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Domain adaptation algorithms aim at handling the shift
between source and target domains. A classifier is trained
on images from the source domain; and the classifier rec-
ognizes objects in images from the target domain. In this
paper, we present a joint subspace and dictionary learning
framework for domain adaptation. Our approach simulta-
neously exploits the low-dimensional structures in two do-
mains and the sparsity of features in the projected subspace.
Specifically, we first learn domain-specific subspaces from
the source and target domains respectively that can decrease
the mismatch between source and target domains. Then
we project features from each domain onto their domain-
specific subspaces. From the projected features, a common
domain-invariant dictionary for both domains is learned.
Our approach handles domain shift caused by different
classes of features; e.g., SURF and SIFT. In addition, the
features can have different dimensions. Our framework ap-
plies to both cross-domain adaptation (cross-DA) and mul-
tiple source domain adaptation (multi-DA). Our experimen-
tal results on the benchmark dataset show that our algorithm
outperforms the state of the art.

Suppose that we have P domains, and the first P − 1
domains are source domains while the last domain is the
target domain. Let Xπ ∈ Rdπ×Nπ denote the feature rep-
resentation of Nπ samples in the π-th domain, where each
column in Xπ denotes a sample and dπ is the feature di-
mension in the π-th domain. Our goal is to jointly learn
domain-specific subspaces Wπ ∈ Rm×dπ for each domain
and a common domain-invariant dictionary D ∈ Rm×J .
The objective function is formulated as follows:
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Wπ,D,Zπ
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s.t. WπW
T
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where Z = [Z1, ..., ZP ], Lπ = Iπ − 1
Nπ
eπe

T
π , Iπ ∈

RNπ×Nπ is the identity matrix for the π-th domain and all
entries of vectors eπ ∈ RNπ×1 are one. The objective func-
tion consists of two parts:
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• The first part corresponds to discriminative dictionary
learning using the projected features within each do-
main as shown in the first line of (1). A discriminative
regularization of sparse codes ψ(Z) = tr(Sw(Z) −
Sb(Z)) is used where the within-class scatter of sparse
codes Sw(Z) is minimized and the between-class scat-
ter of sparse codes Sb(Z) is maximized.

• The second part consists of two types of regularization
ofWπ as shown in the second line of (1). The first type
of regularization encourages to maximizing the vari-
ance of projected features in the π-th domain, whereas
the second type of regularization encourages to max-
imizing the correlation of projected features from the
π-th source domain and target domain (i.e. the P -th
domain). Note that negative trace is used to be con-
sistent with the overall minimization problem. The ith

column in Mπ ∈ Rdπ×C can be either the class mean
from class i or a randomly selected sample of the same
class from two domains respectively.

The objective function in (1) can be solved iteratively by
updating one variable while fixing the other two variables.
First, given a fixed Wπ, D, the objective function in (1) is
reduced to

min
Z=[Z1,...,ZP ]

f(Z) + λ1||Z||1 (2)

where f(Z) =
∑P
π=1{||WπXπ −DZπ||2F + λ2ψ(Z). Be-

cause f(Z) is strictly convex to Z, we solve the sparse cod-
ing problem using FISTA [1]. Second, after the update of
sparse codes Z, we update D by solving a quadratic pro-
gramming problem:minD

∑P
π=1{||WπXπ−DZπ||2F . Note

that each column in D is required to be a unit vector. As
in [9], the analytical solution of D can be computed as fol-
lows: D∗ = (

∑P
π=1WπXπZ

T
π ) UT (UUT + Λ)−1, U =∑P

π=1 ZπZ
T
π . Finally, given fixed D and Z, the objective

function in (1) is reduced to
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We couple the constraints with uπ = tr(IP )
tr(Iπ)

as in [6] to ob-
tain a relaxed version of the remaining optimization prob-
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Methods W→ D D→W A→ D
symm [5] 65.2 ± 0.3 61.5 ± 0.2 56.2 ± 0.2
asymm [4] 63.9 ± 0.3 61.7 ± 0.1 58.0 ± 0.2

SGF [3] 63.4 ± 0.5 61.4 ± 0.4 44.4 ± 0.2
GFK [2] 66.3 ± 0.4 61.4 ± 0.4 44.9 ± 0.4

SDDL [7] 57.4 ± 0.3 57.1 ± 0.3 49.6 ± 0.3
JDSDDL 68.0 ± 0.2 65.9 ± 0.2 58.1 ± 0.2

Methods D + A→W A + W→ D W + D→ A
SGF [3] 52.0 ± 2.5 39.0 ± 1.1 28.0 ± 0.8

FDDL [9] 41.0 ± 2.4 38.4 ± 3.4 19.0 ±1.2
SDDL [7] 57.8 ± 2.4 56.7 ± 2.3 24.1 ± 1.6
JDSDDL 68.9 ± 1.8 69.5 ± 2.0 25.2 ± 1.0

Table 1. Recognition accuracies under both cross-DA (left table) and multi-DA (right table) settings with the same feature repre-
sentation.

Methods W→ D-600 W→ D-sift D-600→W D-sift→W D-600→ A D-sift→ A
asymm [4] 60.0 ± 0.3 51.8 ± 0.1 50.5 ± 0.3 53.0 ± 0.2 19.6 ± 0.2 20.6 ± 0.1
SDDL [7] 51.2 ± 0.3 43.6 ± 0.2 52.1 ± 0.3 52.5 ± 0.2 22.4 ± 0.1 22.2 ± 0.2
JDSDDL 59.5 ± 0.3 53.3 ± 0.2 52.5 ± 0.3 54.9 ± 0.3 23.5 ± 0.1 23.1 ± 0.1

Table 2. Recognition accuracies under cross-DA setting with different feature representations.
Methods D-600 + A→W D-sift + A→W A + W→ D-600 A + W→ D-sift D-600 + W→ A D-sift + W→ A

SDDL [7] 42.9 ± 0.3 44.2 ± 0.4 45.6 ± 0.3 34.7 ± 0.3 17.6 ± 0.3 19.45 ± 0.2
JDSDDL 54.5 ± 0.2 55.2 ± 0.3 55.5 ± 0.3 54.8 ± 0.4 24.7 ± 0.3 25.7 ± 0.2

Table 3. Recognition accuracies under multi-DA setting with different feature representations. No extension and extension ’-600’
correspond to the feature representations using the codebooks of size 800 and 600 for SURF descriptors constructed on amazon and dslr
respectively. Extension ’-sift’ corresponds to the feature representation using the codebook of size 900 for SIFT descriptors constructed on
dslr.
lem:
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As the objective function J(W ) in (3) is a differential func-
tion, we use the Cayley transform and the corresponding
algorithm in [8] to update W while preserving the orthogo-
nality constraint.

We conducted experiments on object recognition using
the dataset introduced in [5]. In order to investigate the
domain shift caused by different feature types, we extract
both SURF and SIFT descriptors for each image. For the
SURF descriptors, two codebooks of size 800 and 600 were
constructed on the amazon and dslr domains respectively to
encode the SURF descriptors in each image. For the SIFT
descriptors, only one codebook of size 900 was constructed
on the dslr domain. Thus, we have three different feature
representations for each image by using the three different
codebooks to encode the corresponding descriptors.

We compare our joint domain-specific subspace and
domain-invariant dictionary learning method (JDSDDL)

with three groups of state-of-the art approaches: (1)
transformation-based approaches: symm [5] and asym [4];
(2) manifold-based approaches: SGF [3] and GFK [2];
(3) dictionary-based approaches: SDDL [7]. Note that
manifold-based approaches cannot be applied to handle do-
main shift caused by different feature representations. In
addition, transformation-based approaches are not applica-
ble for multiple source domain adaptation. Tables 1, 2 and 3
show the recognition accuracies by different methods under
both cross-DA and multi-DA settings with the same or dif-
ferent feature representations. It can be seen that our ap-
proach consistently outperforms other approaches. It is in-
teresting to compare the multi-DA combination (D + A→
W) and other two cross-DA combinations (D → W, A →
W) in Table 1. Our method yields a better performance for
multi-DA combination. However, no such improvement can
be seen for SDDL.
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