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Abstract— This research describes a novel security metric, 
network taint, which is related to software taint analysis. We 
use it here to bound the possible malicious influence of a 
known compromised node through monitoring and evaluating 
network flows. The result is a dynamically changing defense-
in-depth map that shows threat level indicators gleaned from 
monotonically decreasing threat chains. We augment this 
analysis with concepts from the complex networks research 
area in forming dynamically changing security perimeters and 
measuring the cardinality of the set of threatened nodes 
within them. In providing this, we hope to advance network 
incident response activities by providing a rapid automated 
initial triage service that can guide and prioritize investigative 
activities. 

Keywords- network tainting, complex networks, scale-free, 
security 

I. INTRODUCTION 
There exists a significant body of literature on software 
taint analysis [1]. In our work, we abstract this concept 
away from the host and apply it to an entire network. Our 
approach, called network tainting, uses internal network 
flow data to map out the possible influence of a known 
malicious node on the rest of the network.  
This can be useful in situations where traditional security 
tools detect a network intrusion resulting in the 
compromise of an internal node. There exists some window 
of time between the penetration of the target node and 
actions to remediate or quarantine. During this window, it 
is important to know whether or not the attacker used this 
point of leverage in the network to maliciously access other 
nodes or compromise additional hosts through lateral 
movement1. Traditional security tools may not detect this 
due to use of normal privileges of the compromised host, 
use of zero day exploits, use of exploits not visible to 
existing security tools, or through attacks occurring within 
unmonitored interior portions of the network2. For 
example, a host that has been compromised at the user level 
may then be used to place additional malware in a network 
share that the legitimate user of the compromised host has 
access to, which is then spread to other users who access 

                                                                 
1 By lateral movement we are referring to an attacker consecutively 

penetrating nodes whereby the most recently penetrated node acts as the 
platform for attacking and penetrating the next node on the overall 
attack path. 

2 In this case, commercial detection tools might not be deployed on 
internal network segments due to licensing and maintenance costs while 
flow archiving may be enabled in that same network infrastructure (thus 
enabling network tainting analysis). 

that share.  This lateral movement may not be detected by a 
network-based intrusion detection system, since it 
represents a typical pattern of access, and the content of 
internal network flows may not be monitored.  In such 
circumstances, once the initial infection is discovered, we 
wish to be able to quickly and automatically triage the 
threat situation in order to prioritize investigative activities 
on those hosts most directly threatened by the hostile 
activity.  
Note that we focus on layer 4 (transport layer) [2] traffic in 
this analysis, and ignore layer 3 (network layer) [2] attacks, 
since routers and switches by their nature forward packets, 
both benign and malicious, regardless of compromise. It 
also precludes modeling email borne attacks, except when 
the initial email provides a foothold which is then 
leveraged into lateral movement as described above. 
Network tainting distinguishes between the logical 
connectivity of a local network (often simply the complete 
graph) and observed connectivity by identifying chains of 
communicating nodes that originate from the known hostile 
node. Given that any network based attack must generate a 
network flow, an attacker must sequentially penetrate each 
host on some taint chain in order to attack the next host on 
the chain. The threat level for the hosts on a particular 
chain is thus monotonically decreasing in the length of that 
chain from the compromised host. We use this information 
to build a map of the network that corresponds to 
dynamically changing node-to-node communication 
patterns. Creating this map requires shortest path 
calculations; however, the standard algorithms do not 
apply. Thus, we provide a variant on breadth first search 
that allows duplicate node and edge visits that consume 
distinct time slices. The result is a taint map that can be 
used to prioritize the scope and depth of both human and 
automated analysis.  We then augment this analysis through 
applying concepts from the complex networks literature 
[3], and derive several key concepts that allow us to 
prioritize the post-compromise analysis and remediation for 
hosts on the same network as the compromised system. To 
test the network tainting concept, we monitored 24 hours of 
transport layer communication from a production network 
of 7335 nodes. The monitoring performed was of 
communication between internal hosts (not the more 
typical perimeter monitoring of communication with 
external entities). We then calculated taint measurements 
(taint, DSP, and HBTN size, described below) from each 
internal node over increasing periods of time. We describe 
how to operationally use each of the metrics to prioritize 



relevant incident response activities. We then empirically 
show how, in our situation, attacker activity could be 
effectively bounded for incident response times of 15 hours 
or less. 
In contrast to much attack graph work, our method ignores 
specifics of vulnerabilities and dependencies and focuses 
on observed network traffic. This approach effectively 
assumes that all nodes are vulnerable to arbitrary 
exploitation (with ‘hub nodes’ having special properties 
making them less vulnerable, discussed below), and 
focuses on observed traffic to attempt to bound the total 
potential ingress of an intruder.  Related work in [4] 
explores the notion of “reachability” between pairs of 
nodes as a component of the construction of attack graphs, 
however focuses entirely on logical connections obtained 
from network structure (e.g., logical subnets are assumed 
completely connected).  The work of [5] and [6] examines 
the notion of separability by defining efficient methods by 
which certain critical resources can be provably secured 
within an attack graph.  As in [4], this work focuses on 
logical connections (as opposed to observed network 
traffic), and emphasizes the provable security of critical 
resources under a known set of vulnerabilities, rather than 
our emphasis on bounding total network penetration under 
our simplified binary classification of ‘vulnerable’ and ‘not 
vulnerable’.   
While our test network was IPv4, our extracted data was 
the transport layer communication patterns, which do not 
change substantially between IPv4 and IPv6. This is 
important because we consider this work in the context of 
both protocols. The IPv6 application is most effective. For 
IPv4, we have to take into account that taint sizes may 
increase due to attacker activity. 
The remainder of this paper is structured as follows. In 
section II we define and discuss the network tainting 
relation and related measurements, provide an algorithm to 
construct a data structure that allows for rapid computation 
of them, and discuss practical considerations in IPv4 and 
IPv6 networks. Section III describes the experiment design 
and section IV describes the results. Section V discusses 
possible incorrect hub node identification and remediations. 
Section VI concludes. 

II. NETWORK TAINTING RELATION, 
ALGORITHM, AND OPERATIONAL 
USAGE 

Given a particular network ingress violation, the set of 
tainted hosts can be identified by evaluating 
chronologically ordered communication paths originating 
from the penetrated host using the network tainting 
relation:  
Network Tainting Relation: Host S1 is said to taint host Sn 
over a network N at OSI model layer L, through a series of 
distinct intermediate hosts (S2..Sn-1) if and only if: 1) S1 is 
known to be hostile, 2) directed communication Sk to Sk+1 at 
OSI model layer L exists on N between all sequential pairs 
of hosts in the chain S1..Sn for all k such that 1<=k<n, and 

3) for all k such that 1<=k<n-2, there exists at least one Sk 
to Sk+1 packet transmission on the S1..Sn communication 
chain prior to at least one Sk+1 to Sk+2 packet transmission. 
Notice that the tainting relation is restricted to hosts within 
N and thus we have no need to monitor or model 
connections to hosts external to N. This is because we are 
concerned here only with security violations within N from 
the known point malicious influence. The inability to 
monitor flows between external nodes makes it impossible 
to evaluate out taints that propagate through two or more 
external nodes in succession. 
We monitor and evaluate the tainting relation at the 
transport layer. At this layer, the pairing of nodes within an 
enterprise network communicating at the transport layer is 
not random because internal network users often use a 
consistent set of network services (e.g., email, LDAP, 
databases, DNS, domain servers, and internal web 
applications). This consistency limits the growth of the 
taint sets over time.  
Despite this, unrestricted3 taint sets will often be large due 
to the scale-free nature of transport layer communication. 
This is because in scale-free networks, many nodes talk to 
only a few nodes and a few nodes talk to many nodes, 
approximating a power law distribution [3]. Since the hub 
nodes talk to the majority of nodes, the taint can spread 
quickly within just two hops.  Nevertheless, in some cases 
the tainting relationship will allow for separation of 
potentially threatened nodes (shaded lighter in orange) and 
provably untainted nodes that are isolated from the 
communications graph (shaded darker in green), as 
illustrated in Figure 1.  Note that the figure does not 
explicitly depict time dependencies that are used to 
construct the tainting relation. 

 
                                                                 
3 In some cases we can restrict the propagation of the taint (e.g., when we 

have knowledge that certain nodes have been evaluated and found clean 
by the incident response team).  



Figure 1. Communication Graph with Tainted (orange) and 
Safe (green) Nodes 

 
Taint depth: For each node within the same 
communication graph as the threatened node, we may 
define the taint depth as the minimum number of nodes 
through which an attacker would have had to progress to 
threaten that node.  As increased taint depth increases the 
minimum workload for the attack to gain a foothold in that 
node, the threat to a node will monotonically decrease 
along a taint chain as the taint depth increases. Thus, it may 
be used as a threat level indicator to prioritize investigative 
efforts. The communication graph then overlaid with the 
tainted nodes and taint distances can form a dynamically 
changing and time varying taint depth map of the network 
with respect to the known compromised node as shown in 
Figure 2. Note how the nodes are reorganized into rings 
representing taint depth. This graph representation is 
convenient and will be readable even for large graphs since 
no flow edge can skip a taint depth ring. For example, an 
appropriately time-ordered flow cannot exist between a 
node in ring 1 and 3, because then that flow would pull the 
latter node into ring 2.  The set of nodes at a taint depth of 1 
is of particular interest, as it represents the subset of nodes 
that are directly accessible in terms of the logical layout of 
the network that received communication from the 
compromised node, and hence may also have been directly 
compromised. 
 

 
Figure 2. Defense-in-Depth Overlay 

In practice, we observe that the separation into isolated sub-
graphs as shown in Figure 1 is rarely apparent, and so we 
extend the simple network tainting relationships with the 
following concepts: 
Hub nodes: The internal transport layer communication 
structure of many operational networks approximates a 
scale-free distribution, where many nodes talk to a few 

nodes and a few nodes talk to many nodes.  It is often the 
case that these high-degree nodes often have four important 
properties: 1) They are hardened to a similar degree as 
network perimeter devices. 2) They are specialized devices 
with more limited attack surfaces than desktop systems 
with their myriad of attack vectors. 3) They are monitored 
to a greater degree than other systems. 4) As servers, these 
tail nodes connect to many other nodes in the network. In 
the complex networks literature, tail nodes are called ‘hub’ 
nodes.  We follow this nomenclature, and designate a set of 
hosts Si as hub nodes if they satisfy the four properties 
above. In our diagrams, we indicate hub nodes by nodes 
with dashed borders (see, e.g. Figure 3). 
Dynamic Security Perimeter: The scale-free nature of the 
network, as well as the existence of hub nodes that require 
additional effort to compromise, allows us to identify a set 
of hub nodes that form a dynamically changing security 
perimeter (DSP) around the known compromised node. 
This (often small) set of nodes may be subjected to 
extensive scrutiny to ensure that they have not been 
penetrated. If one has been found to be penetrated in such a 
way as to allow attack propagation, then the scale-free 
nature of the network communication will often result in 
most of the rest of the network being directly threatened. 
Hub bounded threatened nodes: When a DSP can be 
established, some subset of non-hub nodes will be at 
relatively small taint depth from the compromised node, 
and not separated from the known compromised node by 
the DSP.  These hub bounded threatened nodes (HBTN) are 
at higher risk due to their communication graph proximity 
to the known compromised node and the fact that they are 
not protected from the compromised node by the DSP. 
Thus, they will likely receive priority attention for analysis 
and, depending upon the local security policy, may undergo 
quarantines. 
The relationship between hub bounded threatened nodes 
and the dynamic security perimeter is displayed in Figure 3 
below.  

 
Figure 3. Dynamic Security Perimeter and Hub Bounded 

Threatened Nodes 
The initially compromised node is black, and dashed lines 
indicate the existence of a taint path from that node to the 



other connected nodes.  Hub nodes are indicated with 
dashed edge markers. They are on the DSP (shown by the 
large black circle) which is the set of hub nodes through 
which any taint path to the remainder of the graph must 
pass – which divides the HBTN (dark red nodes inside the 
circle) from those nodes that are safe conditional on the 
security of the DSP (green nodes outside the circle). 
A. Taint Analysis Algorithm 
Assume that a host, p, has been penetrated and that an 
examination of p and related security logs reveals that p 
was compromised after time α and was remediated or 
quarantined at time ω. Also, assume that all transport layer 
flows internal to the network have been consolidated into a 
flow log. 
A data structure conducive to solving the problem of 
identifying all tainting relations originating from p , as well 
as identifying tainting depths and isolating the DSP and 
HBTN sets, can be developed using a graph-based 
approach. First, pre-process the flow log to remove all 
flows where either the source or destination is a node not in 
the network under investigation. Next, remove all flows 
whose stop time is less than α and remove all flows with 
source p where the start time is greater than ω. This 
removes all flows that could not have been part of an attack 
from p during the timeframe of investigation. The resulting 
set of flows may be relevant to the tainting relation. Lastly, 
we create a directed multi-graph G where nodes represent 
hosts and the flows are the edges connecting the nodes. 
Label each node in G with the host it represents and label 
each edge with the respective flow start and stop time 
(chronologically overlapping flows with identical IP 
addresses may be merged; ports do not need to match). 
We evaluate this graph using a variant on breadth first 
search where edges must be traversed from p in 
chronological order and vertices may be visited more than 
once. We must allow multiple vertex visits because a short 
path from p to a vertex t may consume more time than a 
long path from p to t. The longer path with less time may 
then be able to use additional edges emanating from t not 
available to the short path, because of the chronological 
ordering requirement. Edges may also be traversed multiple 
times but each traversal must use a distinct time slice of the 
flow represented. For example, we must allow multiple 
traversals of some edge e leaving vertex t when the taint 
time for t falls between the start and stop time of e. In such 
a case, an attacker can only attack during the latter time 
slice. The earlier time slice may be used later in the 
algorithm when a longer path reaches t that creates an 
earlier taint time. 
The idea behind the algorithm is to simply traverse all 
network paths from p and to label the visited nodes with the 
shortest distance and path time from p. However, standard 
shortest path algorithms (e.g., Dijkstra, Bellman-Ford, 
Floyd Warshall, and Johnson [7]) do not apply because our 
edge weights do not represent distances but rather ordering 
requirements for path traversal and because we must allow 

multiple edge traversals and vertex visits due to the 
chronological ordering requirement.  
The algorithm allows one to restrict taint propagation by 
providing as input a list T of nodes that are to bound the 
taint propagation. This can be used to input a set of nodes 
that have already been evaluated and found clean (i.e., 
evidence indicates that the host has not been penetrated in 
such a way that it could propagate attacks to other hosts in 
the network). We also use T in calculating the DSP 
(described later in detail). 
Figure 4 provides the algorithm. To review the inputs, G is 
a graph of the transport layer flows, p is the initial 
penetrated node, α is the time of penetration, and T is the 
set of nodes that should bound the taint. 
Taint_Analysis (G, p, α, T): 
1. Remove all edges from G whose origin is a node in T. 
2. Label all nodes in G with taint_time = ∞ 
3. p.taint_time = α 
4. Make queues Q1, Q2 
5. taint_set = [] 
6. Q1.enqueue (p) 
7. Depth = 1 
8. While Q1 is not empty: 

a. v = Q1.dequeue() 
b. For all edges e in G. outedges(v) where 

e.end_time ≥ v.taint_time do: 
i. newv = G.adjacentvertex(v,e) 

ii. taint_time= 
max(v.taint_time,e.start_time) 

iii. if e.start_time ≥ v.taint_time: remove 
e from G else 
e.end_time=decrement(v.taint_time) 

iv. if taint_time < newv.taint_time, 
newv.taint_time=taint_time 

v. if newv is not in Q2: 
Q2.enqueue(newv)  

vi. if newv is not in taint_set: 
taintset.append([newv,depth])  

c. if Q1 is empty: 
i. Q1 = Q2 

ii. Q2 = [] 
iii. Depth = Depth+1 

9. touched_T=T ∩ taint_set 
10. taint_set=taint_set-T 
11. Return taint_set, touched_T 

Figure 4. Taint Search Algorithm Pseudocode 
Steps 1-7 initialize the data structures. Flows from nodes in 
T are removed from G. Node p is assigned the initial 
compromise time, α. Queue Q1 is created to keep a set of 
all vertices to be visited at a particular depth from p. Queue 
Q2 is created to keep track of the vertices to be visited at 



the next depth. Step 8 iteratively processes sets of nodes at 
increasing depths from p. Once Q1 is empty and all nodes 
at a particular depth have been processed, step 8c injects 
into Q1 the set of nodes at the next depth thereby 
implementing a variant of breadth first search. Step 8a 
chooses the next vertex to process. Step 8b processes each 
edge leaving the chosen vertex and acts on those that 
satisfy the chronological ordering constraint of the network 
tainting relation. Step 8.b.i identifies a new node to taint 
based on the chosen edge. Step 8.b.ii identifies a candidate 
taint time for the new vertex. Step 8.b.iii removes the 
processed edge from the graph if the entire edge’s time 
slice will be consumed. Otherwise, the edge’s end time is 
adjusted downward to delete the time slice that we 
processed and to allow for future processing of the 
unprocessed time slice. Step 8.b.iv updates the newly 
identified vertex’s taint time if the candidate time is less 
than the current time. Step 8.b.v puts the new node on the 
queue for the next level of searching (if it isn’t already on 
the queue). Step 8.b.vi adds the new node to the taint set. 
Step 9 determines which nodes from T were in the taint set. 
Step 10 removes from the taint_set any nodes from T. Step 
11 returns the taint set and the set of nodes from T that 
bounded the initial penetrated node. Note that the taint_set 
returns the node names, earliest taint time, and shortest 
taint depth. The earliest taint time and shortest taint depth 
may come from two completely independent taint chains 
and thus the values are not necessarily related. In other 
words, the taint chain producing the shortest taint depth 
may not also have produced the earliest taint time.  
We now investigate the computational complexity of the 
algorithm. The taint times labeled on vertices as the 
algorithm processes taint chains are monotonically 
increasing per the algorithm. Also an individual vertex’s 
taint time monotonically decreases as the algorithm 
progresses (from an initial value of infinity). These two 
facts make it impossible for cycles to be repeatedly 
traversed. This means that an assignment of a taint time to a 
vertex can at most trigger a reassignment of the taint time 
of all other vertices. In processing such reassignments all 
edges may be traversed creating an upper bound of O(n×e) 
for the algorithm (with n representing the number of 
vertices and e the number of edges). We have constructed 
hypothetical network models that exhibit this worst case 
time complexity using very artificial graphs and edge label 
assignments. In practice though, the algorithm runs quickly 
(as shown empirically in section IV.D), and may be used to 
construct all of the metrics discussed above.   
After detecting a network ingress attack to some host p and 
after p has been remediated or quarantined, the 
Taint_Analysis algorithm can be employed with T=[] to 
discover all threatened nodes.  Nodes that are not tainted 
are safe from the set of attacks modeled by this method 
originating from p (even those that traverse multiple 
intermediaries within the network prior to reaching their 
final target). This is because from p, there will not exist any 
chronologically ordered internal network communication 

paths terminating at a safe node (see Figure 1).  By retaining 
the minimum observed value for Depth as nodes are added 
to the taint set, we also provide the tainting depth metric as 
discussed above and displayed in Figure 2. 
Finally, given some set of hub nodes, the identification of 
the DSP surrounding the compromised hub node and the 
HBTN set is likewise straightforward.  For this, we set 
T=[the set of highly connected servers] and re-run the 
Taint_Analysis algorithm. In this case we use the 
touched_T output to identify a set of hub nodes that form a 
DSP around the known compromised host.  Any nodes that 
remain within the taint set are therefore contained between 
the originally compromised node p and the DSP, and thus 
form the set of hub bounded threatened nodes (HBTN); see 
Figure 3. 
All of these metrics can be generated quickly and 
automatically, thus enabling prioritization of incident 
response activities. The most obvious use is to prioritize 
evaluation of nodes (both human directed and automated) 
to determine whether or not they have been attacked. 
Usually nodes with a small taint depth should be evaluated 
before those with large taint depths. Another use is to apply 
differing security policy to nodes of varying taint based 
threat indicator levels (e.g., quarantining nodes with small 
taint depths). It should be emphasized though that taint 
depth is an indicator of threat and not a full measurement. 
If shown to be not compromised, the DSP can be used to 
tightly bound the attacker to the HBTN nodes. The HBTN 
nodes, those of the highest threat, can be quarantined 
and/or evaluated in order of increasing depth from the 
known compromised node. 
If or when incident analysis determines that nodes are clean 
(or at least were not penetrated in such a way that they 
could propagate attacks), the Taint_Analysis algorithm can 
be iteratively re-run with the set T augmented with the set 
of known “clean” nodes. These results then can further 
prioritize subsequent analysis activities. 
B. Applicability to IPv4 and IPv6 networks 
While our experimentation, as described below, focuses on 
IPv4 networks, the structure of IPv6 networks prohibits 
several forms of attack that make the tainting metrics more 
robust in that setting.  
Due to the large size of standard subnets in IPv6 networks 
(264 addresses, the size of the entire IPv4 address space), 
scanning is typically ineffective [8] (we assume that the 
attacker has no out-of-band knowledge of the network 
topology), and so attackers are forced to attack between 
hosts in a manner that follows existing benign 
communication paths.  In IPv4 networks, however, an 
attacker can actively scan the comparatively small number 
of addresses with little difficulty. A full subnet scan would 
quickly add many new flows to the network and thereby 
affect network taint calculations (see related discussion in 
section V). However a more cautious attacker within an 
IPv4 network may choose not to scan in order to maintain 
an element of stealth, since scan detection technology is 



granular enough that scans can often be detected after just 4 
to 5 failed connections (see, e.g., the Threshold Random 
Walk technique [9]).  
Consider the HTBN metric. An attacker can quickly 
increase the metric value by launching random attacks in an 
IPv4 network as seen in Figure 5. Assume that new targets 
are selected at random; some attacks may target nodes 
within the existing HTBN set and so not increase the taint 
size while others will add a whole new communication sub-
graph to the HTBN set. As can be seen, a larger number of 
hubs mitigates this growth but cannot eliminate it. At an 
extreme, each attack will add at least one new tainted host 
regardless of the number of hubs. In the case of many such 
attacks the taint set will be large, but justifiably so as many 
hosts have been threatened by the large number of attacks. 
Anomalously large taint sizes could even be studied in 
future research as an additional indicator of active attackers 
launching undetected attacks (how this would compare to 
existing anomaly based approaches would need to be 
investigated). 

 
Figure 5. IPv4 Attacks Increasing HBTN Size 
In summary, the HBTN size will not be effected by attacker 
activity in IPv6 networks. In IPv4, however, active 
attacking (especially random scans) may dramatically 
increase HBTN size. This is not necessarily bad though as 
unusually large HBTN sizes will be indicators of an active 
attacker. Also, since scanning is typically easily detected 
(and not usually present on internal networks), attackers on 
IPv4 network may choose to operate with more stealth. 
Under such situations, the HBTN sizes will be small on 
IPv4 networks. The derivation of the analytic results 
presented above is available in the technical appendix. 

III. EXPERIMENTAL DESIGN 
We monitored all internal network flows within a large 
production network of 7335 nodes for 24h in the summer of 
2013. We began monitoring at noon on a Tuesday of a 
normal work week. We then subsetted the 24h flow log 
such that each subset started at the beginning and covered 
an increasing timespan (using increments of 1h). We used 
these logs to model network ingresses where incident 
response teams take an increasing amount of time to 
quarantine or otherwise remediate a known compromised 
host (from 1h to 24h). For each subsetted log file, we run 

the taint analysis algorithm on every node in the network. 
We thus presume that each node on the network could have 
been compromised with equal probability (including the 
hub nodes). This is not strictly realistic as some nodes do 
not communicate with external hosts, but does allow for the 
initial penetration to occur through alternate attack vectors 
(e.g., email, file sharing, or portable media). 
For hub node identification to be used in dynamic security 
perimeter analysis, we took the full 24h log and iteratively 
extracted nodes with the highest number of communicating 
partners. Once a node was extracted, its flows to the other 
nodes were deleted so that the next identified hub would 
not be promoted based on communication with existing 
hubs. In this way, we generated an ordered set of hub nodes 
from which we could select subsets of varying sizes for the 
purposes of analysis. We fixed this set regardless of 
whether or not a hub node actually appeared in a particular 
flow subset (we could have dynamically chosen hubs per 
each flow subset). This decision negatively influenced our 
results for the smaller incident response times, but gave us 
a consistent set of hubs across all experiments.  While 
informal comparisons showed that the hub nodes identified 
as described above did in fact correspond well to the set of 
hub nodes as known in the network, more detailed 
strategies for extracting and confirming hub nodes are 
beyond the scope of this work. 

IV. RESULTS 
We now provide empirical results, using taint analysis on 
our production network for the following security metrics: 
tainted nodes, dynamic security perimeters (DSPs), and hub 
bounded threatened nodes (HBTNs). 
A. Tainted Nodes 
The identification of tainted nodes indicates which nodes 
could have been attacked from the known compromised 
node. Conversely, this reveals which nodes are safe from 
the network based attacks covered by our model. For our 
7335 node network, a mean of 2961 nodes (40 %) were 
safe and 4374 nodes (60 %) were tainted after 1 hour. The 
taint size rises rapidly as the response time lengthens as 
shown in Figure 6.  At approximately 10 hours, the slope of 
the increase of the taint size decreases; examination of the 
data suggests that a combination of network usage patterns 
(decreasing human activity due to time of day) and 
saturation of normal connections are the primary causes. 

 



Figure 6. Median Taint Sizes Across Variable Response Times 

While these taint numbers are large, they can be used in 
conjunction with taint depth to prioritize automated 
analysis of the network. Our experiments show that tainted 
nodes are distributed up to a hop distance of 11 from a 
known compromised node. Figure 7 shows the proportion of 
nodes at differing taint depths.  The peak at a depth of 2 to 
4 is primarily due to the effect of hub nodes, which are 
themselves tightly connected and thus offer short paths 
between most pairs of nodes.     

 
Figure 7. Proportion of Tainted Nodes at Varying Taint 

Depths 
To provide an example, at a response time of 5 hours, the 
mean number of tainted nodes at depths from 1 to 8 is as 
follows: 45, 1480, 3072, 1856, 533, 239, 104, and 7. 
An important metric is the mean cardinality of the set of 
nodes at a taint distance of 1. Varying by response time, 
this hit a maximum of 44.5 at 5h and a minimum of 27.1 at 
24h. As described in the operational procedures section, 
these nodes should receive great scrutiny and will likely be 
the focus of initial evaluation efforts.  
However, if the goal is to bound the attackers influence to 
quickly ensure that critical servers were not compromised, 
then the DSP nodes may compete for inspection priority. 
Somewhat surprising, the set of DSP nodes is on average 
smaller than the set of taint distance 1 nodes. 
B. Dynamic Security Perimeters 
DSPs create a barrier that may restrict an attacker’s 
influence to a smaller set of HBTN nodes (to be discussed 
in the next section). The DSP nodes are a set of hub nodes 
that encircle the known compromised host in the 
communication graph. DSPs represent a dynamically 
changing defense-in-depth layer, not present in most 
security architectures. Figure 8 shows the DSP sizes given a 

varying sized set of hub nodes and varying response times.

 
Figure 8. Mean DSP Size vs. Number Hub Nodes 

For 70 hub nodes (1 % of the nodes on the network) at 15h, 
the mean DSP size is just 21.3 nodes. The 15h maximum 
was a mean of 24.6 nodes with 60 hub nodes. At one hour 
response time and 70 hubs, the mean DSP size is just 15 
nodes. Notice how all of these statistics are less than the 
mean number of p’s immediate neighbors (which varied 
between 27 and 45 depending upon response time). 
In Figure 8, the initial increase in DSP size from 10 hub 
nodes to 20 correlates closely to the number of hub nodes 
as each added hub node gets included within the DSP. 
However, this correlation is lost after around 20 hub nodes 
and the results become more dependent on the response 
time. For response times above 15h, the DSP continues to 
rise; possibly due to time-of-day effect (15-20h 
corresponds to clock times of 0300-0800, covering the 
beginning of the working day). This reflects the added 
flows making it more difficult to bound the known 
compromised node with hub nodes. For response times of 
15h or less the DSP size actually falls after the 40 to 60 hub 
nodes are added. Overall, the DSP size is small and stays 
fairly constant for response times of 15h or less. This is 
important because the DSP nodes will need to undergo 
analysis to make sure that they have not been penetrated. 
C. Hub Bounded Threatened Nodes 
Lastly, we look at the HBTN size. These nodes are at the 
greatest threat from the known compromised node (for 
attacks models by our method). The threat level of these 
nodes can be compared through using taint distance as an 
indicator, but for this analysis we just evaluate the HBTN 
size. Figure 9 shows the number of HBTN nodes given a 
varying sized set of hub nodes with curves for select time 
intervals. 



  
Figure 9. Median HBTN Size 

The curves representing 5h, 10h, and 15h are similar 
indicating that HBTN sizes will be roughly equal regardless 
of the response time (up to 15h). This matches the incident 
response time results obtained with DSP size. 
Up to and including 15h, as long as the set of hub nodes is 
at least 70 (1 % of the nodes on the network), then the 
median HBTN size is at most 22. After 15h though, the 
HBTN sizes grow significantly. At 20h, the median HBTN 
size with 70 hub nodes is a large 638. With a 1h response 
time, it is just 14 nodes. 
D. Execution Time Statistics 
All experiments were performed on a commodity desktop 
computer using 3GHz quad-core Intel processors and 8GB 
of RAM under Python version 2.7.24. 
The most computationally expensive part of running the 
Taint_Analysis algorithm is in building the communication 
graph. It takes a mean of 220s when using the full 24h data 
feed. Using less data to model faster incident response 
times produces an approximately linear decrease since the 
primary operation iteratively adds flows to the graph. Note 
that graph building can be done in an online always-on 
fashion so that this step is not be necessary in order to run 
the Taint_Analysis algorithm. 
Actually running the Taint_Analysis algorithm takes much 
less time. For the worst case of T=[] with 24h of data, it 
takes a mean of 12.8s. As the size of T increases, the 
execution time decreases as shown in Figure 10. 

                                                                 
4 Any mention of commercial products or reference to commercial 
organizations is for information only; it does not imply recommendation 
or endorsement by the U.S. government nor does it imply that the products 
mentioned are necessarily the best available for the purpose. 

 
Figure 10. Taint_Analysis Execution Time for 24 Hours of 

Data 

V. INCORRECT HUB NODE 
IDENTIFICATION 

Our experimental approach for hub node identification was 
to assign as hub nodes high degree nodes in the evaluated 
flow set. While exhaustive characterization of the hub 
selection methodology is beyond the scope of this paper, 
we did find it to produce qualitatively good results 
compared against known servers on the network.  However, 
when using this method, it is possible that an attacker who 
compromises a host and immediately begins to move 
laterally within the network to a wide range of hosts may 
cause some of the nodes it uses to be labeled as hub nodes. 
This would create error in the DSP and HBTN calculations. 
Several possible remediating measures present themselves: 
First, directionality of traffic may be incorporated into the 
calculations, noting which hosts initiated the flows under 
evaluation. Attackers attempting to move laterally will 
generally be the initiators of flows, while known hubs 
offering services to the network will typically be the 
recipients of connection attempts. A pre-processing step to 
identify hubs based on flow orientation could be 
performed, whereupon the compromised nodes initiating 
large numbers of flows would be correctly identified as 
spreading a taint to a large portion of the network. 
Second, for smaller networks, maintenance of a list of hubs 
should be tractable. While this would rely upon some 
degree of record keeping, a listing of hub Internet Protocol 
(IP) addresses would cause new hub nodes to immediately 
stand out as above, and either be classified as subverted 
nodes or as new hub nodes in need of inclusion in the list of 
hubs. 
Finally, tracking a side count of the degree of each node 
over windows of time might allow rapid identification of 
nodes that suddenly change behavior. As this information 
could be constructed in the course of the taint propagation 
algorithm, and would require storage of an unsigned integer 
for each node in the network, the additional overhead 
created by this approach would be negligible. Nodes that 
are observed to have a significant increase in degree from 



one iteration of the tainting algorithm to the next, or to have 
exhibited steady growth in degree distribution over time, 
would be flagged for investigation as potentially 
compromised before being added to the list of hubs in the 
taint propagation algorithm. 

VI. CONCLUSION AND FUTURE WORK 
We present and analyze the concept of network tainting and 
apply it to bounding the influence of an attacker within a 
network. For this, we provide a network tainting relation 
and the Taint_Analysis algorithm, presenting empirical 
results of applying the algorithm to a mid-scale production 
network. The algorithm exploits the time-ordered nature of 
network connections to bound the set of internal nodes that 
an attacker may have been able to access via lateral 
movement from an initial point of compromise in time.   
We show how taint analysis effectively cuts the 
communication graph into nodes that are tainted to varying 
degrees and nodes that are safe (against the set of attacks 
modeled by this method). We show how taint distances 
vary allowing for prioritized evaluation. We also leverage 
the scale-free behavior of the communication graph to 
identify a dynamic security perimeter (DSP) that represents 
a barrier to attacker propagation within the network. 
Finally, we measure the set of Hub Bounded Threatened 
Nodes (HBTNs), those nodes that are closest to the known 
compromised host and which are not protected by a DSP.  
In future work, we will consider additional qualitative 
inputs from network operations such as node value. The 
full set of tainted hosts can be intersected with the 
organization’s list of servers with high value data, as 
defined by security risk analysis and policy, to create a list 
of affected high-value servers and their taint distances from 
the compromised node. This essentially evaluates the taint-
based threat level indicator for each valuable resource that 
may be a specific target of a network incursion.  Such 
information could further prioritize analysis tasks by 
incorporating this value into a planning model for 
determining the optimal order of investigating and 
remediating nodes.  If certain nodes are known to contain 
critical information that requires a higher degree of 
protection while remediation efforts are incomplete, the 
taint graph may also be used to identify a time-ordered 
analogue of a max-flow min-cut solution: a set of links that 
can be cut to isolate the tainted nodes from the critical 
resource with otherwise minimal disruption to the network. 
In doing this work (both present and future), we hope to 
advance network incident response activities by providing 
an automated and rapid initial triage service that can guide 
and prioritize investigative activities. 

VII. APPENDIX – DERIVATION OF RESULTS 
OF SECTION II.B 

The results of Section II.B were calculated using inductive 
reasoning as follows. Let n represent the size of the 
network, x represent the number of attacks, m represent the 
mean communication sub-graph size, and h represent the 

number of hub nodes. Let T(x) be the mean number of 
tainted hosts. T(0)=m-1 since the average sub-graph size is 
m and the initial compromised host is not counted as 
tainted. T(x) can then be calculated as shown in equation 1 
where S(x) represents the probability that the xth attack 
connects to a new communication sub-graph. 

𝑇(𝑥) = 𝑇(𝑥 − 1) + 𝑆(𝑥)𝑚                  (1) 
S(x) can be calculated by finding the probability of using 
the set of nodes in the network that have not yet been 
attacked. S(x) then is equal to the remaining nodes minus 
the number of tainted nodes minus the number of non-
attacked hubs, all divided by the number of remaining 
nodes. S(0) is defined as equal to 1 since the initial 
compromised host will be part of some communication 
sub-graph. We then derive S(x) as shown in equation 2. In 
the equation, H(x) is the probability that the xth attack is 
against a hub node. 
𝑆(𝑥) = ((𝑛 − 𝑥) − ∑ 𝑆(𝑖)(𝑚 − 1)𝑥−1

𝑖=0 + ∑ (1 − 𝑆(𝑖))𝑥−1
𝑖=0 −

(ℎ − ∑ 𝐻(𝑖)))𝑥−1
𝑖=0  /(𝑛 − 𝑥)                                       (2) 

H(x) can be derived as shown in equation 3. H(0) is equal 
to 0 as the initial compromised node will not be labeled a 
hub node. 

𝐻(𝑥) = ℎ −� 𝐻(𝑖)
𝑥−1

𝑖=0
                              (3) 
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