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We study the effect of electron and phonon interface scattering on the thermoelectric properties
of disordered, polycrystalline materials (with grain sizes larger than electron and phonons’ mean
free path). Interface scattering of electrons is treated with a Landauer approach, while that of
phonons is treated with the diffuse mismatch model. The interface scattering is embedded within a
diffusive model of bulk transport, and we show that, for randomly arranged interfaces, the overall
system is well described by effective medium theory. Using bulk parameters similar to those of
PbTe and a square barrier potential for the interface electron scattering, we identify the interface
scattering parameters for which the figure of merit ZT is increased. We find the electronic scattering
is generally detrimental due to a reduction in electrical conductivity; however for sufficiently weak
electronic interface scattering, ZT is enhanced due to phonon interface scattering.

I. INTRODUCTION

There has been considerable recent interest in utilizing
nanostructure to enhance thermoelectric performance [1–
4]. A good thermoelectric has scattering mechanisms for
phonons and electrons with different features: electron
scattering should be strongly energy-dependent, while
phonon scattering should simply be strong. Nanostruc-
tured materials may provide a route to meeting both re-
quirements [5]. Nanostructure can change a material’s
basic electronic properties; for example, the inclusion of
localized impurity states can enhance peaks in the den-
sity of states [6], leading to a stronger energy-dependence
of conductivity. Alternatively, nanostructure on a length
scale greater than the mean free path does not change
the constituent materials’ basic electronic properties,
but scattering at the interface between material phases
changes the bulk composite properties (in this case, “mi-
crostructure” may be more apt terminology than “nanos-
tructure”). For example, a mismatch in material density
or sound speed generally decreases the phonon conduc-
tivity through interface scattering. Additionally, some
interfaces provide a potential (e.g. a Schottky barrier)
which serves as an effective energy filter, transmitting
higher energy electrons, while blocking lower energy elec-
trons [7]. The effect of nanostructuring on the thermo-
electric figure of merit ZT was systematically studied in
Ref. 8, where ZT enhancement was observed for a range
of nanocomposite mixing. Refs. [9, 10] provide other
examples of ZT enhancement through nanostructuring.
Ref. [11] employed both nanostructuring and microstruc-
turing to achieve scattering at varying length scales, and
found a large ZT enhancement in PbTe. Previous theo-
retical works have analyzed in detail either electron [12]
or phonon scattering [13] at specific interfaces. Refs. [14]
and [15] calculate the effect interface scattering on elec-
tron and phonon lifetime in a Boltzmann transport ap-
proach, and find the conditions under which this scatter-
ing leads to ZT enhancement.

In this work, we employ a linear response model of

transport to study a material with randomly arranged
interfaces, where the length scale of the material struc-
ture is much greater than the mean free path of elec-
trons and phonons. The electronic transport across an
interface is calculated with a Landauer approach, while
the diffuse mismatch model is used to describe the in-
terfacial phonon transport. The interface resistances are
incorporated into bulk transport using effective medium
theory. Our model applies to systems in the diffusive
regime. Similar work has been done in considering ther-
mal transport in composite materials [16, 17], and the
electronic component of thermoelectric transport [18, 19].
In treating both electron and phonon transport, we find
that ZT enhancement occurs over a fairly narrow range
of material and interface parameters. This reinforces the
importance of scattering at multiple length scales, as ex-
emplified in the experiments of Ref. [11], among others.
This work also demonstrates the potentially deleterious
effect of interface scattering at large length scales. Gen-
erally, we find that in this regime of large length scale
structure, ZT is enhanced via interfacial phonon scatter-
ing, only if the electron scattering is sufficiently weak.
The paper is organized as follows: in Sec. II, we give
model details, including descriptions of effective medium
theory, and the treatment of electron and phonon scat-
tering, in Sec. III, we present results, and conclude in
Sec. IV.

II. MODEL

The starting point is the linear response description of
transport for the electrical current j and thermal current
jQ [20]:

j = −σ∇V − σS∇T , (1)

jQ = −κ∇T − σST∇V , (2)

∇ · j = 0;∇ · jQ = 0, (3)

where σ is the local electrical conductivity, κe (κγ) is the
electron (phonon) contribution to the total local thermal
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conductivity κ (κ = κe + κγ) (all thermal conductivities
evaluated for zero electric field), S is the thermopower, V
is the electrostatic potential, and T is the temperature.
The figure of merit ZT is [21]:

ZT =
S2σT

κ− S2σT
. (4)

An ideal thermoelectric has a large power factor S2σ ,
and low phonon thermal conductivity: κγ ≪ κe.

To study the thermoelectric properties of a polycrys-
talline system with randomly arranged interfaces, we
imagine discretizing the system into elements with length
greater than the mean free path electrons and most heat-
carrying phonons (length scales are discussed more fully
in the next subsection). We use a random site approach
in which sites are randomly assigned as belonging to grain
1 with probability c, or to grain 2 with probability (1−c).
In this paper we fix c = 1/2. The link between two sites
represents a resistor (or conductance), whose value is set
by the adjacent site types (see Fig. 1). If both sites
belong to the same grain, the resistance is set to ∆x/σ,
where σ is the bulk conductivity and ∆x is the element
size. We take ∆x to be much greater than the (maxi-
mum) mean free path of electrons and phonons. If ad-
jacent sites belong to distinct grains, then an interface
resistance is added in series to the bulk resistance (see
Appendix B for expressions of transport parameters of
elements in series). In the absence of interface scatter-
ing, ∆x factors out of the problem and is not important.
In the presence of interface scattering, ∆x is a key model
parameter: a small ∆x implies a higher interface density,
and a more significant effect of the interface scattering.
We study the effect of varying ∆x later in the paper.

Following this recipe, the probability of an uninter-

rupted chunk of N identical sites is (1/2)
N
. This leads

to the probability distribution shown in Fig. 1c, where
the mean grain size is 2∆x, and the standard devi-
ation of

√
2∆x. It should be noted that the grain

lengths along different directions are not correlated in
this model. This distribution is similar to the commonly
used log-normal distribution for grain sizes [22], where

P (g) = 1√
2πsg

exp

[
−1

2

(
ln (g/m)

s

)2]
; here g is the grain

size, and m and s are the median and width of the dis-
tribution of grain sizes, respectively.

Given an ensemble of configurations, Eqs. (1-3) can
be solved directly. We present some numerical results
in this work, where we discretize the system into 303

sites, and ensemble average so that the statistical error
of the effective transport parameters is converged (this
typically requires 30 systems). Alternatively, Eqs. 1-3
may be solved semi-analytically using effective medium
theory, which we describe in subsection 2.

FIG. 1: (a) depicts a typical random site configuration, where
the links between sites are set by the adjacent site types. (b)
shows the values of resistance for each link type, along with
the probability for each link type. ∆x is the minimum grain
size, and ∆x/σ⊕σ−1

int is the series resistance of ∆x/σ and σ−1
int .

(c) compares the distribution of grain side lengths generated
by this model to a log-normal distribution, with parameters
m = 1.5 (median), and s = 0.7 (width).

1. Length scales

The approach described in this paper is applicable
to systems with length scale of the material structure
greater than the electron and phonon mean free paths.
For electrons in a degenerately doped semiconductor, the
mean free path for most carriers is between 2 and 5 nm
at 300 K [15]. For phonons, the picture is more com-
plicated: The phonon conductivity can have substantial
contributions from a wide range of phonon wavelengths,
and the mean free path for phonons varies substantially
with phonon wavelength. For example, at 300 K Si has
50% contribution to κγ from phonons with mean free
path greater than 400 nm [23]. This is much greater
than the length scales envisioned in this work. The treat-
ment of the effect of nanostructure in this regime of long
phonon mean free path can be handled by a modified
effective medium theory, as described in Ref. [24]. For
materials such as Si and SiGe, where the relevant phonon
mean free path is large, nanostructuring has proven to
be an effective strategy to improving ZT [9, 10]. On
the other hand, for PbTe at 300K, molecular dynamics
calculations show that approximately 50% of the con-
ductivity is carried by phonons with mean free path less
than 10 nm [25]. In this case, the model described here
is more appropriate. Generally, good bulk thermoelectric
materials have a small phonon thermal conductivity, and
therefore a small phonon mean free path. The approx-
imations used in this work apply more readily to these
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materials.

2. effective medium theory

The transport properties of a multi-component, disor-
dered system can be approximated with effective medium
theory (EMT). As shown in Ref. 26, the effective medium
electrical conductivity σ and total thermal conductivity
κ satisfy:∑

i

Pi

(
σi − σ

σi + 2σ

)
=
∑
i

Pi

(
κi − κ

κi + 2κ

)
= 0 , (5)

while the thermopower S is given as:

S = 3κσ

(∑
i

Pi
σiSi

(κi + 2κ) (σi + 2σ)

)
×

(∑
i

Pi

[
σiκ+ σκi + 2σκ− σiκi

(κi + 2κ) (σi + 2σ)

])−1

, (6)

where i labels the link type, and Pi is the probability of
a link with transport parameter values σi, κi, Si.[27]

3. interface electron scattering

To model electron scattering at a grain boundary, we
use a square potential barrier with height V0 and width w.
The physical picture is that each grain boundary creates
an interfacial accumulation of carrier traps which become
charged, thus forming a potential barrier [29, 30]. To find
the interface transport parameters, we start with a Lan-
dauer picture of transport, where the interface separate
two reservoirs at different chemical potentials and tem-
peratures. The resulting ”two-probe” conductance val-
ues (denoted with “Landauer” subscript) are given by:

(σLandauer =
2e2

h L0, (Sσ)Landauer =
2ekB

h L1, κ
e
Landauer =

2k2
BT
h L2), where Lj is related to the transmission proba-

bility T (E) according to:

Lj =
1

2π2

∫ ∫
dk∥dE (E − Ef )

j
T
(
E,k∥

)( ∂f

∂E

)
,(7)

where k∥ is the Bloch wave vector parallel to the inter-
face.
We assume a free electron dispersion: E = h̄2k2/2m.

Eq. 7 can be conveniently recast by partitioning the
electron energy into components normal and parallel to

the interface: E = E⊥ + E∥ = h̄2
(
k2⊥ + k2

∥

)
/2m. We

note that dk∥ = 2πk∥
(
dk∥
)

= 2πm
(
dE∥

)
/h̄2, (here

k∥ = |k∥|). Finally Eq. 7 is written as:

Lj =
m

πh̄2

∫ ∫
dE∥dE (E − Ef )

j
T (E⊥)

(
∂f

∂E

)
.(8)

The transmission probability through a square barrier
with width w and height V0 is given by:

T (E⊥) =

(
1 +

4V 2
0

E⊥ (E⊥ − V0)
sin2

(√
E−1

b (E⊥ − V0)

))−1

,(9)

where Eb = h̄2/(2mew
2).

The Landauer conductance (equivalently, the Lan-
dauer resistance) includes contributions from the reser-
voir contact. As discussed in Ref. [31], the bare interface
resistance is obtained by, roughly speaking, subtracting
off the interface resistance contribution. We discuss this
in more detail and provide the expressions for interface
transport parameters in Appendix A.

A similar approach is used in Ref. 12 where the car-
riers’ mean free path for backscattering is calculated as-
suming an infinite number of identical potential barriers.
This is then used to estimate the interfacial scattering re-
laxation time and to determine the transport coefficients
using the Boltzmann approach. It can be shown [32]
that if a mean free path for backscattering in the Lan-
dauer approach is properly defined, and the grains are as-
sumed similar in size, that the Landauer and Boltzmann
approaches are consistent with one another. Here we
include the effects of interface scattering on the thermo-
electric transport within effective medium theory (Eqs.
5-6).

4. interface phonon scattering

We employ the diffuse mismatch model to approximate
the phonon scattering at the grain boundary interface
[33]. As described in Ref. [34], the diffuse mismatch
model for interfacial phonon transport can be formally
constructed in similar fashion as the Landauer approach
for electrons. According to this model, the phonon inter-
face conductance is:

κγ
DMM =

1

4

∑
j

vL,j

∫ ∞

0

αL,j h̄ω
dN (ω, T )

dT
dω, (10)

where αL,j (vL,j) is the transmission probability (veloc-
ity) of the phonon incoming from the left side of the inter-
face (j labels the mode), andN (ω, T ) dω is the number of
phonons between ω and ω+ dω. In the diffuse mismatch
model, the transmission probability depends on the ratio
of the phonon density of states on the left and right side
of the interface. For identical materials, α = 0.5. Sim-
ilar to the electronic interface conductance, the above
expression implies a finite conductance even for α = 1.
Ref. [35] describes how to extract a true interface con-
ductance within the diffuse mismatch model, and shows
that for the special case of two identical bulk materials,
α is replaced by α/ (1− α) (so that a perfectly transmit-
ting interface has zero interface resistance, as expected).
We take the temperature to be greater than the Debye



4

symbol quantity value

m0 effective mass 0.16 me

EF Fermi level 0 eV

T temperature 700 K

v phonon velocity 1770 m/s

C heat capactity 1.15× 106 J/
(
m3 ·K

)
σ electrical conductivity 3× 104 (Ω ·m)−1

κ thermal conductivity 3 W/ (m ·K)

S thermopower 150 µV/K

∆x minimum grain size 100 nm

α phonon transmission 0.5

w barrier width 0.3 nm

TABLE I: Default model parameters. The Fermi level is
chosen so that the density of carriers at T = 700 K is
n = 4.3× 1018 cm−3.

temperature, and the above expression reduces to:

κγ
DMM =

1

4
vC

(
α

1− α

)
(11)

where v is the speed of sound, and C is the heat capacity
(at the high temperatures considered here, C = 3NkB,
where N is the atomic density). Unless otherwise speci-
fied, we take α = 0.5.

III. RESULTS

To clarify the physics underlying the role of inter-
face scattering, we start by evaluating the bare interface
conductance, then study a single interface between two
grains, and finally consider a medium with a random ar-
rangement of interfaces.

FIG. 2: (a) shows the interface electrical conductance (solid
line) the electronic thermal conductance (dotted line) versus
barrier height, for fixed barrier width of w = 0.3 nm. (b)
shows the interfacial thermopower for the same parameters.

Figure 2a shows the electrical and electronic thermal
conductance versus potential height, for a fixed bar-
rier width of 0.3 nm, and fixed phonon scattering with

α = 0.5. The electrical conductance decays rapidly [36],
and we note that the Wieddeman-Franz law is approx-
imately satisfied [37]. Figure 2b shows that the ther-
mopower increases with V0: a higher barrier is a more
effective energy filter than a lower barrier. Critically,
Sint increases more slowly than σint decreases, so that
the benefit of enhanced energy filtering is overwhelmed
by the detrimental loss of conductivity. This is not sur-
prising: S is a ratio of transport parameters, so its vari-
ation with barrier properties is weak compared to the
bare conductance. This means that the power factor S2σ
(and therefore ZT ) is reduced as electronic scattering in-
creases. This underlies the electronic aspect to all of the
ensuing results: the effect of electronic scattering on ef-
ficiency is almost entirely negative; the best strategy is
simply to minimize its impact.

FIG. 3: The transport parameters for a single interface sep-
arating two bulk regions, as a function of barrier height and
width. The grain size is taken to be ∆x = 100 nm. The bulk
values are: σ = 3 × 104 Ω−1m−1, S = 150 µV/K, PF =
675 µWm−1K−2, ZT = 0.19. ZT of the system is increased
over the bulk value below the white line in (d).

This scenario of reduced power factor due to interface
scattering is illustrated using a system as shown in Fig.
3: a single interface between two grains. We take the
length of each bulk region to be half a grain size (as-
sumed to be 100 nm), combine the three transport ele-
ments in series, as described in Appendix C, and divide
by the grain size. Panels (a)-(d) show the conductivity,
thermopower, power factor, and ZT value as we vary the
electronic barrier properties, keeping the phonon scatter-
ing fixed with α = 0.5. As before, the thermopower S is
weakly dependent on barrier properties, while the elec-
trical conductance σ decreases rapidly for higher and/or
wider barriers. The power factor S2σ therefore decreases
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from interface scattering. Below the white line of Fig.
3d, ZT is enhanced. Generally, ZT is enhanced due to
phonon scattering, whenever electron scattering is suffi-
ciently weak.

FIG. 4: The transport parameters for a disordered medium,
as a function of barrier height and width, as computed using
effective medium theory. The same parameters are used as in
Fig. 3 (minimum grain size of ∆x = 100nm. The qualitative
trend is very similar.

The effect of interface scattering for the disordered
medium is qualitatively similar to that of the the sin-
gle interface. This is shown in Fig. 4, where we again
show the conductivity, thermopower, power factor, and
ZT value versus interface barrier height and width, for
fixed phonon transmission α = 0.5. The trends follow
those of the single interface, but the conductance and
thermopower are less affected in the disordered medium
by interface scattering, as compared to the single inter-
face. The net effect on ZT is very similar, however. The
similarity between the results shown in Figs. 3 and 4
suggest that the qualitative impact of of interface scat-
tering in a complex, disordered material may be gleaned
by the detailed study of just a single interface, with the
requisite condition that the length scale of the disorder is
much greater than electron and phonon mean free paths.
We next show the range of barrier height and widths

which result in ZT enhancement, for different values of
bulk conductivity. The solid curve (b) in Fig. 5 corre-
sponds to the white line in Fig. 4(d). Here σ = 3 ×
104 (Ω ·m)

−1
and the bulk ZT is 0.19. For the curve (a)

of Fig. 5, the bulk σ is reduced to 1×104 (Ω ·m)
−1

, and
the bulk ZT is 0.06. Here there is a large set of barrier pa-
rameters which lead to ZT enhancement. Contrastly, the
curve labeled (c) has a higher bulk σ = 5×104 (Ω ·m)

−1
,

0.1 0.2 0.3 0.4 0.5

0.2

0.4

0.6

0.8

1

w
id

th
 [n

m
]

V
0
 [eV]

ZT enhancement region

(b)

(c)

(a)

FIG. 5: curves showing region of ZT enhancement for three
different values of bulk conductivity σ. The region below each
curve represent the interface barrier parameters for which ZT
is increased over its bulk value. The curves (a), (b), (c) cor-
respond to σ = (1, 3, 5)× 104 Ω−1m−1, which yield bulk ZT
values of 0.06, 0.19, 0.36, respectively. The percentage en-
hancement in the three cases is 5 %, 3 %, 1 %.

higher ZT = 0.36, and a much more restricted space
of ZT enhancement versus barrier parameters. Loosely
speaking, these results show that interface scattering can
most easily and effectively increase ZT if the bulk mate-
rial has a low ZT initially.

FIG. 6: ZT as a function of the average grain size for a
disordered medium, for interface scattering parameters of
w = 0.3 nm, V0 = 0.01 eV. Solid line is result from effec-
tive medium theory, and dots indicate numerical results. The
dashed red line indicates the bulk value of ZT .

Figure 6 shows ZT for fixed barrier height of V0 =
0.01 eV and width w = 0.3 nm, as a function of the av-
erage grain size, using both effective medium theory, and
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solving Eqs. (1-3) for an ensemble of randomly chosen
systems. (Recall that in our model, the average grain
size is twice the minumum grain size; the grain size dis-
tribution is shown in Fig. 1(c)). We find almost perfect
agreement. Reducing the grain size increases the ratio
of interface to bulk scattering, so that the effect of in-
terfaces (be it beneficial or detrimental to ZT ) increases
as the grain size decreases. We emphasize that there is
a lower limit to the grain size for which this model ap-
plies, given by the electron and phonon mean free path,
as discussed in Section II. Although not explored here,
we note that effective medium theory is perfectly suited
to describe materials with a distributed set of parameters
(e.g a distribution of barrier heights), as studied in Ref.
18.

FIG. 7: ZT of disordered medium as a function of interface
barrier height for electrons (for fixed barrier width of w =
0.3 nm), and phonon thermal interface conductance. This is
related to the averaged phonon transmission probability via
the diffuse mismatch model, as indicated on the right hand
axis. The region below the black line has a ZT value enhanced
over the bulk.

So far, we have assumed that the interface phonon scat-
tering is described by the ideal diffuse mismatch model,
for which the transmission probability is 0.5. More so-
phisticated modeling of phonon transmission through
grain boundaries in Si in Ref. [38] shows that this model
applies to high energy phonons, but that lower energy
phonons transmit more readily through grain boundaries.
This suggests that the averaged transmission probabil-
ity should therefore be larger than 0.5. On the other
hand, for phonons with mean free path greater than the
grain size, the interfaces will increase their bulk scat-

tering, reducing their contribution to the thermal con-
ductivity. This extra scattering could be mapped into a
reduced transmission probability. In any event, we may
freely vary the transmission probabilitity, and the effect
on ZT is shown in Fig 7. Here we also vary the potential
barrier height. For the region below the black line, ZT
is increased over its bulk value. We find that: 1. the
interface transmission probability must be below 0.7 in
order to result in any ZT enhancement, and 2. a higher
phonon transmission probability necessitates a lower bar-
rier height for ZT enhancement. This conforms to the
overall picture that: interface scattering has a positive
impact via phonon scattering, and a negative impact via
electron scattering. As the benefits of phonon scatter-
ing are reduced (e.g. higher phonon transmission), the
system is more susceptible to harmful electron scattering.

IV. CONCLUSION

In this paper, we incorporated interface scattering of
electrons and phonons in a model of diffusive bulk trans-
port of disordered thermoelectric materials. We found
that electronic scattering was generally detrimental to
the overall figure of merit ZT , because of the reduced
electronic conductivity. However, for sufficiently weak
electron scattering, the phonon scattering present at in-
terfaces can lead to an increased ZT . We find the for a
material with parameters similar to those of PbTe at high
temperatures, the capacity to increase ZT with grain
boundary scattering is rather limited. However, the ap-
proach developed here is more widely applicable, and,
given the energy-dependent transmission coefficients of
electrons and phonons, can be straightforwardly applied
to any other material. Moreoever, we find that the qual-
itative effect of interface scattering in a disordered mate-
rial can be understood in terms of its effect for a single
interface. This should facilitate experimental and theo-
retical studies of ZT enhancement in microcomposites,
as the transport properties of a single interface are more
easily quantified as compared to a random arrangement
of interfaces.
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VI. APPENDIX

A. Thermoelectric interface transport

Here we offer a brief flavor of the reasoning involved
in deriving the interface conductances within a Landauer
picture, and refer the reader to Ref. [31] for a detailed
explanation and discussion. The bare Landauer conduc-
tance includes the contributions from the reservoir con-
tact, which we want to exclude in order to determine the
interface conductance. The interface conductance is pro-
portional to the difference in chemical potential imme-
diately on either side of the interface. The transmission
and reflection coefficients T and R can be used to re-
late the chemical potential on either side of the interface
with the reservoir chemical potentials. For zero tempera-
ture, this relation is found by expressing the density n (µ)
(which is a function of the chemical potential µ) in terms
of reservoir chemical potentials (µL and µR), and sepa-
rately expressing the density n in terms of the the local
chemical potential (µL/R of interface), and finally setting
both expressions equal:

n (µL of interface) = (1 +R)n (µL) + Tn (µR) , (12)

n (µR of interface) = (1 +R)n (µR) + Tn (µL) . (13)

Eqs. (12-13) determine the chemical potential drop im-
mediately across the interface, thereby determining the
interface conductance. For finite temperature, a similar
relation between local and reservoir temperatures is de-
rived by considering the entropy to the left and right of
the interface (the relation above is additionally modified
at finite temperature). The final interface conductance
values are written in terms of the following integrals:

Lj =
1

2π2

∫ ∫
dk∥dE (E − Ef )

j
T (E)

(
∂f

∂E

)
,(14)

Aj =
1

2π2

∫ ∫
dk∥dE

(E − Ef )
j

√
E − ET

(
∂f

∂E

)
, (15)
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Bj =
1

2π2

∫ ∫
dk∥dE

(E − Ef )
j

√
E − ET

R (E)

(
∂f

∂E

)
,(16)

where Ef is the Fermi energy, f (E,Ef ) is the Fermi-
Dirac distribution function, and k∥ is the Bloch wave
vector parallel to the interface. The interface transport
parameters are finally given by:

σint =
L0 (B2A0 −B1A1) + L1 (A1B0 −A0B1)

B0B2 −B2
1

(17)

(Sσ)int =
L0 (B2A1 −B1A2) + L1 (A2B0 −A1B1)

B0B2 −B2
1

(18)

(Sσ)
′
int =

L1 (B2A0 −B1A1) + L2 (A1B0 −A0B1)

B0B2 −B2
1

(19)

κe
int =

L1 (B2A1 −B1A2) + L2 (A2B0 −A1B1)

B0B2 −B2
1

(20)

where the two thermoelectric transport coefficients are:
j = − (Sσ)∇T , jq = − (Sσ)

′
T∇V . Usually these two

coefficients are equal, by Onsager’s principle. However
in this case, they may differ, as discussed in Ref. [31].

In practice, we find the two quantities differ by less than
2% for the cases we have studied.

B. Combining thermoelectric transport elements

For two components in series with different transport
parameters, Eqs. (1-3) can be solved to find the ef-
fective transport parameters of the lumped circuit ele-
ment. In this case it’s convenient to work with P ≡ Sσ.
In terms of individual elements transport parameters
(σ1, κ1, P1) and (σ2, κ2, P2), the lumped element param-
eters (σ12, κ12, P12) are given by:

σ12 = D
[
(κ1 + κ2)σ1σ2 −

(
P 2
2 σ1 + P 2

1 σ2

)
T
]

(21)

κ12 = D
[
(σ1 + σ2)κ1κ2 −

(
P 2
2 κ1 + P 2

1 κ2

)
T
]

(22)

P12 = D [κ1σ1P2 + κ2σ2P1 − P1P2 (P1 + P2)T ] ,(23)

where D = (σ1 + σ2) (κ1 + κ2)− (P1 + P2)
2
T . Eqs. 21-

23 are used to combine interface and bulk transport pa-
rameters when there is an interface present.


