
1 J Intell Manuf (20xx) xx:x-x

Process analytics formalism for decision guidance in sustainable manufacturing

A. Brodsky G. Shao F. Riddick

Received: 29 September 2013

Abstract This paper introduces National Institute of Standards

and Technology (NIST)’s Sustainable Process Analytics

Formalism (SPAF) to facilitate the use of simulation and

optimization technologies for decision support in sustainable

manufacturing. SPAF allows formal modeling of modular,

extensible, and reusable process components and enables

sustainability performance prediction, what-if analysis, and

decision optimization based on mathematical programming.

SPAF models describe (1) process structure and resource

flow, (2) process data, (3) control variables, and (4)

computation of sustainability metrics, constraints, and

objectives. This paper presents the SPAF syntax and formal

semantics, provides a sound and complete algorithm to

translate SPAF models into formal mathematical

programming models, and illustrates the use of SPAF through

a manufacturing process example.

Keywords process analytics, decision guidance, sustainable

manufacturing, optimization, what-if analysis

Alexander Brodsky

Department of Computer Science

George Mason University

4400 University Drive, MS 4A5

Fairfax, Virginia 22030-4444

Guodong Shao (corresponding author), Frank Riddick

System Integration Division

Engineering Laboratory

National Institute of Standards and Technology

100 Bureau Drive, MS 8260

Gaithersburg, MD 20899-8260

email: gshao@nist.gov

 Introduction

To be successful in today's complex, rapidly changing, and

highly competitive world, manufacturers must begin using

sustainable practices throughout their manufacturing

operations. Sustainability has been defined by the World

Commission on Environment and Development (WCED

1987) as “development that meets the needs of the present

without compromising the ability of future generations to meet

their own needs” The United States Department of Commerce

(DOC) identifies Sustainable Manufacturing (SM) as one of

its high-priority performance goals, defining SM as the

“creation of manufactured products that use processes that

minimize negative environmental impacts, conserve energy

and natural resources, are safe for employees, communities,

and consumers, and are economically sound” (DOC 2010).

Achieving SM requires that manufacturers balance

environmental, economic and social aspects in their operations.

The research in this paper focuses mainly on supporting the

environmental and economic aspects of SM. Increasingly,

some large companies are making efforts to make their

operations and manufacturing processes more sustainable

(Fujitsu 2011, GM 2010, Rockwell Automation 2010).

However, most of these projects are customized and

conducted on a piecemeal basis. The solutions are normally

not easily reusable and not easily extensible. The effect of

many complex interactions is often overlooked. Furthermore,

most of the small and medium-sized enterprises (SMEs) lack

the capability to manage energy and material efficiency in a

systematic, quantitative, and optimal manner required to meet

their sustainability goals. To address these challenges, a

standard formal methodology is needed to model, exchange,

and reuse manufacturing process knowledge for effective

sustainability performance analysis, which is the focus of this

paper.

In this paper, we have proposed and developed a

Sustainable Process Analytics Formalism (SPAF), which has

been implemented at the National Institute of Standards and

Technology (NIST). SPAF is designed to facilitate the use of

simulation and optimization technologies for decision support

in sustainable manufacturing. SPAF allows formal modeling

of modular, extensible and reusable process components and

2 J Intell Manuf (20xx) xx:x-x

enables sustainability performance prediction, what-if analysis

and decision optimization based on mathematical

programming. More specifically, the contributions of this

paper include (1) the concept of SPAF that enables formal

representation of sustainable process structure and resource

flow, data, control parameters, metrics, and constraints; (2) the

syntax and formal semantics of SPAF; (3) a sound and

complete algorithm to translate SPAF models into formal

mathematical programming models; and (4) a sustainable

manufacturing example that illustrates SPAF.
 The rest of this paper is organized as follows. Section 2
briefly discusses the needs for the SPAF; section 3 introduces
the context and concept of SPAF and potential users; section 4
explains the SPAF using an example; in section 5, a summary
is provided and future work are discussed. Finally, the
appendix presents the detail SPAF syntax and semantics.

The needs for Sustainable process analytics formalism

Formal description and representation of sustainable processes

also provides a basis for standardization. Such standardization

in turn is the foundation for system integration, process

analysis, and decision optimization, all is essential to the

improvement of decision-making on factory floors (NIST

2010, Tanzil and Beloff 2006, NRC 1999, Ridwan et al. 2012).

Complex sustainability analysis requires formal simulation

(e.g., Delmia Quest) or optimization models (e.g., A Modeling

Language for Mathematical Programming (AMPL))

(Berglund et al. 2011, AMPL 2011). Modeling and

optimization have been identified as a key enabler for

improving SM in the future (SMLC 2011), but require

significant modeling expertise and a substantial development

effort. Many researchers have made efforts for optimizing

specific manufacturing processes (Last et al. 2009, Wang et al.

2012) and improving energy efficiency and green logistics for

manufacturing operations (Yang et al. 2013, Naeem et al.

2013). SPAF eases the modeling process by providing

standard description and tools associated with it, so that the

availability, use, and effectiveness of modeling and

optimization technologies can be increased. Currently,

different analysis tools such as simulation, optimization, and

database query languages require different data representation

and mathematical abstractions for modeling. Thus, even for

the same manufacturing process, the knowledge needs to be

represented differently multiple times, rather than just once.

This makes model development, modification, and extension

very difficult. SPAF facilitates the increase of model reuse. In

summary, SPAF is designed to help companies, especially for

SMEs, overcome the following major challenges: (1) lack of

modeling and operation research expertise and (2) duplication

of modeling efforts. To satisfy manufacturers’ needs, we have

decided to include the following desirable features for SPAF:
 Data manipulation and querying: SPAF supports data
storage, manipulation, and querying. For example, given a
model of a specific milling machine, users may want to query
the machine specification data provided by the vendor.

 What-if analysis: SPAF supports what-if analysis by
computing a range of sustainability metrics as a function of
non-controllable parameters and control variables in
manufacturing processes, based on the formal representation of
manufacturing processes and sustainability metrics. For
example, given a particular setup of a milling machine, users
may want to compute the energy consumption for that setup.

 Decision optimization: SPAF enables the formulation of
optimization problems for deriving the best option among all
alternatives of the operational setting of machines, production
plan, and investment options. For example, given a model of a
specific milling machine, users may want to find out a setting
of the machine that produces the required part while
minimizing the energy consumption.

 Unified modeling for different tasks: SPAF allows the
sustainable process knowledge being represented once, used
many times, for different analyses such as data query, what-if
analysis, and decision optimization. Figure 1 shows the
comparison between the current modeling approach (left hand
side of the Figure) and the unified SPAF modeling approach
(right hand side of Figure 1). In current modeling approaches,
duplicated modeling efforts are needed even for the same
manufacturing problem for different kinds of analysis tasks.
For example, simulation, optimization, and Life Cycle
Assessment (LCA) of a machining process have totally
different abstractions and modeling methods. They are
independent of each other. However, the unified SPAF
modeling approach enables modeling the machining process
using SPAF once, and the same model then can be used for
data query, what-if analysis, and decision optimization.

 Built-in support for process modeling and sustainability
metrics: SPAF provides modeling capability for hierarchical
composition of processes and resource flows. Representation
of sustainable metrics such as CO2 emissions, energy and
material consumption, and cost are stored in a model library for
reuse.

 Modular, extensible, and reusable models: SPAF enables
modular model design and creation of model libraries. Modular
model design provides definitions for structuring process
knowledge into discrete, scalable, and reusable modules
consisting of isolated, self-contained functional components
and linking these components through well-defined interfaces.
A model library stores these model components. Model
components in a library can be used as building blocks to
formulate new SPAF models for different problems. For
example, the users should be able to compose a machine shop
model from a number of machine and assembly model
components in the library.

 Ease of use: SPAF makes process analysis modeling more
intuitive and straightforward for domain users such as
manufacturing engineers or decision makers. Composing a
bigger model using existing model components in a library
should be an easy process. No extensive programming,
mathematics, operation research, and optimization knowledge
is required. The task could be simply drag-and-drops if a
graphical user interface is developed.

3 J Intell Manuf (20xx) xx:x-x

Figure 1 Current modeling approach and the unified SPAF modeling approach

To better understand the SPAF requirements, a variety of
modeling languages and formalisms, listed in Table 1, have
been analyzed from the perspective of the desirable features
and functionalities discussed above. These languages and
formalism are selected because of their suitability for at least
one of the features discussed above. They include:

 Process description languages such as Process

Specification Language (PSL) (ISO 2004), Business

Process Model and Notation (BPMN) (OMG, 2010), and

Systems Modeling Language (SysML) (OMG, 2012).

 Database query languages such as Structured Query

Language (SQL) (ISO 2011) and Extensible Markup

Language (XML) Query (XQuery).

 Simulation languages such as SIMAN – a general-purpose

SIMulation ANalysis program for modeling combined

discrete-continuous systems (Pegden et al. 1995) and

Object-Oriented (OO) languages.

 Optimization languages such as AMPL (AMPL, 2011),

The General Algebraic Modeling System (GAMS)

(GAMS, 2010), and Optimization Programming Language

(OPL) (IBM, 2012).

 Non-deterministic optimization semantics for

corresponding formalism, which is used for CoJava

(Brodsky & Nash, 2005) and Decision Guidance Query

Language (DGQL) (Brodsky & Wang, 2008).

Process description languages are designed for process
description and modeling with a modular, extensible, and
reusable approach and can be easy to use via a graphical user
interface. The SysML parametric models support mathematical
expression for (e.g., performance and quantitative constraints)
the system being designed and provide a foundation for what-if
analysis (Wu et al. 2013). However, they do not support direct
data manipulation and querying, optimization, and unified
modeling of different tasks.

Database query languages are specifically designed for
data manipulation and querying. They are relatively easy to
use, SQL-like skills are sufficient for problem modeling.
However, they only allow some limited what-if analysis and
optimization for what can be expressed. There is no unified
modeling of different tasks. These languages do not have built-
in process and sustainability metrics modeling, they are not
easily reusable.

Simulation languages are excellent for what-if analysis.
Some simulation tools support process modeling and have
user-friendly graphical user interfaces. A few of them even
started to support sustainability modeling, e.g., Witness
(Waller, 2012). In most cases, simulation languages support
modular, extensible, and reusable modeling. However, they are
not the appropriate tools for data querying and optimization.
Optimization by simulation approach is time-consuming and
the results may not be as accurate as those derived by using
optimization tools. There is no unified modeling capability for
different tasks discussed above. Basic simulation modeling of
processes requires object-oriented programming skills that
most manufacturing or process engineers do not have.

Optimization languages are designed for optimization
modeling. Some optimization languages such as OPL provide
basic support for data manipulation and querying. However,
they are not designed for what-if analysis and do not provide
unified modeling capability. There is no built-in support for
process and sustainability modeling. Current optimization
modeling languages are not developed for reuse and modular
model construction. Mathematical and optimization modeling
skills are required to use them.

Optimization semantics for OO programming and database
query languages are developed to provide features such as data
manipulation and querying, what-if analysis, optimization, and
unified modeling of different tasks. However, there is no built-
in support for process and sustainability metrics modeling,
even though it potentially can be built on top of CoJava

http://en.wikipedia.org/wiki/Nondeterministic_algorithm

2 J Intell Manuf (20xx) xx:x-x

(Brodsky and Nash, 2005), which requires Java programming
skills. On the other hand, DGQL (Brodsky and Wang, 2008) is
relatively easy to use, just like SQL.

SPAF is designed to allow data querying, what-if analysis,
optimization, and unified modeling of these different tasks.

SPAF provides built-in support for process and sustainability
metrics modeling with a components’ library. SPAF also
supports modularity, extensibility, reusability, and ease of use
especially, with a graphical interface. However, the modeling
effort will be similar to OPL for new process model
components if there is no model library.

Table 1 A comparison table of SPAF and other languages

Modeling

 Languages

Features

Process

Description

Languages

(PSL,

BPMN,

SysML)

Database

Query

Languages

(SQL,

XQuery)

Simulation

Languages

(SIMAN, OO

languages)

Optimization

Modeling

Languages (e.g.,

AMPL, GAMS,

OPL)

Optimization

Semantics for OO

and Query Lang’s

(CoJava, DGQL)

Design goal

for SPAF

Data

manipulation

and querying

Do not

directly

support

Supports Require

modeling and

programming

AMPL and GAMS

are not designed for

query processing;

OPL has some built-

in support

Supports Supports

What-if

analysis

Do not

directly

support

Limited (only

what can be

expressed as

DB queries)

Supports Do not support Supports Supports

Optimization Do not

support

Limited and

not efficient

Limited and

not efficient

Supports Supports Supports

Unified

modeling for

different tasks

Do not

support

Do not

support

Do not

support

Do not support Supports Supports

Built-in support

for process

modeling and

sustainability

metrics

Can be

extended to

support

Can be

extended to

support

Can be built

on top

Do not support Can be extended

to support

Supports if,

with a

components

library

Modular,

extensible, and

reusable

Supports Do not support

OO

extensibility

Supports Difficult to reuse

models

CoJava - support;

DGQL – just like

SQL

Supportsif

with a

components

library

Ease of use (by

manufacturing

and business

users)

Can be easy

via

graphical

interface

Relatively easy

(SQL skills

required)

Programming

skills to model

analytics;

Many allow

high-level

composition

functionality

Math/optimization

modeling skills

required

CoJava

(programming

skills required);

DGQL (SQL

skills required)

Easy for

composite

process, esp.

if a graphical

interface is

added;

similar to

OPL for

atomic

process

models

3 J Intell Manuf (20xx) xx:x-x

The concept of sustainable process analytics formalism

Context of SPAF

To explain the context of SPAF, a five-stage SM improvement

methodology is depicted in Figure 2. This methodology is

based on the ideas of the Six Sigma DMAIC (Define, Measure,

Analyze, Improve, and Control) methodology (Chieh, 2010).

The methodology proceeds through the following stages:

 Stage 1 - High-Level Assessment: Each factory assesses

its sustainability level and status, defines high-level

sustainability goals, and identifies areas for improvement

regarding its organizational sustainability performance (for

both its processes and facilities).

 Stage 2 - Problem Identification and Data Collection: To

address areas of improvement identified in Stage 1, more

specific case scenarios need to be defined. Modeling

objectives, constraints, metrics, and control variables

related to each case scenario need to be identified.

Relevant data, both manufacturing process- and

sustainability- related information, need to be measured,

collected, and/or estimated. In reality, process- and

sustainability- related data are not always available and

when they are, they may exist in various forms, and would

typically not yet be formalized.

 Stage 3 - Formal Process Modeling and Data

Representation: To prepare for formal analysis and

optimization modeling, case scenarios defined in Stage 2

need to be formally described, data collected need to be

formally represented, and inputs and controls need to be

modeled in a way so that the values of decision variables

could be instantiated.

 Stage 4 - Decision Guidance through What-if Analysis and

Decision Optimization: The formal process modeling and

data representation completed in Stage 3 need to be

translated into models that can be solved by commercial

off-the-shelf (COTS) tools. Different tasks such as data

querying, what-if analysis, and decision optimization will

be performed for evaluation and analysis purposes. The

analyses provide actionable recommendations to decision

makers for improvement implementation.

 Stage 5 - Implementation/Execution: Decision makers can

implement and execute the actionable recommendations

derived from Stage 4 for sustainability improvement.

Occasionally, the evaluation in the previous stage may

determine that the goals cannot be achieved using the

identified alternative and hence this implementation stage

may involve abandoning the now determined-to-be flawed

improvement plan. In either case, upon completion of

Stage 5, users can continue to the next iteration of the

continuous improvement cycle.

The SPAF supports this methodology at stages 3 and 4 in
Figure 2. Note that the formal process modeling and data
representation is done uniformly and only once for both what-if
analysis and decision optimization as shown in the right hand
side of Figure 1. The SPAF models enable decision makers to
ask questions in the form of queries that provide computation
and optimization solutions as actionable recommendations.
SPAF queries include:

1. Process data queries that resemble typical database queries
and can be asked directly against the explicit data.

2. What-if analysis queries to compute certain metrics for
different scenarios based on available input information.

3. Decision optimization queries to find the best one
(minimum or maximum as required) out of all alternatives
that satisfy the constraints by using decision variables.

Figure 2 A model-based SM improvement methodology with SPAF

4 J Intell Manuf (20xx) xx:x-x

SPAF concept through a manufacturing example

The detailed SPAF syntax and formal semantics will be
presented as an appendix. In this subsection, the concept of
SPAF modeling is illustrated using an example of a
manufacturing process. Assuming we have decided to analyze
and optimize sustainability performance for a manufacturing
process and collected data for the study. We need to first
describe formally the process using SPAF and then solve the
problem. The manufacturing process, depicted in Figure 3, has
five sub-processes, three machining processes and two
assembly processes. The composite process (large rectangle),
the sub-processes (small rectangles), flows (lines), and flow
aggregators (triangles) are depicted. Two parts, Part 1 and Part
2, provide input for the three machining processes. The
machining processes produce three intermediate components,
Comp 1, Comp 2, and Comp 3. The components produced by
the machines, A to C, flow to the assembly processes to be
assembled into final products, Product 1 and Product 2. In this
example, metrics that can be used to describe the composite
process are cost and CO2 emissions. In this example, three
specific kinds of questions decision makers pose may include:

1. Process data questions, e.g., what is the maximum capacity
of Machine A? How many of Product 2 needs to be
produced over a scheduled week?

2. What-if analysis questions, e.g., what are the total cost,
energy consumption, and CO2 emissions for a scheduled
weekly production under a particular production plan?

3. Decision optimization questions, e.g., how should
production plans be set for the machines, the assembly
stations, and the flow distributions among them so that the
scheduled weekly production can be met within the
weekly CO2 cap and at a minimal cost?

To answer these questions, the process structure, flow, sub-
process relationships, and associated data need to be clearly
understood; and the objective, metrics, constraints, and control
variables need to be identified. The models can be expressed
with identified data and variables and metrics computation
expressions. Optimization models can be formulated with
constraints and objectives. The detail SPAF modeling will be
discussed in Section 4.

Figure 3 An example: a two-product-manufacturing process for SPAF modeling

Structure of SPAF

The goals of SPAF development are as follows. On the one
hand, SPAF needs to be sufficiently expressive for the SM key
performance indicators such as energy and material
consumption, emission, and cost in industrial scenarios. On the

other hand, the formalism needs to be simple for ease of use,
which means that high-level abstraction needs to be used.
Relevant industry-accepted languages, standards, and tools
should be used. The SPAF models are human and machine
readable, ready for database storage, translator development,
and exchange among modelers/users/systems.

5 J Intell Manuf (20xx) xx:x-x

 The SPAF includes two major parts: (1) Generic analytics
language – represents generic analytics knowledge and (2)
Process description and sustainability metrics model templates
- supports sustainable process modeling and sustainability
metrics computation.

Figure 4 presents a class diagram for the generic part of the
SPAF to describe the structure of the components and their
relationships. The components are explained as follows:

 An analytical statement may be assignments, constraints,

or decision variable declarations.

 An analytical sequence is a sequence of analytical

statements. SPAF analytical sequences can be an explicit,

implicit, constraints, alternatives, or optimization

analytical sequence to satisfy the different modeling needs.

 Explicit analytical sequence provides all the required

process structure and data in the form of assignment

statements that assign a data value to each variable in the

sequence.

 Implicit analytical sequence extends an explicit analytical

sequence with assignment statements that assign an

expression (which computes a value from previously

defined variables) to a new variable.

 Constraint analytical sequence extends implicit analytical

sequence with constraint expressions in terms of

previously defined variables.

 Alternative analytical sequence extends a constraint

analytical sequence with declaration of variables that do

not have an assigned value. Intuitively, an alternative

sequence defines a set of feasible computations,

corresponding to all possible assignment of values into the

declared variables that satisfy the constraints.

 Optimization analytical sequence is an alternatives

analytical sequence with the added optimization directive

“minimize” or “maximize.” Intuitively, it states the

optimization problem of finding an instantiation of values

into declared variables that satisfy all the constraint

statements, and minimizes/maximizes the indicated

objective.

 An analytical model is an (non-optimization) analytical

sequence with the added model name and a possible

parameter Id.

 A model package is a set of analytical models. Intuitively,

it serves as a reusable repository of analytical knowledge,

which could be used for different applications.

 An analytical query is a pair of an analytical sequence and

a model package that includes all models that are referred

to, directly or indirectly, from the process model.

Analytical sequence

Analytical statement

Assignment statement Constraint statement Variable declaration statement

1

1..*

Model package Analytical model

1 1..*

Include statement

Analytical query

10..* has

Implicit analytical sequence

Explicit analytical sequence

Optimization analytical sequence

Alternatives analytical sequence

Constraint analytical sequence

Optimization statement

0..*

1

has

1

1

has

Figure 4 SPAF class diagram – generic analytics language

6 J Intell Manuf (20xx) xx:x-x

Figure 5 shows a hierarchical diagram for the process
description and sustainability metrics model templates part of
the SPAF. For the purpose of formal process representation,
four different SPAF model components have been defined.
These model components include context, flow, flow
aggregator, and process. Context describes data that are
globally accessible by all model components; context model
includes context ID and associated data attributes. Flow
describes entities that physically flow into and out of a process.
Flow aggregator aggregates multiple sources of the same type
of flows and distributes the outputs as inputs to the other
processes. The sum of all inputs of an aggregator must equal
the sum of its outputs. A process can be a composite process or
a sub-process. The attributes of each component are shown in
Figure 6. The process description and sustainability metrics

model templates part includes syntax of the SPAF analytical
models such as process model, flow model, flow aggregator
model, and context model. These analytical models must
adhere to a more specialized structure. Figure 5 and Figure 6
are connected through the analytical model.

A process model may be a generic process model or a
specific process model. A generic process model can be stored
in a model library and reused for developing specific process
models. Flow and flow aggregator models may be those for
discrete flows, continuous flows, or batch flows. Sustainability
metric aggregator models are specifically designed for
sustainability metric aggregation for environmental indicators
such as energy, emission, material, and waste and economic
indicators such as investment, revenue, cost, and return on
investment (ROI).

Figure 5 A hierarchical diagram for the process description and sustainability metrics model templates

7 J Intell Manuf (20xx) xx:x-x

Figure 6 SPAF process description model components

SPAF libraries collect model components of both generic and
specific models. Metrics model components can also be stored
in a library. Figure 7 shows examples of generic model
components in a SPAF library, e.g., process model components
such as “baseSeqTransform” and “baseProcessComposer”, and
flow and flow aggregator models for discrete and continuous
flows, and metrics models for environmental and economic
indicators. The model components in the SPAF library provide
reusable building blocks and can be used as templates for a
family of manufacturing processes; each model or template can
be reused with some adjustment for different cases within the
family. New models can be added to the SPAF library.
Moreover, the existing models within the library can be
executed with new data so that different companies that have
the same problems could use the models by inputting their data
to seek company-specific decision guidance. Using model
components in the library, modelers can create SPAF models
and queries for their operations more effectively and
efficiently.

Figure 7 SPAF component library: example of generic models

Illustrative example using SPAF

In this section, the two-product-manufacturing example
introduced in Section 3.2 is modeled using SPAF and
discussed in details. Figure 8 to Figure 18 show the detailed
SPAF process models and possible queries. First, assuming the
SPAF model, twoProductsManuf (), is developed and all data
are provided, a what-if analysis query requires only four
statements (Figure 8). The first two statements include the data
models for product demand data indicating quantities for each
final product (i.e., Product 1 and Product 2) and production
plan data that describes the numbers of components should be
produced by each machining or assembly process. The third
statement includes the SPAF model for the two-product-
manufcturing process and finally a constratint statement that
indicates the total amount of CO2 generated by this
manufacturing scenario should be less than or equal to 50
metric tons. Since all data required for the query are available,
the query is actually a deterministic computational model that
calculates the total cost within the limit of total CO2 less than
50 metric tons. The query provides answers for both total cost
and total CO2.

include data productDemand();

include data productionPlanData();

include process twoProductsManuf ();

twoProductsManuf.totalCO2 ≤ 50;

Figure 8 A what-if analysis query for the two-product-

manufacturing process

In a case where the production plan data are not provided, an
optimal production plan with minimal total cost needs to be
determined, given the same CO2 limitation as a constraint. The
same SPAF model, twoProductsManuf (), is used as shown in
Figure 9, but the production plan data (as shown in Figure 8) is
not provided and an optimizaiton statement is added to
“minimize” the total cost. There are still only four lines of code;
however, since the production plan data are unknown, all data
previously provided explicitly in the production plan data
model become decision variables that need to be instantiated to
satisfy all the constraints. Now it is no longer a deterministic
computational model. It actually describes a set of non-
deterministic computational paths, each corresponding to an
instantiation of set of values for the decision variables. Some of
the non-deterministic computation paths are “feasible,” i.e.,
they satisfy all of the constraints (the total CO2 constraints as
well as the internal constraints) while others are not feasible.
The semantics of the optimizaion query in Figure 10 is to find
a non-deterministic optimizaiton path that leads to the minimal
total cost among all feasible computation paths. The query
results inlcude not only both total cost and total CO2 but also
the optimal production plan configuation (i.e., the optimal
number of components being produced by each machining or
assembly process).

8 J Intell Manuf (20xx) xx:x-x

include data productDemand();

include process twoProductsManuf ();

twoProductsManuf.totalCO2 ≤ 50;

Minimize twoProductsManuf.totalCost;

Figure 9 Optimization query for the two-product-

manufacturing process

As stated above and shown in Figure 8 and Figure 9, the same
SPAF model, twoProductsManuf (), can be used for different
kind of queries, such as what-if analysis (in Figure 8) and
decision optimization (in figure 9). These query examples
demonstrate that SPAF provides a unified modeling capability.
The queries against SPAF models are simple and
straightforward.

 Figure 10 shows the model for the “context” component, its
model name is “timeSequence.” “timeSequence” is declared as
a set of string “day,” which is a tuple consisting of three
fields “day, month, and year” of type integer. The three dots
“…” expresses the missing data that need to be instantiated as a
constant, or an expression before the data is used.

context timeSequence() {
tuple day {
 int day;
 int month;
 int year;
 };
{day} timeSequence = ...;
}

Figure 10 Context model for the two-product-manufacturing

example

Figure 11 shows the model for the “flow” component, the
model name is “itemSequence.” The “Id”parameter of
“itemSequence” will be replaced by the value of a parameter in
an include statement. An include statement calls another
model. It is similar to a subroutine call. The context model
itemSequence () is included using a include statement. A one-
dimensional array “Id.qty” is an integer array. “Id.qty”
is indexed by the finite set of tuples defined by the
“timeSequence” variable from the context model. The elements
of the array represent quantities of the flow in that day.

flow itemSequence (Id) {
string Id.matchName = …;
include context timeSequence();
int Id.qty[timeSequence];
forall (d in timeSequence) Id.qty[d] > 0 ;
}

Figure 11 Flow model for the two-product-manufacturing

example

Figure 12 shows a model for the “flow aggregator” component,
its model name is “itemSeqAggr.” As described earlier, “Id” is
a parameter whose value will be provided by an include
statement. In the first statement of this model, the context
model itemSequence () is included. Next, a variable
“Id.flowType” is declared as a string “itemSequence.”
“Id.inputFlows” and “Id.outputFlows” are declared as a set of
strings and will be instantiated separately. “Id.flows,” the union
of “Id.inputFlows” and “Id.outputFlows,” is also a set of
strings. For every flow in “Id.flows,” its quantity for the day in
“timeSequence” is an integer. The forall statement defines a
constraint for each day in “timeSequence,” it indicates that the
total number of the “inputFlows” for a day must equal the total
number of the “outputFlows.”

flow aggregator itemSeqAggr (Id) {

include context timeSequence();

string Id.flowType = “itemSequence”;

{string} Id.inputFlows = ...;

{string} Id.outputFlows = ...;

{string} Id.flows = Id.inputFlows union

 Id.outputFlows

for (i in Id.flows) int i.qty[timeSequence];

forall (d in timeSequence)

 sum (i in Id.inputFlows) i.qty[d]

 == sum (o in Id.outputFlows) o.qty[d];

}

Figure 12 Flow aggregator model for the two-product-

manufacturing example

Figure 13 shows a model of a generic atomic process, which is
an end process in which there is no sub-process, e.g., Machine
A. The model name is “baseSeqTransform.” Id is provided
when it is called. For every output flow, the flow model is
being included with a parameter of the flow name. Two arrays
of floats are declared for both “Id.costPerUnit” and
“Id.CO2PerUnit”; their index set is the set of output flows for
this atomic process. A two-dimensional array of integer
“Id.inputPerOutput” represents the number of input flows
required for each output flow. For each production day, the
cost of the atomic process is computed as the unit cost of each
output flow times the number of output flows produced in that
day; the CO2 emission is computed as the unit CO2 emission
from each output flow times the number of output flows
produced in that day. A constraint is that the total number of
input flows needed in that day must equal the number of output
flows produced in the same day times the number of input
flows required for each output flow.

9 J Intell Manuf (20xx) xx:x-x

Once the generic atomic process model component is
developed, it can be saved and reused for generating specific
atomic process model components.

process baseSeqTransform(Id) {

include context timeSequence();

string Id.name = …;

{string} Id.inputFlows = …;

{string} Id.outputFlows = …;

for (i in Id.outputFlows)

 include flow itemSequence(i);

float Id.costPerUnit[Id.outputFlows] = ...;

float Id.CO2PerUnit[Id.outputFlows] = ...;

int Id.inputPerOutput

 [Id.outputFlows][Id.inputFlows] = …;

float Id.cost[d in timeSequence] =

sum(r in outputFlows) Id.costPerUnit[r]

* r.qty[d];

float Id.CO2[d in timeSequence] =

sum(r in outputFlows) Id.CO2PerUnit[r]

* r.qty[d];

for (i in Id.inputFlows) { i.qty[d in

 timeSequence] = sum (o in

 Id.outputFlows) Id.inputPerOutput[o][i]

 * o.qty[d];

 include flow itemSequence(i);

}

}

Figure 13 An atomic process model for the two-product-

manufacturing example

Figure 14 shows a specific atomic process model for Machine
A. Model name is “machine.” It starts with the instantiation of
the declarations. “Id.name” is given as “machine.”
“Id.inputFlows” is a set of two strings, “part1toMaA” and
“part2toMaA.” Input flows of “part1toMaA” and
“part2toMaA” are given names “part1” and “part2”
respectively. “Id.outputFlows” is a set of two strings
“comp1fromMaA” and “comp2fromMaA.” Output flows,
“comp1fromMaA” and “comp2fromMaA,” are given names of
“comp1” and “comp2” respectively. Two float type arrays for
“Id.costPerUnit” and “Id.CO2 PerUnit” are both given in a pair
(index, value) of elements as [“comp1fromMaA”: 35.0,

"comp2fromMaA": 65.0] and ["comp1fromMaA": 0.05,
"comp2fromMaA": 0.02] respectively. The two-dimensional
array “Id.inputPerOutput” is instantiated as a pair of
["comp1fromMaA": ["part1toMaA": 1,"part2toMaA": 1],
"comp2fromMaA": ["part1toMaA": 1,"part2toMaA": 3]] The
last step is to include the generic model “baseSeqTransform."
“machineA” is the parameter.

 Other atomic processes in the two-product-manufacturing
example including Machine B, Machine C, Assembly A, and
Assembly B are similar to the process model of Machine A.

process machineA () {

string Id = "machineA";

{string} Id.inputFlows =

 {"part1toMaA","part2toMaA"};

string part1toMaA.name = "part1";

string part2toMaA.name = "part2";

{string} Id.outputFlows =

 {"comp1fromMaA","comp2fromMaA};

string comp1fromMaA.name = "comp1";

string comp2fromMaA.name = "comp2";

float Id.costPerUnit [Id.outputFlows] =

 ["comp1fromMaA": 35.0,

 "comp2fromMaA": 65.0];

float Id.CO2PerUnit [Id.outputFlows] =

 ["comp1fromMaA": 0.05,

 "comp2fromMaA": 0.02];

int Id.inputPerOutput

 [Id.outputFlows][Id.inputFlows] =

["comp1fromMaA": ["part1toMaA":

1,"part2toMaA": 1],"comp2fromMaA":

["part1toMaA": 1,"part2toMaA": 3]]

include process baseSeqTranform

(“machineA”);

}

Figure 14 Atomic process model for Machine A

Depicted in Figure 15 is a generic process composer model,
which includes all flow models and all sub-processes models,
and formulates the flow aggregator models automatically
instead of being given explicitly. Again, three dots indicate that
the input and output flows, and sub-processes need to be
instantiated before this generic model is called. For every flow,
the model needs to be included and its model name,
“matchName,” and aggregator name need to be defined before
this generic model is called. “flowsToAggregators,” a set of

10 J Intell Manuf (20xx) xx:x-x

strings, are the union of input flows to the composite process
and output flows from all sub-processes.
“flowsFromAggregators,” another set of strings, are the union
of all input flows to all sub-processes. All aggregator flow
names are in the set of strings that include all “matchName” of
the flows. For every flow “matchName,” if the name of input
flow is in the “flowsToAggregators” and the name of the
output flow is in the “flowsFromAggregators,” then include
the flow aggregator model with the flow’s “matchName” as a
parameter.

process processComposer(id) {

{string} Id.inputFlows = …;

{string} Id.outputFlows = …;

{string} Id.subProcesses = …;

{string} Id.flows = Id.inputFlows union

 Id.outputFlows;

for (f in Id.flows) {

string f.model = ...;

include flow f.model(f);

string f.matchName = ...;

string f.aggrModel = ...;

};

for (p in Id.subProcesses) {

string p.model = ...;

include process p.model(p);

}

{string} Id.flowsToAggregators =

 Id.inputFlows union union(p in

 Id.subProcesses) p.outputFlows;

{string} Id.flowsFromAggregators =

 Id.outputFlows union union(p in

 Id.subProcesses) p.inputFlows;

{string} Id.allFlows =

 Id.flowsToAggregators union

 Id.flowsFromAggregators;

{string} Id.matchNames =

 distinct({f.matchName | f in

 Id.allFlows});

for (n in Id.matchNames) {string

 Id.n.aggrModel =

 first({f.aggrModel |f in Id.allFlows

 : f.matchName == n});

{string} Id.n.inputFlows = {

 f | f in Id.flowsToAggregators :

 f.matchName == n};

{string} Id.n.outputFlows = {

 f | f in Id.flowsFromAggregators :

 f.matchName == n};

include flow aggregator Id.n.aggrModel(Id.n);

};

Figure 15 Generic composite process model

 Figure 16 shows the metrics aggregator models that
compute daily total cost and CO2. The daily total cost and CO2
are the sum of cost and CO2 for all sub-processes.

metric aggregator costSequence(Id) {

include context timeSequence ();

{string} Id.subProcesses = ...;

float Id.cost[t in timeSequence] =

sum(p in Id.subProcesses) p.cost[t];

}

metric aggregator CO2Sequence(Id) {

include context timeSequence ();

{string} Id.subProcesses = ...;

float Id.CO2[t in timeSequence] =

 sum(p in Id.subProcesses) p.CO2[t];

}

Figure 16 Metric aggregator model

 Figure 17 shows the composite process model. Model Id is
“twoProductsManuf.” It includes the context model
itemSequence (). “Id.inputFlows” is given as a set of two
strings {“part1in”, “part2in”}. “Id.outputFlows” is given as a
set of two strings of {“product1”, “product2”}. “matchNames”
are also given. “Id.subProcessess” is instantiated as a set of
five strings of {“machine,” “machineB”, “machine,”
“assembly,” “assemblyB”}. The generic process model
processComposer is called to include all atomic sub-processes
models defined previously. Float type of data for extra facility
cost and CO2 per day ($1 750 and 0.3 metric tons) are
provided. The metric aggregator models, costSequence (Id) and
CO2Sequence(Id), are included. Total cost for each day is the
extra facility cost plus daily cost for all sub-processes. Total
CO2 for each day is the extra facility CO2 plus total sub-
processes CO2.

11 J Intell Manuf (20xx) xx:x-x

 An alternative modeling method is to explicitly instantiate
all flows and flow aggregators, e.g., inputs and outputs of
Part1, Part2, Comp1, Comp2, and Comp3 are all specified as
sets of strings. Then every flow aggregator is included with its
name as a parameter.

process twoProductsManuf () {

string Id = “twoProductsManuf”;

include context timeSequence();

{string} Id.inputFlows = {“part1in”,

 “part2in”};

{string} Id.outputFlows = {“product1”,

 “product2”};

string part1in.matchName = "part1";

string part2in.matchName = "part2";

string product1.matchName = "product1";

string product2.matchName = "product2";

{string} Id.flows = Id.inputFlows union

 Id.outputFlows;

for (f in Id.flows) f.model = "itemSequence";

{string} Id.subProcessess = {"machineA",

 "machineB", "machineC",

 "assemblyA", “assemblyB"};

for (p in Id.subProcesses) p.model = p;

include process processComposer(Id);

float Id.extraCostSequence[t in timeSequence]

 = 1750.0;

float Id.extraCO2Sequence[t in timeSequence]

 = 0.3;

include metric aggregator costSequence(Id);

include metric aggregator CO2Sequence(Id);

float Id.totalCost =

 sum(t in timeSequence)(Id.cost[t] +

 Id.extraCostSequence[t]);

float Id.totalCO2 =

 sum(t in timeSequence)(Id.cost[t] +

 Id.extraCO2Sequence[t]);

}

Figure 17 Composite process model for the two-product-

manufacturing process

 After we explained all the SPAF model components for the
example, we need to examine the data required by the queries
in Figure 8 and Figure 9. A context data sequence is shown in
Figure 18. Its product demand data model is listed in Figure 19,
in which the quantities of the two products are given for each
production day. For example, [<4, 9, 2012>: 6] in the first line
means demand for Product 1 on September 4

th
, 2012 is 6.

{day} timeSequence = {

<4, 9, 2012>, <5, 9, 2012>,

<6, 9, 2012>, <7, 9, 2012>, <8, 9, 2012>,

}

Figure 18 A context data sequence for the two-product-

manufacturing process

int product1.qty [timeSequence] = [<4, 9,
2012>: 6, <5, 9, 2012>: 8, <6, 9, 2012>: 5,
<7, 9, 2012>: 7, <8, 9, 2012>: 4];

int product2.qty [timeSequence] = [<4, 9,
2012>: 5, <5, 9, 2012>: 6, <6, 9, 2012>: 3,
<7, 9, 2012>: 4, <8, 9, 2012>: 5];

Figure 19 Product demand data model for product 1 and

product 2

 A what-if scenario for the example is described as follows:
if the process engineer uses a predefined production plan, i.e.,
all the data such as numbers of part 1 and part 2, numbers of
components flows into and out of Machine A, Machine B,
Machine C, and number of components flows into Assembly
A, and Assembly B each day are fixed. This means that all the
data needed in the SPAF model are explicitly provided and can
be used to computer metrics using formulas. The four lines of
what-if query (as shown in Figure 8) can be expanded as in
Figure 20 while the constraint keeps the same as before.

{day} timeSequence = { <5, 11, 2012>, <6, 11,
2012>, <7, 11, 2012>, <8, 11, 2012>, <9, 11,
2012>, }

int product1.qty [timeSequence] = [6, 8, 5, 7,
4];

int product2.qty [timeSequence] = [5, 6, 3, 4,
5];

// data for fixed production plan

int part1.qty [timeSequence] = [98, 128, 73,
107, 56];

int part2.qty [timeSequence] = [127, 166, 96,
139, 221];

int part1ToMaA.qty [timeSequence] = [0, 0, 4,
0, 0];

int part2ToMaA.qty [timeSequence] = [0, 0, 0,
0, 0];

12 J Intell Manuf (20xx) xx:x-x

int part1ToMaB.qty [timeSequence] = [98, 128,
69, 107, 56];

int part2ToMaB.qty [timeSequence] = [127, 166,
96, 139, 61];

int part2ToMaC.qty [timeSequence] = [0, 0, 0,
0, 160];

int comp1FromMaA.qty [timeSequence] = [0, 0,
0, 0, 0];

int comp2FromMaA.qty
[timeSequencetimeSequence] = [0, 0, 4, 0, 0];

int comp1FromMaB.qty [timeSequence] = [30, 40,
25, 35, 20];

int comp2FromMaB.qty [timeSequence] = [23, 30,
14, 25, 17];

int comp3FromMaB.qty [timeSequence] = [22, 28,
16, 22, 2];

int comp1FromMaC.qty [timeSequence] = [0, 0,
0, 0, 0];

int comp3FromMaC.qty [timeSequence] = [0, 0,
0, 0, 16];

int comp1ToAsA.qty [timeSequence] = [30, 40,
25, 35, 20];

int comp2ToAsA.qty [timeSequence] = [18, 24,
15, 21, 12];

int comp3ToAsA.qty [timeSequence] = [12, 16,
10, 14, 8];

int comp2ToAsB.qty [timeSequence] = [5, 6, 3,
4, 5];

int comp3ToAsB.qty [timeSequence] = [10, 12,
6, 8, 10];

include process twoProductsManuf ();

twoProductsManuf.totalCO2 ≤ 50;

Figure 20 What-if query for the two-product-manufacturing

example

 This is a deterministic computational model, however,
since there is a constraint statement in the query and there are
also other data integrity constraints within the models, the
answers have to satisfy all the constraints. The results of the
what-if scenario are: the total cost is $30 000 with a total of
35.11 metric tons of CO2. Note that changes in any input data
will result in a different set of solutions.

 For the optimization query listed in Figure 9, input data
such as weekly production schedule and customers’ demand
for Product 1 and Product 2 are provided. The sustainability
goal is to determine an optimal production plan that minimizes
the total cost within a CO2 bound of 50 metric tons. The
optimization model performs multiple non-deterministic
computations, each instantiates decision variables (quantities of

flows in each configuration) using values that satisfy all the
constraints. Among those sets of configurations that satisfy all
the constraints, the system will automatically find a
configuration (i.e., a production plan) that minimizes the total
cost. Figure 21 shows the optimization result screen of an
implementation using IBM ILOG CPLEX. The optimal
production plan for the scheduled five days is derived. The
optimization results show that the minimal total cost is $28 023
with total 36.72 metric tons of CO2. The results also indicate
that due to the higher operation cost of the Machine B, it is not
recommended to use Machine B to produce any of the
components, i.e., Comp1, Comp2, and Comp3. Note that
changes in any of the input data and constraints will also affect
the values of decision variables and decision expressions.

Figure 21 Optimal solution screen of two-product-

manufacturing example

Conclusion and future work

This paper proposed a NIST-developed Sustainable Process

Analytics Formalism that allows manufacturers to: (1)

formally represent sustainable process structure, flow, process

data, control variables, and process analytical model of

sustainability metrics and constraints for quantitative

sustainability analysis; and (2) analyze and make decisions on

improvement alternatives with modeling and optimization

13 J Intell Manuf (20xx) xx:x-x

tools. The formalism provides platform-independent process-

knowledge description and supports what-if analysis and

decision optimization for decision makers. The use of the

SPAF formalism is illustrated through a two-product

manufacturing process example. The SPAF syntax, formal

semantics, and query computation algorithm are presented in

the appendix.

 The formalism will be deployed to industry through

case studies and contributions to standard development efforts.

When implemented for real manufacturing applications, the

formalism will help manufacturers quantify their sustainability

efforts for improvement of energy and material efficiency,

lower emissions, and save cost.
 Future work includes (1) examining diverse

manufacturing processes to identify extra process analytical
needs; (2) supporting taxonomies, and metrics from unit
manufacturing, assembly processes, and production planning;
(3) supporting smart manufacturing by enhancing the SPAF;
(4) developing translators that automatically translate SPAF to
formal optimization/simulation models, which can then be
solved by commercial optimization tools; (5) developing
graphical representation of SPAF based on modeling language
such as UML, SysML, or BPMN; (6) performing industrial
case studies to evaluate and validate the formalism and the
capabilities; and (7) standardizing the SPAF.

Disclaimer

No approval or endorsement of any commercial product by

the National Institute of Standards and Technology is intended

or implied. Certain commercial software systems are

identified in this paper to facilitate understanding. Such

identification does not imply that these software systems are

necessarily the best available for the purpose.

References

[1] AMPL. (2011). “A Modeling Language for Mathematical
Programming.” http://www.ampl.com/. Accessed Jan. 2012.

[2] Berglund, J. K., Michaloski, J. L., Leong, S. K., Shao, G.,
Riddick, F. H., Arinez, J., et al. (2011). Energy Efficiency
Analysis for a Casting Production System. Proceedings of the
2011 Winter Simulation Conference, (pp. 1060-1071).

[3] Brodsky, A., and Nash, H. (2005). CoJava: a unified language
for simulation and optimization. The Conference on Object
Oriented Programming Systems Languages and Applications,
(pp. 194 - 195).

[4] Brodsky, A., and Wang, S. X. (2008). Decision-Guidance
Management System (DGMS): Seamless Integration of Data
Acquisition, Leaning, Prediction, and Optimization. The 41st
Annual Hawaii International Conference on System Sciences
(HICSS 2008), (pp. 71–81). Hawaii.

[5] Chieh, C. (2010). Six Sigma Basics: DMAIC Like Normal
Problem Solving. http://www.isixsigma.com/new-to-six-
sigma/dmaic/six-sigma-basics-dmaic-normal-problem-solving/.
Accessed 15 August, 2013.

[6] CPLEX. (2011). http://en.wikipedia.org/wiki/CPLEX.
Accessed August 2013.

[7] DOC. (2010). Sustainable Manufacturing Initiative and Public-
private Dialogue.
http://www.trade.gov/competitiveness/sustainablemanufacturing
/index.asp. Accessed 15 Jan. 2012].

[8] Fujitsu. (2011). Fujitsu Offers Energy-Saving Green
Infrastructure Solution.
http://www.fujitsu.com/global/news/pr/archives/month/2007/20
071210-02.html. Accessed March 2013.

[9] GAMS. (2010). An Introduction to General Algebraic Modeling
System (GAMS). http://www.gams.com/. Accessed July 2013.

[10] GM. (2010). Innovation: Environment.
http://www.gm.com/corporate/responsibility/environment/facilit
ies/index.jsp. Accessed August 2013.

[11] Feng, S. C. and Joung, C. B. (2009). An Overview of a
Proposed Measurement Infrastructure for Sustainable
Manufacturing. Proceedings of the 7th Global Conference on
Sustainable Manufacturing.

[12] IBM. (2012). Introducing IBM ILOG CPLEX Optimization
Studio V12.2.
http://pic.dhe.ibm.com/infocenter/cosinfoc/v12r2/index.jsp?topi
c=%2Filog.odms.ide.help%2FContent%2FOptimization%2FDo
cumentation%2FOPL_Studio%2F_pubskel%2Fglobals%2Feclip
se_and_xplatform%2Fps_opl307.html. Accessed August 2013.

[13] ISO 18629-1:2004. (2004). Industrial Automation Systems and
Integration – Process Specification Language – Part 1:
Overview and Basic Principles.
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_det
ail.htm?csnumber=35431. Access Sept. 2013.

[14] ISO/IEC 9075-1:2011. (2011). Information technology –
Database languages – SQL – Part 1: Framework
(SQL/Framework).
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_det
ail.htm?csnumber=53681. Access Sept. 2013.

[15] Last, M., Danon, G., and Biderman, S. (2009). Optimizing a
batch manufacturing process through interpretable data mining
models. Journal of Intelligent Manufacturing,Volume 20, Issue
5 , 523-534.

[16] Naeem, M. A., Dias, D. J., Tibrewal, R., Chang, R.C., and
Tiwari, M.K.. (2013). Production planning optimization for
manufacturing and remanufacturing system in stochastic
environment. Journal of Intelligent Manufacturing,Volume 24,
Issue 4 , 717-728.

[17] NIST. (2010). Metrics, Standards, and Infrastructure for
Sustainable Manufacturing workshop.
http://www.mel.nist.gov/msid/conferences/Agenda_SMW.htm.
Access August 2013.

[18] NIST SM. (2012). Sustainable Manufacturing Program.
http://www.nist.gov/el/msid/lifecycle/sustainable_mfg.cfm.
Accessed Sept. 2013.

[19] National Research Council. (1999). Industrial Environmental
Performance Metrics: Challenges and Opportunities.
Washington, DC: The National Academies Press.

[20] OECD. (2013). Sustainable Manufacturing Toolkit Prototype.
http://www.oecd.org/innovation/green/toolkit/48661768.pdf .
Accessed Sept. 2013.

[21] OMG. (2010). Business Process Model and Notation (BPMN).
http://bpmnhandbook.com/01_specs/BPMN_20_spec.pdf.
Accessed Sept. 2013.

[22] OMG. (2012). OMG Systems Modeling Language.
http://www.omgsysml.org/. Accessed Sept. 2013.

[23] OPL. (2012).
http://pic.dhe.ibm.com/infocenter/cosinfoc/v12r2/index.jsp?topi
c=%2Filog.odms.ide.help%2FContent%2FOptimization%2FDo
cumentation%2FOPL_Studio%2F_pubskel%2Fglobals%2Feclip
se_and_xplatform%2Fps_opl307.html. Accessed Sept. 2013.

[24] Paju, M., Heilala, J., Hentula, M., Heikkila, A., Johansson, B.,
Leong, S., and Lyons K. (2010). Framework and Indicators for a

14 J Intell Manuf (20xx) xx:x-x

Sustainable Manufacturing Mapping Methodology. Proceedings
of 2010 Winter Simulation Conference.

[25] Pegden, C, Sadowski, R, Shannon, R. (1995). Introduction to
Simulation Using SIMAN. McGraw-Hill, Inc. New York, NY.

[26] Pineda-Henson, R., Culaba, A. B. (2002). Developing an Expert
System for GP Implementation. Proceedings of the 2nd World
Conference on Green Productivity. http://www.apo-
tokyo.org/gp/manila_conf02/resource_papers/narrative/henson_
experta4.pdf . Accessed August 2013.

[27] Ridwan, F., Xu, X., and Liu, G. (2012). A framework for
machining optimization based on STEP-NC. Journal of
Intelligent Manufacturing,Volume 23, Issue 3 , 423-441.

[28] Rockwell Automation. (2010). Taking Energy Management to a
Higher Level.
http://www.managingautomation.com/maonline/research/downl
oad/view/Taking_Energy_Management_to_a_Higher_Level_27
756351. Accessed August 2013.

[29] Shao, G., Kibira, D., Brodsky, A., & Egge, N. (2011). Decision
Support for Sustainable Manufacturing using Decision Guidance
Query Language. The International Journal of Sustainable
Engineering,Volume 4, Issue 3 , 251-265.

[30] SMLC. 2011. Implementing 21st Century Smart Manufacturing.
https://smart-process-
manufacturing.ucla.edu/about/news/Smart%20Manufacturing%
206_24_11.pdf. Accessed August 2013.

[31] Tamer G. (2011). "Methodological study on technology
integration for sustainable manufacturing in the surface
finishing industry." ETD Collection for Wayne State University.
Paper AAI3469974.
http://digitalcommons.wayne.edu/dissertations/AAI3469974.
Accessed August 2013.

[32] Tanzil, T. and Beloff, B. (2006). “Assessing impacts: Overview
on sustainability indicators and metrics,” Environmental Quality
Management, Volume 15, Issue 4, pp. 41-56.

[33] Waller, A. (2012). Witness Simulation Software. Proceedings of
the 2012 Winter Simulation Conference.

[34] Wang, G., Wang, Y., and Zhao, J. (2012). Process optimization
of the serial-parallel hybrid polishing machine tool based on
artificial neural network and genetic algorithm. Journal of
Intelligent Manufacturing,Volume 23, Issue 3 , 365-374.

[35] World Commission on Environment and Development (WCED). (1987).
Our Common Future. Oxford: Oxford University Press.

[36] Wu, D., Zhang, L. L., Jiao, R. J. and Lu, R. F. (2013). SysML-
based design chain information modelling for variety
management in production reconfiguration. Journal of
Intelligent Manufacturing,Volume 24, Issue 3 , 575-596.

[37] Yang, L., Deuse, J., and Jiang, P. (2013). Multi-objective
optimization of facility planning for energy intensive
companies. Journal of Intelligent Manufacturing,Volume 24,
Issue 6 , 1095-1109.

Appendix: Sustainable Process Analytics Formalism

Syntax and Formal Semantics

SPAF model syntax

SPAF adopts concepts and ideas from other languages and is
based on the OPL data model and the basic OPL syntax of
arithmetic and query expressions with minor modifications and
extensions. The basic OPL data model, modeling concept, data
type, and data structure are listed in (IBM, 2012).

Analytical sequence, Aseq, is a sequence (s1, ..., sn) of
analytical statements, si,,

1 ≤ i ≤ n, in one of the forms:

1. Ti xi = ai ,

2. Ti xi = ei ,

3. Ti xi .

4. Ti xi = … ,

5. Ci ,

6. include Mi (J) or include Mi (),

7. min xi , max xi , or sat ,
where:

 The statements min xi , max xi , or sat are only allowed as
the last statement sn

 Ti is a type

 xi is a variable name, which may include a prefix identifier,
e.g., Id.x

 ai is a constant of type Ti

 ei is an expression returning type Ti

 “…” is a keyword in “Ti xi = …” to indicate that xi is to
be instantiated with a constant before using it later in the
sequence

 Ci is a constraint

 Mi is a unique name of an analytical model

 J in Mi (J) is a string identifier

The first four forms are declaration statements, within
which the first two forms are assignment statements. Ci is a
constraint statement, include Mi is an include statement, and
min xi, max xi, or sat are optimization statements, i.e.,
minimization, maximization, and satisfiability. If the last
statement sn of the analytical sequence (s1, ..., sn) is min xi, max
xi, or sat, then the (s1, ..., sn) is an optimization analytical
sequence; otherwise, we say that it is a non-optimization
analytical sequence.

An analytical model is an expression of the form

M(Id) { Aseq } or M() { Aseq },

where M is a unique name of the model, Id is an optional
parameter, and Aseq is a non-optimization analytical sequence.

 Let P be a set of analytical models. We say that P is closed
under reference (or closed) with respect to an analytical
sequence A (or model M) if the following holds: If an A has a
statement of the form include M’(J), then P must contain an
analytical model M’. We say that P is closed under reference
(or closed) if for every model M in P, P is closed with respect
to M.

 An analytical query is a pair (A, P), where A is an
analytical sequence and P is a model package closed with
respect to A.

 Let (A, P) be an analytical query. The flattened sequence of
A, denoted flat (A, P), is an analytical sequence that results

15 J Intell Manuf (20xx) xx:x-x

from A by recursively replacing each include M() with the
analytical sequence of the model M (), and replacing each
include M(J) statement with the analytical sequence of the
model M(Id) in P, in which every appearance of Id is replaced
with J.

 We say that an analytical query (A, P) has a conflict, if one
of the following holds in

flat (A, P) = (S1,…, Si ,…, Sj,…, Sn):

 Sj is a declaration statement of the form Ti xi = ai or Ti xi
= ei and Si is any declaration statement

 Si and Sj are two declaration statements such that xi = xj
and Ti ≠ Tj (i.e., the same variable is declared twice with
conflicting types)

Given a flat (S1,…, Si ,…, Sn) analytical sequence A (i.e.,
without include statement), we say that variable xi is data-
instantiated if:

 There is a statement Si of the form Ti xi = ai , where ai is a
constant or, recursively

 There is a statement Si of the form Ti xi = ei, such that all
variables y in ei are instantiated in the prefix sequence
(S1,…,Si-1)

We say that a flat analytical sequence A is data instantiated
if every variable x in a declaration statement is instantiated.

 We say that an analytical query (A, P) is well-formed if:

 It does not have a conflict, and

 For every constraint statement Ci and expression ei in the
declaration statement of the form Ti xi = ei or min xi, max
xi, or sat in flat (A, P), the following holds: it only contains
variables that have been declared in a declaration
statement earlier in the sequence.

 If A is a non-optimization sequence, then, flat (A, P) must
be data instantiated.

 If A is an optimization sequence, then for every statement Si
in flat (A, P) = (s1, ..., sn) of the form Ti xi = …, xi must
be instantiated in (S1,…,Si-1) (i.e., earlier in the sequence).

From now on, only well-formed analytical queries are
considered.

 As discussed earlier, a SPAF model is an analytical model
M (Id) if it is one of the following forms:

 Process model

 Context model

 Flow model

 Flow aggregator model

 Sustainability metric aggregator model

A SPAF process model with identifier Id, denoted PM (Id),
is an analytical sequence that contains statements of the
following forms:

string Id.processType = type_flow_string,

{string} Id.inputFlow = inputFlowExpr,

 {string} Id.outputFlow = outputFlowExpr,

 {string} Id.subProcess = subProcessExpr,

 {string} Id.flowAggregator = flowAggrExpr,

and

 include M (I), for every I in Id.inputFlow,
Id.outputFlow, Id.subProcess, or Id.flowAggregator, where:

 Id is used as a prefix for all variables on the left hand side
of the declaration statements, except for variables that
appear on the left hand side of assignments into variables
defined in the included models, i.e., SPAF models M (Id’),
where Id’ is in Id.inputFlow, Id.outputFlow,
Id.subProcess, and Id.flowAggregator (those are “visible”
to the process model)

 type_process_string is a string

 inputFlowExpr, outputFlowExpr are analytical expressions
of the type {string} (i.e., return a set of strings)

 subProcessIdsExpr, flowAggrIdsExpr are analytical
expressions of type {string}

 M (I) denotes a method that returns a SPAF model with
identifier I

A SPAF context model CM (), is an analytical model.

 A SPAF flow model with identifier Id, denoted FM (Id), is
an analytical model that contains statements of all of the
following forms:

string Id.flowType = type_flow_string,

where:

 Id is used as a prefix for all variables on the left hand side
of the assignment statements

 type_flow_string is a string

A SPAF flow aggregator model with identifier Id, denoted
FAM (Id), is an analytical sequence that contains all of the
followings forms:

string Id.flowType = type_flow_string,

{string} Id.flows_to_aggr = inputFlowExpr,

{string} Id.flows_from_aggr = outputFlowExpr,

where:

 Id is used as a prefix for all variables on the left hand side
of the assignment statements

 type_flow_string is a string

 inputFlowExpr, outputFlowExpr are analytical expressions
of the type {string} (i.e., return a set of strings)

An SPAF process package is a model package P. We say
that it is well-formed if:

16 J Intell Manuf (20xx) xx:x-x

 P is closed under references

 P satisfies the following scoping rules:

 Process model M (Id) can use variables prefixed with

identifiers form Id.inputFlow, Id.outputFlow,

Id.flowAggregator, or itself, i.e., Id.

 A model M (Id) in P can use variables from the

context model in P.

 Flow Aggregator Model M (Id) can use variables that

are prefixed with identifiers of flow models that are

referenced in it, or itself, i.e., Id.

 For every process model M in P, A(M) is a well-formed
analytical sequence

Note that a well-formed SPAF process package P provides
a modular description of a (flat) and well-formed analytical
sequence. Thus, it is naturally extendable and its components
are reusable.

SPAF formal semantics

We say that an analytical sequence A is explicit if all of its
analytical statements are of the form

Ti xi = ai ,

where ai is a constant, i.e., it is an assignment of a constant to a
variable. Intuitively, the symbolic expression of an explicit
analytical sequence represents the corresponding data. Note
that an explicit analytical sequence is flat. Formally, the
semantics of an explicit analytical sequence (s1, ..., sn), denoted
Sem ((s1, ..., sn)), is itself, i.e., its symbolic expression.

 We say that an analytical sequence A is implicit if all of its
analytical statements are of the form

Ti xi = ei .

 Note that this includes the case when the expression ei is a
constant ai. Formally, the semantics of a well-formed implicit
analytical sequence

(T1 x1 = e1, … , Tn xn = en)

is the explicit analytical sequence

(T1 x1 = a1, … , Tn xn = an) ,

in which each ai, 1 ≤ i ≤ n, is a constant of type Ti that is
computed by expression ei, when each variable xj, 1 ≤ j ≤ i-1, is
replaced by the constant aj.

 The semantics of (s1, ..., sn) is denoted Sem ((s1, ..., sn)).
Obviously, an explicit analytical sequence is a particular case
of implicit, in which case, explicit and implicit semantics
coincide.

 We say that an analytical sequence A = (s1, ..., sn) is a
constraint analytical sequence if all of its statements are of the
form

(Ti xi = ei) or Ci ,

where ei is an expression of type Ti and Ci is a constraint.
Formally, the semantics of a well-formed constraint analytical
sequence (s1, ..., sn), denoted Sem ((s1, ..., sn)), is defined as
follows:

 Consider an implicit analytical sequence (si1

,..., sik

),

which is a sub-sequence of (s1,..., sn) that contains all

statements si’ of the form Ti xi = ei, and its semantics (Ti1

xi1
= ai1

,..., Tik
 xik

= aik
) (which is an explicit

analytical sequence), and

 Consider a sequence (C j
1

, ..., C j
m

), which is a sub-

sequence of (s1, ..., sn) that contains all the constraint
statements

 If there exists 1 ≤ i ≤ m, such that C j
i

evaluates to

FALSE after every variable xi in it is replaced with the

constant ai, then Sem ((s1, ..., sn)) is defined as

INVALID. Otherwise, Sem ((s1, ..., sn)) is defined as

the explicit analytical sequence (Ti1
 xi1

= ai1
,..., Tik

xik
= aik

).

We say that an analytical sequence A = (s1, ..., sn) is an
alternative analytical sequence, if each si, 1 ≤ i ≤ n, is of the
form

(Ti xi), (Ti xi = ai), (Ti xi = ei), or Ci ,

where ai is a constant of type Ti, and ei is an expression of
type Ti, and Ci is a constraint. Note that an alternative
analytical sequence may have repetition of declaration
statements for the same variable x. Consider the analytical
sequence (s1, ..., sn) resulting from A by removing, for every
variable x, all declarations except for its first appearance in A.
Formally, the semantics of a well-formed alternatives
analytical sequence (s1, ..., sn), denoted Sem ((s1, ..., sn)), is
defined as follows:

 Consider all non-instantiated variables xi1
, ..., xik

in (s1, ...,

sn). Sem ((s1, ..., sn)) is the set

{ E(ai1
,..., aik

) | ai1
in D(Ti1

),..., aik
in D(Tik

) /\

E(ai1
,..., aik

) ≠ INVALID },

where:

 D (Ti1
),...,D (Tik

) are the domains of types Ti1
,..., Tik

,

respectively, and

 E(ai1
, ..., aik

) denotes Sem ((s1,..., sn)

[xi1
/ ai1

,..., xik
/ aik

]), where (s1, ..., sn)

[xi1
/ ai1

,..., xik
/ aik

] denotes the constraint analytical

sequence (s1’, ..., sn’) that results from (s1, ..., sn) by

17 J Intell Manuf (20xx) xx:x-x

replacing each statement of the form (Ti j
 xi j

), 1 ≤ j ≤ k,

with the statement Ti j
 xi j

= ai j

.

We say that an analytical sequence A= (s1,..., sn, sn+1) is a
flat optimization sequence if (s1,..., sn) is an alternative
sequence, and s (n+1) is of the form:

min xi, max xi, or sat.

where xi, 1 ≤ i ≤ n, is one of the variables in the left hand
sides of assignments in

(s1, ..., sn). Assuming without loss generality that, for every
variable x in A, there is a single declaration of x (if this is not
the case, all declarations of x except for its first appearance are
removed.) Formally, the semantics of an optimization
analytical sequence (s1,..., sn, s(n+1)), denoted Sem ((s1,..., sn,
s(n+1))), is defined as follows:

 If Sem (s1, …, sn) = ∅ then we say that Sem ((s1,..., sn,
s(n+1))) is INFEASIBLE. Otherwise, consider an explicit
analytical sequence E in Sem ((s1,..., sn)) such that:

 If s (n+1) is min xi, then for all E’ in Sem ((s1, …, sn), ai ≤ ai’,
where ai and ai’, are the analytical model constants in the
assignments Ti xi = ai of E, and Ti xi = ai’ of E’.

 If s (n+1) is max xi, then for all E’ in Sem ((s1, ..., sn), ai ≥ ai’,
where ai and ai’, are the analytical model constants in the
assignments Ti xi = ai of E, and Ti xi = ai’ of E’.

If E does not exist, we say that Sem ((s1,..., sn, s(n+1))) is
UNBOUNDED. Otherwise,

Sem ((s1,..., sn, s(n+1))) is E.

 Note that if s (n+1) is sat, the semantics is just an explicit
analytical sequence E in Sem ((s1, ..., sn)). Also note that the
optimization semantics (whether it is minimization,
maximization, or satisfiability) are non-deterministic, i.e., there
may be more than one explicit model that satisfies the
condition in the definition of semantics.

 Semantics of a query (A, P) is a pair (A’, P’) constructed as
follows:

 For every sequence S, either A or a sequence B in a model
M (Id) {B} in P, S is replaced by S’ as follows.

 Consider all variables x1, …, xn, declared in their order

in S, then S’ is the sequence
 (T1 x1 = a1 , …, Tn xn = an),

where T1 ,…, Tn are the corresponding types of x1, …, xn

respectively, and ai is the constant instantiated with xi in the
semantics E of flat (A,P).

SPAF Query Computation

In this section, algorithms (reduction procedures) to perform
SPAF analytical query computation are introduced. Figure A.1
shows a commutative diagram for analytical query
computation, in which the upper left box indicates the query
sequence A in model package P. The query sequence may have

include statements . The semantics of A is sequence A’ in
package P’ as shown in the upper right box in Figure A.1. Two
algorithms are included in the computation – analytical query
algorithm and flat optimization sequence algorithm. Through
the analytical query algorithm (refer to step (1), (6), and (5)),
(A, P) can be translated to a flat analytical sequence (middle
left box). If the flat analytical sequence can be instantiated, it is
an implicit analytical sequence, otherwise, it is an optimization
analytical sequence whose semantics is a flat explicit analytical
sequence (middle right box). This algorithm calls the flat
optimization sequence algorithm (refer to step (2), (3), and (4))
to translate the flat optimization sequence to a standard
optimization model such as OPL or AMPL (lower left box). By
using an optimization solver, the optimization solution (lower
right box) can be derived. All variables can then be
instantiated, the sequence becomes a flat explicit analytical
sequence (middle right box), which can be translate back to
(A’, P’).

 Figure A.2 presents the algorithm of SPAF Query
Computation. The input is an analytical query sequence A and
a model package P that is closed with respect to A. The output
is (A’, P’) that is the semantics of (A, P). The procedures of the
algorithm include:

1. Construct a flat sequence S1 by replacing all the include
statements in A with corresponding analytical sequences.

2. Construct a new sequence S2 by removing all the
duplicated declarations of x except for the first declaration
in S1 for every variable x declared in S1.

3. If S2 is instantiated, it must be an implicit analytical
sequence. So a new explicit analytical sequence S3 can be
constructed by replacing each variable with a constant that
derived from an expression.

4. If S2 is not instantiated, it must be a flat optimization query.

 By calling the OptSeqAlg (S2) algorithm, it will return the
semantics of S2.

18 J Intell Manuf (20xx) xx:x-x

Query (A, P)
(A', P') =

Sem (A, P)

Flat

(optimization

sequence

(OS))

Optimization

solution

(instantiation of

constants to

variables) (I)

Explicit

analytical

sequence (flat)

(ES) = Sem

(OS)

Standard

optimization

model (e.g.,

OPL or AMPL)

1

3

4

5

2

7

6

Sem

Sem

Optimization solution

Flat optimization sequence

algorithm

Analytical query algorithm

Figure A.1 A commutative diagram for analytical query

computation

Input: (A, P) is a well-formed analytical query and P is a

closed form model package closed with respect to A.

Output: (A’, P’) is the semantics of (A, P).

1. Construct S1 = flat (A, P).

2. Construct sequence S2 from S1 as follows:

 For every variable x declared in S1, remove all

 declarations of x except for the first declaration in S1.

3. Check if S2 is instantiated.

4. If S2 is instantiated, it must be an implicit analytical

sequence of the form (T1 x1 = e1, …,Tn xn = en). In this

case, construct S3 as the explicit analytical sequence (T1

x1 = a1 ,…,Tn xn = an),in which each ai, 1≤ i ≤ n, is a

constant of type Ti that is computed by expression ei, where

each variable xj, 1≤ j ≤ i-1, is replaced by aj.

5. Otherwise, if S2 is not instantiated, it must be a flat

optimization query. Construct S3 by calling the method

OptSeqAlg (S2), which returns the semantics of S2.

6. Construct the pair (A’, P’) as follows:

For every sequence S, which is either A or a sequence B in a

model(Id){B} in P, S is replaced by S’ as follows.

Consider all variables x1, …, xn, declared in their order in S,

then S’ is the sequence (T1 x1 = a1 ,…,Tn xn = an) where T1 ,…

,Tn are the corresponding types of x1, …, xn respectively, and ai is

the constant to instantiate xi in S3.

Figure A.2 Algorithm 1: SPAF query computation

 Figure A.3 presents the algorithm of Optimization
Sequence Algorithm (OptSeqAlg). The input is a flat
optimization query S2 generated by the SPAF Query
Computation algorithm. The output is the semantics of S2.

1. For all variables that are instantiated in every statement,
replace the expression with the computed constant.

2. Construct decision variables that are not being instantiated.

3. Construct a set of constraints by replacing decision
variables in every statement with its constant. For any
variable that is non-instantiated, a constraint is added.

4. Construct the optimization problem with objectives and
constraints.

5. Solve the optimization problem using an optimization
solver.

6. Construct the answer sequence by removing all constraint
statements and replacing all the variables using constants
computed or the optimization solutions.

Input: Flat optimization query (i.e., (s1,…,sn,sn+1) where
sn+1 is of the

 form min xi , max xi (1 ≤ i ≤ n) or sat where xi is not
 instantiated on (s1, …, sn)).
Output: Semantics of (s1,…,sn,sn+1).

1. Consider all variables xi1
, ..., xim

 in (s1, ..., sn) that are

instantiated. For every statement Si j

, 1 ≤ j ≤ k, of the

form Ti j
 xi j

= ei j

, compute ei j

, and replace ei j

with

the computed constant ai j

, i.e., resulting in Ti j
 xi j

=

ai j

2. Construct the set of decision variable V to be the set of all

non-instantiated variables xl1
, ..., xlm

 in (s1, ..., sn)

ranging over the domains corresponding to types Tl1
,…,

Tlm
 respectively.

3. Construct the set of constraints C as follows:
 3.1 Initially, C = ∅.
 3.2 For every statement si, 1≤ i ≤ n of the form Ci, add to
 C the constraint resulting from Ci by replacing every

 instantiated variable xi j

with its constant ai j

from

 Step 1.
3.3 For every statement Si of the form Ti xi = ei , where xi is
 non- instantiated, add the constraint xi == ei’, where ei’

 result from ei by replacing each decision variable xi j

in

 ei with its constant ai j

from Step 1.

4. Construct the optimization problem O;

V
min xn subject to C,

V
max xn subject to C, or

V
sat C

according to sn+1.
5. Solve the optimization problem O.
6. If O is infeasible, return “INFEASIBLE”, else if O is

unbounded, return “UNBOUNDED.”
7. Otherwise, construct the answer sequence from (s1, ..., sn)

as follows:
 7.1 All non-declaration statements (i.e., constraints) are
 removed.
 7.2 Every declaration statement with type Ti and variable
 xi (i.e.,of the form Ti xi = ai or Ti xi = ei) be replaced
 as follows:

19 J Intell Manuf (20xx) xx:x-x

 7.3 if xi is instantiated, it is replaced with Ti xi = ai ,
 where ai is a constant computed in Step 1.
 7.4 if xi is non-instantiated, the statement is replaced with
 Ti xi = ai, where ai is a constant instantiated into
 decision variable xi from the solution of the
optimization problem O.

Figure A.3 Algorithm 2: optimization sequence algorithm

(OptSeqAlg)

Algorithm correctness: We denote by All-Sem (A, P) the set of
all explicit analytical sequences’ E that are Sem (A, P).

 We denote by All-Ans (A, P) the set of all explicit
analytical sequences’ E that are possible answers produced by
Algorithm: SPAF query computation.

Claim: Algorithm SPAF query computation is CORRECT,
i.e., it is:

1. Sound, i.e., for every well-formed analytical query (A, P),

All_Ans (A, P) ⊆ All_Sem (A, P)

2. Complete, i.e., for every well-formed analytical query (A,
P),

All_Sem (A, P) ⊆ All_Ans (A, P)

