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Bootstrap Variability Studies in ROC Analysis
on Large Datasets

JIN CHU WU, ALVIN F. MARTIN, AND RAGHU N. KACKER

Information Technology Laboratory, National Institute of Standards and
Technology, Gaithersburg, MD, USA

The nonparametric two-sample bootstrap is employed to compute uncertainties of mea-
sures in receiver operating characteristic (ROC) analysis on large datasets in areas such
as biometrics, and so on. In this framework, the bootstrap variability was empirically
studied without a normality assumption, exhaustively in five scenarios involving both
high- and low-accuracy matching algorithms. With a tolerance 0.02 of the coefficient
of variation, it was found that 2000 bootstrap replications were appropriate for ROC
analysis on large datasets in order to reduce the bootstrap variance and ensure the
accuracy of the computation.

Keywords Bootstrap variability; Bootstrap replications; ROC analysis; Large datasets;
Uncertainty; Biometrics.

Mathematical Subject Classification

1. Introduction

The receiver operating characteristic (ROC) analysis is an important statistical technique in
a wide variety of disciplines. Without loss of generality, in this article, biometric applica-
tions on large datasets will be taken as examples. Genuine scores are created by comparing
two different images of the same subject, and impostor scores are generated by match-
ing two images of two different subjects. The two distributions of continuous scores are
schematically depicted in Figure 1 (a). The cumulative probabilities of genuine and impos-
tor scores from the highest score to a threshold are defined as the true accept rate (TAR)
and the false accept rate (FAR), respectively. Thus, in the FAR-TAR coordinate system,
as the threshold moves from the highest score down to the lowest score, an ROC curve is
constructed as drawn in Figure 1 (b).

As extensively investigated (Wu et al., 2011; Wu and Wilson, 2007), genuine and
impostor scores have no underlying parametric distribution functions; the distributions of
genuine scores and impostor scores are considerably different in general; and the distribu-
tions vary substantially from algorithm to algorithm in a way that differentiates algorithms
in terms of matching accuracy. This suggests that parametric data modeling, including
a normality assumption, is not appropriate for evaluating matching algorithms on large
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226 J. C. Wu et al.

Figure 1. (a): A schematic diagram of two distributions of continuous genuine scores and impostor
scores, showing three related variables: TAR, FAR, and threshold. (b): A schematic drawing of an
ROC curve.

datasets. Moreover, the above two distributions are interrelated by the algorithm that gen-
erates them, and all statistics of interest are influenced by the combined impact of these
two distributions.

The nonparametric two-sample bootstrap method is employed to compute the uncer-
tainties of measures in ROC analysis on large datasets, for instance the standard error (SE)
of the TAR at a given FAR, the SE of the equal error rate (EER), and so on (Wu et al., 2011).
In these cases, it is hard to compute the measurement uncertainties without using the boot-
strap method. In this framework, one challenging issue is: How many bootstrap replications
are needed to reduce the bootstrap variance and ensure the accuracy of computation?

The number of bootstrap replications is intrinsically related to bootstrap variability. As
investigated in the literature (Efron, 1979; Efron, 1987; Efron and Tibshirani, 1993; Hall,
1986), the substantial bootstrap variance is caused by the sampling variability as well as the
bootstrap resampling variability. The former is because the sample size is finite and limited;
the latter is because the number of bootstrap replications is not infinite. In the meantime,
the bootstrap variance produces variances of the SE and the two bounds of the confidence
interval (CI) of the distribution that is formed by the bootstrap replications of the statistics.
As a result, these variances are functions of the sample size as well as of the number of
bootstrap replications. Inversely, the sample size and the number of bootstrap replications
can be determined from these variances.

The data used in this article are all operational data, i.e., real-life data. Regarding the
sample sizes, the total number of genuine scores is about 60,000 and the total number of
impostor scores is about 120,000. They are fixed based on our previous study, which was
carried out using Chebyshev’s inequality (Wu and Wilson, 2006). It was found that if the
numbers of scores increased from what were used here, the measurement accuracy would
improve little. Therefore, in our applications, only the number of bootstrap replications
needs to be determined.

The bootstrap variability was rigorously studied previously (Efron, 1987; Efron and
Tibshirani, 1993; Hall, 1986). In these analytical studies, the normality assumption was
made, and the statistics of interest was a sample mean. However, in our applications, as
stated above, it is inappropriate to assume normality for score distributions, and the statistics
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Bootstrap Variability Studies 227

of interest are probabilities such as TAR, FAR, EER, etc., which are all related to ROC
analysis. Under such circumstances, it is hard to derive formulas to conduct bootstrap
variability studies analytically. Moreover, the sizes of the datasets in our cases are much
larger than those in other applications, such as medical ones.

Hence, in this article, the bootstrap variability is empirically studied without a normality
assumption, exhaustively in five scenarios for ROC analysis on large datasets involving
both high- and low-accuracy matching algorithms1. Any point P on an ROC curve has
two coordinates, FAR and TAR, and is associated with a threshold for the distributions of
genuine and impostor scores, as illustrated in Figure 1. Thus there are only three variables,
FAR, TAR, and threshold, and any one of them determines the other two. In practice, it
is seldom required that TAR be specified in advance. Thus, the first three scenarios are
measuring the TAR at a specified FAR, measuring the TAR at a given threshold value, and
measuring the FAR at a given threshold value.

The fourth scenario is measuring the EER that is defined as the FAR at a threshold
where 1 – TAR and FAR are equal. These two error rates are traded-off against each other.
The smaller the EER is, the more accurate the matching algorithm is. The fifth scenario is
measuring the area under ROC curve (AURC), which is equivalent to the probability that
a classifier will rank a randomly chosen positive instance higher than a randomly chosen
negative instance (Fawcett, 2006).

All related formulas for computing statistics of interest in the five scenarios can be
found in Refs. Wu et al. (2011) and Wu and Wilson (2007). In ROC analysis, there may be
other measures of interest, but they are generally variations or combinations of the measures
discussed in the first three scenarios (see Section 4). These are very popular statistics in
ROC analysis on large datasets. Our bootstrap variability studies took weeks of CPU time
due to large-scale computations involving large datasets.

The discrete distribution functions of genuine scores and impostor scores and an
algorithm for the nonparametric two-sample bootstrap are shown in Section 2. The bootstrap
variability study is presented in Section 3, which determines the number of bootstrap
replications for ROC analysis on large datasets. Finally, conclusions and discussion can be
found in Section 4.

2. The Discrete Distribution Functions and an Algorithm of Nonparametric
Two-Sample Bootstrap

2.1. The Discrete Distribution Functions of Scores

All scores were converted into integers if they were not. Without loss of generality, the
scores are expressed inclusively using the integer score set {s}= {smin, smin+1, . . . , smax},
running consecutively from the lowest score smin to the highest score smax. The genuine
score set and the impostor score set in the sense of multiset are denoted as

G = {mi |mi ∈ {s} and i= 1, . . . ,NG}, (1)

1Specific hardware and software products identified in this paper were used in order to adequately
support the development of technology to conduct the performance evaluations described in this
document. In no case does such identification imply recommendation or endorsement by the National
Institute of Standards and Technology, nor does it imply that the products and equipment identified
are necessarily the best available for the purpose.
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228 J. C. Wu et al.

and

I = {ni |ni ∈ {s} and i = 1, . . . ,NI }, (2)

where NG and NI are the total numbers of genuine scores and impostor scores, respectively.
These two sets, G and I, constitute discrete probability distribution functions of genuine
scores and impostor scores, respectively.

2.2. An Algorithm for the Nonparametric Two-Sample Bootstrap

The nonparametric two-sample bootstrap (Efron, 1979; Efron and Tibshirani, 1993) is
employed to compute the estimates of measurement uncertainties for ROC analysis in all
five scenarios. The algorithm is as follows.

Algorithm I (Nonparametric two-sample bootstrap)

1: for i = 1 to B do
2: select NG scores randomly WR from G to form a set {new NG genuine scores}i

3: select NI scores randomly WR from I to form a set {new NI impostor scores}i

4: {new NG genuine scores}i and {new NI impostor scores}i => statistic T̂i

5: end for
6: {T̂i|i = 1, . . . ,B} ⇒ SÊB and (Q̂B(α/2), Q̂B(1 − α/2))
7: end

where B is the number of two-sample bootstrap replications and WR stands for “with
replacement”. The original genuine score set G in Equation (1) and impostor score set I
in Equation (2) are generated by a matching algorithm. As shown from Step 1 to 5, this
algorithm runs B times. In the ith iteration, NG scores are randomly selected WR from the
original genuine score set G to form a new set of NG genuine scores, NI scores are randomly
selected WR from the original impostor score set I to form a new set of NI impostor scores,
and then from these two new sets of scores the ith bootstrap replication of the estimated
statistic of interest, T̂i, is generated.

The T̂i are different in the five scenarios discussed in Section 1. In Scenario 1, T̂i =
TÂRi(f ) at a specified f = FAR. In Scenario 2, T̂i = TÂRi(t) at a given threshold t. In
Scenario 3, T̂i = FÂRi(t) at a given threshold t. In Scenario 4, T̂i = EÊRi . And in Scenario
5, T̂i = AÛRCi. The formulas for computing all these five statistics of interest can be found
in Refs. Wu et al. (2011) and Wu and Wilson (2007).

Finally, as indicated in Step 6, from the set {T̂ i|i = 1, . . . ,B}, the estimator of the SE,
denoted by SÊB, i.e., the sample standard deviation of the B replications, and the estimators
of the α/2 100% and (1 − α/2) 100% quantiles of the bootstrap distributions, denoted
by Q̂B(α/2) and Q̂B(1 − α/2), at the significance level α can be calculated (Efron and
Tibshirani, 1993). Definition 2 of quantile in Ref. Hyndman and Fan (1996) is adopted.
That is, the sample quantile is obtained by inverting the empirical distribution function
with averaging at discontinuities. Thus, (Q̂B(α/2), Q̂B(1 − α/2)) stands for the estimated
bootstrap (1 − α) 100% CÎ. If 95% CÎ is of interest, then α is set to be 0.05.
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Bootstrap Variability Studies 229

3. The Bootstrap Variability Study and the Number of Bootstrap
Replications

3.1. An Algorithm for Empirical Study of Nonparametric Two-Sample Bootstrap
Variability

As pointed out in Section 1, it is important to re-study the variances of the SE and the two
bounds of the CI of the bootstrap distribution of the statistic of interest in ROC analysis on
large datasets. To take into account the impact of the mean value, the coefficient of variation
(CV) rather than just variance is employed (Efron and Tibshirani, 1993). The empirical
study of bootstrap variability will be carried out in all five scenarios. Here is an algorithm
for bootstrap variability study.

Algorithm II (Bootstrap variability study)

1: for i = 1 to L do
2: for j = 1 to B do
3: select NG scores randomly WR from G to form a set {new NG genuine scores}ij

4: select NI scores randomly WR from I to form a set {new NI impostor scores}ij

5: {new NG genuine scores}ij and {new NI impostor scores}ij => statistic T̂ij
6: end for
7: {T̂ij|j = 1, . . . ,B} ⇒ SÊBi and (Q̂Bi(α/2), Q̂Bi(1 − α/2))
8: end for
9: {SÊBi, Q̂Bi(α/2), Q̂Bi(1 −α/2)|i = 1, . . . , L} ⇒ CV̂B,L(κ),κ =

SEB,L,QB,L(α/2),QB,L(1 − α/2)
10: end

where L is the number of Monte Carlo iterations and B is the number of bootstrap replica-
tions. As indicated from Step 1 to 8, Algorithm II runs L iterations for a specified B. The
part from Step 2 to 7 is equivalent to the nonparametric two-sample bootstrap Algorithm I,
which generates the i th SÊBi, Q̂Bi(α/2) and Q̂Bi(1 − α/2) of a statistic of interest in the i
th iteration for a given B. The statistics of interest in five scenarios are specified in Section
2.2.

As shown in Step 9, for a specified B, after L iterations of executing two-sample
bootstrap algorithm, the following three sets are generated,

SEB,L = {SÊBi |i = 1, . . . , L},
QB,L(α/2) = {Q̂Bi(α/2)|i = 1, . . . , L}, (3)

QB,L(1 − α/2) = {Q̂Bi(1 − α/2)|i = 1, . . . , L}.

Thereafter, from these three sets, three estimated CV̂s of SE, lower-bound and upper-
bound of CI, can be obtained, respectively,

CV̂B,L(κ) =
√

VÂRB,L(κ)

ÊB,L(κ)
, where κ = SEB,L,QB,L(α/2),QB,L(1 − α/2). (4)

It is clear that the three estimated CV̂s are functions of the number of bootstrap
replications B and the number of Monte Carlo iterations L, as well as the significance level
α. Therefore, the number of bootstrap replications B can be determined by the tolerable
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230 J. C. Wu et al.

Table 1
High-accuracy Algorithm A’s minimum, maximum, and range of 10 estimators of CVSEs,
CVLBs, and CVUBs, as the number of iterations ran from 100 up to 1,000 at intervals of
100 for each specified B. B ran from 200 up to 1,000 at intervals of 200. The statistic of

interest is TAR at a given FAR

No. of
replications B 200 400 600 800 1,000

CVSE Min. 0.047524 0.034664 0.027754 0.023912 0.021570
Max. 0.054346 0.039866 0.031685 0.026866 0.023686
Range 0.006822 0.005202 0.003931 0.002954 0.002116

CVLB Min. 0.000062 0.000044 0.000036 0.000030 0.000026
Max. 0.000067 0.000047 0.000041 0.000037 0.000031
Range 0.000005 0.000003 0.000005 0.000007 0.000005

CVUB Min. 0.000054 0.000041 0.000032 0.000030 0.000026
Max. 0.000062 0.000044 0.000036 0.000032 0.000030
Range 0.000008 0.000003 0.000004 0.000002 0.000004

CVs. Then, the question is: How many iterations L are sufficient for a specified B to
guarantee the accuracy of the Monte Carlo computation?

3.2. Determine the Number of Monte Carlo Iterations L

Two fingerprint-image matching algorithms are employed2. Algorithm A is of high accuracy
and Algorithm B is of low accuracy. The significance level is set to be 5%. As discussed
in Section 1, the total number of genuine scores is about 60,000 and the total number of
impostor scores is about 120,000. With this number of impostor scores, in Scenario 1, the
FAR is set to be 0.001 so that the number of false-accept instances would be about 120 that
is reasonable large (Wu et al., 2011). In Scenarios 2 and 3, the system threshold yielding
an FAR 0.001 is chosen to show the operational significance for each algorithm (Wu et al.,
2011). In the following context, the estimates of the three CVs for the SE, the lower bound
and upper bound of 95% CI are denoted by CV̂SE, CV̂LB, and CV̂UB, respectively.

In all five scenarios for each algorithm, the number of replications B first ran from 200
up to 1,000 at intervals of 200. For each of such Bs, the number of Monte Carlo iterations L
ran from 100 up to 1,000 at intervals of 100, and thus 10 estimates of CVSEs, CVLBs, and
CVUBs were generated, respectively. From these 10 estimates in each case, the minimum,
maximum, and range were obtained. The tendencies of changes of CVs with respect to the
numbers B and L in different scenarios are the same. Therefore, in Table 1 and Table 3 are
presented only the results of Scenario 1, where the statistic of interest is TAR at a given
FAR, for high-accuracy Algorithm A and low-accuracy Algorithm B, respectively. The
results regarding all other four scenarios of the two algorithms can be found in Ref. Wu
et al. (2010).

As shown in these two tables, both minimal CV̂s and maximal CV̂s decrease as the
number of bootstrap replications B increases. For Algorithm A, the maximal CV̂LBs and
CV̂UBs are less than 0.00007; for Algorithm B, they are less than 0.0012. Regarding the

2All algorithms used in this article are proprietary. They cannot be disclosed.
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Bootstrap Variability Studies 231

Table 2
High-accuracy Algorithm A’s estimators of CVSEs, CVLBs, and CVUBs, while B ran
from 1,200 up to 2,000 at intervals of 200 as the number of iterations was fixed at 500. The

statistics of interest is TAR at a given FAR

No. of replications B 1,200 1,400 1,600 1,800 2,000

CVSE 0.021218 0.018613 0.017951 0.016331 0.016040
CVLB 0.000027 0.000024 0.000023 0.000023 0.000020
CVUB 0.000024 0.000023 0.000022 0.000020 0.000019

ranges, for Algorithm A, the ranges of 10 estimated CV̂SEs vary from about 0.007 down
to 0.002 and the ranges for the two bounds of 95% CIs are not greater than 0.000008; for
Algorithm B, the ranges of 10 estimated CV̂SEs vary from about 0.006 down to 0.003 and
the ranges for the two bounds of 95% CIs are less than 0.0002.

As a result, to obtain the estimates of CVs at a fixed number of replications B higher
than 1,000, the number of Monte Carlo iterations L does not need to run from 100 up
to 1,000 at intervals of 100. To save tremendous computing time, while the number of
replications B varied from 1,200 up to 2,000 at intervals of 200, the number of Monte Carlo
iterations L was fixed at 500. The corresponding estimates of CVs for Algorithms A and B
in Scenario 1 are shown in Tables 2 and 4. The results for all other four scenarios of the
two algorithms can also be found in Ref. Wu et al. (2010).

3.3. Determine the Number of Nonparametric Two-Sample Bootstrap Replications

As defined in Eq. (4), the CV is a ratio of the SE to the mean, and thus its estimator is
affected by both values. Concerning the distribution of SEs versus the distributions of lower
bounds and upper bounds of 95% CIs, which are all created by Monte Carlo iterations as

Table 3
Low-accuracy Algorithm B’s minimum, maximum, and range of 10 estimators of CVSEs,
CVLBs, and CVUBs, as the number of iterations ran from 100 up to 1,000 at intervals of
100 for each specified B. B ran from 200 up to 1,000 at intervals of 200. The statistic of

interest is TAR at a given FAR

No. of
replications B 200 400 600 800 1,000

CVSE Min. 0.056895 0.037193 0.031792 0.026763 0.024033
Max. 0.062609 0.043167 0.034696 0.030500 0.026695
Range 0.005714 0.005974 0.002904 0.003737 0.002662

CVLB Min. 0.000941 0.000677 0.000519 0.000473 0.000442
Max. 0.001052 0.000734 0.000627 0.000526 0.000478
Range 0.000111 0.000057 0.000108 0.000053 0.000036

CVUB Min. 0.001068 0.000685 0.000637 0.000532 0.000488
Max. 0.001171 0.000838 0.000738 0.000611 0.000544
Range 0.000103 0.000153 0.000101 0.000079 0.000056
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232 J. C. Wu et al.

Table 4
Low-accuracy Algorithm B’s estimators of CVSEs, CVLBs, and CVUBs, while B ran from
1,200 up to 2,000 at intervals of 200 as the number of iterations was fixed at 500. The

statistic of interest is TAR at a given FAR

No. of replications B 1,200 1,400 1,600 1,800 2,000

CVSE 0.023673 0.022299 0.021272 0.018918 0.017705
CVLB 0.000457 0.000397 0.000354 0.000331 0.000318
CVUB 0.000445 0.000429 0.000420 0.000389 0.000389

shown in Eq. (3), the magnitudes of the estimated means are quite different, and thus the
magnitudes of the estimated CV̂s are also quite different.

For instance, in Scenario 1 where the statistic of interest is the TAR at a given FAR,
for high-accuracy Algorithm A, generated by 500 Monte Carlo iterations while the number
of bootstrap replications B was set to be 2,000, the estimated SÊs of the distributions of the
SEs, and the lower bounds and upper bounds of the 95% CIs are 0.0000053, 0.0000198,
and 0.0000192, respectively. It shows that the distribution of the SEs has less dispersion
than the distributions of the lower bounds and upper bounds of 95% CIs. This is because
in the tail of the distribution fewer samples occur (Efron and Tibshirani, 1993).

The estimated means of the corresponding distributions are 0.000331, 0.992617, and
0.993913, where the estimated mean for the SEs is much less than 1 but those for the two
bounds of the 95% CIs are close to 1 due to the matching accuracy of algorithm. Therefore,
the corresponding estimated CVs are 0.016040, 0.000020, and 0.000019 as presented in the

Table 5
High-accuracy Algorithm A’s minimum, maximum, and range of 10 estimators of CVSEs
as the number of iterations ran from 100 up to 1,000 at intervals of 100 for each specified

B in all five scenarios. B ran from 200 up to 1,000 at intervals of 200

No. of replications B 200 400 600 800 1,000

1. TAR (f ) Min. 0.047524 0.034664 0.027754 0.023912 0.021570
Max. 0.054346 0.039866 0.031685 0.026866 0.023686
Range 0.006822 0.005202 0.003931 0.002954 0.002116

2. TAR (t) Min. 0.045133 0.030526 0.025991 0.024365 0.020767
Max. 0.051907 0.036352 0.031090 0.026430 0.023275
Range 0.006774 0.005826 0.005099 0.002065 0.002508

3. FAR (t) Min. 0.046920 0.033853 0.028190 0.023259 0.021197
Max. 0.052033 0.036638 0.029539 0.026110 0.024945
Range 0.005112 0.002786 0.001349 0.002850 0.003748

4. EER Min. 0.046155 0.034597 0.027452 0.024199 0.022360
Max. 0.050898 0.037824 0.031983 0.026339 0.023736
Range 0.004743 0.003227 0.004532 0.002139 0.001376

5. AURC Min. 0.047289 0.033978 0.027837 0.023290 0.021658
Max. 0.051731 0.036868 0.029854 0.026749 0.025690
Range 0.004442 0.002890 0.002017 0.003459 0.004032
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Bootstrap Variability Studies 233

Table 6
High-accuracy Algorithm A’s estimators of CVSEs while B ran from 1,200 up to 2,000 at

intervals of 200 as the number of iterations was fixed at 500 in all five scenarios

No. of replications B 1,200 1,400 1,600 1,800 2,000

1. TAR (f ) 0.021218 0.018613 0.017951 0.016331 0.016040
2. TAR (t) 0.019498 0.018551 0.018105 0.016516 0.015611
3. FAR (t) 0.021625 0.019059 0.017675 0.016809 0.015373
4. EER 0.020348 0.019152 0.017907 0.017155 0.015610
5. AURC 0.020065 0.019558 0.017755 0.015916 0.015397

last column of Table 2. It shows that the estimated CV̂SE is much larger than the estimated
CV̂LB and CV̂UB. This feature occurs in all other cases in Scenario 1 as presented in
Table 1 through Table 4.

Generally speaking, the estimated CV̂s for low-accuracy Algorithm B are greater than
the corresponding CV̂s for high-accuracy Algorithm A, except for CVLB and CVUB in
Scenario 4 where the statistic of interest is EER (Wu et al., 2010). This is due to the
combined impact of the magnitudes of the estimated means and SÊs in this scenario.
Another thing worth pointing out is that the estimated CV̂LBs and CV̂UBs in Scenarios
3 and 4 are larger than those in other scenarios (Wu et al., 2010). This is because the
magnitudes of the estimated means in these two scenarios are quite small.

Nonetheless, the crucial point is that the estimated CV̂SEs are much larger than the
corresponding estimated CV̂LBs and CV̂UBs with regard to the same number of bootstrap

Table 7
Low-accuracy Algorithm B’s minimum, maximum, and range of 10 estimators of CVSEs
as the number of iterations ran from 100 up to 1,000 at intervals of 100 for each specified

B in all five scenarios. B ran from 200 up to 1,000 at intervals of 200

No. of replications B 200 400 600 800 1,000

1. TAR (f ) Min. 0.056895 0.037193 0.031792 0.026763 0.024033
Max. 0.062609 0.043167 0.034696 0.030500 0.026695
Range 0.005714 0.005974 0.002904 0.003737 0.002662

2. TAR (t) Min. 0.046884 0.033602 0.027518 0.023721 0.020796
Max. 0.053526 0.036123 0.030318 0.025797 0.022964
Range 0.006642 0.002521 0.002800 0.002076 0.002168

3. FAR (t) Min. 0.047950 0.034903 0.026481 0.022305 0.021546
Max. 0.053789 0.039294 0.031482 0.026376 0.023059
Range 0.005839 0.004391 0.005000 0.004071 0.001514

4. EER Min. 0.047634 0.034402 0.027218 0.021963 0.017186
Max. 0.051995 0.036459 0.029568 0.027059 0.023337
Range 0.004361 0.002056 0.002350 0.005095 0.006150

5. AURC Min. 0.048170 0.034661 0.028056 0.023298 0.021355
Max. 0.052180 0.036136 0.030047 0.027780 0.024504
Range. 0.004010 0.001475 0.001991 0.004482 0.003148
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Table 8
Low-accuracy Algorithm B’s estimators of CVSEs while B ran from 1,200 up to 2,000 at

intervals of 200 as the number of iterations was fixed at 500 in all five scenarios

No. of replications B 1,200 1,400 1,600 1,800 2,000

1. TAR (f ) 0.023673 0.022299 0.021272 0.018918 0.017705
2. TAR (t) 0.020317 0.018649 0.018001 0.016775 0.015417
3. FAR (t) 0.020671 0.019016 0.018532 0.016877 0.015095
4. EER 0.020697 0.018524 0.016898 0.016887 0.016330
5. AURC 0.020828 0.017814 0.017853 0.016148 0.015287

replications B and the same number of Monte Carlo iterations L for both high- and low-
accuracy algorithms in all five scenarios. This indicates that if the estimates of CV̂SE satisfy
a specified tolerance, then the corresponding estimates of CV̂LB and CV̂UB can meet the
same tolerance as well. As a result, in order to determine the number of nonparametric
two-sample bootstrap replications in ROC analysis on large datasets, only the estimates of
CV̂SE need to be investigated.

All estimated CV̂SEs of Algorithms A and B in the five scenarios are shown in Table 5
through Table 8, and depicted in Figure 2. In the cases where the number of replications

Figure 2. The estimators of CVSEs for high-accuracy Algorithm A and low-accuracy Algorithm B
in all five scenarios as a function of the number of bootstrap replications. The tolerance is set to be
0.02. The statistics of interest are TAR at a specified FAR, TAR at a given threshold value, FAR at a
given threshold value, EER, and AURC, respectively. (Color figure available online.)
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Bootstrap Variability Studies 235

B was set to be from 200 up to 1,000 at intervals of 200, only the maximal CV̂SEs shown
in Table 5 and Table 7 are employed. It shows that all estimated CV̂SEs decrease as the
number of replications B increases. All tables and figures regarding CV̂LBs and CV̂UBs
can be found in Ref. Wu et al. (2010).

The tolerance for all CVSEs is set to be 0.02, which is acceptable for our applications
(Efron and Tibshirani, 1993). As shown in Figure 2, with this 0.02 tolerance, for Scenario 1
where the statistic of interest is TAR at a given FAR, 1,400 two-sample bootstrap replications
are sufficient for high-accuracy Algorithm A, and 1800 replications are sufficient for low-
accuracy Algorithm B. In all other four scenarios for both Algorithms A and B, with the
tolerance 0.02, 1,400 bootstrap replications are sufficient.

To reconcile numbers of bootstrap replications for all five scenarios where different
statistics of interest are used as well as for different matching quality algorithms, and further
to be more conservative, it is suggested that 2,000 nonparametric two-sample bootstrap
replications be used in order to reduce the bootstrap variance and assure statistical accuracy
of the computation in ROC analysis on large datasets.

4. Conclusions and Discussion

In our applications, the normality assumption for score distributions cannot be made, the
statistics of interest are all probabilities related to ROC analysis rather than a simple sam-
ple mean, and the datasets are very large. Therefore, the bootstrap variability needs to
be re-studied to determine the appropriate number of nonparametric two-sample boot-
strap replications needed to reduce the bootstrap variance and ensure the accuracy of the
computation.

The nonparametric two-sample bootstrap variability related to the SE and the two
bounds of the 95% CI of bootstrap distributions was empirically studied without a normality
assumption in five scenarios for ROC analysis on large datasets, where the statistics of
interest are TAR at a specified FAR, TAR at a given threshold value, FAR at a given threshold
value, EER, and AURC. In addition, the bootstrap variability study was conducted on both
high- and low-accuracy matching algorithms.

With a tolerance 0.02 for CVs, which is acceptable in our applications, to reconcile
all cases and to be more conservative, it is suggested that the appropriate number of
nonparametric two-sample bootstrap replications for ROC analysis on large datasets be
2,000.

As pointed out in Section 1, the bootstrap variance is also caused by the sample size.
If the numbers of scores increased from what were used in this article, the measurement
accuracy would improve little in our applications (Wu and Wilson, 2006). On the other
hand, the recommended 2,000 bootstrap replications could certainly be applied to cases
where smaller datasets are encountered, for instance in medical applications. If for some
reason the number of bootstrap replications should need to be reinvestigated, the empirical
methods for studying bootstrap variability developed in this article should remain the same.

In this article, TAR at a specified FAR and TAR at a given threshold value were
discussed. In some literature (Cappelli et al., 2006), the false nonmatch rate (FNMR),
which is equal to 1 – TAR, at a given FAR or threshold value is employed. It is trivial
to show that in the Algorithm II (bootstrap variability study) shown in Section 3.1, with
respect to the same two new sets of scores randomly selected WR from the two original
sets of scores, the SE of FNMR is equal to the SE of TAR, while the lower bound and upper
bound of the 95% CI for FNMR can be obtained by interchanging the two bounds for TAR
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and subtracting them from 1. Thus, the two bounds of the 95% CIs of FNMR are quite
close to 0 as opposed to 1 for TAR. Hence, if switching from TAR to FNMR, the CVSE
will remain the same but the CVLB and CVUB will be larger.

For instance, in Scenario 1 for both Algorithms A and B, when the number of bootstrap
replications B was set to be 2,000 as shown in the last columns of Table 2 and Table 4,
the estimated CV̂LB and CV̂UB of high-accuracy Algorithm A changed from 0.000020
and 0.000019 to 0.003152 and 0.002687, respectively; those of low-accuracy Algorithm B
changed from 0.000318 and 0.000389 to 0.001595 and 0.001196, respectively. However,
they are all less than the 0.02 tolerance. Hence, the assertion that the number of nonpara-
metric two-sample bootstrap replications be 2,000 is still valid if FNMR is employed. But
it is worth pointing out that the CVLB and CVUB increase greatly if using FNMR instead
of TAR.

In some applications, such as speaker recognition evaluation, the statistics of interest
is a detection cost function defined as a weighted sum of probabilities of type I and type II
errors at a given threshold value (Wu et al., 2012). Such a metric is not dealt with in this
article. However, the probability of type I error (i.e., FNMR) and the probability of type II
error (i.e., FAR) have been examined here.
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