability one, vik = 0.
According to the sufficiency principle, all statistical inference about Ξ involving the

restricted likelihood can be based exclusively on Yk and {vik}. Their joint distribution
forms a curved exponential family whose natural parameter is formed by (ξk+tjk)−1 (and
possibly by some (ξk + sik)−1). The total dimension of sufficient statistics yjk and vik,
j = 1, . . . , pk−1, k = 1, . . . , q, is

∑
(pk−1)+

∑
(νik−1) = (n−1)q, so that the q degrees

of freedom used for estimating θ are accounted for.

3. Traditional estimators and Bayes procedures

According to (8), the coordinates of x̃ in (3) admit the following representation,

x̃k = eT X̂k

n
−

∑
i,j

A
(k)
ij x̂ik

ξk + tjk
= x̄k −

∑
j

√
b
(k)
j yjk

ξk + tjk

= x̄k − eT (Tk + ξkI)−1(AT
kN

−1
k Ak

)1/2
Yk, k = 1, . . . , q.

Here yjk =
∑

i A
(k)
ij x̂ik/

√
bjk, the coordinates of Yk, are independent normal, zero mean

random variables with the variances ξk + tjk, x̄k =
∑

i νikxik/n.
Let Y denote the vector stacked by Y1, . . . , Yq (of dimension p = p1 + · · · + pq − q),

and let X̄ = n−1 ∑
i Xi represent the sample mean, i.e., the vector with coordinates x̄k.

Then

X̃ = X̄ −M(Ξ)Y, (15)

where M(Ξ) is q×p block-diagonal matrix formed by the blocks eT (AT
kN

−1
k Ak)1/2(Tk +

ξkI)−1 of the sizes 1 × (pk − 1). It follows that any traditional estimator of θ, say,

δ =
[∑

i

(Si + Ξ̃)−1
]−1 ∑

i

(Si + Ξ̃)−1Xi,

which uses an estimator Ξ̃ has the form (15) with M = M(Ξ̃).
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However the Bayes estimators of θ as a rule do not admit such a representation.
Indeed assume a prior distribution Λ for Ξ which has more than two points of support
while θ has the uniform (non-informative) prior. Mainly for notational convenience let
(δ − θ)T (δ − θ) be a quadratic loss for θ estimation. Under this loss with L defined by
(4) the (generalized) Bayes estimator,

δ =
∫∞
0 · · ·

∫∞
0 X̃ exp{−L} dΛ(Ξ)∫∞

0 · · ·
∫∞
0 exp{−L} dΛ(Ξ)

,

can be written as

δ = X̄ − MY. (16)

According to (15), the block-diagonal matrix M has the same structure as M(Ξ) with
blocks of the form eT (AT

kN
−1
k Ak)1/2Ωk, k = 1, . . . , q, and the diagonal matrix

Ωk = Ωk

(
Y1, . . . , Yq, {vik}

)
=

∫∞
0 · · ·

∫∞
0 (Tk + ξkI)−1 exp{−L} dΛ(ξ1, . . . , ξq)∫∞
0 · · ·

∫∞
0 exp{−L} dΛ(ξ1, . . . , ξq)

,

can be thought of as an estimator (Tk + ξkI)−1.
Any δ of the form (16) is an unbiased estimator of θ whose covariance matrix, Var(δ),

does not depend on θ. Since X̃ and δ− X̃ are independent as the random vectors X̃ and
Yk, k = 1, . . . , q, are independent,

Var(δ) = Var(X̃) + E(δ − X̃)(δ − X̃)T =
[∑

i

(Si + Ξ)−1
]−1

+ R, (17)

where the (k, �)-th element of the matrix R has the form,

eT
(
AT

kN
−1
k Ak

)1/2
E
[[
Ωk − (Tk + ξkI)−1]YkY

T
�

[
Ω� − (T� + ξ�I)−1]]

×
(
AT

� N
−1
� A�

)1/2
e.

This matrix shows how well δ approximates the optimal but unavailable X̃, so that it can
be used to define a risk function for θ estimators. Provided that Ωk = Ωk({y2

jk}, {vik}),
the matrix R is diagonal with the non-zero elements of the form,

∑
j

b
(k)
j Ey2

jk

(
ωjk − 1

ξk + tjk

)2

, k = 1, . . . , q,

which is being used in Theorem 4.1 in the next section.
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Before that we briefly review the alternative estimating procedures for Ξ. The trans-
formed expression (4) of the likelihood function L motivates the moment-type equations
based on a general quadratic form,

∑
j qjky

2
jk +

∑
i(νik − 1)rikvik with positive coeffi-

cients qjk, rik. The moment-type equation for ξk written in terms of random variables
yjk and vik is

E

[∑
j

qjkyjk +
∑
i

(νik − 1)rikvik
]

=
[∑

j

qjk +
∑
i

(νik − 1)rik
]
ξk +

∑
j

qjktjk +
∑
i

(νik − 1)riksik.

Its estimator by the method of moments has the form

ξ̃k =
∑

j qj(y2
jk − tjk) +

∑
i(νik − 1)rik(vik − sik)∑

j qjk +
∑

i(νik − 1)rik
.

Commonly the probability that such an estimator takes negative values is non-negligible.
Non-negative statistics, ξ̃k + = max(ξ̃k, 0), are used to get traditional θ estimators.

The representations of the popular DerSimonian–Laird statistic,

ξ̃DL
k =

∑
j t

−1
jk y

2
jk +

∑
i(νik − 1)s−1

ik vik − n + 1∑
j t

−1
jk +

∑
i(νik − 1)s−1

ik

,

and of the Hedges statistic,

ξ̃Hk =
∑

j(y2
jk − tjk) +

∑
i(νik − 1)(vik − sik)

n− 1 ,

follow easily.
The expression of these statistics in terms of yjk and vik facilitate numerical imple-

mentation of these procedures as well as of the restricted maximum likelihood estimator
(REML) ξ̂. Indeed (4) shows that this estimator can be determined by simple iterations
as

ξ̂k =

∑
j

y2
jk−tjk

(ξ̂k+tjk)2 +
∑

i
(νik−1)(vik−sik)

(ξ̂k+sik)2∑
j

1
(ξ̂k+tjk)2 +

∑
i

νik−1
(ξ̂k+sik)2

,

with truncation at zero if the iteration process converges to a negative number.
A multivariate extension of the DerSimonian–Laird statistic in the non-commutative

case was suggested in [9, Sec 3.1] and [10, Sec 3] where results of numerical comparisons
are reported. See also [5] and references there for the use of method of moments multi-
variate estimators in random effects model in biostatistics. However the latter references
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deal with the estimators which are not invariant under linear transforms or are based on
non-symmetric matrices leading to ambiguity about the choice among a matrix and its
transpose.

For any fixed Ξ, according to (14),
∑

(X̂k − x̃ke)TC−1
k (X̂k − x̃ke) =

∑
k Y

T
k (Tk +

ξkI)−1Yk has χ2
p-distribution, while X̃ is a normal vector with mean θ and the covariance

matrix [
∑

i(Si + Ξ)−1]−1. Therefore the ratio

p(X̃ − θ)T [
∑

i(Si + Ξ)−1](X̃ − θ)
q
∑

(X̂k − x̃ke)TC−1
k (X̂k − x̃ke)

has F (q, p) distribution.
Similar facts are commonly used to get confidence ellipsoids for the unknown vector

parameter. In our case when Ξ is replaced by one of its estimates Ξ̃ as above, or by
using

∑
k Y

T
k ΩkYk, where Ωk define the estimator (16), instead of the sum

∑
k(X̂k −

x̃ke)TC−1
k (X̂k − x̃ke). As Ξ has q unknown parameters, it makes sense to diminish the

degrees of freedom by this number leading to the approximate (1−α)-confidence ellipsoid,

(δ − θ)T
[∑

i

(Si + Ξ̃)−1
]
(δ − θ) � pFα(q, p− q)

q
∑

k(X̂k − x̃ke)TC−1
k (X̂k − x̃ke)

, (18)

cf. [6, Sec 7.3.4] where this degree of freedom is not adjusted and q = 1.

4. Estimation of multivariate normal mean

The decomposition (17) relates our setting to the classical estimation problem of the
multivariate normal mean.

Theorem 4.1. If the coefficients ωjk = ωjk({y2
jk}, {vik}), the elements of defining the

estimator (16) are piecewise differentiable for k = 1, . . . , q, then

Var(δk) = Var(x̃k) +
∑
j

b
(k)
j Ey2

jk

(
ωjk − 1

ξk + tjk

)2

= Var(x̄k) + E
∑
j

b
(k)
j

(
f2
jk − 2 ∂

∂yjk
fjk

)
, (19)

where fjk = yjkωjk. When pk > 3, the estimator x̄k is an inadmissible estimator of θk
under the quadratic loss, (δk − θk)2. The vector estimator X̄ of θ is inadmissible under
the quadratic loss,

∑
k(δk − θk)2, when p =

∑
k pk − q > 2.

Proof. To establish (19) we use (11) and the familiar integration by parts formula,

1
Ey2

jkw = E
(
w + 2y2

jkw
′
j

)
, yjk ∼ N(0, ξk + tjk),
ξk + tjk
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which holds for any piecewise differentiable function w = w(y) (cf. [7, Ch 1, Lem-
ma 5.15]).

To prove inadmissibility of X̄k for pk > 3, we put

ωjk = Ak

[
b
(k)
j

∑
�

y2
�k

b
(k)
�

]−1

.

A straightforward calculation shows that then

E
∑
j

b
(k)
j

(
f2
jk − 2 ∂

∂yjk
fjk

)
= Ak

[
Ak − 2(pk − 3)

]
E

[∑
j

y2
jk

b
(k)
j

]−1

.

The choice Ak = pk − 3, which makes the left-hand side negative, corresponds to the
James–Stein estimator.

Similarly when p > 2, one can use

ωjk = A

b
(k)
j

[∑
� k

y2
�k

b
(k)
�

]−1

,

in which case

E
∑
j k

b
(k)
j

(
f2
jk − 2 ∂

∂yjk
fjk

)
= A

[
A− 2(p− 2)E

(∑
j k

y2
jk

b
(k)
j

)−1]
,

which establishes the last statement of Theorem 4.1. �
Thus the sample mean X̄ cannot be recommended as an estimator of the common

mean θ when (n−1)q > 2. Indeed pk � n, so that p =
∑

k pk−q � (n−1)q. As a matter
of fact, the sample mean suffers from a more serious drawback than inadmissibility: it
is not even minimax under the loss function normalized by

∑
k[Var(x̄k)−Var(x̃k)], and

under this loss the risk of X̄ is constant. This result (as well as the form of the Bayes
estimators in Section 3) holds for any positive-definite matrix W with (δ− θ)TW (δ− θ)
providing a quadratic loss for θ estimation.

5. Example: prognostic test study

Our example is a meta-analysis study that summarizes the existing evidence concern-
ing mutant p53 tumor suppressor gene as a prognostic factor for patients with squamous
cell carcinoma [13]. Estimates of log hazard ratios of mutant p53 to normal p53 both
for disease-free survival (θ1) and for overall survival (θ2) were obtained in three obser-
vational studies, X1 = (−0.58,−0.18)T , X2 = (−1.02,−0.63)T , X3 = (−0.69,−0.64)T .
The within-study correlations were not given, but the estimates of standard deviations
are available: √s11 = √

s12 = 0.56, √s21 = 0.39, √s22 = 0.29, √s31 = √
s32 = 0.40.
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Additional three studies provided only the estimates of overall survival log hazard
ratio, θ2, so that with � denoting the missing entries, X4 = (�, 0.79)T , X5 = (�, 0.21)T ,
X6 = (�, 1.01)T ; √s42 = 0.24, √s52 = 0.66, √s62 = 0.48. While this data can be used to
get a better estimate of θ2, one may hope for better inference about θ1 as well. Indeed
the independence assumption of disease-free survival and of overall survival is not viable.

For this reason we looked at the commuting matrices DiRDi, i = 1, . . . , 6 where
Di’s are scalar matrices, Di =

√
s(i)I, with s(1) = s11 = s12, s(2) = (s21 + s22)/2,

s(3) = s31 = s32, s(4) = s42, s(5) = s52, s(6) = s62, and R is the 2 × 2 correlation
matrix (i.e., R has the unit diagonal and the off-diagonal elements equal to ρ). Since
R diagonalizes to diag(1 − ρ, 1 + ρ), after an orthogonal transform diagonal matrices
Si = s(i) diag(1 − ρ, 1 + ρ) are obtained. Following [4], we took ρ = 0.7 or ρ = 0.95.

In the first case when ρ = 0.7, ξ2 can be estimated by using the calculated values,
t12 = 0.13, t22 = 0.23, t32 = 0.34, t42 = 0.48, t52 = 0.68. These values indicate presence of
the between-studies effect, as ξ̂2 = 0.94. For the ξ1 the REML estimator using three data
points gives ξ̂1 = 0. The matrix Ξ̂ is singular with all elements being 0.47. The REML
estimator of θ is (−0.12, 0.15)T (to be contrasted with (−0.32, 0.09) in [4, Table VII]).
An approximate confidence ellipsoid can be derived from (18).

When ρ = 0.95, results turned out to be quite similar, giving ξ̂1 = 0, ξ̂2 = 0.95. The
REML estimator of θ is (−0.11, 0.15)T .

In [2] a concept of quantifying the amount of information contained in correlated
data is discussed. The defined characteristic relates the size of an independent sample
and the amount of information in the actual sample. In principle this approach also can
be used to replace the covariance matrix Si by an available diag(Si) after the sample
size adjustment. However this approach did not lead to practical answers in the situation
described in this section.

6. Conclusions

The linear transformation suggested here offers a new perspective on the classical by
now restricted maximum likelihood estimation. Not only it exhibits remarkable algebraic
properties demonstrated in Theorem 2.1, it also facilitates numerical implementation of
the restricted maximum likelihood estimator and of the method of moments based pro-
cedures Although the mentioned properties hold in the special case when all covariance
matrices commute, lack of data may justify this restriction at least in some applications.

One of our findings is that the vector sample mean cannot be recommended as an
estimator of the treatment effect if the number of studies is not very small (at least four
when q = 1, any number larger than one if q � 2). Indeed individual studies can borrow
strength from the accompanying data to get better estimators via the estimated weights
matrix M in (16). This “correction to X̄” term takes into account intrinsic heterogeneity.
The author advocates to consider the class of θ estimators (16) which directly estimate
the diagonal matrices (Tk + ξkI)−1, k = 1, . . . , q, rather then the commonly used plug-in
estimators (15) which cannot have a Bayes origin.
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