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Abstract

Texture compression is widely used in real-time rendering to reduce
storage and bandwidth requirements. Recent research in compres-
sion algorithms has explored both reduced fixed bit rate and vari-
able bit rate algorithms. The results are evaluated at the individual
texture level using Mean Square Error, Peak Signal-to-Noise Ratio,
or visual image inspection. We argue this is the wrong evaluation
approach. Compression artifacts in individual textures are likely
visually masked in final rendered images and this masking is not
accounted for when evaluating individual textures. This masking
comes from both geometric mapping of textures onto models and
the effects of combining different textures on the same model such
as diffuse, gloss and bump maps.

We evaluate final rendered images using rigorous perceptual error
metrics. Our method samples the space of viewpoints in a scene,
renders the scene from each viewpoint using variations of com-
pressed textures, and then compares each to a ground truth using
uncompressed textures from the same viewpoint. We show that
masking has a significant effect on final rendered image quality,
that graphics hardware compression algorithms are too conserva-
tive, and reduced bit rates are possible while maintaining quality.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture;

Keywords: MIP mapping, bump maps, texture compression, im-
age quality assessment

1 Introduction

Real-time rendering makes extensive use of texture compression
for reducing storage size on the Graphics Processing Unit (GPU),
bus bandwidth for uploading textures, and memory bandwidth for
deferred rendering buffers. Current GPU compression algorithms
use fixed bit-rates [Iorcha et al. 1999; Microsoft 2013] and recent
research has explored reducing the fixed bit rate [Ström and Petters-
son 2007; Khronos Group 2013] as well as using variable bit-rate
algorithms [Olano et al. 2011].

In evaluating texture compression, the most common approach is
to use some combination of the Mean Square Error (MSE), Peak
Signal-to-Noise Ratio (PSNR), or visual image inspection on the
individual textures. While comparing or inspecting individual tex-
tures is straightforward to implement, this method does not properly
account for the two ways in which textures are used.

Textures are not single images but are instead used in two specific
ways. First, they are mapped onto geometric objects and then those
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texture-mapped objects are rendered from some viewpoint. Second,
multiple textures are frequently used together, such as a diffuse and
bump map, or a diffuse, gloss, and bump map and these sets of
textures are used to evaluate the rendering equation.

In both cases, the textures are used to render a final image from a
specific viewpoint. In that rendered image, there are likely masking
effects from geometric distortion or overlapping textures that affect
that quality of the image [Ferwerda et al. 1997]. We define geomet-
ric masking to be the effects from texture mapping and texture set
masking to be the effects from multiple textures. These masking ef-
fects cannot be accounted for when evaluating individual textures,
they only appear when rendering an image from a viewpoint.

In order to account for these masking effects we propose to evaluate
texture compression on final rendered images. Rendering a scene
from a single viewpoint, however, is effectively the same as eval-
uating individual textures, as the masking effects will likely vary
between viewpoints. Since the set of possible viewpoints in a scene
is infinite but discrete, we propose to sample this viewpoint space
and evaluate the final rendered images at each sampled viewpoint.

For every sampled viewpoint, we render the scene using variations
of compressed textures. At a viewpoint, we also render a ground
truth image using uncompressed textures. We then compute error
metrics at each viewpoint, comparing each compressed variation to
the uncompressed ground truth. By using final rendered images, we
can apply perceptually rigorous objective image quality assessment
metrics from the signal processing literature.

Our results show:

• Geometric and texture set masking does occur and cannot be
accounted for when evaluating individual textures.

• Perceptual sensitivity to masking varies with the type of tex-
ture, such as diffuse, gloss or bump maps.

• Current GPU compression algorithms are too conservative
and bit rates can be reduced while maintaining final rendered
image quality.

2 Related Work

We are interested in evaluating compression artifacts and present re-
sults on several common GPU compression algorithms. We choose
to use two different perceptual error metrics for our evaluation, in
addition to using root mean square (RMS) color error for a baseline
reference. In this section, we review GPU compression followed by
objective image comparison research.

2.1 GPU Texture Compression

GPU texture compression algorithms have evolved over the years
but still remain based on the fixed-bit-rate block-truncation coding
algorithms introduced by Delp and Mitchell [1979] and extended
by Iorcha et al. [1999]. These algorithms allow direct access to

DISCLAIMER: Certain commercial products are identified in this paper in order to
specify the experimental procedure adequately. Such identification is not intended
to imply recommendation or endorsement by the National Institute of Standards and
Technology, nor is it intended to imply that the products identified are necessarily the
best available for the purpose.
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compressed blocks in a texture and fast decompression in hard-
ware. The main idea behind the technique is to encode a pair of
representative colors for a 4×4 block of pixels and then store per-
pixel index values that interpolate along the gradient defined by the
endpoint colors. Recent variants such as BC7 [Microsoft 2013]
improve compression quality by subdividing the blocks to encode
multiple color gradients at the same bit rate.

Recently, Adaptive Scalable Texture Compression [Khronos Group
2013] was introduced. ASTC is modeled after the existing block
compression algorithms but supports varying the number of texels
per block (per texture) to enable granular changes to the bit rate.
The compressed block size remains fixed to still allow direct ac-
cess. ASTC also supports varying the endpoint encoding method
per block as well as partitioning the block into multiple endpoints.

Several compression algorithms are tailored for low-power hard-
ware. PVR uses two low-resolution source images combined with a
full-resolution modulation image [Fenney 2003]. ETC encodes two
2×4 blocks of pixels together using a single chrominance value and
a luminance modulation table [Ström and Akenine-Möller 2005]
and ETC2 [Ström and Pettersson 2007] increases compressed qual-
ity by using invalid bit combinations for additional modes.

2.2 Objective Image Comparison

A widely-used technique for objective image comparison is to com-
pute the PSNR between a reference and distorted image. However,
research has led to the realization that the PSNR does not corre-
late with how humans evaluate images [Wang et al. 2004]. Objec-
tive Image Quality Assessment (IQA) research has since focused on
metrics with strong correlation to human perception. Current top-
performing metrics are formulated for luminance natural images
such as real-world photographs or realistically rendered images.

IQA metrics can be classified in two ways: by the type of input
or type of model. The input is either luminance or color while the
model is either bottom-up or top-down. Input classification is dis-
tinct, that is, metrics work on either luminance or color. Model
classification, however, is more of a convenience and most IQA
metrics are a mix of both models. Bottom-up metrics attempt to
accurately model the human visual system while top-down metrics
just model the human visual system’s input-output characteristics.

The luminance-only metrics have very strong correlation with hu-
man perception, even for chrominance-based distortions such as
texture compression. This performance is due to the human visual
system being more perceptive to errors in luminance than errors in
chrominance [Hao and Shi 2000]. One of the earliest, but still com-
petitive metrics is the Structural Similarity Index Metric (SSIM)
introduced by Wang et al. [2004].

SSIM is a top-down metric that evaluates differences in structure
between a reference and distorted image. Wang et al. hypothesized
that local luminance and local contrast changes do not strongly af-
fect perceived image quality and thus define structure as the absence
of luminance and contrast in an image. SSIM operates in two stages
by first generating a map of local distortion values and then pooling
those values into a single distortion value using Minkowski pooling.

Current color metrics attempt to combine rigorous perceptual-based
CIELAB color differencing [Fairchild 2005] with bottom-up mod-
els of the human visual subsystem. The results, however, do not
correlate as well with the evaluation databases [Ajagamelle et al.
2010] and color image quality assessment remains difficult to solve.

Additionally, as Čadı́k et al. [2012] show, existing image quality
metrics, which were developed to evaluate compression artifacts,

(a) (b) (c)

Figure 1: (a) Fire Hydrant (b) Urban Guy (c) Japanese Castle.

Figure 2: Closest, median (by distance), and furthest viewpoints.

have difficulty in evaluating global illumination artifacts in synthe-
sized images. Their results indicate that further research is needed
to improve image quality metrics for rendering.

3 Approach

In order to perform the evaluations, we need to render the scene
from a set of viewpoints. We choose to sample the infinite, but
discrete, space of viewpoints and then render a final image at each
viewpoint using variations of compressed textures. After rendering,
we then compare each final rendered image to a render at the same
viewpoint with uncompressed textures.

3.1 Viewpoint Sampling

Our evaluation method cannot use just a single viewpoint, as that
would not account for the possible differences in masking effects
from various viewpoints. Since the viewpoint space is infinite, we
must sample it to make our approach computationally tractable. We
choose to sample the viewpoint space uniformly. Sampling tech-
niques such as importance sampling based on expected viewer lo-
cations could improve the evaluation, but we leave these for future
work. Viewpoint sampling has been used in other areas of computer
graphics, such as for image-based mesh simplification [Lindstrom
and Turk 2000], but not, to our knowledge, for texture compression.

For the single-object models, Fire Hydrant and Urban Guy, we
choose to restrict the set of viewpoints to a bounding sphere. We use
the quasi-random Sobol sequence generator [Joe and Kuo 2003] to
sample this sphere of viewpoints. To ensure quality viewpoint sam-
ples, we constrain the sphere to a multiple of the object’s bounding
sphere. We also reject any viewpoint samples closer than a multi-
ple of the bounding sphere radius, to prevent the viewpoint samples
from being inside the model. The multipliers were chosen such
that for each model, the final rendered images ranged from having
0.8% to 70% pixels filled. Figure 2 shows the closest, median (by
distance), and furthest viewpoint for both models.
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The set of possible viewpoints is frequently restricted to some sub-
set of space in the scene. For example, in many games, the view-
points are restricted to a character’s point of view or to a path of
camera movements that follow a character. With an instrumented
rendering engine, a trace of viewpoints could be captured during,
for instance, game testing. These traces would become the space of
viewpoints to sample. To demonstrate this, a set of key viewpoints
for the third model, Japanese Castle, were captured while navigat-
ing around the model. These key viewpoints were then interpolated
to form a full set of viewpoints that were evaluated.

3.2 Rendered Image Comparisons

At each viewpoint, we render a ground truth image using uncom-
pressed textures. We then render the same viewpoint using vari-
ations of compressed textures. After all the images are rendered
from a single viewpoint, we compare each compressed variation fi-
nal rendered image to the uncompressed ground truth image. We
extend the method, introduced by Beers et al. [1996], with percep-
tually rigorous objective image quality assessment metrics.

We evaluate three metrics: the Root Mean Square (RMS) color er-
ror for a baseline reference, the CIELAB ∆E94 color differencing
metric to evaluate chroma error, and the Structural Similarity Index
Metric (SSIM) to evaluate structural error. Since SSIM captures
error in the structure of an image, it is well suited to capturing com-
pression artifacts in the bump and gloss maps.

Each metric is averaged across the set of viewpoints to compute
a mean metric score for each compression algorithm. To further
isolate just the compression artifacts, we modified each metric to
compute the error over just the pixels that were rendered. This was
done by using an RGBA framebuffer for the rendering, and then
weighting the metric at each pixel by the alpha value.

SSIM is formulated for luminance-only natural images. While
some have applied SSIM to the color channels of an RGB image,
SSIM is only a valid perceptual metric when applied to luminance.
For our evaluation, we transform the rendered RGB images into the
CIELAB color space and the compute SSIM on the L∗ component.
We also compute the CIELAB ∆E94 color differencing metric on
the entire CIELAB image as our full-color perceptual metric.

We also present results using the Root Mean Square (RMS) color
error (Equation 1). This metric has no perceptual foundation, but is
widely used and we include it for reference. Note that we are still
measuring the influence of geometric and texture set masking on
final rendered image quality and not individual texture error.

RMSColor =

√√√√ 1

N

N∑
1

(∆r2 + ∆g2 + ∆b2) (1)

Finally, we report the RMS angular error (Equation 2) computed
on individual bump textures. This metric is used to evaluate the
individual bump textures to compare against our evaluation method.

RMSAngular =

√√√√ 1

N

N∑
1

arccos(n0 · n1)2 (2)

where n0 and n1 are the reconstructed unit normals.

4 Results

We applied our method to a set of models and compression algo-
rithms. In this section we describe the models and selected com-
pression algorithms and discuss our results.

4.1 Models

We use three models shown in Figure 1: Fire Hydrant, Urban Guy,
and Japanese Castle. Each model has at least one texture atlas set
which consists of a bump map, gloss map, and diffuse map, all
using one parameterization. The Fire Hydrant model (Figure 1a)
uses one texture atlas set at a resolution of 2048×2048. The Urban
Guy model (Figure 1b) uses four texture atlas sets, one for the skin
and clothes at 2048 × 2048, one for the jacket at 1024 × 1024,
and two for the accessories (sunglasses and watch) at 512 × 512.
The Japanese Castle model (Figure 1c) has 21 texture atlas sets for
the various buildings and props, one set at 2048 × 2048, four at
1024× 1024 and the rest at lower resolutions (most at 512× 512).

We use the Cook-Torrance shading model with true Fresnel assum-
ing unpolarized light. The mipmaps for each texture were gen-
erated with a box kernel. The bump and gloss maps were trans-
formed into the second moments of variance for proper linear fil-
tering [Olano and Baker 2010], then converted back into gloss for
texture storage. The bump maps are stored in the dual-paraboloid
encoding [Heidrich and Seidel 1998] and the gloss maps encode the
Cook-Torrance variance, which is reconstructed in the pixel shader
using: σ2 = 2/(210r+1 + 2), where r is the gloss value.

4.2 Compression Algorithms

We use three different formats for Direct3D Block Compression:
BC5 (8 bits/pixel compression rate) for the bump maps, BC4
(4 bits/pixel compression rate) for the gloss maps and BC3 (8
bits/pixel compression rate) for the diffuse maps. The NVIDIA
Texture Tools Library [NVIDIA 2013] was used for compression,
with the quality set to ’normal’.

We use three different block sizes for Adaptive Scalable Tex-
ture Compression: 4×4 (8 bits/pixel compression rate), 8×8 (4
bits/pixel compression rate), and 12×12 (0.89 bits/pixel compres-
sion rate) with RGBA textures for all three maps. The bump maps
are compressed in the RG channels, while the gloss maps remain
RGBA. The ARM Mali ASTC Evaluation Codec [ARM 2013] was
used for compression, with the quality set to ’thorough’.

To explore how far compression can be pushed, we “compressed”
the textures by dropping from 1–7 bits from each color plane. In
addition to compressing all of the textures, we also chose to com-
press just a single class of texture, such as diffuse or gloss textures,
leaving the other textures uncompressed to determine which class
had the most effect on the final rendered image quality. Finally, we
sample the viewpoint space with 2500 samples.

4.3 Discussion

We first explain our results and then make several conclusions. Ta-
ble 1 and Figures 3, 4 and 5 show the histograms and statistics (over
all sampled viewpoints) for the individual viewpoint error metrics.

Table 2 reports the mean of the error metrics over all of the models.
The Sampled Viewpoint Mean Error columns report the mean
error over all 2500 viewpoint samples. The Individual Texture
Error columns report the mean error over all of the MIP levels for
the largest-sized texture set. The All column is for compressing all
of the textures, while the Diffuse, Gloss, and Bump columns are
for compressing just that respective texture. The NVTT/BC rows
refer to Direct3D Block Compression using the NVIDIA Texture
Tools Library and the ASTC rows refer to Adaptive Scalable Tex-
ture Compression using the ARM Mali ASTC Evaluation Codec.

Figures 6, 7, and 8 plot the Sampled Viewpoint Mean Error data
in Table 2. The left two vertical plots are color error against com-
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(c) SSIM on L∗ of CIELAB.

Figure 3: Fire Hydrant error metric histograms. Only the ASTC algorithms are shown and the error metric is on compressing all textures.
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(c) SSIM on L∗ of CIELAB.

Figure 4: Urban Guy error metric histograms. Only the ASTC algorithms are shown and the error metric is on compressing all textures.
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Figure 5: Japanese Castle error metric histograms. Only the ASTC algorithms are shown and the error metric is on compressing all textures.
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Fire Hydrant Urban Guy Japanese Castle
Algorithm Metric Min Max Median Mean σ2 Min Max Median Mean σ2 Min Max Median Mean σ2

ASTC 4×4
RMS Color 0.0009 0.0110 0.0015 0.0017 0.00000069 0.0004 0.0135 0.0009 0.0011 0.00000076 0.0018 0.0080 0.0040 0.0044 0.00000196
∆E94 0.0049 0.4076 0.0155 0.0249 0.00104390 0.0016 0.5002 0.0108 0.0195 0.00113213 0.0234 0.3780 0.1043 0.1219 0.00451420
SSIM 0.9905 0.9982 0.9958 0.9957 0.00000071 0.9913 0.9990 0.9982 0.9980 0.00000054 0.9808 0.9990 0.9971 0.9959 0.00001542

ASTC 8×8
RMS Color 0.0025 0.0236 0.0039 0.0044 0.00000365 0.0010 0.0525 0.0021 0.0028 0.00000827 0.0035 0.0175 0.0098 0.0099 0.00000837
∆E94 0.0116 1.0105 0.0370 0.0580 0.00570639 0.0033 1.7083 0.0199 0.0404 0.00809949 0.0332 0.8371 0.2093 0.2360 0.01864330
SSIM 0.9309 0.9864 0.9694 0.9694 0.00003179 0.8605 0.9925 0.9866 0.9833 0.00010744 0.8850 0.9920 0.9775 0.9700 0.00053054

ASTC 12×12
RMS Color 0.0037 0.0320 0.0059 0.0067 0.00000689 0.0013 0.0658 0.0031 0.0041 0.00001363 0.0042 0.0266 0.0134 0.0137 0.00001624
∆E94 0.0178 1.3582 0.0562 0.0848 0.01049680 0.0046 2.1879 0.0271 0.0522 0.01294340 0.0373 1.1837 0.2811 0.3156 0.03478230
SSIM 0.8835 0.9688 0.9344 0.9347 0.00010633 0.7337 0.9833 0.9690 0.9639 0.00035621 0.8343 0.9812 0.9538 0.9472 0.00103269

Table 1: Error metric statistics for the compression algorithms.
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Figure 6: Fire Hydrant mean error. The outer four vertical plots are color error against compression rate or bits dropped and the inner plots
are SSIM. Note the vertical error scales are different across all eight plots to improve readability. See Section 4.3 for discussion.
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Figure 7: Urban Guy mean error. The outer four vertical plots are color error against compression rate or bits dropped and the inner plots
are SSIM. Note the vertical error scales are different across all eight plots to improve readability. See Section 4.3 for discussion.
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Figure 8: Japanese Castle mean error. The outer four vertical plots are color error against compression rate or bits dropped and the inner
plots are SSIM. Note the vertical error scales are different across all eight plots to improve readability. See Section 4.3 for discussion.
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(a) Uncompressed (b) Drop 4 (c) Uncompressed (d) Drop 4

(a) & (b): Diffuse Texture (c) & (d): Rendered Image

Figure 9: Zoomed view of diffuse texture (left) and rendered image
(right). Notice the color banding in the diffuse texture is masked in
the final rendered image due to the high frequency bump map.

(a) ASTC 4×4 All (b) ASTC 8×8 All (c) ASTC 12×12 All

(d) mSSIM (0.9958) (e) mSSIM (0.9234) (f) mSSIM (0.8201)

Figure 10: Visual comparison of a single compressed viewpoint.
Figures (d)–(f) are the SSIM maps with the mean SSIM.

pression rate for the NVTT/BC and ASTC algorithms. The left in-
ner plot is SSIM against compression rate. The shape of the points
corresponds to compression algorithm and the color to variations
in compressed textures. For NVTT/BC compression rate, the All
points are average bit rate at each pixel. The right plots are SSIM
and color error against dropping bits from each color plane and the
color corresponds to the variations in “compressed” textures.

For the RMS Color Error, CIELAB ∆E94 Difference, RMSE, and
RMS Angular Error metrics, lower is better and 0.0 is a perfect
match. For For the SSIM metric, higher is better and 1.0 is a perfect
match. Note the vertical error scales in Figures 7, 6, and 8 are
different across all eight plots to improve readability.

Comparing final rendered images is stable across viewpoints.
As the histograms in Figures 3, 4, and 5 illustrate, the error metrics
do vary with the viewpoint. We can conclude that these differences
are due to geometric and texture set masking and can only be ac-
counted for by evaluating final rendered images. The variation also
indicates that a single viewpoint cannot be used to for the evalu-
ation and that the viewpoint space must be sampled. Finally, the
small variance in Table 1 indicates that each error metric can be
averaged over the set of viewpoints resulting in a single error value.

Geometric and texture set masking effects are present. Fig-
ure 9 is a visual example of masking of the diffuse texture. No-
tice the color banding caused by dropping four bits in Figure 9b is
masked in Figure 9d by the high frequency bump map.

Additionally, In Table 2, the Sampled Viewpoint Mean Error
columns indicate that NVTT/BC has significantly higher quality
than ASTC 12×12. However, looking at the Individual Texture
Error Bump Angular RMSE, we would conclude that NVTT/BC
has lower quality than ASTC 12×12. These results indicate mask-
ing is occurring. However, since we render final images using dif-
fuse, gloss, and bump maps, it is unclear whether this masking is
caused by geometric masking or texture set masking. We leave the
relative masking effects between the two cases for future work.

Perceptual sensitivity to texture classes. Table 2 and Fig-
ures 6, 7, and 8 also reveal that perceptual sensitivity to compres-
sion artifacts and masking effects varies based on the class of tex-
ture. The Gloss only columns show very little reduction in quality
from the ASTC 4×4 block size to the 12×12 block size. Likewise,
dropping 4 bits from the gloss texture still results in very good final
rendered image quality.

Current GPU compression algorithms are too conservative.
Figures 10, 11, and 12 show several individual viewpoints of the
models with various compression algorithms and corresponding
SSIM maps. As these visual comparisons illustrate, geometric and
texture set masking effects can be leveraged to reduce the bit rate
of compressed textures while still maintaining good final rendered
image quality. In particular, Figure 11 implies SSIM values as low
as 0.9 still result in good image quality.

To explore how far compression can be pushed, Figure 13 visually
shows the effects of dropping from 1–7 bits from each color plane
for all textures at a single viewpoint and the SSIM map and mean.

5 Conclusion

In these results we can see evidence of geometric and texture set
masking. These masking effects cannot be accounted for when
evaluating individual textures and are only present when rendering
from a viewpoint. Additionally, the masking effects vary based on
the viewpoint and so evaluating a single viewpoint is not sufficient.
Our approach of sampling the viewpoint space and comparing fi-
nal rendered images accounts for both the masking effects and the
viewpoint variation. By using final rendered images, the evaluation
can use perceptually rigorous objective image quality assessment
metrics which match how humans perceive image distortions.

Using our evaluation method, we can conclude that perceptual sen-
sitivity to compression artifacts and masking effects varies with the
type of texture, such as diffuse, gloss or bump maps. This implies
that these different texture classes can be compressed more effi-
ciently depending on the perceptual sensitivity. Our results also
illustrate that current GPU compression algorithms are too conser-
vative. The bit rates in these algorithms can be reduced while still
maintaining final rendered image quality.

We have several ideas for further research in this area. Based on the
statistics of the per-viewpoint error metrics, kernel density estima-
tion could be used to estimate the probability distribution function
of the error metric. The probability density can then be used for im-
portance sampling of the viewpoint space. This would improve the
efficiency of our algorithm by primarily sampling viewpoints that
strongly contribute to the final mean error metric. We would also
like to determine the relative effects between geometric masking
and texture set masking and explore more interesting compression
algorithms, such as variable bit rate algorithms.
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Sampled Viewpoint Mean Error Individual Texture Error
RMS Color Error CIELAB ∆E94 Difference SSIM on L∗ of CIELAB Diffuse Gloss Bump

Model Algorithm All Diffuse Gloss Bump All Diffuse Gloss Bump All Diffuse Gloss Bump ∆E94 RMSE aRMSE†

Fire Hydrant

NVTT/BC 0.0027 0.0029 0.0010 0.0002 0.0357 0.0386 0.0114 0.0007 0.9875 0.9859 0.9980 0.9999 2.3904 0.0101 1.6464
ASTC 4×4 0.0017 0.0015 0.0011 0.0013 0.0249 0.0220 0.0117 0.0155 0.9957 0.9966 0.9979 0.9971 1.2364 0.0091 1.3375
ASTC 8×8 0.0044 0.0033 0.0012 0.0031 0.0580 0.0442 0.0124 0.0325 0.9694 0.9851 0.9975 0.9829 2.8451 0.0352 1.3497

ASTC 12×12 0.0067 0.0048 0.0013 0.0047 0.0848 0.0620 0.0128 0.0478 0.9347 0.9707 0.9972 0.9632 3.6900 0.0600 1.3561

Urban Guy

NVTT/BC 0.0015 0.0014 0.0002 0.0008 0.0281 0.0267 0.0014 0.0096 0.9960 0.9968 0.9999 0.9990 1.9768 0.0085 1.7431
ASTC 4×4 0.0011 0.0007 0.0002 0.0010 0.0195 0.0147 0.0016 0.0128 0.9980 0.9994 0.9999 0.9984 0.7348 0.0105 1.3063
ASTC 8×8 0.0028 0.0017 0.0005 0.0023 0.0404 0.0302 0.0038 0.0249 0.9833 0.9935 0.9993 0.9901 2.1219 0.0369 1.3181

ASTC 12×12 0.0041 0.0025 0.0007 0.0032 0.0522 0.0385 0.0049 0.0319 0.9639 0.9837 0.9987 0.9813 3.3601 0.0465 1.3247

Japanese Castle

NVTT/BC 0.0030 0.0000 0.0006 0.0030 0.0650 0.0000 0.0082 0.0609 0.9975 1.0000 0.9999 0.9976 0.0000 0.0057 1.5937
ASTC 4×4 0.0044 0.0022 0.0007 0.0039 0.1219 0.0857 0.0101 0.0799 0.9959 0.9995 0.9999 0.9963 0.8114 0.0060 1.3411
ASTC 8×8 0.0099 0.0051 0.0013 0.0083 0.2360 0.1627 0.0221 0.1421 0.9700 0.9944 0.9996 0.9759 2.0095 0.0202 1.3555

ASTC 12×12 0.0137 0.0082 0.0018 0.0105 0.3156 0.2299 0.0288 0.1710 0.9472 0.9844 0.9993 0.9636 2.7080 0.0269 1.3648

Table 2: Mean error compared to no compression. Sampled Viewpoint Mean Error is the mean error over all viewpoints. Individual
Texture Error is the mean error over all MIP levels of the largest-sized texture set. For RMS Color Error, ∆E94, RMSE and aRMSE, lower
is better and 0.0 is a perfect match. SSIM is on the L∗ channel of the CIELAB color space and higher is better while 1.0 is a perfect match.
The All column is all textures compressed, while the Diffuse, Gloss, and Bump columns are for compressing just that respective texture class.
The Bump error aRMSE† is defined in Equation 2. NVTT/BC is Direct3D block compression and the three ASTC rows are the three different
Adaptive Scalable Texture Compression block sizes. See Section 4.3 for further discussion.

(a) Uncompressed (b) All Textures Compressed

(c) All (mSSIM = 0.8908) (d) Diffuse (mSSIM = 0.9482)

(e) Gloss (mSSIM = 0.9960) (f) Bump (mSSIM = 0.9414)

Figure 11: Visual comparison of a single viewpoint of ASTC
12×12. Figures (c)–(f) are SSIM maps.

(a) Uncompressed (b) All Textures Compressed

(c) All (mSSIM = 0.9159) (d) Diffuse (mSSIM = 0.9795)

(e) Gloss (mSSIM = 0.9999) (f) Bump (mSSIM = 0.9368)

Figure 12: Visual comparison of a single viewpoint of ASTC
12×12. Figures (c)–(f) are SSIM maps.
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(a) Drop 1 (0.9942) (b) Drop 2 (0.9772) (c) Drop 3 (0.9171) (d) Drop 4 (0.7764) (e) Drop 5 (0.5359) (f) Drop 6 (0.3207) (g) Drop 7 (0.2450)

Figure 13: Visual comparison of dropping bits on all textures. The bottom row is the SSIM maps with the mean SSIM from this viewpoint.

The Fire Hydrant model is by Trap Door and the Japanese Castle
scene is by JD Creative Machine, both from the Unity Store.
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