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COMPENSATING OPERATORS AND STABLE BACKWARD IN 
TIME MARCHING IN NONLINEAR PARABOLIC EQUATIONS. 

ALFRED S. CARASSO∗ 

Abstract. Step by step time-marching schemes are fundamental tools in the numerical explo­
ration of well-posed nonlinear evolutionary partial differential equations. However, when the initial 
value problem is il l-posed, such stepwise numerical schemes are necessarily unconditionally unstable 
and result in explosive noise amplification. This paper outlines a novel stabilized time-marching 
procedure for computing nonlinear parabolic equations on 2D rectangular regions, backward in time. 
Very little is known either analytically, or computationally, about this class of exponentially ill-posed 
problems. To quench the instability, the procedure uses easily synthesized FFT-based compensating 
operators at every time step. A fictitious nonlinear image deblurring problem is used to evaluate 
the effectiveness of this computational approach. The method is compared with a previously intro­
duced, global in time nonlinear Van Cittert iterative procedure. The latter is significantly more time 
consuming, and impractical on large problems. 

Key words. nonlinear backward parabolic equations; ill-posed initial value problem; backward 
time-marching scheme; FFT compensating operators; non-integer power Laplacian; nonlinear Van 
Cittert method; nonlinear image deblurring. 
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1. Introduction. Reconstructing the past behavior of a physical system from 
knowledge of its current state, is of interest in numerous scientific contexts. How­
ever, when the physical process involves diffusion, as is the case in groundwater con­
tamination studies for example, the resulting backward parabolic reconstructions are 
exponential ly ill-posed and present serious computational issues [1], [2], [3]. Similar 
exponential ill-posedness characterizes elliptic downward continuation of satellite mea­
surements of gravity and geomagnetism [4], [5], [6]. In recent years, significant progress 
has been made in successfully solving linear time-reversed parabolic equations, lead­
ing to useful reconstructions of valuable scientific data in astronomy, medicine, and 
other areas of application [7]. However, little is known about backward continuation 
in multidimensional nonlinear parabolic equations, either analytically or computa­
tionally. 

This paper outlines a novel time-marching procedure for computing time-reversed 
nonlinear parabolic equations on 2D rectangular regions. As is well-known, step­
wise marching schemes consistent with ill-posed initial value problems are necessarily 
computationally unstable. Here, easily synthesized compensating operators, based on 
FFT algorithms, are applied at every time step to quench the instability. A fictitious 
image deblurring problem is used to evaluate the effectiveness of this computational 
approach, as well as to probe the behavior of various types of nonlinearities. Such ca­
nary in the coalmine synthetically blurred images are useful indicators of the type and 
quality of information that might be recoverable, when the backward computation is 
applied to real data in engineering contexts unrelated to imaging. Further exploration 
and refinement of this time-marching methodology will be developed in subsequent 
reports. Similar ideas may be applicable in ill-posed initial value problems associated 
with other types of partial differential equations. 

Recently [8], a global in time iterative procedure was successfully applied to a class 
of 2D nonlinear backward parabolic equations. This method is an adaptation to the 
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2 A. S. CARASSO 

nonlinear case of the Van Cittert iteration [9], originally used in spectroscopy in the 
1930’s to solve 1D linear convolution integral equations, with explicitly known kernels 
having positive Fourier transforms. It is remarkable that the Van Cittert method 
works as well as it does on the limited, but significant class of nonlinear problems 
considered in [8]. However, the nonlinear Van Cittert process becomes prohibitively 
time consuming on large problems, such as 512 × 512 or 1024 × 1024 pixel images. 
As will be shown below, when backward continuation is feasible, the new stepwise 
marching scheme can produce results with almost the same visual quality as in the 
Van Cittert iteration, but almost 80 times faster. 

2. Limited backward recovery in nonlinear parabolic problems. Most of 
the useful computational results in backward in time parabolic continuation have gen­
erally been obtained in the canonical case of linear, autonomous, selfadjoint problems. 
As shown in [3], [8], nonlinear parabolic equations deviating too strongly from this 
canonical model can present additional challenges. The reason for this marked dif­
ference in behavior can be traced back to the Hölder-continuity stability inequalities 
that underlie backward reconstruction from noisy data. 

Let Ω be a bounded domain in Rn with smooth boundary ∂Ω. Let L be a linear or 
nonlinear elliptic operator in Ω, acting on smoothly differentiable functions satisfying 
homogeneous Dirichlet or Neumannn conditions on ∂Ω. Let L be such that the 
forward initial value problem wt = Lw, t > 0, w(0) = g(x), is well-posed in L2(Ω). 
Let w1(x, t) and w2(x, t) be any two solutions, and let F (t) = w1(., t) − w2(., t)  2 

2 , 
for 0 ≤ t ≤ T . 

Using logarithmic convexity techniques [10], the folowing sharp inequality can be 
established for a wide class of parabolic equations wt = Lw, 

(2.1) F (t) ≤ {F (0)}1−µ(t){F (T )}µ(t), 0 ≤ t ≤ T . 

Here, the Hölder exponent µ(t) satisfies 0 ≤ µ(t) ≤ 1, with µ(t) > 0, t > 0, µ(T ) = 
1, µ(0) = 0, and µ(t) ↓ 0 monotonically as t ↓ 0. 

Given noisy data f(x) ∈ L2(Ω) at time T , satisfying  w(., T ) − f  2≤ δ for small 
δ > 0, we restrict attention to backward continuations w(x, t) satisfying a prescribed 
bound at t = 0, i.e.,  w(., 0)  2≤ M . Eq. (2.1) then implies the following stability 
inequality for the difference of any two possible continuations w1(x, t), w2(x, t), from 
the data f(x) at t = T ,

(2.2)  w 1(., t) − w 2(., t)  2≤ 2M1−µ(t)δµ(t), 0 ≤ t ≤ T . 

In the linear autonomous selfadjoint case, the Hölder exponent µ(t) in Eq. (2.2) decays 
linearly to zero, as t ↓ 0. In the nonlinear case, rapid exponential decay of µ(t) to zero 
is possible [3], [10]. Therefore, a level of accuracy δ at time T that can produce useful 
backward reconstruction in an autonomous selfadjoint equation, may be insufficient in 
a nonlinear equation. As a rule, high quality nonlinear reconstructions from imprecise 
data are not easily achieved. Examples of physically plausible, smooth, positive, yet 
false nonlinear reconstructions are given in [3]. In applications involving real data with 
limited but unknown precision, detailed prior information about the true solution may 
be critical in evaluating the merits of a candidate reconstruction. 

3. Two nonlinear parabolic examples wt = Lw. The computational exper­
iments discussed below involve four images and two instructive parabolic equations. 
However, numerous other equations can be studied, exhibiting a wide variety of un­
expected phenomena. Let Ω be the unit square 0 < x, y < 1 in the (x, y) plane. With 
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fixed T > 0, and homogeneous Neumann boundary conditions on ∂Ω, the following 
initial value problem will be studied, 

wt = κs(w)\.{q(x, y, t)\w} + cwwx, +d(w cos2 w)wy, Ω × (0, T ), 
(3.1) 

w(x, y, 0) = g(x, y). 

Here κ = 8.5 × 10−4 , c = 1.25, d = 0.6, and 

s(w) = exp(0.025w), 
(3.2) 

q(x, y, t) = exp(10t)(1 + 5e2y sin πx) ≥ 1, Ω × (0, T ). 

An equation with different nonlinearities will also be considered. This is  
wt = γ r(w)\.{q(x, y, t)\w} + a |w|wx, +b(w cos2 w)wy, Ω × (0, T ), 

(3.3) 
w(x, y, 0) = g(x, y), 

where γ = 0.04, a = b = 0.5, r(w) = exp{cos2(w)}, and q(x, y, t) is as previously 
defined in Eq. (3.2). 

Each of Eqs.(3.1), (3.3), is well posed in L2(Ω). Accordingly, given any initial 
value w(x, y, 0) = g(x, y) ∈ L2(Ω), a unique solution w(x, y, T ) exists at time T , and 
the solution operator ΛT , where 

(3.4) ΛT w(x, y, 0) = w(x, y, T ), 

is well-defined on L2(Ω). The nonlinear operator ΛT is not known explicitly. Rather, 
ΛT w(x, y, 0) must be found by solving the appropriate initial value problem Eq.(3.1), 
or Eq.(3.3), and obtaining the corresponding solution at time T . Note that w(x, y, T ) 
necessarily belongs to a very restricted class of smooth functions. 

4. Explicit scheme for computing wt = Lw forward in time. Step by step 
time marching explicit finite difference schemes are simple, convenient, and effective 
tools for solving nonlinear evolutionary partial differential equations, as they allow 
lagging the nonlinearities at the previous time step. Despite the necessary stability 
restriction on the time step Δt, such schemes enable a user to quickly gain a pre­
liminary indication of the salient characteristics of the unknown solution. Higher 
precison numerics, along with unconditionally stable implicit schemes, may be ap­
plied at a subsequent stage. Here, using explicit time differencing and centered space 
differencing in the nonlinear initial value problems in Eqs.(3.1) and (3.3), leads to g i 
modest O Δt + (Δx)2 + (Δy)2 accuracy. However, the explicit stability condition g i 
on Δt improves that accuracy to O (Δx)2 + (Δy)2 . This paper deals with 8 bit 
gray scale I M × I M pixel images, with pixel values ranging between 0 and 255. With 
Δx = Δy = 1/I M, Δt = T /N T , the following difference approximation is used to 
march the discrete mesh function W n ≡ W (jΔx, kΔy, nΔt) in Eq. (3.1), N T time 
steps Δt forward in time, up to time T = N T Δt, 

W n+1 = W n + ΔtκS(W n)\.{Qn\W n} + cW nW n 
x 

+ d(W n cos2 W n)W n , n = 0, N T − 1,y 

(4.1) W 0 = g(x, y). 
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Similar differencing is applied to Eq. (3.3). Homogeneous Neumann conditions are 
applied on the boundary of the unit square. In this notation, Wx, Wy, \.{Q\W }, 
represent centered finite difference approximations in the space variables, W 0 denotes 
the original sharp image g(x, y), while W N T is the nonlinearly blurred image f(x, y), 
using either Eq.(3.1) or Eq.(3.3). Analogously to the analytic problem in Eq. (3.4), 
we define the discrete nonlinear parabolic blurring operator ΛT by d 

= W N T (4.2) ΛT 
d W 0 ⇐⇒ ΛT 

d g(x, y) = f(x, y). 

This nonlinear operator is defined on any 8 bit gray scale I M × I M pixel image 
g(x, y) = W 0 . Applying ΛT to that image simply means applying the above explicit d 
scheme for N T time steps to W 0, and acquiring the resulting array f(x, y) = W N T . 
We stress that the blurred image f(x, y) so obtained is only an approximation to the 
true solution w(x, y, T ) in Eq.(3.1) or Eq.(3.3). 

5. Backward continuation in wt = Lw and the Van Cittert iteration. 
In its original formulation, given the data f(x) and the explicitly known 1D linear 

ˆconvolution integral operator P with Fourier transform P (ξ) > 0, the Van Cittert 
method solves P g = f for the unknown g(x) by means of the iterative procedure 

(5.1) hm+1(x) = hm(x) + λ {f(x) − P [hm(x)]} , m ≥ 1. 

Here, λ > 0 is a fixed relaxation parameter chosen so that 1 − λP̂ (ξ) > 0, h1(x) = 
λf(x), and the expectation is that hm → g. Indeed, taking Fourier Transforms in Eq. 
(5.1), we find ⎛ ⎞ 

m

ˆ ⎝(5.2) hm+1(ξ) = {1 − λP̂ (ξ)}j ⎠ λf̂(ξ), m ≥ 1. 
j=0 ∞Since, |1 − λP̂ (ξ)| < 1, one has {(1 − λP̂ (ξ)})j = {λP̂ (ξ)}−1 . Hence, ĥm(ξ)j=0 

‘converges’ to ĝ(ξ) as m → ∞, and hm(x) → g(x). In reality, noise in the data f(x),
ˆtogether with rapid decay of P (ξ) at infinity in commonly occurring Gaussian-like 

convolution operators P , lead to error amplification at high frequencies which prevents 
convergence. The advantage of the Van Cittert iteration is that it provides a gradual 
deconvolution process whereby low and moderately high frequency information can 
be recovered in the first few iterations, while many more iterations are necessary to 
obtain the remaining high frequency information. However, since such high frequency 
information is quite likely contaminated by amplified data noise, it is wise to monitor 
the iterative process and be able to terminate it before amplified noise begins to 
degrade the reconstruction. In spectroscopy and image processing applications [11], 
[12], the Van Cittert method is generally found to produce useful results after finitely 
many iterations, even though it may not converge. 

We now contemplate applying the Van Cittert iteration in the present parabolic 
context to recover w(x, y, 0) = g(x, y) in Eqs.(3.1) and (3.3), given approximate values 
f(x, y) for the true solution w(x, y, T ) at time T . This amounts to inverting the 
discrete nonlinear operator ΛT in Eq. (4.2) by solving for the unknown g(x, y) using d 
the iterative procedure   
(5.3) hm+1(x, y) = hm(x, y) + λ f(x, y) − Λd 

T hm(x, y) , m ≥ 1, 

with some fixed λ such that 0 < λ < 1, and h1(x, y) = λf(x, y). While we may 
hope that hm(x, y) → g(x, y), there are considerable theoretical and computational 
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gaps between the iterative process in Eq. (5.1) and the one in Eq. (5.3). Unlike the 
fixed, explicitly known, linear convolution operator P in Eq. (5.1), ΛT in Eq. (5.3) d 
is unknown, and a new nonlinear initial value must be solved numerically to obtain 
ΛT hm(x, y) for each m. In addition, the Neumann series expansion in Eq. (5.2) which d 
underlies ‘convergence’ in Eq. (5.1), is not applicable in Eq. (5.3). Thus, the iterative 
process in Eq. (5.3) is liable to be computationally intensive, yet with little or no 
theoretical expectation of success. Nevertheless, remarkably, the Van Cittert iteration 
is found to be a valuable tool in a wide variety of 2D nonlinear backward parabolic 
equations. In many cases, this procedure generates iterates hm(x, y) such that the 
L∞ norm of the residual, f − ΛT hm 

∞, decays quasi-monotonically to a reasonably d 
small value after a finite number N of iterations, and hN (x, y) is found to be a useful 
approximation to w(x, y, 0). 

6. FFT compensating operator B on rectangular regions. Define the 2D 
Fourier transform of an L1(R2) function h(x, y) by  
(6.1) ĥ(ξ, η) ≡ h(x, y)e −2πi(ξx+ηy)dxdy, 

R2 

For fixed p > 1, and small E > 0, consider the well-posed diffusion initial value problem 
in R2 involving possibly non-integer powers of the negative Laplacian 

(6.2) wt = −E(−Δ)pw, t > 0, w(x, y, 0) = h(x, y) 

This has the unique Fourier space solution 

(6.3) ŵ(ξ, η, t) = exp{−Et[(2πξ)2 + (2πη)2]p}ĥ(ξ, η), t > 0, 

from which w(x, y, t) can be found by inverse Fourier transformation  
(6.4) w(x, y, t) = exp{2πi(ξx + ηy)} exp{−Et[(2πξ)2 + (2πη)2]p}ĥ(ξ, η)dξdη. 

R2 

Now, let h(x, y) be an 8-bit I M × I M pixel image. Using direct and inverse FFT 
algorithms, we can mimick the operations in Eqs. (6.3), (6.4), and apply the diffusion 
equation Eq.(6.2) to the image h(x, y), to produce the smoothed image w(x, y, t). For 
fixed t > 0, such smoothing will depend strongly on the chosen values of E and p in 
Eqs. (6.3), (6.4). 

Let Δt be the fixed time step in a step by step finite difference marching com­
putation involving an I M × I M image. Let h(x, y) be the resulting image at some 
discrete time tk = kΔt in the evolving computation. Using FFT algorithms, for given 
E, p, we may apply the compensating linear operator B(E, p, Δt) to h(x, y), where Bh 
is defined by 

(6.5) B(E, p, Δt)h(x, y) = w(x, y, Δt), 

with w(x, y, t) as in in Eq. (6.4). 
Compensating operators in non rectangular regions, based on (−Δ)p, are dis­

cussed in Section 9 below. 

7. Explicit scheme for computing wt = Lw backward in time. Given 
the blurred image f(x, y) = ΛT 

d g(x, y) in Eq. (4.2), we can attempt to recover the 
original sharp image g(x, y) by marching backward from T = N T Δt in the explicit 
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finite difference scheme in Eq. (4.1). This becomes possible provided we apply a 
properly chosen FFT compensating operator B to the computed image V at each 
time step, to control the ill-posedness. With pre-assigned E, p, the proposed explicit 
backward in time scheme corresponding to Eq. (4.1) is then the following 

= W m − ΔtκS(W m)\.{QN T −m\W m} + cW mW mV x 

+ d(W m cos2 W m)W m , m = 0, N T − 1,y
 

W m+1
 = BV , m = 0, N T − 1. 

(7.1) W 0 = f(x, y). 

Here, W 0 is the given blurred image at time T = N T Δt, and the scheme marches 
backward N T time steps to produce the sharp image W N T at t = 0. With obvious 
modifications, this can also be applied in backward in time continuation in Eq.(3.3). 
As may be expected, the choices of p and E are critical in obtaining good results, and 
several interactive trials may be necessary. However, there are infinitely many useful 
pairs (E, p), and such a pair can usually be located fairly quickly. 

A different type of marching scheme for a class of ill-posed initial value problems 
is discussed in [13]. 

7.1. Relation to the quasi-reversibility method. While close in spirit to 
the quasi-reversibilty (QR) method [14], the compensated scheme in Eq. (7.1) differs 
from QR in essential ways that render it more versatile, and more easily applicable to 
nonlinear problems. The QR method deals with various ill-posed problems in partial 
differential equations, including spatial continuation in elliptic equations, and bound­
ary control and other problems in parabolic and non-parabolic evolution equations. 
Application of QR to backward in time parabolic equations is developed in Chapter 
1 of [14]. There, linear equations 

(7.2) wt + A(t)w = 0 

are considered, with A(t) a linear elliptic partial differential operator of order 2m in 
the space variables, with coefficients depending smoothly on space and time. The 
differential operator A(t) need not be selfadjoint, but is such that the forward in time 
problem is well-posed. Backward continuation from given noisy data at time T > 0 
is accomplished by numerically marching back from t = T in the modified equation 

(7.3) wt + A(t)w − EA ∗(t)A(t)w = 0 

with suitably preselected small E > 0. For the simple heat equation wt = Δw, 
the modified equation is wt = Δw + EΔ2w. For that simple case, the authors also 
contemplate the use of alternative modified equations, such as wt = Δw + E(−Δ)mw 
with preselected positive integer m. Illustrative 1D linear computational examples, 
using Crank-Nicolson time differencing, are also given in [14, Chapter 1]. However, 
nonlinear backward problems are not considered. Indeed, the formulation in Eq. (7.3) 
involving the adjoint A∗(t), is not applicable to nonlinear problems in an obvious way. 
In the case of the nonlinear second order parabolic equations (3.1), (3.3), a modified 
equation involving some appropriate nonlinear generalization of A∗(t)A(t)w, would 
result in a fairly complex fourth order nonlinear equation, and present a challenging 
computational task. 

In the QR approach, a particular modified equation is selected and translated 
into a specific computational code, using various trial values of E > 0. Exploring 
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other possible modified equations within the same code would not be practical, and 
is not typically contemplated. Also, only positive integer powers of various partial 
differential operators enter the modified equations. A significant practical advantage 
of the compensated scheme in Eq. (7.1), or its counterpart in more general domains 
described in Section 9 below, is the ability to simultaneously explore non integer 
positive values of p, as well as positive values of E, within the same computational code. 
Interestingly, in the examples below involving the nonlinear second order parabolic 
equations (3.1), (3.3), relatively simple compensating operators B based on (−Δ)p 

with 2 < p < 3, were found fully capable of controlling instability in Eq. (7.1). 

8. Some examples. Figure 8.1 shows four sharp test images. These images 
are used to probe the behavior of the blurring nonlinear partial differential equations 
wt = Lw in Section 3, as well as to evaluate the merits of the proposed backward in 
time continuation algorithms. Each of these images features areas of zero intensity 
near the edges. Such zero padding is important in applications involving FFT algo­
rithms. All computations described below were carried out on an AMD Athlon 64 X2 
4880+, running Centos 5 32 bit.1 The computation times mentioned are intended to 
illustrate the possible advantages, or disadvantages, of various procedures. 

Failure of nonlinear reconstruction. We begin by observing that useful 
backward reconstruction may not be feasible in the absence of sufficient precision 
δ in the given data at time T . Figure 8.2 is particularly instructive in the con­
text of continuation backward in time in nonlinear parabolic equations. Each of 
the three 256 × 256 degraded images on the left hand side, was obtained by blur­
ring the corresponding sharp image in Figure 8.1, using the nonlinear initial value 
problem Eqs.(3.1), (3.2). This was done using the explicit scheme in Eq.(4.1), with 
Δx = Δy = 1/256, Δt = 3.0 ×10−7, and marching the solution 400 steps Δt forward, 
up to the final time T = 1.2 × 10−4 . These degraded images do not appear blurred 
beyond remediation. Indeed, in linear image deconvolution experiments, similarly 
blurred imagery can often be significantly improved. Here, useful recovery using the 
Van Cittert method was not possible. Indeed, the original blurred images on the left 
are more informative than the proposed reconstructions ! This example illustrates 
the remarks in Section 2 regarding the significance of exponentially decaying Hölder 
exponents µ(t) in the backward stabilty estimate Eq. (2.2). Evidently, despite the 
small value of Δt in Eq.(4.1), the blurred image W N T = f(x, y) is not a sufficiently 
close approximation to the true solution w(x, y, T ) in Eqs.(3.1), (3.2). Clearly, that 
nonlinear initial value problem is a difficult test case. All remaining examples in this 
paper will involve blurring using Eq.(3.3), an equation with milder nonlinearities. 

US Air Force resolution chart. Figure 8.3 involves a 512 × 512 image, 
and is designed to show the possible merits of using the compensated backward in 
time explicit scheme in Eq. (7.1), versus the more orthodox nonlinear Van Cittert 
method in Eq. (5.3). The scheme in Eq. (4.1) was applied to Eq. (3.3), with 
Δx = Δy = 1/512, Δt = 1.5 × 10−7, and 600 time steps, to yield the blurred im­
age at the final time T = 9.0 × 10−5 . That blurring computation was accomplished 
in 3 minutes. As seen in the leftmost image in Figure 8.3, due to the pronounced 
anisotropic character of q(x, y, t) in Eq. (3.3), the vertical sequence of numbers near 

1Mention of commmercial products or services in this report does not imply NIST appproval 
or endorsement of these products or services, nor does it imply that such products or services are 
necessarily the best available for the intended purpose. 
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the right edge has almost been erased. However, after 100 Van Cittert iterations in 
the rightmost image in Figure 8.3, that vertical sequence is partially restored, along 
with noticeable improvements in other parts of the image. As may be expected, that 
Van Cittert reconstruction required almost 5 hours, as it necessitated 100 sequential 
nonlinear blurring computations, each lasting 3 minutes. 

Using E = 3.5 × 10−4 , p = 2.5, in the compensated backward explicit scheme in 
Eq. (7.1), produced the middle image in Figure 8.3. The vertical sequence of numbers 
near the right edge appears better defined in the middle image than in the rightmost 
Van Cittert image. However, certain other parts of the image are marginally better 
recovered in the Van Cittert restoration. The above choice of (E, p) was arrived at 
after several interactive trials, each lasting 4 minutes. Clearly, on a parallel computer, 
several such pairs (E, p) can be explored simultaneously. No parameter choice other 
than λ in Eq. (5.3) is necessary in the Van Cittert method. 

Sagittal Brain MRI image. The 256 × 256 MRI Brain image in Figure 8.4 
was blurred by applying the scheme in Eq.(4.1) to Eq. (3.3), with Δx = Δy = 
1/256, Δt = 3.0 × 10−7, and capturing the resulting image after 400 time steps at 
the final time T = 1.2 × 10−4 . That computation required 20 seconds. As in Figure 
8.3, there is substantially more blurring near the right edge of the blurred image. A 
competent restoration results after 100 Van Cittert iterations and 2000 seconds, as 
shown in the rightmost image in Figure 8.4. However, after a few interactive trials, 
each requiring 25 seconds, the compensated backward explicit scheme in Eq. (7.1) 
with E = 2.25 × 10−5 , p = 2.875, produced the almost as good reconstruction shown 
in the middle image in Figure 8.4. 

Ben Franklin image. Identical mesh parameters were used to produce the 
256 × 256 blurred Ben Franklin image in Figure 8.5. Recovery of the right half of that 
image is again challenging. Quite useful reconstruction was achieved after 100 Van 
Cittert iterations and 2000 seconds, as shown in the rightmost image in Figure 8.5. 
However, after a few 25 second trials, reasonably good recovery was achieved with the 
compensated backward explicit scheme in Eq. (7.1), using E = 4.0 × 10−5 , p = 2.775. 
As in the preceding MRI Brain image, the Van Cittert image is again somewhat 
sharper. 

Satellite image. Behavior in the 256 × 256 Satellite image differs from the 
preceding two cases, although identical mesh parameters were applied to generate 
the blurred image in Figure 8.6, using Eq. (3.3). That blurred image appears more 
degraded than the blurred Satellite image in Figure 8.2, where a more severe nonlinear 
process was used. In contrast to the case in Figure 8.2, very useful reconstruction is 
achieved after 100 Van Cittert iterations and 2000 seconds, as shown in the rightmost 
image in Figure 8.6. Here, interestingly, after a few 25 second interactive trials, equally 
good results can be achieved using the compensated backward explicit scheme in Eq. 
(7.1) with E = 6.5 × 10−4 , p = 2.35. Behavior in this example is similar to that found 
in the previously discussed 512 × 512 US Air Force resolution chart. 

9. Compensating operators B in general domains. One may consider back­
ward in time continuation in nonlinear second order parabolic problems on general 
domains Ω in R2 , with homogeneous Dirichlet or Neumann boundary conditions. 
Stabilizing backward in time marching computations by means of a compensating 
operator B can be accomplished as follows. For the selfadjoint spatial differential 
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  Resolution chart   Brain MRI

Ben  Franklin                           Satellite

SHARP TEST IMAGES IN NONLINEAR
      DEBLURRING  EXPERIMENTS

Fig. 8.1. A collection of test images is useful in exploring the feasibility of backward in time 
continuation in nonlinear parabolic equations, even when the intended application is unrelated to 
imaging. 



10 A. S. CARASSO 

BLURRED  IMAGE USING  EQ. (3.1) AFTER  20  VAN CITTERT  ITNS.

AFTER  20  VAN CITTERT ITNS.

BLURRED  IMAGE USING  EQ. (3.1) AFTER 100  VAN CITTERT  ITNS.

BLURRED IMAGE USING  EQ. (3.1)

FAILED BACKWARD IN TIME RECONSTRUCTIONS
IN  NONLINEAR PARABOLIC EQUATION  (3.1−3.2) .

Fig. 8.2. Failed image recovery in Eqs.(3.1), (3.2), may indicate adverse Hölder-continuous 
behavior in stability estimate Eq. (2.2) associated with Eqs. (3.1), (3.2), and highlights possibility 
of untrustworthy backward continuation in other intended applications of Eqs. (3.1), (3.2). 
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operator −Δ on Ω, with the same homogeneous boundary conditions as in the origi­
nal parabolic equation, precompute and store a reasonably large number of eigen­
values {σm}M with corresponding orthonormal eigenfunctions φm(x, y), where m=1, 
0 ≤ σ1 ≤ σ2 · · · ≤ σM . Analogously to the situation in Eq. (6.5), given E, p, let 
Δt be the fixed time step in a step by step finite difference marching computation 
on Ω. Let v(x, y) be the resulting numerical solution at some discrete time tk = kΔt 
in the evolving computation. Expanding in the precomputed eigenfunctions of −Δ, 
we may then define the compensating linear operator B(E, p, Δt) applied to v(x, y) as 
follows   M 

(9.1) Bv(x, y) = exp{−EΔt(σm)p} v(x, y)φm(x, y)dxdy φm(x, y). 
Ωm=1 

As in Eq. (7.1), this may be incorporated in a backward time-marching algorithm on 
the spatial domain Ω. By using (−Δ)p with p > 1, and choosing p interactively, it 
may be possible to successfully march backward in time in difficult nonlinear parabolic 
equations where an adjoint spatial differential operator is ill-defined, and for which 
the quasi-reversibility formulation in Eq. (7.3) is inapplicable. 

10. Concluding remarks. Due to the lack of reliable computational tools, 
backward in time continuation in multidimensional nonlinear parabolic equations re­
mains largely uncharted territory. Two approaches were presented in this paper and 
applied to interesting nonlinear examples in 2D rectangular regions. The first method, 
introduced in [8], is a global in time nonlinear Van Cittert iterative procedure. While 
the linear convergence analysis is inapplicable in the nonlinear case, the Van Cit­
tert iteration can produce useful reconstructions in a significant class of parabolic 
equations. However, the computational cost becomes prohibitive for large problems. 

The second method is based on stepwise time-marching schemes, the universal 
computational approach in well-posed nonlinear evolution equations. Unfortunately, 
when the evolution equation is ill-posed, such schemes are necessarily computation-
ally unstable and lead to explosive noise amplification. Here, an easily synthesized 
compensating operator, based on (−Δ)p with p > 1, is applied at each time step to 
quench the instability. In 2D rectangular regions, such compensating operators can 
be simulated using FFT algorithms. In more general domains Ω, compensating op­
erators can be simulated using a sufficiently large number of precomputed eigenpairs 
(σm, φm) for −Δ on Ω, with the same homogeneous boundary conditions on ∂Ω as 
in the original nonlinear parabolic equation. An easily implemented compensated ex­
plicit scheme, marching backward in time, was constructed in Section 7 and applied 
in Section 8. 

A useful idea in exploring possible backward in time continuation in a given 
nonlinear parabolic equation, is to associate a fictitious image deblurring problem 
with that equation. Numerically blurring a sharp image by marching forward in 
time up to some fixed time T > 0, creates interesting noisy data that can be used 
to attempt reconstruction of the sharp image by backward continuation to t = 0. 
Such preliminary exploration may be instructive even if the intended engineering 
application is unrelated to imaging. The failed reconstructions in Figure 8.2 are useful 
examples that signal possible untrustworthy backward continuation in Eqs.(3.1), (3.2). 

The experiments in Figures 8.3 through 8.6 indicate that the compensated back­
ward time-marching explicit scheme in Section 7 can produce reconstructions that are 
often comparable in visual quality to those obtained using the Van Cittert method, 
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but at greatly reduced computational cost. A ma jor advantage of the scheme in Sec­
tion 7 is the ability to explore various non integer trial values of p within the same 
program. Such versatility is not present in the quasi-reversibility method [14], and, in 
fact, the QR formulation in Eq. (7.3) is not readily applicable to nonlinear problems. 
Significantly, in the above nonlinear reconstruction experiments, simple compensat­
ing operators based on (−Δ)p with 2 < p < 3, were found adequate in controlling 
instability. 
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