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Abstract This paper introduces National Institute of Standards 

and Technology (NIST)’s Sustainable Process Analytics 

Formalism (SPAF) to facilitate the use of simulation and 

optimization technologies for decision support in sustainable 

manufacturing. SPAF allows formal modeling of modular, 

extensible, and reusable process components and enables 

sustainability performance prediction, what-if analysis, and 

decision optimization based on mathematical programming. 

SPAF models describe (1) process structure and resource 

flow, (2) process data, (3) control variables, and (4) 

computation of sustainability metrics, constraints, and 

objectives. This paper presents the SPAF syntax and formal 

semantics, provides a sound and complete algorithm to 

translate SPAF models into formal mathematical 

programming models, and illustrates the use of SPAF through 

a manufacturing process example. 
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 Introduction  

 

To be successful in today's complex, rapidly changing, and 

highly competitive world, manufacturers must begin using 

sustainable practices throughout their manufacturing 

operations. Sustainability has been defined by the World 

Commission on Environment and Development (WCED 

1987) as “development that meets the needs of the present 

without compromising the ability of future generations to meet 

their own needs” The United States Department of Commerce 

(DOC) identifies Sustainable Manufacturing (SM) as one of 

its high-priority performance goals, defining SM as the 

“creation of manufactured products that use processes that 

minimize negative environmental impacts, conserve energy 

and natural resources, are safe for employees, communities, 

and consumers, and are economically sound” (DOC 2010). 

Achieving SM requires that manufacturers balance 

environmental, economic and social aspects in their operations. 

The research in this paper focuses mainly on supporting the 

environmental and economic aspects of SM. Increasingly, 

some large companies are making efforts to make their 

operations and manufacturing processes more sustainable 

(Fujitsu 2011, GM 2010, Rockwell Automation 2010). 

However, most of these projects are customized and 

conducted on a piecemeal basis. The solutions are normally 

not easily reusable and not easily extensible. The effect of 

many complex interactions is often overlooked. Furthermore, 

most of the small and medium-sized enterprises (SMEs) lack 

the capability to manage energy and material efficiency in a 

systematic, quantitative, and optimal manner required to meet 

their sustainability goals. To address these challenges, a 

standard formal methodology is needed to model, exchange, 

and reuse manufacturing process knowledge for effective 

sustainability performance analysis, which is the focus of this 

paper.  

In this paper, we have proposed and developed a 

Sustainable Process Analytics Formalism (SPAF), which has 

been implemented at the National Institute of Standards and 

Technology (NIST). SPAF is designed to facilitate the use of 

simulation and optimization technologies for decision support 

in sustainable manufacturing. SPAF allows formal modeling 

of modular, extensible and reusable process components and 
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enables sustainability performance prediction, what-if analysis 

and decision optimization based on mathematical 

programming. More specifically, the contributions of this 

paper include (1) the concept of SPAF that enables formal 

representation of sustainable process structure and resource 

flow, data, control parameters, metrics, and constraints; (2) the 

syntax and formal semantics of SPAF; (3) a sound and 

complete algorithm to translate SPAF models into formal 

mathematical programming models; and (4) a sustainable 

manufacturing example that illustrates SPAF. 
 The rest of this paper is organized as follows. Section 2 
briefly discusses the needs for the SPAF; section 3 introduces 
the context and concept of SPAF and potential users; section 4 
explains the SPAF using an example; in section 5, a summary 
is provided and future work are discussed. Finally, the 
appendix presents the detail SPAF syntax and semantics. 

 
 
The needs for Sustainable process analytics formalism  

Formal description and representation of sustainable processes 

also provides a basis for standardization. Such standardization 

in turn is the foundation for system integration, process 

analysis, and decision optimization, all is essential to the 

improvement of decision-making on factory floors (NIST 

2010, Tanzil and Beloff 2006, NRC 1999, Ridwan et al. 2012). 

Complex sustainability analysis requires formal simulation 

(e.g., Delmia Quest) or optimization models (e.g., A Modeling 

Language for Mathematical Programming (AMPL)) 

(Berglund et al. 2011, AMPL 2011). Modeling and 

optimization have been identified as a key enabler for 

improving SM in the future (SMLC 2011), but require 

significant modeling expertise and a substantial development 

effort. Many researchers have made efforts for optimizing 

specific manufacturing processes (Last et al. 2009, Wang et al. 

2012) and improving energy efficiency and green logistics for 

manufacturing operations (Yang et al. 2013, Naeem et al. 

2013). SPAF eases the modeling process by providing 

standard description and tools associated with it, so that the 

availability, use, and effectiveness of modeling and 

optimization technologies can be increased. Currently, 

different analysis tools such as simulation, optimization, and 

database query languages require different data representation 

and mathematical abstractions for modeling. Thus, even for 

the same manufacturing process, the knowledge needs to be 

represented differently multiple times, rather than just once. 

This makes model development, modification, and extension 

very difficult. SPAF facilitates the increase of model reuse. In 

summary, SPAF is designed to help companies, especially for 

SMEs, overcome the following major challenges: (1) lack of 

modeling and operation research expertise and (2) duplication 

of modeling efforts. To satisfy manufacturers’ needs, we have 

decided to include the following desirable features for SPAF: 
 Data manipulation and querying: SPAF supports data 
storage, manipulation, and querying. For example, given a 
model of a specific milling machine, users may want to query 
the machine specification data provided by the vendor. 

 What-if analysis: SPAF supports what-if analysis by 
computing a range of sustainability metrics as a function of 
non-controllable parameters and control variables in 
manufacturing processes, based on the formal representation of 
manufacturing processes and sustainability metrics. For 
example, given a particular setup of a milling machine, users 
may want to compute the energy consumption for that setup. 

 Decision optimization: SPAF enables the formulation of 
optimization problems for deriving the best option among all 
alternatives of the operational setting of machines, production 
plan, and   investment options. For example, given a model of a 
specific milling machine, users may want to find out a setting 
of the machine that produces the required part while 
minimizing the energy consumption. 

 Unified modeling for different tasks: SPAF allows the 
sustainable process knowledge being represented once, used 
many times, for different analyses such as data query, what-if 
analysis, and decision optimization. Figure 1 shows the 
comparison between the current modeling approach (left hand 
side of the Figure) and the unified SPAF modeling approach 
(right hand side of Figure 1). In current modeling approaches, 
duplicated modeling efforts are needed even for the same 
manufacturing problem for different kinds of analysis tasks. 
For example, simulation, optimization, and Life Cycle 
Assessment (LCA) of a machining process have totally 
different abstractions and modeling methods. They are 
independent of each other. However, the unified SPAF 
modeling approach enables modeling the machining process 
using SPAF once, and the same model then can be used for 
data query, what-if analysis, and decision optimization.  

 Built-in support for process modeling and sustainability 
metrics: SPAF provides modeling capability for hierarchical 
composition of processes and resource flows. Representation 
of sustainable metrics such as CO2 emissions, energy and 
material consumption, and cost are stored in a model library for 
reuse. 

 Modular, extensible, and reusable models: SPAF enables 
modular model design and creation of model libraries. Modular 
model design provides definitions for structuring process 
knowledge into discrete, scalable, and reusable modules 
consisting of isolated, self-contained functional components 
and linking these components through well-defined interfaces. 
A model library stores these model components. Model 
components in a library can be used as building blocks to 
formulate new SPAF models for different problems.  For 
example, the users should be able to compose a machine shop 
model from a number of machine and assembly model 
components in the library. 

 Ease of use: SPAF makes process analysis modeling more 
intuitive and straightforward for domain users such as 
manufacturing engineers or decision makers. Composing a 
bigger model using existing model components in a library 
should be an easy process. No extensive programming, 
mathematics, operation research, and optimization knowledge 
is required. The task could be simply drag-and-drops if a 
graphical user interface is developed.  
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Figure 1 Current modeling approach and the unified SPAF modeling approach 

 

To better understand the SPAF requirements, a variety of 
modeling languages and formalisms, listed in Table 1, have 
been analyzed from the perspective of the desirable features 
and functionalities discussed above. These languages and 
formalism are selected because of their suitability for at least 
one of the features discussed above. They include: 

 Process description languages such as Process 

Specification Language (PSL) (ISO 2004), Business 

Process Model and Notation (BPMN) (OMG, 2010), and 

Systems Modeling Language (SysML) (OMG, 2012).  

 Database query languages such as Structured Query 

Language (SQL) (ISO 2011) and Extensible Markup 

Language (XML) Query (XQuery). 

 Simulation languages such as SIMAN – a general-purpose 

SIMulation ANalysis program for modeling combined 

discrete-continuous systems (Pegden et al. 1995) and 

Object-Oriented (OO) languages. 

 Optimization languages such as AMPL (AMPL, 2011), 

The General Algebraic Modeling System (GAMS) 

(GAMS, 2010), and Optimization Programming Language 

(OPL)  (IBM, 2012). 

 Non-deterministic optimization semantics for 

corresponding formalism, which is used for CoJava 

(Brodsky & Nash, 2005) and Decision Guidance Query 

Language (DGQL) (Brodsky & Wang, 2008). 
 

Process description languages are designed for process 
description and modeling with a modular, extensible, and 
reusable approach and can be easy to use via a graphical user 
interface. The SysML parametric models support mathematical 
expression for (e.g., performance and quantitative constraints) 
the system being designed and provide a foundation for what-if 
analysis (Wu et al. 2013). However, they do not support direct 
data manipulation and querying, optimization, and unified 
modeling of different tasks. 

Database query languages are specifically designed for 
data manipulation and querying. They are relatively easy to 
use, SQL-like skills are sufficient for problem modeling. 
However, they only allow some limited what-if analysis and 
optimization for what can be expressed. There is no unified 
modeling of different tasks. These languages do not have built-
in process and sustainability metrics modeling, they are not 
easily reusable.  

Simulation languages are excellent for what-if analysis. 
Some simulation tools support process modeling and have 
user-friendly graphical user interfaces. A few of them even 
started to support sustainability modeling, e.g., Witness 
(Waller, 2012). In most cases, simulation languages support 
modular, extensible, and reusable modeling. However, they are 
not the appropriate tools for data querying and optimization. 
Optimization by simulation approach is time-consuming and 
the results may not be as accurate as those derived by using 
optimization tools. There is no unified modeling capability for 
different tasks discussed above. Basic simulation modeling of 
processes requires object-oriented programming skills that 
most manufacturing or process engineers do not have.  

Optimization languages are designed for optimization 
modeling. Some optimization languages such as OPL provide 
basic support for data manipulation and querying. However, 
they are not designed for what-if analysis and do not provide 
unified modeling capability. There is no built-in support for 
process and sustainability modeling. Current optimization 
modeling languages are not developed for reuse and modular 
model construction. Mathematical and optimization modeling 
skills are required to use them.   

Optimization semantics for OO programming and database 
query languages are developed to provide features such as data 
manipulation and querying, what-if analysis, optimization, and 
unified modeling of different tasks. However, there is no built-
in support for process and sustainability metrics modeling, 
even though it potentially can be built on top of CoJava 

http://en.wikipedia.org/wiki/Nondeterministic_algorithm
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(Brodsky and Nash, 2005), which requires Java programming 
skills. On the other hand, DGQL (Brodsky and Wang, 2008) is 
relatively easy to use, just like SQL.  
 
SPAF is designed to allow data querying, what-if analysis, 
optimization, and unified modeling of these different tasks. 

SPAF provides built-in support for process and sustainability 
metrics modeling with a components’ library. SPAF also 
supports modularity, extensibility, reusability, and ease of use 
especially, with a graphical interface. However, the modeling 
effort will be similar to OPL for new process model 
components if there is no model library.

 
 

 

 

 

 

Table 1 A comparison table of SPAF and other languages 

Modeling 

       Languages 

 

 

Features 

Process 

Description 

Languages 

(PSL, 

BPMN, 

SysML) 

Database 

Query 

Languages 

(SQL, 

XQuery) 

Simulation 

Languages 

(SIMAN, OO 

languages) 

Optimization 

Modeling 

Languages (e.g., 

AMPL, GAMS, 

OPL) 

Optimization 

Semantics for OO 

and Query Lang’s 

(CoJava, DGQL) 

Design goal 

for SPAF 

Data 

manipulation 

and querying 

Do not  

directly 

support 

Supports Require 

modeling and 

programming 

AMPL and GAMS 

are not designed for 

query processing; 

OPL has some built-

in support 

Supports Supports 

What-if 

analysis 

Do not  

directly 

support 

Limited (only 

what can be 

expressed as 

DB queries) 

Supports Do not  support Supports Supports 

Optimization Do not   

support 

Limited and 

not efficient 

Limited and 

not efficient 

Supports Supports Supports 

Unified 

modeling for 

different tasks 

Do not  

support 

Do not  

support 

Do not  

support 

Do not  support Supports Supports 

Built-in support 

for process 

modeling and 

sustainability 

metrics 

Can be 

extended to 

support 

Can be 

extended to 

support 

Can be built 

on top 

Do not  support Can be extended 

to support 

Supports if, 

with a 

components 

library 

 

Modular, 

extensible, and 

reusable 

Supports Do not support 

OO 

extensibility 

Supports Difficult to reuse 

models 

CoJava - support; 

DGQL – just like 

SQL 

Supportsif  

with a 

components 

library 

 

Ease of use (by 

manufacturing 

and business 

users) 

Can be easy 

via 

graphical 

interface 

Relatively easy 

(SQL skills 

required) 

Programming 

skills to model 

analytics; 

Many allow 

high-level 

composition 

functionality 

Math/optimization 

modeling skills 

required 

CoJava 

(programming 

skills required); 

DGQL (SQL 

skills required) 

Easy for 

composite 

process, esp. 

if a graphical 

interface is 

added; 

similar to 

OPL for 

atomic 

process 

models 
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The concept of sustainable process analytics formalism  

Context of SPAF 

 

To explain the context of SPAF, a five-stage SM improvement 

methodology is depicted in Figure 2. This methodology is 

based on the ideas of the Six Sigma DMAIC (Define, Measure, 

Analyze, Improve, and Control) methodology (Chieh, 2010). 

The methodology proceeds through the following stages:  

 Stage 1 - High-Level Assessment: Each factory assesses 

its sustainability level and status, defines high-level 

sustainability goals, and identifies areas for improvement 

regarding its organizational sustainability performance (for 

both its processes and facilities).  

 Stage 2 - Problem Identification and Data Collection: To 

address areas of improvement identified in Stage 1, more 

specific case scenarios need to be defined. Modeling 

objectives, constraints, metrics, and control variables 

related to each case scenario need to be identified. 

Relevant data, both manufacturing process- and 

sustainability- related information, need to be measured, 

collected, and/or estimated. In reality, process- and 

sustainability- related data are not always available and 

when they are, they may exist in various forms, and would 

typically not yet be formalized.  

 Stage 3 - Formal Process Modeling and Data 

Representation: To prepare for formal analysis and 

optimization modeling, case scenarios defined in Stage 2 

need to be formally described, data collected need to be 

formally represented, and inputs and controls need to be 

modeled in a way so that the values of decision variables 

could be instantiated.  

 Stage 4 - Decision Guidance through What-if Analysis and 

Decision Optimization: The formal process modeling and 

data representation completed in Stage 3 need to be 

translated into models that can be solved by commercial 

off-the-shelf (COTS) tools. Different tasks such as data 

querying, what-if analysis, and decision optimization will 

be performed for evaluation and analysis purposes. The 

analyses provide actionable recommendations to decision 

makers for improvement implementation.  

 Stage 5 - Implementation/Execution: Decision makers can 

implement and execute the actionable recommendations 

derived from Stage 4 for sustainability improvement. 

Occasionally, the evaluation in the previous stage may 

determine that the goals cannot be achieved using the 

identified alternative and hence this implementation stage 

may involve abandoning the now determined-to-be flawed 

improvement plan. In either case, upon completion of 

Stage 5, users can continue to the next iteration of the 

continuous improvement cycle.  
 

The SPAF supports this methodology at stages 3 and 4 in 
Figure 2. Note that the formal process modeling and data 
representation is done uniformly and only once for both what-if 
analysis and decision optimization as shown in the right hand 
side of Figure 1. The SPAF models enable decision makers to 
ask questions in the form of queries that provide computation 
and optimization solutions as actionable recommendations. 
SPAF queries include: 

1. Process data queries that resemble typical database queries 
and can be asked directly against the explicit data. 

2. What-if analysis queries to compute certain metrics for 
different scenarios based on available input information. 

3. Decision optimization queries to find the best one 
(minimum or maximum as required) out of all alternatives 
that satisfy the constraints by using decision variables.

  

 

Figure 2 A model-based SM improvement methodology with SPAF 
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SPAF concept through a manufacturing example 

 
The detailed SPAF syntax and formal semantics will be 
presented as an appendix. In this subsection, the concept of 
SPAF modeling is illustrated using an example of a 
manufacturing process. Assuming we have decided to analyze 
and optimize sustainability performance for a manufacturing 
process and collected data for the study. We need to first 
describe formally the process using SPAF and then solve the 
problem. The manufacturing process, depicted in Figure 3, has 
five sub-processes, three machining processes and two 
assembly processes. The composite process (large rectangle), 
the sub-processes (small rectangles), flows (lines), and flow 
aggregators (triangles) are depicted. Two parts, Part 1 and Part 
2, provide input for the three machining processes. The 
machining processes produce three intermediate components, 
Comp 1, Comp 2, and Comp 3. The components produced by 
the machines, A to C, flow to the assembly processes to be 
assembled into final products, Product 1 and Product 2. In this 
example, metrics that can be used to describe the composite 
process are cost and CO2 emissions. In this example, three 
specific kinds of questions decision makers pose may include: 

1. Process data questions, e.g., what is the maximum capacity 
of Machine A? How many of Product 2 needs to be 
produced over a scheduled week? 

2. What-if analysis questions, e.g., what are the total cost, 
energy consumption, and CO2 emissions for a scheduled 
weekly production under a particular production plan? 

3. Decision optimization questions, e.g., how should 
production plans  be set for the machines, the assembly 
stations, and the flow distributions among them so that the 
scheduled weekly production can be met within the 
weekly CO2 cap and at a minimal cost? 

To answer these questions, the process structure, flow, sub-
process relationships, and associated data need to be clearly 
understood; and the objective, metrics, constraints, and control 
variables need to be identified. The models can be expressed 
with identified data and variables and metrics computation 
expressions. Optimization models can be formulated with 
constraints and objectives. The detail SPAF modeling will be 
discussed in Section 4.

 

 

Figure 3 An example: a two-product-manufacturing process for SPAF modeling 

 

Structure of SPAF 

 
The goals of SPAF development are as follows. On the one 
hand, SPAF needs to be sufficiently expressive for the SM key 
performance indicators such as energy and material 
consumption, emission, and cost in industrial scenarios. On the 

other hand, the formalism needs to be simple for ease of use, 
which means that high-level abstraction needs to be used. 
Relevant industry-accepted languages, standards, and tools 
should be used. The SPAF models are human and machine 
readable, ready for database storage, translator development, 
and exchange among modelers/users/systems.  
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 The SPAF includes two major parts: (1) Generic analytics 
language – represents generic analytics knowledge and (2) 
Process description and sustainability metrics model templates 
- supports sustainable process modeling and sustainability 
metrics computation.  

Figure 4 presents a class diagram for the generic part of the 
SPAF to describe the structure of the components and their 
relationships. The components are explained as follows: 

 An analytical statement may be assignments, constraints, 

or decision variable declarations.  

 An analytical sequence is a sequence of analytical 

statements. SPAF analytical sequences can be an explicit, 

implicit, constraints, alternatives, or optimization 

analytical sequence to satisfy the different modeling needs. 

 Explicit analytical sequence provides all the required 

process structure and data in the form of assignment 

statements that assign a data value to each variable in the 

sequence.  

 Implicit analytical sequence extends an explicit analytical 

sequence with assignment statements that assign an 

expression (which computes a value from previously 

defined variables) to a new variable.  

 Constraint analytical sequence extends implicit analytical 

sequence with constraint expressions in terms of 

previously defined variables.   

 Alternative analytical sequence extends a constraint 

analytical sequence with declaration of variables that do 

not have an assigned value. Intuitively, an alternative 

sequence defines a set of feasible computations, 

corresponding to all possible assignment of values into the 

declared variables that satisfy the constraints.  

 Optimization analytical sequence is an alternatives 

analytical sequence with the added optimization directive 

“minimize” or “maximize.” Intuitively, it states the 

optimization problem of finding an instantiation of values 

into declared variables that satisfy all the constraint 

statements, and minimizes/maximizes the indicated 

objective. 

 An analytical model is an (non-optimization) analytical 

sequence with the added model name and a possible 

parameter Id.  

 A model package is a set of analytical models. Intuitively, 

it serves as a reusable repository of analytical knowledge, 

which could be used for different applications. 

 An analytical query is a pair of an analytical sequence and 

a model package that includes all models that are referred 

to, directly or indirectly, from the process model. 

 

 

 

Analytical sequence

Analytical statement

Assignment statement Constraint statement Variable declaration statement

1

1..*

Model package Analytical model

1 1..*

Include statement

Analytical query

10..* has

Implicit analytical sequence

Explicit analytical sequence

Optimization analytical sequence

Alternatives analytical sequence

Constraint analytical sequence

Optimization statement

0..*

1

has

1

1

has

 

Figure 4 SPAF class diagram – generic analytics language 
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Figure 5 shows a hierarchical diagram for the process 
description and sustainability metrics model templates part of 
the SPAF. For the purpose of formal process representation, 
four different SPAF model components have been defined. 
These model components include context, flow, flow 
aggregator, and process. Context describes data that are 
globally accessible by all model components; context model 
includes context ID and associated data attributes. Flow 
describes entities that physically flow into and out of a process. 
Flow aggregator aggregates multiple sources of the same type 
of flows and distributes the outputs as inputs to the other 
processes. The sum of all inputs of an aggregator must equal 
the sum of its outputs. A process can be a composite process or 
a sub-process. The attributes of each component are shown in 
Figure 6. The process description and sustainability metrics 

model templates part includes syntax of the SPAF analytical 
models such as process model, flow model, flow aggregator 
model, and context model. These analytical models must 
adhere to a more specialized structure. Figure 5 and Figure 6 
are connected through the analytical model.  

A process model may be a generic process model or a 
specific process model. A generic process model can be stored 
in a model library and reused for developing specific process 
models. Flow and flow aggregator models may be those for 
discrete flows, continuous flows, or batch flows. Sustainability 
metric aggregator models are specifically designed for 
sustainability metric aggregation for environmental indicators 
such as energy, emission, material, and waste and economic 
indicators such as investment, revenue, cost, and return on 
investment (ROI).

  

 

Figure 5 A hierarchical diagram for the process description and sustainability metrics model templates 
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Figure 6 SPAF process description model components 

 
SPAF libraries collect model components of both generic and 
specific models. Metrics model components can also be stored 
in a library. Figure 7 shows examples of generic model 
components in a SPAF library, e.g., process model components 
such as “baseSeqTransform” and “baseProcessComposer”, and 
flow and flow aggregator models for discrete and continuous 
flows, and metrics models for environmental and economic 
indicators. The model components in the SPAF library provide 
reusable building blocks and can be used as templates for a 
family of manufacturing processes; each model or template can 
be reused with some adjustment for different cases within the 
family. New models can be added to the SPAF library. 
Moreover, the existing models within the library can be 
executed with new data so that different companies that have 
the same problems could use the models by inputting their data 
to seek company-specific decision guidance. Using model 
components in the library, modelers can create SPAF models 
and queries for their operations more effectively and 
efficiently.  

 

Figure 7 SPAF component library: example of generic models 

Illustrative example using SPAF 

 

In this section, the two-product-manufacturing example 
introduced in Section 3.2 is modeled using SPAF and 
discussed in details. Figure 8 to Figure 18 show the detailed 
SPAF process models and possible queries. First, assuming the 
SPAF model, twoProductsManuf (), is developed and all data 
are provided, a what-if analysis query requires only four 
statements (Figure 8). The first two statements include the data 
models for product demand data indicating quantities for each 
final product (i.e., Product 1 and Product 2) and production 
plan data that describes the numbers of components should be 
produced by each machining or assembly process. The third 
statement includes the SPAF model for the two-product-
manufcturing process and finally a constratint statement that 
indicates the total amount of CO2 generated by this 
manufacturing scenario should be less than or equal to 50 
metric tons. Since all data required for the query are available, 
the query is actually a deterministic computational model that 
calculates the total cost within the limit of total CO2 less than 
50 metric tons. The query provides answers for both total cost 
and total CO2.   

 

include data productDemand(); 

include data productionPlanData(); 

include process twoProductsManuf (); 

twoProductsManuf.totalCO2 ≤ 50; 

Figure 8 A what-if analysis query for the two-product-

manufacturing process 

 

In a case where the production plan data are not provided, an 
optimal production plan with minimal total cost needs to be 
determined, given the same CO2 limitation as a constraint.  The 
same SPAF model, twoProductsManuf (), is used as shown in 
Figure 9, but the production plan data (as shown in Figure 8) is 
not provided and an optimizaiton statement is added to 
“minimize” the total cost. There are still only four lines of code; 
however, since the production plan data are unknown, all data 
previously provided explicitly in the production plan data 
model become decision variables that need to be instantiated to 
satisfy all the constraints. Now it is no longer a deterministic 
computational model. It actually describes a set of non-
deterministic computational paths, each corresponding to an 
instantiation of set of values for the decision variables. Some of 
the non-deterministic computation paths are “feasible,” i.e., 
they satisfy all of the constraints (the total CO2 constraints as 
well as the internal constraints) while others are not feasible. 
The semantics of the optimizaion query in Figure 10 is to find 
a non-deterministic optimizaiton path that leads to the minimal 
total cost among all feasible computation paths. The query 
results inlcude not only both total cost and total CO2 but also 
the optimal production plan configuation (i.e., the optimal 
number of components being produced by each machining or 
assembly process).  
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include data productDemand(); 

include process twoProductsManuf (); 

twoProductsManuf.totalCO2 ≤ 50; 

Minimize twoProductsManuf.totalCost; 

Figure 9 Optimization query for the two-product-

manufacturing process 

As stated above and shown in Figure 8 and Figure 9, the same 
SPAF model, twoProductsManuf (), can be used for different 
kind of queries, such as what-if analysis (in Figure 8) and 
decision optimization (in figure 9). These query examples 
demonstrate that SPAF provides a unified modeling capability. 
The queries against SPAF models are simple and 
straightforward.  

 Figure 10 shows the model for the “context” component, its 
model name is “timeSequence.” “timeSequence” is declared as 
a set of string “day,” which is a tuple consisting of three 
fields “day, month, and year” of type integer. The three dots 
“…” expresses the missing data that need to be instantiated as a 
constant, or an expression before the data is used. 

context timeSequence() {   
tuple day { 
    int day; 
    int month; 
    int year; 
 }; 
{day} timeSequence = ...;  
} 

Figure 10 Context model for the two-product-manufacturing 

example 

Figure 11 shows the model for the “flow” component, the 
model name is “itemSequence.” The “Id”parameter of 
“itemSequence” will be replaced by the value of a parameter in 
an include statement. An include statement calls another 
model. It is similar to a subroutine call. The context model 
itemSequence () is included using a include statement. A one-
dimensional array “Id.qty” is an integer array. “Id.qty” 
is indexed by the finite set of tuples defined by the 
“timeSequence” variable from the context model. The elements 
of the array represent quantities of the flow in that day.  

 

flow itemSequence (Id) { 
string Id.matchName = …; 
include context timeSequence(); 
int  Id.qty[timeSequence]; 
forall (d in timeSequence)   Id.qty[d] > 0 ; 
} 

Figure 11 Flow model for the two-product-manufacturing 

example 

Figure 12 shows a model for the “flow aggregator” component, 
its model name is “itemSeqAggr.” As described earlier, “Id” is 
a parameter whose value will be provided by an include 
statement. In the first statement of this model, the context 
model itemSequence () is included. Next, a variable 
“Id.flowType” is declared as a string “itemSequence.” 
“Id.inputFlows” and “Id.outputFlows” are declared as a set of 
strings and will be instantiated separately. “Id.flows,” the union 
of “Id.inputFlows” and “Id.outputFlows,” is also a set of 
strings. For every flow in “Id.flows,” its quantity for the day in 
“timeSequence” is an integer. The forall statement defines a 
constraint for each day in “timeSequence,” it indicates that the 
total number of the “inputFlows” for a day must equal the total 
number of the “outputFlows.”        

 

flow aggregator  itemSeqAggr (Id) { 

include context timeSequence(); 

string Id.flowType = “itemSequence”; 

{string} Id.inputFlows = ...;   

{string} Id.outputFlows = ...; 

{string} Id.flows = Id.inputFlows union 

       Id.outputFlows 

for (i in Id.flows) int i.qty[timeSequence]; 

forall (d in timeSequence)  

 sum (i in Id.inputFlows) i.qty[d]  

 == sum (o in Id.outputFlows) o.qty[d]; 

} 

Figure 12 Flow aggregator model for the two-product-

manufacturing example 

 

Figure 13 shows a model of a generic atomic process, which is 
an end process in which there is no sub-process, e.g., Machine 
A. The model name is “baseSeqTransform.” Id is provided 
when it is called. For every output flow, the flow model is 
being included with a parameter of the flow name. Two arrays 
of floats are declared for both “Id.costPerUnit” and 
“Id.CO2PerUnit”; their index set is the set of output flows for 
this atomic process. A two-dimensional array of integer 
“Id.inputPerOutput” represents the number of input flows 
required for each output flow. For each production day, the 
cost of the atomic process is computed as the unit cost of each 
output flow times the number of output flows produced in that 
day; the CO2 emission is computed as the unit CO2 emission 
from each output flow times the number of output flows 
produced in that day. A constraint is that the total number of 
input flows needed in that day must equal the number of output 
flows produced in the same day times the number of input 
flows required for each output flow.  
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Once the generic atomic process model component is 
developed, it can be saved and reused for generating specific 
atomic process model components. 

 

process baseSeqTransform(Id) { 

include context timeSequence(); 

string Id.name = …; 

{string} Id.inputFlows = …; 

{string} Id.outputFlows = …; 

for (i in Id.outputFlows)  

  include flow itemSequence(i); 

float Id.costPerUnit[Id.outputFlows] = ...; 

float Id.CO2PerUnit[Id.outputFlows] = ...; 

int Id.inputPerOutput  

      [Id.outputFlows][Id.inputFlows] = …; 

float Id.cost[d in timeSequence] =  

sum(r in outputFlows) Id.costPerUnit[r]  

* r.qty[d]; 

float Id.CO2[d in timeSequence] =  

sum(r in outputFlows) Id.CO2PerUnit[r]  

* r.qty[d]; 

for (i in Id.inputFlows) { i.qty[d in  

  timeSequence] = sum (o in  

  Id.outputFlows) Id.inputPerOutput[o][i]  

  * o.qty[d]; 

  include flow itemSequence(i); 

} 

} 

Figure 13 An atomic process model for the two-product-

manufacturing example 

 

Figure 14 shows a specific atomic process model for Machine 
A. Model name is “machine.” It starts with the instantiation of 
the declarations. “Id.name” is given as “machine.” 
“Id.inputFlows” is a set of two strings, “part1toMaA” and 
“part2toMaA.” Input flows of “part1toMaA” and 
“part2toMaA” are given names “part1” and “part2” 
respectively. “Id.outputFlows” is a set of two strings 
“comp1fromMaA” and “comp2fromMaA.” Output flows, 
“comp1fromMaA” and “comp2fromMaA,” are given names of 
“comp1” and “comp2” respectively. Two float type arrays for 
“Id.costPerUnit” and “Id.CO2 PerUnit” are both given in a pair 
(index, value) of elements as [“comp1fromMaA”: 35.0, 

"comp2fromMaA": 65.0] and ["comp1fromMaA": 0.05, 
"comp2fromMaA": 0.02] respectively. The two-dimensional 
array “Id.inputPerOutput” is instantiated as a pair of 
["comp1fromMaA": ["part1toMaA": 1,"part2toMaA": 1], 
"comp2fromMaA": ["part1toMaA": 1,"part2toMaA": 3]] The 
last step is to include the generic model “baseSeqTransform." 
“machineA” is the parameter. 

 Other atomic processes in the two-product-manufacturing 
example including Machine B, Machine C, Assembly A, and 
Assembly B are similar to the process model of Machine A. 

process machineA () { 

string Id = "machineA"; 

{string} Id.inputFlows =  

   {"part1toMaA","part2toMaA"}; 

string part1toMaA.name = "part1";  

string part2toMaA.name = "part2"; 

{string} Id.outputFlows =  

   {"comp1fromMaA","comp2fromMaA}; 

string comp1fromMaA.name = "comp1"; 

string comp2fromMaA.name = "comp2"; 

float Id.costPerUnit [Id.outputFlows] =  

   ["comp1fromMaA": 35.0,  

 "comp2fromMaA": 65.0]; 

float Id.CO2PerUnit [Id.outputFlows] =  

   ["comp1fromMaA": 0.05,  

           "comp2fromMaA": 0.02]; 

int Id.inputPerOutput  

  [Id.outputFlows][Id.inputFlows] =  

["comp1fromMaA": ["part1toMaA":  

1,"part2toMaA": 1],"comp2fromMaA":  

["part1toMaA": 1,"part2toMaA": 3]] 

include process baseSeqTranform  

(“machineA”); 

} 

Figure 14 Atomic process model for Machine A 

Depicted in Figure 15 is a generic process composer model, 
which includes all flow models and all sub-processes models, 
and formulates the flow aggregator models automatically 
instead of being given explicitly. Again, three dots indicate that 
the input and output flows, and sub-processes need to be 
instantiated before this generic model is called. For every flow, 
the model needs to be included and its model name, 
“matchName,” and aggregator name need to be defined before 
this generic model is called. “flowsToAggregators,” a set of 
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strings, are the union of input flows to the composite process 
and output flows from all sub-processes. 
“flowsFromAggregators,” another set of strings, are the union 
of all input flows to all sub-processes. All aggregator flow 
names are in the set of strings that include all “matchName” of 
the flows. For every flow “matchName,” if the name of input 
flow is in the “flowsToAggregators” and the name of the 
output flow is in the “flowsFromAggregators,” then include 
the flow aggregator model with the flow’s “matchName” as a 
parameter.  

 

process   processComposer(id) { 

{string} Id.inputFlows = …; 

{string} Id.outputFlows = …; 

{string} Id.subProcesses = …; 

{string}  Id.flows = Id.inputFlows union  

    Id.outputFlows; 

for (f in Id.flows) {   

string f.model = ...;   

include flow f.model(f);   

string f.matchName = ...;   

string f.aggrModel = ...; 

}; 

for (p in Id.subProcesses) {  

string p.model = ...;    

include process p.model(p);  

} 

{string} Id.flowsToAggregators =  

   Id.inputFlows union union(p in  

   Id.subProcesses) p.outputFlows; 

{string} Id.flowsFromAggregators =  

   Id.outputFlows union union(p in  

   Id.subProcesses) p.inputFlows; 

{string} Id.allFlows =  

   Id.flowsToAggregators union  

   Id.flowsFromAggregators; 

{string} Id.matchNames =  

   distinct({f.matchName | f in  

   Id.allFlows}); 

for (n in Id.matchNames) {string  

     Id.n.aggrModel =  

   first({f.aggrModel |f in Id.allFlows  

   : f.matchName == n}); 

{string} Id.n.inputFlows = { 

  f | f in Id.flowsToAggregators :  

  f.matchName == n}; 

{string} Id.n.outputFlows = { 

  f | f in Id.flowsFromAggregators :  

  f.matchName == n}; 

include flow aggregator Id.n.aggrModel(Id.n); 

}; 

Figure 15 Generic composite process model 

 Figure 16 shows the metrics aggregator models that 
compute daily total cost and CO2. The daily total cost and CO2 
are the sum of cost and CO2 for all sub-processes.  

 

metric aggregator costSequence(Id) { 

include context timeSequence (); 

{string} Id.subProcesses = ...; 

float Id.cost[t in timeSequence] = 

sum(p in Id.subProcesses) p.cost[t]; 

} 

metric aggregator CO2Sequence(Id) { 

include context timeSequence (); 

{string} Id.subProcesses = ...; 

float Id.CO2[t in timeSequence] = 

  sum(p in Id.subProcesses) p.CO2[t]; 

} 

Figure 16 Metric aggregator model 

 Figure 17 shows the composite process model. Model Id is 
“twoProductsManuf.” It includes the context model 
itemSequence (). “Id.inputFlows” is given as a set of two 
strings {“part1in”, “part2in”}. “Id.outputFlows” is given as a 
set of two strings of {“product1”, “product2”}. “matchNames” 
are also given. “Id.subProcessess” is instantiated as a set of 
five strings of {“machine,” “machineB”, “machine,” 
“assembly,”  “assemblyB”}. The generic process model 
processComposer is called to include all atomic sub-processes 
models defined previously. Float type of data for extra facility 
cost and CO2 per day ($1 750 and 0.3 metric tons) are 
provided. The metric aggregator models, costSequence (Id) and 
CO2Sequence(Id), are included. Total cost for each day is the 
extra facility cost plus daily cost for all sub-processes. Total 
CO2 for each day is the extra facility CO2 plus total sub-
processes CO2.  
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 An alternative modeling method is to explicitly instantiate 
all flows and flow aggregators, e.g., inputs and outputs of 
Part1, Part2, Comp1, Comp2, and Comp3 are all specified as 
sets of strings. Then every flow aggregator is included with its 
name as a parameter.  

 

process   twoProductsManuf () { 

string Id = “twoProductsManuf”; 

include context timeSequence(); 

{string} Id.inputFlows = {“part1in”,  

     “part2in”}; 

{string} Id.outputFlows = {“product1”,  

     “product2”}; 

string part1in.matchName = "part1"; 

string part2in.matchName = "part2"; 

string product1.matchName = "product1"; 

string product2.matchName = "product2"; 

{string} Id.flows = Id.inputFlows union  

    Id.outputFlows; 

for (f in Id.flows) f.model = "itemSequence"; 

{string} Id.subProcessess = {"machineA",  

    "machineB", "machineC",  

    "assemblyA", “assemblyB"}; 

for (p in Id.subProcesses) p.model = p; 

include process processComposer(Id); 

float Id.extraCostSequence[t in timeSequence]  

     = 1750.0; 

float Id.extraCO2Sequence[t in timeSequence] 

     = 0.3; 

include   metric aggregator costSequence(Id); 

include   metric aggregator CO2Sequence(Id); 

float Id.totalCost =  

    sum(t in timeSequence)(Id.cost[t] +  

    Id.extraCostSequence[t]); 

float Id.totalCO2 =  

    sum(t in timeSequence)(Id.cost[t] +  

    Id.extraCO2Sequence[t]); 

} 

Figure 17 Composite process model for the two-product-

manufacturing process 

 After we explained all the SPAF model components for the 
example, we need to examine the data required by the queries 
in Figure 8 and Figure 9. A context data sequence is shown in 
Figure 18. Its product demand data model is listed in Figure 19, 
in which the quantities of the two products are given for each 
production day. For example, [<4, 9, 2012>: 6] in the first line 
means demand for Product 1 on September 4

th
, 2012 is 6.  

{day} timeSequence = {  

<4, 9, 2012>, <5, 9, 2012>,  

<6, 9, 2012>, <7, 9, 2012>, <8, 9, 2012>, 

}  

Figure 18 A context data sequence for the two-product-

manufacturing process 

int product1.qty [timeSequence] = [<4, 9, 
2012>: 6, <5, 9, 2012>: 8, <6, 9, 2012>: 5, 
<7, 9, 2012>: 7, <8, 9, 2012>: 4]; 

int product2.qty [timeSequence] = [<4, 9, 
2012>: 5, <5, 9, 2012>: 6, <6, 9, 2012>: 3, 
<7, 9, 2012>: 4, <8, 9, 2012>: 5]; 

Figure 19 Product demand data model for product 1 and 

product 2   

 A what-if scenario for the example is described as follows: 
if the process engineer uses a predefined production plan, i.e., 
all the data such as numbers of part 1 and part 2, numbers of 
components flows into and out of Machine A, Machine B, 
Machine C, and number of components flows into Assembly 
A, and Assembly B each day are fixed. This means that all the 
data needed in the SPAF model are explicitly provided and can 
be used to computer metrics using formulas. The four lines of 
what-if query (as shown in Figure 8) can be expanded as in 
Figure 20 while the constraint keeps the same as before. 

{day} timeSequence = { <5, 11, 2012>, <6, 11, 
2012>, <7, 11, 2012>, <8, 11, 2012>, <9, 11, 
2012>, } 

int product1.qty [timeSequence] = [6, 8, 5, 7, 
4]; 

int product2.qty [timeSequence] = [5, 6, 3, 4, 
5]; 

// data for fixed production plan 

int part1.qty [timeSequence] = [ 98, 128, 73, 
107, 56]; 

int part2.qty [timeSequence] = [127, 166, 96, 
139, 221]; 

int part1ToMaA.qty [timeSequence] = [0, 0, 4, 
0, 0]; 

int part2ToMaA.qty [timeSequence] = [0, 0, 0, 
0, 0]; 
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int part1ToMaB.qty [timeSequence] = [98, 128, 
69, 107, 56]; 

int part2ToMaB.qty [timeSequence] = [127, 166, 
96, 139, 61]; 

int part2ToMaC.qty [timeSequence] = [0, 0, 0, 
0, 160]; 

int comp1FromMaA.qty [timeSequence] = [0, 0, 
0, 0, 0]; 

int comp2FromMaA.qty 
[timeSequencetimeSequence] = [0, 0, 4, 0, 0]; 

int comp1FromMaB.qty [timeSequence] = [30, 40, 
25, 35, 20]; 

int comp2FromMaB.qty [timeSequence] = [23, 30, 
14, 25, 17]; 

int comp3FromMaB.qty [timeSequence] = [22, 28, 
16, 22, 2]; 

int comp1FromMaC.qty [timeSequence] = [0, 0, 
0, 0, 0]; 

int comp3FromMaC.qty [timeSequence] = [0, 0, 
0, 0, 16]; 

int comp1ToAsA.qty [timeSequence] = [30, 40, 
25, 35, 20]; 

int comp2ToAsA.qty [timeSequence] = [18, 24, 
15, 21, 12]; 

int comp3ToAsA.qty [timeSequence] = [12, 16, 
10, 14, 8]; 

int comp2ToAsB.qty [timeSequence] = [5, 6, 3, 
4, 5]; 

int comp3ToAsB.qty [timeSequence] = [10, 12, 
6, 8, 10]; 

include process twoProductsManuf (); 

twoProductsManuf.totalCO2 ≤ 50; 

Figure 20 What-if query for the two-product-manufacturing 

example 

 This is a deterministic computational model, however, 
since there is a constraint statement in the query and there are 
also other data integrity constraints within the models, the 
answers have to satisfy all the constraints. The results of the 
what-if scenario are: the total cost is $30 000 with a total of 
35.11 metric tons of CO2. Note that changes in any input data 
will result in a different set of solutions.  

 For the optimization query listed in Figure 9, input data 
such as weekly production schedule and customers’ demand 
for Product 1 and Product 2 are provided. The sustainability 
goal is to determine an optimal production plan that minimizes 
the total cost within a CO2 bound of 50 metric tons. The 
optimization model performs multiple non-deterministic 
computations, each instantiates decision variables (quantities of 

flows in each configuration) using values that satisfy all the 
constraints. Among those sets of configurations that satisfy all 
the constraints, the system will automatically find a 
configuration (i.e., a production plan) that minimizes the total 
cost. Figure 21 shows the optimization result screen of an 
implementation using IBM ILOG CPLEX. The optimal 
production plan for the scheduled five days is derived. The 
optimization results show that the minimal total cost is $28 023 
with total 36.72 metric tons of CO2. The results also indicate 
that due to the higher operation cost of the Machine B, it is not 
recommended to use Machine B to produce any of the 
components, i.e., Comp1, Comp2, and Comp3. Note that 
changes in any of the input data and constraints will also affect 
the values of decision variables and decision expressions.  

 

Figure 21 Optimal solution screen of two-product-

manufacturing example 

 

Conclusion and future work 

 

This paper proposed a NIST-developed Sustainable Process 

Analytics Formalism that allows manufacturers to: (1) 

formally represent sustainable process structure, flow, process 

data, control variables, and process analytical model of 

sustainability metrics and constraints for quantitative 

sustainability analysis; and (2) analyze and make decisions on 

improvement alternatives with modeling and optimization 
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tools. The formalism provides platform-independent process-

knowledge description and supports what-if analysis and 

decision optimization for decision makers. The use of the 

SPAF formalism is illustrated through a two-product 

manufacturing process example. The SPAF syntax, formal 

semantics, and query computation algorithm are presented in 

the appendix.  

 The formalism will be deployed to industry through 

case studies and contributions to standard development efforts. 

When implemented for real manufacturing applications, the 

formalism will help manufacturers quantify their sustainability 

efforts for improvement of energy and material efficiency, 

lower emissions, and save cost.  
 Future work includes (1) examining diverse 

manufacturing processes to identify extra process analytical 
needs; (2) supporting taxonomies, and metrics from unit 
manufacturing, assembly processes, and production planning; 
(3) supporting smart manufacturing by enhancing the SPAF;  
(4) developing translators that automatically translate SPAF to 
formal optimization/simulation models, which can then be 
solved by commercial optimization tools; (5) developing 
graphical representation of SPAF based on modeling language 
such as UML, SysML, or BPMN; (6) performing industrial 
case studies to evaluate and validate the formalism and the 
capabilities; and (7) standardizing the SPAF.    

 

Disclaimer 

No approval or endorsement of any commercial product by 

the National Institute of Standards and Technology is intended 

or implied. Certain commercial software systems are 

identified in this paper to facilitate understanding. Such 

identification does not imply that these software systems are 

necessarily the best available for the purpose. 
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Appendix: Sustainable Process Analytics Formalism 

Syntax and Formal Semantics 

SPAF model syntax 

SPAF adopts concepts and ideas from other languages and is 
based on the OPL data model and the basic OPL syntax of 
arithmetic and query expressions with minor modifications and 
extensions. The basic OPL data model, modeling concept, data 
type, and data structure are listed in (IBM, 2012).   

Analytical sequence, Aseq, is a sequence (s1, ..., sn) of 
analytical statements, si,,   

1 ≤ i ≤  n, in one of the forms: 

1. Ti   xi =  ai , 

2. Ti   xi =  ei ,  

3. Ti   xi .  

4. Ti   xi = … , 

5. Ci , 

6. include Mi (J) or include Mi ( ), 

7. min xi , max xi , or sat , 
where: 

 The statements min xi , max xi , or sat  are only allowed as 
the last statement sn 

 Ti  is a type 

 xi  is a variable name, which may include a prefix identifier, 
e.g., Id.x 

 ai  is a constant of type Ti 

 ei  is an expression returning type Ti 

 “…” is a keyword in “Ti   xi   = …” to indicate that xi is to 
be instantiated with a constant before using it later in the 
sequence  

 Ci is a constraint 

 Mi  is a unique name of an analytical model 

 J in  Mi (J) is a string identifier 

The first four forms are declaration statements, within 
which the first two forms are assignment statements. Ci  is a 
constraint statement, include Mi is an include statement, and 
min xi, max xi, or sat are optimization statements, i.e., 
minimization, maximization, and satisfiability. If the last 
statement sn of the analytical sequence (s1, ..., sn) is min xi, max 
xi, or sat, then the (s1, ..., sn) is an optimization analytical 
sequence; otherwise, we say that it is a non-optimization 
analytical sequence. 

An analytical model is an expression of the form  

M(Id) { Aseq }  or  M( ) {  Aseq  }, 

where M is a unique name of the model, Id is an optional 
parameter, and Aseq is a non-optimization analytical sequence. 

 Let P be a set of analytical models. We say that P is closed 
under reference (or closed) with respect to an analytical 
sequence A (or model M) if the following holds: If an A has a 
statement of the form include M’(J), then P must contain an 
analytical model M’. We say that P is closed under reference 
(or closed) if for every model M in P, P is closed with respect 
to M. 

 An analytical query is a pair (A, P), where A is an 
analytical sequence and P is a model package closed with 
respect to A.  

 Let (A, P) be an analytical query. The flattened sequence of 
A, denoted flat (A, P), is an analytical sequence that results 
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from A by recursively replacing each include M( ) with the 
analytical sequence of the model M ( ), and replacing each 
include M(J) statement with the analytical sequence of the 
model M(Id) in P, in which every appearance of Id is replaced 
with J.  

 We say that an analytical query (A, P) has a conflict, if one 
of the following holds in  

flat (A, P) = (S1,…, Si ,…, Sj,…, Sn): 

 Sj is a declaration statement of the form Ti  xi =  ai  or Ti   xi 
=  ei  and Si is any declaration statement 

 Si and Sj are two declaration statements such that  xi =  xj  
and Ti  ≠ Tj  (i.e., the same variable is declared twice with 
conflicting types)  

Given a flat (S1,…, Si ,…, Sn) analytical sequence A (i.e., 
without include statement), we say that variable xi is data-
instantiated if: 

 There is a statement Si of the form Ti   xi =  ai ,  where ai is a 
constant or, recursively 

 There is a statement Si of the form Ti   xi =  ei,  such that all 
variables y in ei are instantiated in the prefix sequence 
(S1,…,Si-1 ) 

We say that a flat analytical sequence A is data instantiated 
if every variable x in a declaration statement is instantiated.  

 We say that an analytical query (A, P) is well-formed if: 

 It does not have a conflict, and  

 For every constraint statement Ci and expression ei in the 
declaration statement of the form Ti  xi = ei or min xi, max 
xi, or sat in flat (A, P), the following holds: it only contains 
variables that have been declared in a declaration 
statement earlier in the sequence. 

 If A is a non-optimization sequence, then, flat (A, P) must 
be data instantiated. 

 If A is an optimization sequence, then for every statement Si 
in flat (A, P) = (s1, ..., sn) of the form  Ti   xi   = …,  xi must 
be instantiated in (S1,…,Si-1 ) (i.e., earlier in the sequence). 

From now on, only well-formed analytical queries are 
considered. 

 As discussed earlier, a SPAF model is an analytical model 
M (Id) if it is one of the following forms: 

 Process model 

 Context model 

 Flow model 

 Flow aggregator model 

 Sustainability metric aggregator model 

A SPAF process model with identifier Id, denoted PM (Id), 
is an analytical sequence that contains statements of the 
following forms: 

string  Id.processType = type_flow_string, 

{string}  Id.inputFlow = inputFlowExpr, 

 {string}  Id.outputFlow = outputFlowExpr, 

 {string}  Id.subProcess = subProcessExpr, 

 {string}  Id.flowAggregator = flowAggrExpr, 

and  

 include M (I), for every I in Id.inputFlow, 
Id.outputFlow, Id.subProcess, or  Id.flowAggregator, where: 

 Id is used as a prefix for all variables on the left hand side 
of the declaration statements, except for variables that 
appear on the left hand side of assignments into variables 
defined in the included models, i.e., SPAF models M (Id’), 
where Id’ is in Id.inputFlow, Id.outputFlow, 
Id.subProcess, and Id.flowAggregator (those are “visible” 
to the process model) 

 type_process_string is a string 

 inputFlowExpr, outputFlowExpr are analytical expressions 
of the type {string} (i.e., return a set of strings) 

 subProcessIdsExpr, flowAggrIdsExpr are analytical 
expressions of type {string} 

 M (I) denotes a method that returns a SPAF model with 
identifier I 

A SPAF context model CM ( ), is an analytical model. 

 A SPAF flow model with identifier Id, denoted FM (Id), is 
an analytical model that contains statements of all of the 
following forms: 

string  Id.flowType = type_flow_string, 

where: 

 Id is used as a prefix for all variables on the left hand side 
of the assignment statements 

 type_flow_string is a string 

A SPAF flow aggregator model with identifier Id, denoted 
FAM (Id), is an analytical sequence that contains all of the 
followings forms: 

string  Id.flowType = type_flow_string, 

{string}  Id.flows_to_aggr = inputFlowExpr, 

{string}  Id.flows_from_aggr = outputFlowExpr, 

where: 

 Id is used as a prefix for all variables on the left hand side 
of the assignment statements 

 type_flow_string is a string 

 inputFlowExpr, outputFlowExpr are analytical expressions 
of the type {string} (i.e., return a set of strings) 

An SPAF process package is a model package P. We say 
that it is well-formed if: 
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 P is closed under references 

 P satisfies the following scoping rules: 

 Process model M (Id) can use variables prefixed with 

identifiers form Id.inputFlow, Id.outputFlow, 

Id.flowAggregator, or itself, i.e., Id. 

 A model M (Id) in P can use variables from the 

context model in P. 

 Flow Aggregator Model M (Id) can use variables that 

are prefixed with identifiers of flow models that are 

referenced in it, or itself, i.e., Id. 

 For every process model M in P, A(M) is a well-formed 
analytical sequence 

Note that a well-formed SPAF process package P provides 
a modular description of a (flat) and well-formed analytical 
sequence. Thus, it is naturally extendable and its components 
are reusable.  

 

SPAF formal semantics 

We say that an analytical sequence A is explicit if all of its 
analytical statements are of the form 

Ti    xi = ai , 

where ai is a constant, i.e., it is an assignment of a constant to a 
variable. Intuitively, the symbolic expression of an explicit 
analytical sequence represents the corresponding data. Note 
that an explicit analytical sequence is flat. Formally, the 
semantics of an explicit analytical sequence (s1, ..., sn), denoted 
Sem ((s1, ..., sn)), is itself, i.e., its symbolic expression.  

 We say that an analytical sequence A is implicit if all of its 
analytical statements are of the form 

Ti    xi = ei  . 

 Note that this includes the case when the expression ei is a 
constant ai. Formally, the semantics of a well-formed implicit 
analytical sequence   

(T1   x1 = e1, … ,  Tn   xn = en)  

is the explicit analytical sequence  

(T1   x1 = a1, … ,  Tn   xn = an) , 

in which each ai, 1 ≤ i ≤ n, is a constant of type Ti that is 
computed by expression ei, when each variable xj, 1 ≤ j ≤ i-1, is 
replaced by the constant aj. 

 The semantics of (s1, ..., sn) is denoted Sem ((s1, ..., sn)). 
Obviously, an explicit analytical sequence is a particular case 
of implicit, in which case, explicit and implicit semantics 
coincide. 

 We say that an analytical sequence A = (s1, ..., sn) is a 
constraint analytical sequence if all of its statements are of the 
form  

(Ti    xi = ei)      or       Ci  , 

where ei is an expression of type Ti and Ci is a constraint.  
Formally, the semantics of a well-formed constraint analytical 
sequence (s1, ..., sn), denoted Sem ((s1, ..., sn)), is defined as 
follows: 

 Consider an implicit analytical sequence ( si1

,..., sik

), 

which is a sub-sequence of (s1,..., sn) that contains all 

statements si’ of the form Ti  xi = ei, and its semantics (Ti1
  

xi1
= ai1

,..., Tik
  xik

= aik
)   (which is an explicit 

analytical sequence), and 

 Consider a sequence ( C j
1

, ..., C j
m

), which is a sub-

sequence of (s1, ..., sn) that contains all the constraint 
statements 

 If there exists 1 ≤ i ≤ m, such that C j
i

evaluates to 

FALSE after every variable xi in it is replaced with the 

constant ai, then Sem ((s1, ..., sn)) is defined as 

INVALID. Otherwise, Sem ((s1, ..., sn)) is defined as 

the explicit analytical sequence (Ti1
  xi1

= ai1
,..., Tik

  

xik
= aik

). 

We say that an analytical sequence A = (s1, ..., sn) is an 
alternative analytical sequence, if each si, 1 ≤ i ≤ n, is of the 
form  

(Ti   xi  ),   (Ti   xi = ai),   (Ti   xi = ei),      or   Ci , 

where ai is a constant of type Ti, and  ei is an expression of 
type Ti, and Ci is a constraint. Note that an alternative 
analytical sequence may have repetition of declaration 
statements for the same variable x. Consider the analytical 
sequence (s1, ..., sn) resulting from A by removing, for every 
variable x, all declarations except for its first appearance in A. 
Formally, the semantics of a well-formed alternatives 
analytical sequence (s1, ..., sn), denoted Sem ((s1, ..., sn)), is 
defined as follows: 

 Consider all non-instantiated variables xi1
, ..., xik

in (s1, ..., 

sn).   Sem ((s1, ..., sn)) is the set 

{ E( ai1
,..., aik

)  |  ai1
in D( Ti1

),..., aik
in D( Tik

)  /\ 

E( ai1
,..., aik

) ≠ INVALID }, 

where: 

 D (Ti1
),...,D (Tik

) are the domains of types Ti1
,..., Tik

, 

respectively, and 

 E( ai1
, ..., aik

) denotes Sem ((s1,..., sn) 

[ xi1
/ ai1

,..., xik
/ aik

]), where (s1, ..., sn) 

[ xi1
/ ai1

,..., xik
/ aik

] denotes the constraint analytical 

sequence (s1’, ..., sn’) that results from (s1, ..., sn) by 
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replacing each statement of the form (Ti j
  xi j

), 1 ≤ j ≤ k, 

with the statement Ti j
 xi j

= ai j

. 

We say that an analytical sequence A= (s1,..., sn, sn+1) is a 
flat optimization sequence if (s1,..., sn) is an alternative 
sequence, and s (n+1) is of the form: 

min   xi,  max  xi,   or sat. 

where xi, 1 ≤ i ≤ n, is one of the variables in the left hand 
sides of assignments in  

(s1, ..., sn). Assuming without loss generality that, for every 
variable x in A, there is a single declaration of x (if this is not 
the case, all declarations of x except for its first appearance are 
removed.) Formally, the semantics of an optimization 
analytical sequence (s1,..., sn, s(n+1)), denoted Sem ((s1,..., sn, 
s(n+1))), is defined as follows: 

 If Sem (s1, …, sn) = ∅ then we say that Sem ((s1,..., sn, 
s(n+1))) is INFEASIBLE. Otherwise, consider an explicit 
analytical sequence E in Sem ((s1,..., sn)) such that: 

 If s (n+1) is min xi, then for all E’ in Sem ((s1, …, sn), ai ≤ ai’, 
where ai and ai’, are the analytical model constants in the 
assignments Ti  xi = ai of E, and Ti  xi = ai’ of E’. 

 If s (n+1) is max xi, then for all E’ in Sem ((s1, ..., sn), ai ≥ ai’, 
where ai and ai’, are the analytical model constants in the 
assignments Ti  xi = ai of E, and Ti  xi = ai’ of E’. 

If E does not exist, we say that Sem ((s1,..., sn, s(n+1))) is 
UNBOUNDED. Otherwise,  

Sem ((s1,..., sn, s(n+1))) is E. 

 Note that if s (n+1) is sat, the semantics is just an explicit 
analytical sequence E in Sem ((s1, ..., sn)). Also note that the 
optimization semantics (whether it is minimization, 
maximization, or satisfiability) are non-deterministic, i.e., there 
may be more than one explicit model that satisfies the 
condition in the definition of semantics. 

 Semantics of a query (A, P) is a pair (A’, P’) constructed as 
follows: 

 For every sequence S, either A or a sequence B in a model 
M (Id) {B} in P, S is replaced by S’ as follows. 

 Consider all variables x1, …, xn, declared in their order 

in S, then S’ is the sequence  
  (T1   x1 = a1   , …,  Tn   xn = an), 

where  T1 ,…, Tn  are the corresponding types of x1, …, xn  

respectively, and ai is the constant instantiated with  xi in the 
semantics E of flat (A,P). 

SPAF Query Computation    

In this section, algorithms (reduction procedures) to perform 
SPAF analytical query computation are introduced. Figure A.1 
shows a commutative diagram for analytical query 
computation, in which the upper left box indicates the query 
sequence A in model package P. The query sequence may have 

include statements . The semantics of A is sequence A’ in 
package P’ as shown in the upper right box in Figure A.1. Two 
algorithms are included in the computation – analytical query 
algorithm and flat optimization sequence algorithm. Through 
the analytical query algorithm (refer to step (1), (6), and (5)), 
(A, P) can be translated to a flat analytical sequence (middle 
left box). If the flat analytical sequence can be instantiated, it is 
an implicit analytical sequence, otherwise, it is an optimization 
analytical sequence whose semantics is a flat explicit analytical 
sequence (middle right box). This algorithm calls the flat 
optimization sequence algorithm (refer to step (2), (3), and (4)) 
to translate the flat optimization sequence to a standard 
optimization model such as OPL or AMPL (lower left box). By 
using an optimization solver, the optimization solution (lower 
right box) can be derived. All variables can then be 
instantiated, the sequence becomes a flat explicit analytical 
sequence (middle right box), which can be translate back to 
(A’, P’).  

 Figure A.2 presents the algorithm of SPAF Query 
Computation. The input is an analytical query sequence A and 
a model package P that is closed with respect to A. The output 
is (A’, P’) that is the semantics of (A, P). The procedures of the 
algorithm include: 

1. Construct a flat sequence S1 by replacing all the include 
statements in A with corresponding analytical sequences. 

2. Construct a new sequence S2 by removing all the 
duplicated declarations of x except for the first declaration 
in S1 for every variable x declared in S1. 

3. If S2 is instantiated, it must be an implicit analytical 
sequence. So a new explicit analytical sequence S3 can be 
constructed by replacing each variable with a constant that 
derived from an expression. 

4. If S2 is not instantiated, it must be a flat optimization query.  

 By calling the OptSeqAlg (S2) algorithm, it will return the 
semantics of S2. 
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Figure A.1 A commutative diagram for analytical query 

computation 

Input: (A, P) is a well-formed analytical query and P is a 

closed form model package closed with respect to A. 

Output: (A’, P’) is the semantics of (A, P). 

1. Construct S1 = flat (A, P). 

2. Construct sequence S2 from S1 as follows: 

 For every variable x declared in S1, remove all  

 declarations of x except for the first declaration in S1. 

3. Check if S2 is instantiated. 

4. If S2 is instantiated, it must be an implicit analytical 

sequence of the form (T1 x1 = e1, …,Tn xn = en). In this 

case, construct S3 as the explicit analytical sequence (T1 

x1 = a1 ,…,Tn xn = an),in which each ai, 1≤ i ≤ n, is a 

constant of type Ti that is computed by expression ei, where 

each variable xj,  1≤ j ≤ i-1, is replaced by aj. 

5. Otherwise, if S2 is not instantiated, it must be a flat 

optimization query. Construct S3 by calling the method 

OptSeqAlg (S2), which returns the semantics of S2. 

6. Construct the pair (A’, P’) as follows:  

 

For every sequence S, which is either A or a sequence B in a  

model(Id){B} in P, S is replaced by S’ as follows. 

Consider all variables x1, …, xn, declared in their order in S, 

then S’ is the sequence (T1 x1 = a1 ,…,Tn xn = an) where T1 ,… 

,Tn are the corresponding types of x1, …, xn respectively, and ai is 

the constant to instantiate xi in S3. 

Figure A.2 Algorithm 1: SPAF query computation 

 Figure A.3 presents the algorithm of Optimization 
Sequence Algorithm (OptSeqAlg). The input is a flat 
optimization query S2 generated by the SPAF Query 
Computation algorithm. The output is the semantics of S2. 

1. For all variables that are instantiated in every statement, 
replace the expression with the computed constant. 

2. Construct decision variables that are not being instantiated.  

3. Construct a set of constraints by replacing decision 
variables in every statement with its constant. For any 
variable that is non-instantiated, a constraint is added. 

4. Construct the optimization problem with objectives and 
constraints. 

5. Solve the optimization problem using an optimization 
solver.  

6. Construct the answer sequence by removing all constraint 
statements and replacing all the variables using constants 
computed or the optimization solutions.  

 

Input: Flat optimization query (i.e., (s1,…,sn,sn+1) where 
sn+1 is of the 

       form min xi , max xi (1 ≤ i ≤ n) or sat where xi is not 
       instantiated on (s1, …, sn)). 
Output: Semantics of (s1,…,sn,sn+1). 

1. Consider all variables xi1
, ..., xim

 in (s1, ..., sn) that are 

instantiated. For every statement Si j

, 1 ≤ j ≤ k, of the 

form  Ti j
 xi j

= ei j

, compute ei j

, and replace ei j

with 

the computed constant ai j

, i.e., resulting in Ti j
 xi j

= 

ai j

 

2. Construct the set of decision variable V to be the set of all 

non-instantiated variables xl1
, ..., xlm

 in (s1, ..., sn) 

ranging over the domains corresponding to types Tl1
,…, 

Tlm
 respectively. 

3. Construct the set of constraints C as follows: 
   3.1 Initially, C = ∅.  
   3.2 For every statement si, 1≤ i ≤ n of the form Ci, add to  
        C the constraint resulting from Ci by replacing every  

       instantiated  variable xi j

with its constant ai j

from  

       Step 1. 
3.3 For every statement Si of the form Ti xi = ei , where xi is  
     non- instantiated, add the constraint xi == ei’, where ei’  

     result from ei by replacing each decision variable xi j

in  

     ei with its constant ai j

from Step 1. 

4. Construct the optimization problem O; 

V
min xn subject to C, 

V
max xn subject to C, or 

V
sat C  

according to sn+1. 
5. Solve the optimization problem O.  
6. If O is infeasible, return “INFEASIBLE”, else if O is 

unbounded, return “UNBOUNDED.”  
7. Otherwise, construct the answer sequence from (s1, ..., sn) 

as follows: 
   7.1 All non-declaration statements (i.e., constraints) are  
        removed. 
   7.2 Every declaration statement with type Ti and variable  
        xi (i.e.,of the form Ti  xi = ai  or Ti  xi = ei ) be replaced  
       as follows: 
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   7.3 if xi is instantiated, it is replaced with Ti xi = ai ,  
         where ai is a constant computed in Step 1. 
   7.4 if xi is non-instantiated, the statement is replaced with  
       Ti  xi = ai, where ai is a constant instantiated into  
       decision variable xi from the solution of the  
optimization problem O.  

Figure A.3 Algorithm 2: optimization sequence algorithm 

(OptSeqAlg) 

 

Algorithm correctness: We denote by All-Sem (A, P) the set of 
all explicit analytical sequences’ E that are Sem (A, P).  

 We denote by All-Ans (A, P) the set of all explicit 
analytical sequences’ E that are possible answers produced by 
Algorithm: SPAF query computation.  

Claim: Algorithm SPAF query computation is CORRECT, 
i.e., it is: 

1. Sound, i.e., for every well-formed analytical query (A, P),  

All_Ans (A, P) ⊆ All_Sem (A, P) 

2. Complete, i.e., for every well-formed analytical query (A, 
P),  

All_Sem (A, P) ⊆ All_Ans (A, P) 

 

 


