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Table 1: Nex-StoCT II Work Group Recommendations for Informatics Analysis of Clinical Next-generation Sequencing (NGS) 

 

Nex-StoCT II Work Group Recommendations  

General 

Recommendations 

• Informaticians with relevant expertise should be involved in all steps of informatics pipeline design, 

optimization, and validation to assure the quality and reliability of the informatics pipeline.  (page 4, 24, 

29) 

Primary Analysis •  Recommendations for test validation and quality control procedures relevant to the Primary Analysis 

were previously published by the Nex-StoCT I work group1.   

Secondary Analysis:  

 

• Laboratories should use the commercially available indexes and protocols recommended by the 

platform manufacturers if they can be optimized and validated for the intended clinical application.  

(page 15)  

• Laboratories should use indexes that differ by more than a single base in the same reaction/lane to 

assure discrimination among reads corresponding to different patient samples.  (page 16) 

• Reads with mismatched indexes should be discarded from downstream analysis.  (page 17) 

• Samples should be indexed as soon as possible and prior to targeted capture. (page 17) 

• The fidelity of de-multiplexing should be assessed and validated to assure the correct assignment of 

sequence reads to their respective patient samples. (page 17) 
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• The assembly accession and version number should be documented for each alignment for traceability 

in both informatics workflow and result reporting.  (page 20) 

• A combination of aligners and/or the same aligner using different software settings should be evaluated 

to determine the optimal alignment strategies relevant to the types of variants targeted. (page 23) 

• Laboratories should initially use the software's default settings and only modify them (with validation) 

when appropriate for their clinical application(s). (page 24)  

• Changes to default settings and subsequent optimization should be performed in consultation with an 

informatician with the requisite expertise. (page 24) 

• Reads should be aligned to the reference assembly not just the targeted region, to minimize the potential 

for off-target or forced alignments; unless methods to ensure the unique alignment to targeted regions of 

the genome have been developed.  (page 26) 

• More than one variant caller should be evaluated to identify the combination of settings and/or software 

able to detect the spectrum of variants targeted by the intended clinical application	
  and that the 

suitability of a variant caller for the platform be considered. (page 31) 

• Real and simulated data should be used for optimization of variant and genotype calling. (page 31)   

• Simulated data should not be used in the absence of real data for optimization and validation of the 

informatics pipeline.  (page 31) 
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• When possible, well-characterized reference materials such as those developed by the GeT-RM, the 

Genome in a Bottle Consortium, and similar efforts should be used for test optimization and validation. 

(page 31)  

Tertiary Analysis 
and other 
considerations 
 

• The choice of annotation tools should be based on the types of sequence variants that are to be detected 

by the clinical test as well as the strengths and limitations of the software to detect particular variant 

types.  Annotation and filtration tools should be integrated into the informatics pipeline to enable 

seamless automation and must be validated.  (page 35) 

• Until reliable medically curated databases are available, evidence used to interpret variants for clinical 

significance should be carefully evaluated to assure that it is supported by sufficient evidence. (page 36)  

• Laboratory professionals should recognize differences in approaches to variant filtration and consider 

these in the design of the informatics pipeline. (page 38)  

• Where possible, the laboratory should consider using more than one prediction program with different 

approaches for predicting pathogenicity.  (page 40) 

• Filtration algorithms should utilize databases containing known pathogenic variants (e.g., HGMD) to 

minimize the possibility that disease-associated variants are inappropriately filtered. (page 41)  

• The methods selected for annotating a sequence must be evaluated to demonstrate that variant attributes 

are properly assigned. (page 41)  



15	
  
	
  

• A revision to a database or analysis algorithm used by the laboratory may affect the annotation process; 

consequently, the data analysis pipeline must be re-validated before the adoption of any updated data 

sources or software. (page 41) 

• If web-based tools are unable to provide version control, the workgroup recommends that clinical 

laboratories bring the software or datasets in-house to document version changes, or use software 

providing version controlled databases. (page 42)   

• The workgroup recommended that clinical assessment for disease association be performed by 

personnel with relevant disease expertise.  In some instances, this may be a collaborative activity among 

the laboratory professional and others that may include a physician(s), genetic counselor(s), and/or 

informatician(s).  (page 45) 

• Laboratories should consider three essential questions when assessing variants that are identified during 

the annotation and prioritization process:  

o Does the variant disrupt the normal function of the gene?  

o Does this disruption lead to, or predispose a patient to a disease, phenotype, or other impact to 

human health? 

o Does this health impact have relevance to the patient’s clinical presentation and indication for 

testing?  
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(page 46) 

  

• Pathogenic and likely pathogenic variants as well as variants of uncertain significance relevant to the 

indication should be reported.  The workgroup discouraged reporting of benign variants and suggested 

clear separation of likely benign variants if reported. (page 47) 

• The laboratory should establish strategies to re-classify or to monitor the re-classification of variants as 

new data becomes available. (page 47)  

• The informatics pipeline must be re-validated before the adoption of any new, updated, or re-optimized 

software or databases. (page 48)  

• A workgroup should be convened to establish a clinical-grade variant file specification. (e.g., VCF) to 

permit data sharing among laboratories and with proficiency testing programs for quality assurance, to 

expedite sharing of data with medical data repositories, and its transmission to entities external to the 

clinical laboratory such as the patient's electronic record.  (CDC has established such a workgroup in 

2013)  (page 51) 
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Figure 1:  Model for Tertiary Analysis of Sequence Variants 
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1. Introduction: 

Next Generation Sequencing (NGS) technologies produce extensive amounts of data that require substantial computational infrastructure 

for data storage, analysis, and interpretation.  These rapidly evolving technologies are utilized in the clinical setting for a growing number of 

laboratories to analyze gene panels, exomes, and whole genomes by a variety of genetic disorders.  NGS assays utilize complex testing 

algorithms, which require laboratory-based sequencing and computational processes to generate a final result.  While the computational 

analysis is not new to clinical diagnostic testing, the computational needs of NGS based tests present an unprecedented magnitude of data 

which has created an urgent need to develop guidance for clinical laboratories. Data generated by NGS technologies are analyzed in a series 

of steps.  Millions to billions of sequence reads are initially generated by the sequencing platform; referred to as the primary phase of testing.  

The combination of NGS data analysis tools, referred to as the “informatics pipeline,” processes and analyzes the raw data generated by the 

sequencing instrument to produce a report.  A variety of commercial and open source software tools have been developed to analyze NGS 

data for specific contexts or applications.  Most laboratories use custom-built combinations of commercial or publicly available tools in 

addition to in-house developed analytic procedures to develop their informatics pipelines.   Others use comprehensive software packages.     

 In the next step of data analysis (secondary analysis), NGS reads are aligned to a human reference assembly.  The reads associated with 

each patient are separated before alignment to the reference assembly and analyzed independently when multiple patient samples are pooled 

(multiplexed) prior to sequencing.  Read alignments are then systematically examined and often re-aligned in local regions of the genome to 

remove artifacts and ensure accurate genotype calls.  Finally, these alignments are used to identify differences between the patient’s sequence 

and the reference assembly in a process referred to as variant calling.  The end product of this “secondary analysis” is the identification of 

sequence variants that are stored in a variant call file (e.g. Variant Call Format file or VCF file).  Between 3 and 4 million sequence variants 
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are typically detected when the entire human genome is sequenced and aligned to a reference sequence 1.  These include single nucleotide 

variants (SNVs), small insertions, deletions, and their combination (indels).  

Additional analysis of the data is performed to identify variants that are relevant to the patient’s clinical condition (tertiary analysis) 

following the identification of a set of variants.   Variants are first annotated with predicted molecular consequences (such as the creation of a 

premature stop codon by a nonsense or frameshift variant, or the substitution of an amino acid by a missense variant). These molecular 

consequences are described relative to a particular transcript of a gene, often a single ‘canonical transcript’ of the gene.  This is followed by a 

clinical assessment to identify variants relevant to the patient’s phenotype.  As of 2014, this evaluation is a labor-intensive process, which 

requires expert review of the data in the context of available literature or past experience with similar case presentations.  The understanding 

of the spectrum of pathogenic variants that exists in the human population is limited; however, when clinical information is available, it is 

used during the analysis to prioritize variants that are potentially disease-associated.  The final step is the development of a test result report, 

which integrates the findings from the sequencing analysis with the patient’s clinical data to determine whether any or a combination of the 

variants detected can explain the patient’s disease.  Much of primary, secondary and tertiary analyses involve  substantial automated 

informatics components, which is a significant change in operations for many clinical molecular testing laboratories.   

In 2013, the US Food and Drug Administration (FDA) cleared one NGS instrument system and reagent kit, and two NGS-based tests for 

cystic fibrosis 2.  In 2014, the majority of clinical laboratories that perform NGS will design, optimize, and validate their assays as laboratory-

developed tests 3.  Development and optimization of these processes, especially the analytical methods, is non-trivial and requires the input of 

an informatician with expertise relevant to NGS.  Following optimization, the test can be validated by establishing and documenting the 

performance specifications and technical limitations 3-7.   
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The design of an informatics pipeline is more complex for exome and genomic analysis than for gene panels.  This is because the 

analysis is confined to a discreet set of selected genes.    For exome and genome analysis, the pipeline must assess which genes are likely to 

be relevant to the indication for testing.  Additionally, the quantity of data to analyze is significantly increased.   

The optimization of an informatics pipeline does not necessarily provide an ideal analysis pathway for each patient sample.  In some 

instances, the test may not identify a clinically relevant variant.  In this situation, the laboratory may reanalyze variant data using different 

filters or software settings within the confines of the test validation.  This approach has been used to identify clinically relevant sequence 

variants that otherwise would have been missed.) 

There is limited available guidance for the establishment and optimization of clinical NGS informatics pipelines, but this optimization 

is a prerequisite for test validation.  To address this, the Centers for Disease Control and Prevention (CDC) established a national workgroup 

to identify principles and develop recommendations (Table A, Letter of Correspondence) for the establishment and optimization of an NGS 

informatics pipeline that can be validated for clinical applications. This workgroup was developed as a result of a high priority 

recommendation from a previous CDC-facilitated national workgroup [Next Generation Sequencing- Standardization of Clinical Testing 

(Nex-StoCT) April, 2011] which formulated general quality guidance for the integration of NGS into clinical laboratory settings 3.  The 

current manuscript describes the guidelines and recommendations developed by the Next Generation Sequencing- Standardization of Clinical 

Testing II (Nex-StoCT II) Informatics workgroup.  

 

2. Methods: 
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The CDC’s Division of Laboratory Programs, Standards and Services (DLPSS) convened invited stakeholders for the Nex-StoCT II 

Informatics workgroup meeting in October, 2012 in Atlanta, Georgia. The primary focus was the use of NGS for the detection of germline 

sequence variants; however, the workgroup also discussed some aspects unique to NGS applications for cancer and infectious disease testing.   

The topics discussed included:  

• de-multiplexing 

• sequence mapping and alignment  

• variant calling 

• variant annotation 

• downstream processes for clinical interpretation, such as variant/gene prioritization (ranking), classification, and clinical 

integration into the test result report  

• applicable metrics and controls for each of these topics 

Meeting participants included informatics experts, clinical and research laboratory professionals, test platform and software developers, and 

physicians with experience in using NGS for patient care.  The workgroup also included participants from several federal agencies tasked 

with promoting the quality of clinical NGS applications (Centers for Medicare & Medicaid Services, CMS; National Institute of Standards 

and Technology, NIST; National Institutes of Health, NIH; FDA, and CDC).  The workgroup also included members from an accrediting 

body (College of American Pathologists, CAP) and others holding leadership positions in professional organizations (e.g., American College 

of Medical Genetics and Genomics, ACMG; Association for Molecular Pathology, AMP; and the Clinical and Laboratory Standards Institute, 

CLSI).  The two-day meeting consisted of plenary, roundtable, and workgroup sessions that were designed to facilitate discussion, foster 
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collaboration, and build agreement among participants.  Following the meeting, participants were engaged in teleconference calls to complete 

and augment the discussions that began at the in-person meeting.  The group focused on recommendations for SNV identification.  The 

detection of copy number changes, structural variants, mosaicism, mitochondrial heteroplasmy, methylation, somatic variants in cancer and 

microbial genome sequencing were not extensively considered.  

 

3. Analytical Workflow Overview: Primary, Secondary, and Tertiary Analysis 

3.1  Primary Analysis 

 NGS testing is often divided into three distinct phases: primary, secondary, and tertiary analyses (Figure A).  The design and 

optimization of an informatics pipeline primarily involves the secondary and tertiary analysis of the data derived after DNA sequencing is 

performed.  The primary phase is largely developed by the vendor and is platform specific.  Nonetheless, there are some features of primary 

analysis that should be considered when optimizing an informatics pipeline.  Primary analysis takes place within the sequencing instrument 

and typically involves base calling to generate a file containing the set of sequence “reads” and associated base quality scores.  FASTQ is a 

common file format used to store reads with per base quality scores 8,9; another common file format is the binary alignment format file 

BAM10, which can contain mapped and/or unmapped reads.  The data undergo a quality control step, in which reads are filtered to remove 

those with base calls that do not meet vendor or laboratory-established quality criteria before alignment to the reference assembly.  During 

this process, the 5' and/or 3' ends of reads are trimmed automatically by the sequencing instrument software or by manual adjustment 

according to established criteria because the base quality scores are often lower at the termini of each read.  Additional recommendations and 

standards for primary analysis have been extensively described elsewhere 3,5. 
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Figure A 
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Legend:  NGS workflow.  NGS can be divided into three phases: primary, secondary, and tertiary analysis.  Primary analysis includes 

sequencing to produce a set of reads with quality scores which are deposited into an electronic file.  Quality control procedures are established 

to remove low quality reads from downstream analysis.  During secondary analysis, pooled (multiplexed) reads are separated or "de-

multiplexed" and associated with their respective patient samples.  Reads are then mapped and aligned to a reference assembly.  Secondary 

analysis results in the identification of sequence variants (e.g. SNV: single nucleotide variants, INDEL: insertions and deletions, CNV: copy 

number variants, and SV: structural variants, including duplications, deletions, inversions, and translocations of large >100 (nucleotides) 

blocks of DNA sequence), and positions that are the same as the reference sequence, and in some cases positions that cannot be assigned a 

genotype call with confidence, due to insufficient coverage or other reasons.  Tertiary analysis involves annotation and clinical assessment of 

the sequence variants to identify those that are relevant to the patient and the clinical indication for testing.   

 

3.2 Secondary Analysis 

 Secondary analysis is the process of aligning reads to a reference sequence and generating variant calls.  If multiple patient samples 

are pooled (each individual sample is separately tagged for identification; see Section 4.1), or multiplexed during the sequencing process, the 

resulting data must be de-multiplexed to separate patient data prior to analysis. This is followed by mapping and subsequent alignment of 

each read to a reference assembly.  Reads may not align uniquely to the reference assembly for many reasons.  For example, reads may align 

identically to multiple locations if they are derived from highly homologous regions of the genome 

(http://www.ncbi.nlm.nih.gov/pubmed/16938426, accessed February 10, 2014).  Reads derived from loci not represented in the reference 

assembly, for example HLA alternate alleles, may map to the HLA locus but fail to align.  Alternatively, they may align to one or more off-
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target locations that can lead to the false positives.  Regions that exhibit extreme allelic diversity, such as the HLA, can also complicate 

alignment if the read derived from the sample is from a different haplotype than the sequence used in the reference assembly.  For this reason, 

the GRC (http://genomereference.org, accessed February 10, 2014) includes alternate sequences paths in the assembly for regions with 

extreme diversity when there is data sufficiency.  This approach does introduce allelic diversity, and currently most of the commonly used 

analysis pipelines cannot distinguish allelic duplication from paralogous duplication.  However, it is clear that a more complete reference 

assembly can improve read alignment.  The robust identification of small insertion and deletions variants (indels) is also quite challenging.  

Inconsistent alignments can lead to false SNV calls, or mis-calling of the indel within the initial read alignment.  Many commonly used tools, 

e.g. the Genome Analysis Toolkit (http://www.broadinstitute.org/gatk/, accessed February 10, 2014), perform a post-processing step to do 

local realignment in regions containing potential indels.   Also, de-novo assembly of a patient's reads may be helpful when standard alignment 

protocols do not detect large insertions, deletions, or indels not represented in available assemblies 11.  Detection of these copy number 

changes is challenging and requires normalization against single-copy regions of a reference genome sequence. 

 Differences between the reference assembly and patient reads are identified following alignment.  Several software programs which 

use a variety of algorithms are available to assess the likelihood that a variant is present or absent   These algorithms typically use several 

methods that can include counting the number of reads associated with each allele after appropriate thresholds and mapping qualities are set, 

previous information about variants, allele frequencies, properties of the sequencing platform, and linkage disequilibrium data.  These 

approaches take advantage of the diploid nature of individuals therefore their successful use for single copy sex chromosomes may be 

problematic.  These and other approaches use Bayesian models for calling variants 8.  Often, settings for variant calling, such as minimum 
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variant frequency and minimum coverage requirements can be adjusted by the user.  These settings should be adjusted for the test and the 

type of variant(s) being tested. 

 A list of the identified variants is often represented in a digital file format.  In 2014, the variant call format (VCF) file specification is 

the most broadly used by the clinical community, but its implementation and the annotation information it contains may vary among 

laboratories.  The VCF was developed by the 1000 Genomes project to store DNA polymorphisms, SNVs, indels, and structural variants, 

together with annotations 12. Other formats are also used, including the Genome Variant Format (GVF) (Reese et al., 2010) 13.  VCF and GVF 

allow for genotype representation and provide additional flexibility for describing additional attributes about a variant that are essential for 

downstream analysis.   It is important to note that for a given file specification (e.g., VCF), content representation such as the use of different 

methods for sequence alignment and variant calling, or the methods to describe the variant and its type within the file can vary significantly 

among laboratories.  The lack of standardized VCF requirements is a significant obstacle to comparing and exchanging variant call files 

among laboratories.  This is of growing importance as laboratories outsource parts of the NGS testing process and need to seamlessly input 

external VCF files into their downstream pipeline for tertiary analysis. 

 

3.3 Tertiary Analysis 

 Tertiary analysis uses the product of the secondary analysis to filter, prioritize, and classify variants to identify those that are 

meaningful to the patient’s clinical condition.  This process begins with variant annotation, which is the process of collecting and linking all 

available information about a particular variant.  Annotated variants can then be sorted, filtered, and prioritized using custom rules to 

determine the variant(s) that are relevant to the indication for testing.  Although some of the annotations come directly from the secondary 
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analysis phase (e.g. the variant quality and depth of coverage) the majority are derived from external information that is not readily apparent 

from the derived sequence (e.g., the known or predicted functional consequences of a variant, its population frequency, and/or relationship of 

a gene to disease or phenotype).  These annotations can often be obtained through automated processes using commercial and open source 

tools.    

 The prioritized list of putative genomic variants, their associated genes, and predicted functional effects undergo a clinical assessment 

to identify the relevant variants to be included in the laboratory result report.  These steps generally require the manual review of candidate 

variants by an expert who is able to offer professional judgment about their relevance to the patient and to make the final decision about 

which ones to report, their implications, and the limitations of the test and its interpretation.  The time required to review candidate variants 

can vary significantly.  A variant that is well characterized in the literature as disease associated and relevant to the indication for testing can 

be readily interpreted within the context of the patient’s phenotype.  Variant(s) with limited representation in the literature, but with data 

consistent with a clinical association (e.g. segregation data, structural/functional correlates, or presence in a disease-associated gene) may take 

significantly more time to evaluate and interpret.  Variant filtration and prioritization may be more automated through machine learning and 

other algorithmic approaches in the future, but the in-depth review of variants and genes, including literature assessment, is expected to 

remain largely manual for quite some time.   

 The variants in genes with an established disease association are prioritized based on predicted pathogenicity in the context of a 

patient’s clinical presentation during manual assessment and classification. Many clinical laboratories classify variants into five discrete 

categories (benign, likely benign, a variant of uncertain significance, likely pathogenic or pathogenic) 14,15.  It is important to note that clinical 

classification is not completely separate from the filtration and prioritization steps, because it is not always a linear process.  For example, a 
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set of variants may be filtered early in the analysis because of their association with a gene known to be unrelated to the medical condition(s) 

in question.  

 The final step in the analysis is clinical result reporting.  Clinical result reports for NGS should contain sufficient information to 

communicate the test result and its limitations.   Significant guidance and commentary has been offered for the effective reporting of 

molecular genetic test results 5,14,16-18.  The challenge in reporting results for NGS is to balance the useful and necessary information that a 

clinician requires with the appropriate level of detail so the uses and limitations of the analysis are clearly understood and/or the user can be 

directed to useful resources and other assistance.   Examples of NGS reports can be found in the ACMG Guidelines 5 for	
  clinical laboratory 

standards for next-generation sequencing. 

  

4. Workgroup Recommendations: Secondary Analysis 

4.1 Multiplexing/De- Multiplexing: 

Multiplexing is the physical pooling and simultaneous sequencing of multiple patient samples in a single NGS reaction.  The number 

of samples that can be multiplexed for sequence analysis is dependent on the type of analysis (e.g., gene panel, exome, or genome), the depth 

of sequencing required, the technical limitations of the manual and automated procedures for the timely and accurate preparation of 

multiplexed samples, and the throughput of the sequencing platform.  Currently, it is estimated that clinical laboratories pool samples, for 

example between 10-12 patient samples19-26.   This number will likely change over time and is highly dependent on the application, platform, 

and capacity of the laboratory to handle multiple samples. 
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Samples are multiplexed by “tagging” each fragment with an index (a short sequence that is added to fragmented genomic DNA, also 

known as a barcode, or multiplex identifier) to identify the patient from whom the sequence is derived prior to pooling.  De-multiplexing 

refers to the use of computational tools to separate and associate each sequence read with the correct patient sample once sequencing is 

complete using the barcode indices.  During de-multiplexing, it is important to prevent an incorrect assignment of reads to a patient’s sample.  

The reliability of multiplexing is greatly influenced by several factors associated with the index design and the process by which they are 

added to the fragments prior to sequence analysis.  The optimization and validation of multiplexing and de-multiplexing takes into 

consideration: 

1) Index design (length and diversity of base composition) 

2) Processes for addition of the indexes to each fragment to be sequenced 

3) Selection and use of software tools for de-multiplexing sequence reads 

Commercially available indexes and software programs to analyze these indexes are typically used in the clinical laboratory.  There are a 

variety of multiplexing methods that can be employed to add the index to the patient sample during library construction.  The ligation-based 

method (also known as in-line barcoding) involves incorporation of the index into the library adaptors that are ligated to the fragmented 

sample DNA27-31.  Indexes are typically embedded within one or both of the forward or reverse sequencing library adaptors 27,32,33, via PCR 

primers 32,34,35, or by a combination of adaptors and PCR primers 36.  Platform vendors have adapted and optimized these procedures for use 

with their instruments and provide the indexes and protocols to end users. The Nex-StoCT workgroup recommended that laboratories use 

the commercially available indexes and protocols recommended by the platform manufacturers if they can be optimized and 

validated for the intended clinical application.  



34	
  
	
  

 Clinical laboratories without the relevant expertise are discouraged from designing their own indexes because custom-developed 

indices require extensive validation to ensure that they can be discriminated from each other during de-multiplexing 37.  Indexes (either 

commercial or custom designed) should be validated before clinical use.  This can be done using known samples to assess the fidelity and 

combined error rate (includes error rate of all steps of sequencing, experimental handling, analytical, de-multiplexing, variant annotation, 

etc.).    

Clinical laboratories that design indices need to consider the “edit distance” (the number of substitutions, insertions, and deletions 

necessary to transform one index sequence into another) between any two index sequences.  The edit distance should be optimized to assure 

sequence identity and prevent errors that may lead to mis-assignment (sometimes called cross-contamination) of reads from different patient 

samples37.  To avoid these errors, the workgroup recommended that laboratories use indexes that differ by more than a single base in 

the same reaction/lane.  The balance of the index base composition (mixtures of A,C,G,T at each base position) should be optimized to assist 

with cluster detection36 for some technologies.  Another feature to consider is the length of the index.  Indexes of six or more bases in length 

allow more accurate sample assignment27, whereas problems with sample identification have been reported when shorter sequences were used 

(e.g. 4 base indexes) (workgroup observation).  Shorter indexes have a higher likelihood of replication errors when PCR is used during library 

generation.  Non-specific priming during PCR can also lead to the conversion of one index to another.  This can cause reads to be associated 

with the incorrect patient sample 37.  Multiplexing/demultiplexing errors can result in a low- level presence of unexpected (mismatched) 

indexed reads in a patient sample, and these are typically represented at a low allelic fraction.  A low-level of mismatched indexes is typically 

not a significant problem for germ-line autosomal diseases, but can be an important issue for other applications, including testing for somatic 

variation, mosaicism, and mitochondrial heteroplasmy.   Allowing mismatches during the test optimization process may be informative for 
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understanding the likelihood for loss of discrimination among indexes as a consequence of replication errors during sequencing or other types 

of errors.  

The workgroup recommended that clinical laboratories discard reads with mismatched indexes.  There may be a reduction in the 

percentage of reads that contribute to coverage when no mismatches are allowed, but this can be overcome by increasing the depth of 

coverage.   19,21,22.    

 The workgroup considered workflow issues related to multiplexing and recommended that it is best to index samples as soon as 

possible and prior to targeted capture; however, this may not apply to PCR-based target enrichment methods that require a PCR step prior 

to indexing. This practice also enables the sample to be pooled before capture, thereby minimizing reagent cost, human error, and sample 

switch.  Different sets of barcodes can be used for adjacent samples in the sequencing instrument to avoid mis-assignment of reads in the 

event that physical cross-contamination occurs. 

The fidelity of de-multiplexing should be assessed and validated to assure the correct assignment of sequence reads to their 

respective patient samples.  This can be achieved using a “concordance and contamination screen”, in which the patient’s sample is split and 

both a SNP array analysis (or orthogonal method) as well as multiplexed NGS are performed 38.  Concordance between the two analysis 

methods occurs when sequence reads are assigned correctly to the indexed sample.  Lack of concordance is likely due to sample mix-up or a 

poorly designed index.   Cross-contamination errors can also occur during sequencing, (e.g. nucleotides are mis-incorporated, a nucleotide is 

read incorrectly) and lead to mis-assignment of sequence reads.  The concordance and contamination screen is dependent on having a second 

procedure, which allows for the comparison of results from the split sample.  Alternate methods (e.g., sequencing samples individually versus 

in pools) can also be used to determine the fidelity of sample pooling and de-multiplexing.  Laboratories should ensure that the barcodes 
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detected are only from those included in the assay. This approach not only assesses error, but also monitors the efficiency of barcoding for 

each index used, and may be used to remove un-barcoded, artifactual sequences.  Deviations in the expected allelic fraction or mitochondrial 

heteroplasmy may indicate errors in multiplexing/de-multiplexing or other steps of the sequence analysis.  Control procedures provide 

assessment of the error rate for each patient sample represented within the multiplex pool.  Detailed procedures for the inclusion of internal 

and external QC samples to help assess the concordance and cross-contamination for each clinical sample in a clinical laboratory setting have 

been published 20,21,39.    

4.2 Mapping and Alignment of NGS reads  

De novo assembly of human genomes from NGS reads is currently neither reliable nor computationally favorable for routine use, thus variant 

analysis generally depends on mapping and alignment of sequence data to the reference assembly.  In theory this approach involves mapping 

a read in order to identify the locus from which it is derived, then aligning it to determine whether there are any differences in the read when 

compared to the reference assembly.  In practice, the mapping of a read to the locus from which it was derived may be complicated by 

biological duplication (pseudogenes and segmental duplication40 , assembly error, and genomic regions with significant allelic diversity, such 

as the HLA locus.  The human genome reference assembly is produced by the Genome Reference Consortium (http:// genomereference.org, 

accessed February 10, 2014)41.  While other groups, such as University of California, Santa Cruz (UCSC; http://genome.ucsc.org, accessed 

February 10, 2014) and Ensembl (http://www.ensembl.org, accessed February 10, 2014) distribute the assembly, it is recommended that the 

full assembly be obtained directly from the GenBank FTP site  

(http://www.ncbi.nlm.nih.gov/genbank/genomes/eukaryotes/vertebrate_mammals/Homo_sapien, accessed February 10, 2014) to obtain the 

proper sequence identifiers and alignments of alternate sequence representation to the primary assembly, including the sequence  or assembly 
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accession and versions.  Using a single source for a reference assembly is helpful for minimizing problems in communicating results or data 

sharing when identifying variants based on different reference assemblies, which may use different annotations or coordinate systems.  The 

last major update to the assembly was GRCh37 and a new assembly, GRCh38, was released in December 2013 (see 

http://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/human/, accessed February 10, 2014).	
  

Naming conventions among the different groups have not always been synonymous.  For example, the UCSC refers to GRCh37 as hg19.  

The GRC releases patches (otherwise known as version changes) to update the assembly quarterly.  These patches do not change the primary 

assembly genomic coordinates.  Patch updates are provided to correct errors in existing sequence and/or introduce new sequence that was not 

previously known.  For the latter, this is offered as a scaffold to the primary assembly.  Such a patch is assigned its own coordinates so as not 

to disrupt the genomic coordinate structure of the current accessioned assembly. These sequences will be integrated and will likely change the 

genomic coordinate structure when the reference assembly is updated and assigned a new accession number.   The patch updates are available 

on the GenBank FTP site (http://www.ncbi.nlm.nih.gov/Ftp/, accessed February 10, 2014).  An NGS alignment to a particular region may 

change based on the version of the assembly used.  As a consequence, the workgroup strongly recommended that the assembly accession 

and version number (available at http://www.ncbi.nlm.nih.gov/assembly, accessed February 10, 2014) should be documented for each 

alignment for traceability in both informatics workflows and result reporting.  The full assembly has an assembly accession.version  

(e.g., , as do all assembly units. Additionally, all sequences within the assembly use GenBank sequence accession.versions to track sequence 

changes. When reporting data on an assembly, it is important to note the accession.version of the full assembly or specific assembly units 

used for analysis. 
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The human reference assembly is a complex, multi-allelic assembly 41.   The full assembly 

(GRCh37: http://www.ncbi.nlm.nih.gov/assembly/2758/, accessed February 10, 2014) is composed of a Primary Assembly Unit, which is 

meant to be a non-redundant representation of a single haplotype. The Primary Assembly Unit contains the chromosome sequences as well as 

all unplaced and unlocalized sequence that cannot be ordered and oriented on the chromosome, but are not likely allelic. Additional assembly 

units are created with additional sequence representations for regions with extreme allelic diversity (e.g. for HLA). Most commonly used 

NGS data analysis tools are not designed to work with a multi-allelic reference because they cannot distinguish allelic duplication from other 

types of biological duplication within the assembly. To utilize these sequences, existing software tools will either need to be modified or new 

software tools will need to be developed. Only 3 regions in GRCh37 contained alternate loci, another 60 regions were added as patches (in 

GRCh37.p14) but GRCh38, which was released in December 2013, has more than 200 such regions. While many of these regions will have 

only one alternate, some complex loci such as the HLA, LRC and KIR loci will have many alternate representations.     

Most mapping and alignment algorithms try to find a balance between sensitivity, specificity and speed. Therefore many aligners may 

place a read at the correct locus in the assembly, but will produce a sub-optimal alignment; this may be corrected by local re-alignment, which 

is a common feature of many informatics pipelines.  An important metric that describes the fidelity of the read mapping is the mapping 

quality score.  This score estimates the probability that a read is misplaced.  It is based on several parameters including the number of distinct 

regions within the reference assembly to which the software could map the read together with the number of base differences between the 

read and the candidate locations in the reference sequence. This mapping score is typically stored in a BAM file and is recognized by variant 

calling algorithms.  Mapping scores from different algorithms are not comparable and software varies with regard to how low quality 

mapping scores are handled.  For example, if a read maps equally well to multiple locations in the reference assembly, some mappers will 
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discard it, some will place it randomly, some will place it at multiple locations, and some will map to the location with the highest mapping 

quality score.  This behavior can significantly affect downstream variant calling and is typically accounted for during the optimization and 

clinical validation of the test.  Errors in alignment may also be measured by evaluation of the accuracy of the variant calls. It may be useful to 

use variant callers that appropriately use mapping quality information: for example, variant callers that have a threshold below which reads 

with low mapping scores are not used in variant calling, or are down-weighted as evidence for a variant. 

A variety of mapping and alignment algorithms have been developed and incorporated into NGS software packages.  These alignment 

tools can be adjusted to different levels of sensitivity for the detection of different variant types.  The relevant algorithms and software 

packages have been described and compared elsewhere 41-47. 

Two fundamental alignment techniques are employed in the tools commonly used today: hash table–based implementations and Burrows–

Wheeler transform (BWT)-based methods 46. Hash table-based algorithms index and scan the sequence data to facilitate rapid searching and 

placement of reads on the reference genome sequence 46.  These tools work by building a data structure (or hash table) that is usually an index 

of short oligomers (also called seeds) that are present in either the reads or the reference genome sequence (e.g.  MAQ 48).  This table 

identifies candidate mapping positions by finding locations in the reference and in the reads to be aligned that share these short seed 

sequences.  The candidate mapping positions are then evaluated to determine the final alignments [e.g. BFAST 49, NovoAlign 

(http://www.novocraft.com, accessed February 10, 2014),  MOSAIK (http://bioinformatics.bc.edu/marthlab/Mosaik, accessed February 10, 

2014), and Isaac (http://bioinformatics.oxfordjournals.org/content/early/2013/06/04/bioinformatics.btt314, accessed February 10, 2014).  The 

software tools that utilize hash table-based algorithms differ based on the following: length of the seed, number of mismatches allowed in the 

initial mapping, weight of the initial mapping, type of seed extension, memory requirements, speed, and accuracy.   
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Instead of a table of short oligomers to align the reads, the Burrows–Wheeler Transform (BWT)-based methods 50 use a string matching 

approach to create a space-efficient index of the reference genome to facilitate rapid searching  46,48.  This method rapidly identifies genomic 

locations as good matches for a read and then, similar to the hash table-based methods, fully evaluates these candidates to place reads to 

specific locations 51.  BWT-based methods take less time to execute and are more memory efficient than most methods based on hash tables 

46,48.  Examples of short read alignment programs that are based on BWT are Bowtie 252, BWA53, TMap47 and SOAP2 54.   

The selection of an alignment algorithm and strategy should consider the NGS application (e.g., class of variants to be detected [short 

insertion, SV, SNV etc.], the next-generation platform used, whether the analysis covers the whole genome or targeted regions, etc.), as well 

as the laboratory’s computational capacity (e.g. is there a high performance cluster environment, etc.). Each aligner will require unique 

settings for the optimal detection of different classes of variants.  Some aligners are optimized for use with a particular platform, for example 

TMAP47 is specifically designed for mapping Ion Torrent data to a reference assembly.  Other aligners, e.g., BLASR 55, are capable of 

addressing platform-specific errors, such as increased indel sequencing errors that may occur.  Certain aligners are also designed to detect 

specific types of sequence variants, such as short insertions or deletions, SNVs or CNVs. It is not uncommon for clinical laboratories to 

validate a combination of aligners or the same aligner with different settings to effectively identify many different types of variants 

(e.g. for SNV and CNV detection). This practice is recommended to identify the best tools for the intended clinical application. 

Alternatively, users may choose software packages containing complete workflows that are pre-optimized for particular panels and 

applications. For example, a more stringent quality threshold related to acceptable mapping quality scores might be used for alignment in 

order to call SNVs as compared to the threshold used to align for detection of indels.  It is important to understand that many tools use the 



41	
  
	
  

same fundamental algorithm, and therefore different software packages may have the same fundamental strengths and 

weaknesses43,45,56_ENREF_55. 

 NGS software is still evolving and new versions frequently become available.  Different versions of the same software may vary in 

performance for a particular application.  For example, a recent version of BWA, BWA-MEM (http://bio-bwa.sourceforge.net/, accessed 

February 10, 2014), works better on longer reads and can tolerate higher error rates57 than the earlier version, BWA-SW 53.  In 2014, the 

majority of software tools used for clinical NGS applications are developed for research activities.  Vendors generally design their software 

and establish default settings for optimal performance for general and specific applications.  The work group recommended that 

laboratories initially use the software's default settings and only modify them (with validation) when appropriate for their clinical 

application(s).  Examples of software settings that may be modified include: low quality sequence trimming, number of allowed mismatches, 

the allowed gap opening and gap extension, and minimum mappability for reads. Changes require re-validation to assure that the desired 

outcomes are achieved and other elements of the alignment process are not compromised.  Therefore, the work group recommended that 

changes to default settings and subsequent evaluation be performed in consultation with an informatician with the requisite expertise.  

These steps are performed prior to test validation, which serves to document the final settings of the software that will be used during patient 

testing.   

Several factors should be considered when selecting and optimizing alignment software to assure the quality of the alignment.  These 

include the different error profiles of the various NGS platforms, the general and variant-type specific error rate (e.g. mismatches vs. gaps, 

repetitive region errors), and the average read length of the instrument.  Alignment errors may be detected by evaluation of quality metrics 

that include the mapping quality score, the transition/transversion ratio (Ti/Tv) of subsequent variant calls, and ratios of synonymous to non-
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synonymous changes in subsequent variant calls.  Each alignment algorithm generates a unique mapping quality score (which are not 

comparable between algorithms), and assigns reads in different ways (e.g. some attempt to map, while some bin reads) as described above.  

The Ti/Tv ratios serve as a general quality indicator because they are approximately constant for a particular targeted region (e.g., gene panel, 

exome, or genome)58.  In addition, there are non-computational sources of error.  For example, the quality of the sample and the fidelity of the 

target enrichment process used for gene panel and exome sequencing may influence the quality of the sequence generated and the subsequent 

alignment3, which may affect the ability to map reads.  This is due to the presence of low quality base calls that alter the total percent of 

sequences suitable for alignment, as well as the ratio of on-target to off-target alignments.  Consequently, the on-target to off-target ratio is a 

measure of the quality of the capture across different runs of the same assay, with high on-target rates preferred and directly related to the 

fidelity of the final sequence calls.   

Homologous sequences present a challenge to optimal alignment 3,5, especially if they are longer than the average length of the sequence 

read generated by NGS.  Paired end sequencing or long reads helps but is no longer effective when the region of homology is much larger 

than the library fragment size.  Coverage at the target locus will be reduced when there are long stretches present elsewhere in the genome 

with100% identity to the region of interest, which can lead to missed variants.  Sequences that are less than 100% identical but exceed a level 

of homology in regions that aligners cannot unambiguously map reads will be prone to false positive variant calls (i.e. a variant call that 

reflects the difference between gene and pseudogene rather than an actual change at the gene of interest).  For exome and genome sequencing 

and most gene panels, the workgroup recommended that reads be aligned to the reference assembly, and not just the target region, to 

minimize the potential for off-target or forced alignments, unless methods to ensure the unique alignment to targeted regions of the 

genome have been developed.  This may not be necessary for some gene panel or other sub-exome/genomic analysis when PCR captured 
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methods are used stipulating that the fidelity of the alignment must be optimized and validated to minimize the potential for mis-alignment of 

reads.  Comprehensive testing for some disorders must include certain genes with high sequence homology to other loci.  An example is the 

stereocilin (STRC) gene, a major gene in nonsyndromic hearing loss 59. While NGS is potentially a universal technology platform that can be 

used to interrogate many different variant types and consolidate diagnostic testing assays, homologous genes will remain a complicated issue 

for the foreseeable future.  In some cases it may be necessary to use an alternative method that enables amplification or sequencing of only 

the targeted region using location-specific primers or probes, such as Sanger, to confirm variant calls in such regions, depending on the exact 

library preparation method used.   

  

 4.3 Post-alignment processing, Genotype / Variant, Calling, Sequence Annotation, and Filtration 

Additional processing is often performed prior to variant calling to optimize the alignment and account for errors in the initial mapping 

and alignment.  These steps include local realignment, and for some variant callers and enrichment methods, removal of polymerase chain 

reaction (PCR) duplicates , and the recalibration of base call quality scores 8,60,61.  It is important to note that duplicate removal is generally 

not performed with amplification-based enrichment protocols and various variant callers don’t require base call recalibration. 

Variant calling is the process in which nucleotides (and their position) that differ between a patient’s sample and the reference sequence 

used for the alignment are identified. This process is shown in Figure B.   

 

Figure B  
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Figure B.  A patient sequence is aligned to the reference assembly and/or other characterized sequences prior to downstream analysis for 

variant and genotype calling.  The aligned sequences are typically contained a BAM or similar file type.  These files are amenable to analysis 

that identifies a set of variants or sequences that differ from the reference.  These sequence variants are deposited into a variant file that 

permits additional feature annotation and downstream analysis. 
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Dealing with PCR duplicates: High rates of duplicate reads, which occur when  multiple reads are generated from the same initial sample 

molecule, can lead to increased false positives or incorrect variant zygosity calling 8 because of overrepresentation of a read with a false 

positive call.  If not part of the suite used, programs such as PICARD (http://picard.sourceforge.net, accessed February 10, 2014) and 

SAMtools53 can be used to process FASTQ files and remove duplicate reads. These programs identify duplicates using algorithms that detect 

excess reads with the same start and stop coordinates.  Duplicate removal is typically not performed in assays using amplicon-based capture 

reagents, because all amplification products will have the same start and stop positions.  In such systems duplicates can be minimized by 

increasing input material or reducing PCR cycles.  The level at which duplicates influence accuracy can be determined by measuring false 

positive and negative rates across an input DNA titration series.   

4.3.1 Local realignment: The set of mapped reads at a locus is locally re-aligned to the primary reference assembly during the local 

realignment process, (see http://www.broadinstitute.org/gatk/events/2038/GATKwh0-BP-2-Realignment.pdf , accessed February 10, 2014).  

Realignment can improve the quality of the alignment and the sensitivity of variant calling while reducing false positives, especially for small 

indels 62 (see http://www.broadinstitute.org/gatk/events/2038/GATKwh0-BP-2-Realignment.pdf, accessed February 10, 2014) . There is 

evidence that misalignment around indels is an important source of error 61,63.  Although reads may be placed in the correct genomic location 

during the primary alignment, their placement may be shifted if an insertion or deletion is present and this shift can introduce false-positive 

variant calls in the region flanking the variant 8.  For example, mapping software will not have sufficient evidence to introduce an indel into 

the alignment when there is an insertion or deletion near the end of a read.  This usually results in a small number of substitutions placed into 

the alignment rather than correct identification of an indel.  However, when a number of reads align to a locus, particularly reads where the 

indel is closer to the interior of the read, one may use the set of reads to correctly identify the indel and remove the spurious substitutions.  
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Confirmatory testing using an alternate method during patient testing can effectively identify these false positives or identify indels that 

otherwise may be missed.  The Genome Analysis Toolkit (GATK) 63,64 , Torrent Suite and Ion Reporter software47 and NextGENe 

(http://www.softgenetics.com/NextGENe.html, accessed February 10, 2014), are examples of commonly used data analysis pipelines that 

perform local realignment, quality-score recalibration, and variant/genotype calling.   Several recent publications describe evaluations of NGS 

software for calling short indels and associated challenges44,61,65.   

4.3.2 De novo assembly: Some programs, including the GATK2 HaplotypeCaller and Torrent Suite/ Ion Reporter software, perform local de 

novo assembly, which is also useful for accurate alignment and detection of variants 66. This approach gathers all of the reads that map to a 

region of interest and assembles them without the use of a reference sequence to avoid propagation of errors associated with alignment to a 

reference assembly.  These programs use heuristic algorithms that calculate the likely order of overlapping reads, and it has been shown that 

this approach can improve the accuracy of variant calling or identify long insertions and deletions that may be missed by alignment based 

approaches due to soft clipping which is an unmatched fragment in a partially mapped read.67  

4.3.3 Quality score recalibration: Quality scores are associated with each primary base call in the aligned reads.  Base quality score 

recalibration generates higher quality variant calls than those derived from the raw per-base quality scores that were originally assigned by the 

platform-specific base caller8,60.  The raw Phred-scaled quality scores do not always accurately reflect the true base-calling error rate 60.  To 

recalibrate quality scores, NGS data analysis pipelines, for example GATK, utilize alignment-based algorithms that employ a set of 

established variants, e.g., SNVs of both types (transitions and transversions), for accurate alignment to the reference sequence.  It has been 

proposed that performing base quality score recalibration using well characterized spike-in DNA sequences can also improve recalibration 
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accuracy 68. Variant callers that use other types of sequence information, such as flow-space69 information, do not typically require base 

quality score recalibration. 

4.3.4 Variant callers: The variant calling process generates between 20,000 and 100,000 variants per exome, and approximately 3-4 million 

variants for whole genome sequencing.  At least 90% of these variants are typically SNVs 1,70.  Genotype callers output results to a variant 

call file 12.  At a minimum, these files record information and annotations about the sequence variants identified, such as their type (e.g., SNV, 

indel, etc.).  Many of these files support the inclusion of additional information that include structural and functional consequences of the 

variant and the capacity to record reference sequence or no-calls.  

 Many software tools are used for variant identification, which have been described and compared elsewhere 8,60,61.  NGS bioinformatics 

pipelines may call SNVs, small insertions and deletions, as well as larger structural variations (e.g. larger insertions, interchromosomal 

translocations, and copy number variants).  In 2014, no single software tool identifies all of these variant classes with equal accuracy.  As a 

consequence, the workgroup and others42,71,72 recommended that more than one variant caller should be evaluated to identify the 

combination of settings and/or software able to detect the spectrum of variants targeted by the intended clinical application and that 

the suitability of a variant caller for the platform used be considered.  For example, some laboratories analyze the data using variant 

calling software optimized for SNV detection, followed by a separate analysis using software optimized to call indels.  The results from these 

separate analyses can then be combined.  However, there is a high bioinformatics/IT overhead that comes with constructing combinatorial 

pipelines, and discordance between the multiple approaches must be resolved 73.   In some cases, alternate methods using different but 

established technologies, such as quantitative PCR or Sanger sequencing, may be required to resolve discrepancies between the different 

analyses.   
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Errors can occur during both alignment and variant calling. The two processes are tightly linked, therefore variant calling software should 

be optimized in conjunction with the alignment strategy.  Software packages that provide optimized mapping, aligning, and variant calling for 

particular applications may be appropriate.  In the clinical laboratory, this assessment should focus on the sensitivity and specificity of variant 

calling for the type of variants that are under investigation (e.g. SNVs, indels, etc.).  The workgroup recommended the use of both real 

and simulated data for optimization of variant or genotype calling 74.  However, the workgroup recommended that simulated data not 

be used in the absence of real data for optimization and validation of the informatics pipeline.  Well-characterized human genome 

reference materials should be used for assay development  and optimizing sensitivity and specificity for different types of variant calls 

in different genomic contexts 67 (GeT-RM browser: http://www.ncbi.nlm.nih.gov/variation/tools/get-rm/, www.genomeinabottle.org, 

accessed February 10, 2014). 

A variety of systematic errors can occur during sequencing, mapping, and alignment, thus many variant callers evaluate the metrics 

associated with these processes and filter out variants that do not meet set criteria 75.  These filters generally use the base call quality score, 

mapping quality score, coverage, an estimation of strand bias, and allelic read percentage (allelic fraction or zygosity), among other 

parameters for the identification of variants with a high degree of confidence.  The acceptance criteria for many of these metrics are often 

application specific but general principles apply.  For example, the allelic fraction for a heterozygote call is expected to center around 50% 

and therefore acceptance criteria can be set to include a reasonable range (e.g. some laboratories use cut-offs that range from 30% - 70%).   

Different settings may be necessary for different variant types (SNVs vs. indels).   If the settings and metrics are too stringent, data may be 

lost or filtered, resulting in false negatives or, if less stringent, too many false positives.  Additionally, when variant detection is performed in 

areas with low coverage, a large number of sequencing errors may be called as variants.  For example, a single read supporting a 
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heterozygous variant call in a region covered by only 5 or 6 reads is difficult to differentiate from a sequence or mapping error.  Some 

laboratories apply a strict threshold for the particular number of quality reads needed for calling variants, while others have no hard threshold 

but instead require confirmation of these variants via an orthogonal method, or by comparison to data from family members to exclude errors.  

However, an overabundance of coverage can also be indicative of an error, since reads from regions of low complexity or those with shared 

sequence identity can erroneously map to a single region causing higher than expected coverage40.  Higher than expected coverage occurs due 

to amplification errors.   All regions with higher than expected coverage may contain mapping errors, unless other reasons, such as gene 

amplification as can occur in the EGFR gene, are possible.   

4.3.5 Considerations for diseases with atypical allelic fraction ranges and challenging variant profiles: Allelic fractions can be significantly 

lower than those observed for a typical germline variant for diseases such as somatic cancer, mitochondrial diseases, and Mendelian disorders 

in which mosaicism is observed.  This requires a different pipeline (or different allele ratio threshold setting) to adequately detect variant calls 

that would normally be filtered out.  In addition, different pipelines are required to analyze the expected variants types, such as insertions and 

deletions and structural rearrangements which are more prominent in cancer samples.  The detection of structural variants for cancer 

applications as opposed to detection of these variants associated with heritable conditions can also be problematic because of the large 

number of chromosomal rearrangements and other aberrations such aneuploidy present in the sequence data.  The significant tissue 

heterogeneity in some cancer samples also confounds variant calling and may require an alternative or refined pipeline.  Sequencing of the 

mitochondrial genome, which may also show significant heterogeneity, also dictates careful consideration of the pipeline and settings used 

20,21.  Additional details in addressing these sequencing issues are beyond the scope of this manuscript.  
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5. Workgroup Recommendations: Tertiary Analysis 

5.1 Variant and Gene Annotation, Filtration and Prioritization  

During tertiary analysis, a variety of data sources and algorithms are used to evaluate the identified variants to determine which are 

relevant to the indication for testing and should therefore be included in the clinical report.  Tertiary analysis includes variant annotation, 

followed by automated filtration and prioritizations using these annotations and finally an in-depth clinical assessment of the most relevant 

variants. 

5.1.1 Annotation (in addition to that described during secondary analysis): Annotations used for filtering and prioritizing variants typically 

include structured information such as the  population frequency, biochemical properties, computational pathogenicity prediction, variant type 

and predicted impact to the protein (missense, loss of function, etc) of the variant.  Databases such as those developed by the 1000 genome 

project (http://www.1000genomes.org/) and Exome Variant Server (EVS, http://evs.gs.washington.edu/EVS/, accessed February 10, 2014) 

are useful sources for population frequencies.  Also typically included in high throughput annotations is structured information regarding 

whether a variant is present in variant databases such as the Human Gene Mutation Database (HGMD, t http://www.hgmd.org/), Online	
  

Mendelian	
  Inheritance	
  in	
  Man,	
  (OMIM, http://www.omim.org/) or ClinVar (http://www.clinvar.com/) and whether or not it has been previously 

labeled as clinically significant.    ClinVar contains all of the OMIM variants in a format that can be mapped back to a sequence, which is a 

notable advantage over other databases.  Many of the variants found in OMIM are not formatted to permit this. 

Unstructured information such as evidence embedded within published literature or information about segregation of a variant, the 

pattern of inheritance, and the patient’s phenotype are difficult to incorporate into this upfront, high throughput process but is critical in the 
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subsequent in-depth assessment of variants that are considered potentially relevant for the patient’s clinical presentation5,76,77. Additional 

detail about the type of information that is collected during clinical variant annotation are described5,76.  

Both public and commercial annotation software tools are available. Some annotation tools rely on information contained in external 

data sets (e.g. UCSC transcript information to determine splice sites [http://genome.ucsc.org, accessed February 10, 2014], species sequence 

comparison programs, like PhastCons 78, as well as functional variant pathogenicity prediction programs like Mutalyzer (https://mutalyzer.nl/, 

accessed February 10, 2014), Provean (http://provean.jcvi.org/index.php, accessed February 10, 2014), Mutation Assessor 

(http://mutationassessor.org/, accessed February 10, 2014), SIFT79 (http://sift.jcvi.org/, accessed February 10, 2014), and PolyPhen2 

(http://genetics.bwh.harvard.edu/pph2, accessed February 10, 2014), which may be run on specific variants to hypothesize the functional 

consequence of amino acid changes72. Other tools, including  ANNOVAR 80, VAAST 81, Carpe Novo (http://rgd.mcw.edu/, accessed 

February 10, 2014), Variant Effect Predictor82, SNFeff (http://snpeff.sourceforge.net/, accessed February 10, 2014), Ion Reporter47,  and 

Mutation Taster (http://www.mutationtaster.org/, accessed February 10, 2014), can annotate the variants and support their subsequent 

filtration and prioritization based on user defined rules, nucleotide and amino acid level evolutionary conservation, and predicted protein 

impact  (e.g. a variant that causes a premature stop, affects canonical splice site or changes the start codon to another amino acid).  A survey 

of variant annotation tools, along with their respective input/output formats and variant identification capabilities was described 42.  The 

choice of annotation tools should be based on the types of sequence variants that are to be detected by the clinical test as well as the 

strengths and limitations of the software to detect particular variant types.  Annotation and filtration tools need to be integrated into 

the entire informatics pipeline to enable seamless automation that must be validated.   
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Some annotation data are drawn from external databases including genome wide databases (e.g. [ClinVar83 

http://www.ncbi.nlm.nih.gov/clinvar/, HGMD, OMIM, dbVar [http://www.ncbi.nlm.nih.gov/dbvar/], accessed February 10, 2014) and locus 

specific databases (e.g. Leiden Open Variation Database [LOVD, www.lovd.nl/, accessed February 10, 2014], Universal Mutation Database 

[UMD, www.umd.be/]).   These databases are not well-curated for medical applications, making it essential that the user understands the 

quality of evidence obtained from these resources when making a clinical assessment 70,84.  The incorrect retention or filtering of sequence 

data as a consequence of an incorrect annotation in an external database may cause errors.  For example, a variant may be incorrectly listed in 

a database as pathogenic with insufficient evidence by a single study, but may be an artifact due to an error in the data analysis process 70.  

Conversely, databases, such as dbSNP (http://www.ncbi.nlm.nih.gov/SNP/, accessed February 10, 2014), that may contain information about 

benign polymorphisms also contain rare and pathogenic variants.  NCBI provides files that allow users to distinguish variants that were 

submitted with pathogenicity assertions; however, other variants found in population studies that may still be pathogenic are not 

distinguished.  These limitations necessitate manual review by a clinical laboratory professional with the necessary expertise.	
  	
   The laboratory 

must cross-reference findings derived from databases with other resources and the primary literature in making a determination about the 

likely pathologic association of a variant.  To streamline the workflow, many laboratories develop internal databases of customized annotation 

information based on the results from their manual review processes which are used as a curated, reliable data source for variants that may be 

identified in future analyses 76.  The workgroup recommended that until reliable medically curated databases are available, data used 

to annotate variants for making a clinical assessment should be carefully evaluated to assure that it is supported by sufficient 

evidence. 
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5.1.2 Variant filtration and prioritization: Filtering of variants uses computer algorithms designed to identify variants that are clinically 

relevant to the patient and the reason for testing.  False- positives can be removed from consideration using software tools for automated 

variant filtration that base their assessment on quality criteria, knowledge of the region targeted, and variant type 70,72.  A substantial number 

of variants can be filtered or prioritized based on criteria such as the allele frequency in the population, predicted effect on protein function, 

and the presence of the variant in clinically relevant genes.  Variants with high frequencies in the population can also be eliminated prior to 

analysis as they are usually not expected to cause disease.  

Heuristic and probabilistic ranking are the two major approaches for filtration.  Heuristic ranking utilizes a series of logic steps that are 

applied to the variant calls (e.g. ANNOVAR 80, SIFT 79). The current iterations of heuristic filtering assume that causal variants alter protein 

sequence in most instances (unless there is evidence otherwise); therefore, synonymous variants may be removed to reduce the number of 

variants in a given individual’s exome data set from approximately 15,000-20,000 coding SNVs to approximately 7,000 – 10,000 

nonsynonymous coding SNVs 1.   Importantly, synonymous (and non-synonymous) changes can affect gene function through disruption of 

other mechanisms such as splicing, mRNA processing, and transcriptional regulation 85.  This can be a limitation of heuristic ranking 

approaches.	
  	
  Probabilistic ranking tools used for filtration (e.g.VAAST81) prioritize variants using a likelihood prediction that involves 

analysis of allele and variant frequencies in the sequence under analysis, compared to a control population database, which is then combined 

with an amino acid impact score to generate a ranked list of variants.  The probabilistic ranking approach uses larger control databases from 

the same population as the case to increase the likelihood that the relative rarity of the variant is properly assessed.  Probabilistic ranking 

methods can score nonsynonymous variants and variants in noncoding regions and incorporate other approaches that increase the statistical 

power and accuracy of prioritization.  For example, analysis methods may use amino acid substitution data combined with pedigree, phased 
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data sets, and disease inheritance models 81,86.  Some methods use a combination of both probabilistic and heuristic ranking to provide a more 

accurate list of prioritized candidate genes and potential causal variants8.  The workgroup recommended that laboratory professionals 

recognize differences in approaches to variant filtration and consider these in the design of the informatics pipeline.  

 Heuristic and probabilistic methods primarily assess the likelihood of changes to the structure and function of proteins as a consequence 

of the detected variant in the ~22,000 human protein-coding genes.  These methods do not take into account variants in the non-coding 

genomic regions.  This information is available in the GENCODE database (http://www.gencodegenes.org/, accessed February 10, 2014), 

which annotates over 25,000 noncoding RNA genes (non-protein-coding genes) and thousands of expressed pseudogenes.  Large-scale 

functional genomics screens or datasets like ENCODE (http://www.genome.gov/10005107, accessed February 10, 2014) which provides 

information about functional elements, such as regulatory elements that control gene transcription in the human genome, will be useful for the 

annotation of noncoding regions.    Non-protein-coding genes now outnumber coding genes and increasing number of regulatory elements are 

being defined, therefore more activity in this area will be needed in the future. Clinical laboratories are usually not incorporating assessments 

of non-coding regions due to the lower probability of disease impact and substantial limitations in predicting the effects of variation. 

Population frequency is often a prominent factor for filtering data when evaluating the molecular basis of rare disease.  The global, 

maximum population and race-specific allele frequencies can be applied as separate variables, when data of acceptable quality are available.   

Variants are typically filtered if they have a higher prevalence than that of the disease in the patient’s ethnic/racial group. This is challenging 

because limited data are available for most ethnic/racial groups and only for medical conditions in which a single highly penetrant variant is 

the likely cause of disease.  In some disorders, such as dilated cardiomyopathy, pathogenic variants are common in the general population and 

known to cause late onset but a milder form of the disease.  Similarly, certain recessive variants have high carrier rates (e.g. GJB2 c.35delG 
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and CFTR p.F508del).  These variants may be incorrectly filtered from the analysis. As a general rule, those at or above approximately 1% 

are filtered.  While this may be appropriate for the majority of persons, caution must be exercised to retain variants from a geographical sub-

population where the disorder may occur at significantly higher frequency.  For example, the carrier frequency for the recessive disorder 

glutaric aciduria is estimated to be 1 in 150 worldwide but in the subpopulation, Old Order Amish of Lancaster County, Pennsylvania, 1 in 10 

are carriers and the disease prevalence is significantly higher87.  Thus, this variant could be mistakenly filtered if a laboratory used a local 

population as a source of variant frequency.   

 

5.1.3 Pathogenicity prediction tools - additional details:  As mentioned in the preceding sections, the majority of informatics pipelines 

developed by clinical laboratories utilize pathogenicity prediction programs to evaluate the potential impact of a variant on protein structure 

or function.  Pathogenicity prediction programs are helpful for identifying variants more likely to disrupt gene structure or the resulting 

protein product; however, their sensitivity and specificity are low88-91.  It is important to understand the algorithm employed by each 

pathogenicity prediction tool.  Using a combination of tools can be informative; however, results from tools that use the same algorithm 

should not be taken as independent evidence that a variant impact prediction is accurate.  For example, many laboratories will use both SIFT 

and PolyPhen2 to analyze data sets, even though these programs use similar algorithms, thereby giving similar impact predictions.  Where 

possible the laboratory should consider using more than one prediction program with different approaches to predicting 

pathogenicity.  Predictions are based on multiple criteria including the biochemical nature of the variant, phylogenetic information, and 

perhaps, structural information.  These programs have limitations such as a lack of capability to integrate the influence of other neighboring 

variants that may promote or mitigate a structural or functional change.  For example, in one study, it was estimated that in silico prediction 
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programs, such as PolyPhen2 and SIFT, are reported to only accurately predict whether a variant is damaging or benign in approximately 

71% of the cases examined92.  Therefore, it is recommended that results from prediction programs not be used as the sole source to filter or 

classify variants in the absence of other supportive data.  Additionally, if a protein X-ray crystallographic structure is available, molecular 

structural modeling may help to elucidate the pathogenic effect of a missense variant 39.  

 

5.1.4 Knowledge curation: When performing genome and exome analysis, it is customary to limit the analysis of the patient-derived 

sequence to "clinically relevant" genes.  The "medical exome" refers to the portion of the exome that contains known clinically relevant 

genes83,93,94.  Historically, these genes were derived from the OMIM database or the HGMD.  These and similar databases are essential 

resources but many are not curated with sufficient clinical rigor.  For example, it is now well established that many variants listed as 

pathogenic are actually benign and some of these variants may have been the basis for the original gene-disease association.  For many genes, 

the published literature for disease-associated genes does not contain sufficient evidence for a definitive association or even likely association 

in some cases. Large community efforts, in collaboration with NCBI, are under way to address these issues and develop clinical grade 

databases (e.g. ClinVar83, ClinGen: Clinical Genome Resource Program (http://www.iccg.org/about-the-iccg/clingen/, accessed February 10, 

2014).  Some laboratories have developed custom algorithms that limit the analysis to smaller subsets of genes based on the patient 

phenotype84,95.   The workgroup recommended that filtration algorithms should utilize databases containing known pathogenic 

variants (e.g., HGMD) to minimize the possibility that disease-associated variants are inappropriately filtered.  Some programs will 

tell the user when a gene or a variant has been reported in the literature (e.g. HGMD and OMIM), and then the user can evaluate the data and 

decide if it matches the patient phenotype.  
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5.1.5 Validation of computational tools: The workgroup recommended that methods selected for annotation must be evaluated to 

demonstrate that variant attributes are properly assigned.  This is done using the data output from control samples previously sequenced 

with known, experimentally confirmed variants.  New tools can then be evaluated to determine whether they assign expected annotations to 

these known variants.  Software tools and databases used for deriving annotations are regularly updated.  A revision to a database that the 

laboratory uses may affect the annotation process and as a consequence, the data analysis pipeline must undergo a re-validation 

before the adoption of any updated data sources or software.  These changes are not always announced or obvious, which presents a 

challenge to the laboratory in maintaining a validated test.  Therefore, if web-based tools are unable to provide version control, the 

workgroup recommends that clinical laboratories bring the software or datasets in-house so version changes can be documented, or 

use software providing version controlled databases. 

The types and number of annotations used by clinical laboratories differ.  A standardized minimum set of annotations has not been 

established within the laboratory community.  For example within the work group, one laboratory used 80 annotation fields, while another 

used 127 fields, with some of these fields overlapping and others unique.  Even within overlapping fields, the use of unrestricted strings often 

results in incompatible coding of field data, or differences in ontology and syntax.  

Common examples of annotation fields that can be derived computationally include:   

• genomic sequence coordinates 

• transcript nucleotide and amino acid position 

• types of variant (e.g., synonymous, non-synonymous/missense, and predicted loss-of-function such as non-sense, frameshift or 

splicing variants that have a high likelihood to prematurely truncate a protein through reading frame modification or disrupted 
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splicing). These should be described relative to a particular transcript of the gene, often the single canonical transcript chosen 

by the laboratory. 

• protein function annotation/ predicated impact on the protein based on pathogenicity prediction programs (damaging, neutral, 

etc.) 

• predicted effect on splicing 

• nucleotide conservation 

• error detection annotations  

o e.g. quality scores, number of alleles at a position, mapping quality, depth of coverage, and other evidence to support a 

variant call 

• allele frequencies from population datasets 

• observed segregation in the patient’s family 

 

The gene containing the sequence variants is also annotated for exome and genome sequencing.  This filters variants associated with genes 

determined not relevant to the medical issue in question.   To reduce the number of variants that require this manual examination, annotations 

are used for filtration or removal of irrelevant genes or variants from analysis and to create a prioritized (or ranked) list according to the 

likelihood of the gene and/or variant being associated with the indication for testing (Figure C).   
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Figure C: Schematic for tertiary analysis of exome and genome NGS testing.  Gene and variant analysis may occur in parallel or 

sequentially, depending on the laboratory workflow.  In targeted gene panels the genes that make up the “filtered gene list” are determined at 

the time of test development.  

 

 

5.2 Clinical Assessment and Result Reporting 
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Next, variants are analyzed based on the annotated information to identify those that are relevant to the patient and the reason the test 

was ordered.   In contrast to the automated, high throughput filtration and prioritization above, this final assessment process is still fairly 

manual and requires highly trained staff. The end product of this assessment is typically a report of all relevant information available for a 

given variant, including the annotations discussed above.  Assessment of published literature is critical, and provides clinically relevant 

information such as co-segregation of a variant with disease, and functional assays.  Computational predictions contribute to manual 

annotation by experts in clinical and laboratory genetics but are typically only used as supporting evidence, because the accuracy of most 

tools is suboptimal.  Additional details about the type of information collected during clinical variant assessment is available5,76,77.  The 

number of variants remaining after annotation, filtration and prioritization ranges from a few to several hundred, depending on the test.  

Minimal additional evaluation is required for well-characterized variants known to be disease associated.  For others, a manual review, as 

described above, is typically needed to determine which ones are clinically relevant to the patient (noted as "clinical grade assessment" in 

Figure C).  The workgroup recommended that these assessments be performed by personnel with relevant expertise about the disease.  

In some instances, this can be a collaborative activity among the laboratory professional and others that may include a physician(s), 

genetic counselor(s), and/or informatician(s).  The primary purpose of the clinical assessment is to determine what will be included in the 

laboratory report.  

 

5.2.1 Variant classification: The current guideline for variant classification of Mendelian diseases is a five- tiered system (benign, likely 

benign, a variant of uncertain significance, likely pathogenic or pathogenic) 14,15.  A new guideline for variant reporting is expected in 2014 
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through a collaborative development of the AMP, CAP, and ACMG.   This  new guideline was initiated, in part, by the recognition that the 

existing guidelines do not provide sufficient recommendations to guide the evaluation of evidence used to classify variants.   

It is important to differentiate between variant classification (e.g. assessing whether the variant is deleterious) and clinical result 

interpretation (assessment of one or more variants in the context of the clinical presentation and other test results).   For example, benign 

variants would probably not be reported.  Those sequence variant(s) most likely determined to be related to the patient’s phenotype would be 

reported and interpreted in the report, linking their relevance to the indication for testing and other information known about the patient and 

the family.  The type and level of evidence used to specify that a variant is associated with the indication for testing will vary for many 

reasons.  For example, the level of evidence needed for a variant in a gene known to be associated with the disorder in question may be lower 

than for a variant in a novel or noncoding gene or when reporting carrier status or disease risk in an otherwise healthy individual.  There are 

three essential questions to ask when assessing variants that are identified during the annotation and prioritization process: 

1. Does the variant disrupt the normal function of the gene?  

2. Does this disruption lead to, or predispose a patient to a disease, phenotype, or other impact relevant to human health? 

3. Does this health impact have relevance to the patient’s clinical presentation and indication for testing?  

Clinical result reporting was not a focus of the workgroup meeting but there was some discussion about current result reporting 

challenges.  Standards for clinical reporting are only beginning to emerge and additional work is necessary5.  The challenge is the distillation 

of complex information to a format that can be readily understood by a clinician and useful for informing medical decisions.  The complexity 

of some NGS test results and their limitations may require that the ordering physician consult with laboratory professionals with the relevant 

expertise.  The workgroup recommended that a collaborative relationship be established prior to ordering of the test.  This provides the 
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opportunity for the ordering physician to be kept informed about the uses and limitations of the test.  The work group developed a description 

of the general steps that take place during clinical result reporting (Figure C), including the integration of the patient’s clinical presentation 

data, gene assessment in the context of the patient (e.g. integration of a patient’s family history, when relevant), and results from functional 

studies when assays are available (e.g. enzyme testing, biochemistry).      

Pathogenic and likely pathogenic variants as well as variants of uncertain significance relevant to the indication should be 

reported.  The workgroup discouraged reporting of benign variants and suggested clear separation of likely benign variants if 

reported.  Laboratories should consider confirming all reportable variants using Sanger sequencing or another method3.   Likely benign 

variants may be reported at the discretion of the laboratory, but if reported, they must be clearly distinguished from other variants and when 

applicable, note that the presence of a disease-associated variant may not have been detected.   The workgroup also recommended that the 

laboratory have strategies to reclassify or to monitor the reclassification of variants as new data become available to inform the 

development of the test result report.  

 

5.2.2 Other findings:  Implications for test result reporting. Some genes and variants may be associated with more than one disease, for 

example the apoE gene (hypercholesterolemia and Alzheimer disease), requiring the laboratory to consider the disclosure of information not 

related to the indication for testing 96,97.  Other criteria are used in the reporting of pharmacogenetic results because the associated variants are 

not related to a disease state. Additionally, a combination of variants (haplotype), and not individual variants, determines metabolizer status, 

thus the combinations and phase of variants must be considered.  In 2014, pharmacogenetic testing is primarily performed using other 
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methods.  One of the challenges for NGS is its current weakness in defining haplotypes.  Phasing variants based on the relatively short read 

sizes of current instrumentation is challenging although some methods do exist 98.    

5.2.3 Incidental findings: NGS, particularly when it is applied to exome and genome sequencing, may identify secondary or incidental 

findings that reveal carrier status, non-paternity, or a significant risk for a disease that is not related to the reason the test was ordered.  In 

these instances, the workgroup recommended that the laboratory develop a policy describing how these data will be handled in terms of what 

is to be reviewed by the laboratory and what would be reported to the clinician and ultimately the patient.  If a laboratory will report 

secondary findings, optimization and validation of the clinical test should include those regions in which incidental findings may be found.  

The ACMG published a policy that certain incidental findings obtained from exome and genome clinical testing should be reported.  The 

policy provided a list of those diseases, genes and variant types thought to be clinically actionable99 and recommended reporting incidental 

findings associated with variants known or expected to be pathogenic.  

 

5.2.4 Clinical Validation: Once the informatics pipeline for a clinical NGS test has been established and optimized, the next step is test 

validation.  This topic was previously addressed 3.  NGS platforms, software, and supporting data are continuously evolving.  The 

informatics pipeline must undergo a re-validation before the adoption of any new, updated, or re-optimized software or databases   In 

some instances, only downstream processes need to be revalidated (e.g., a change in the annotation software should not influence the quality 

of the alignment protocols) 3.  As a consequence, the laboratory must integrate the decision to adopt changes, re-optimize, and re-validate into 

the overall workflow and projected costs in providing clinical NGS services.    
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6. Discussion 

 The informatics pipeline is an integral component of NGS.  NGS can be a powerful tool for identifying sequence variations associated 

with a medical condition that may not be found using other available clinical testing methods.  Because of the often far-reaching 

consequences of a genetic diagnosis, laboratory professionals must be cautious and employ the best methods available to assure that the 

findings do not represent a false positive analytic result.  There are many steps in which such a variant may be missed by the sequence 

analysis or inadvertently filtered out during the informatics analysis. 

 Clinical laboratory professionals typically understand the parameters associated with achieving a reliable analytic test result, but many 

are less experienced in the field of bioinformatics or the curation of a set of sequence variations that occur in genes that are not initially 

targeted for analysis, as is often the case for exome and genome analysis.  The workgroup recommended that laboratory professionals 

work closely with informaticians to assure the quality and reliability of the informatics pipeline as a NGS test is being developed and 

optimized.   

There are two general steps in the analysis of NGS data.  The first is the determination of the genotype including sequence variations 

that differ from a reference sequence, and the second is the analysis of the genotype to determine the loci and variation(s) that are relevant to 

the patient in question.  This latter step, in part, requires consideration of data obtained from external databases.  Currently, there is no 

comprehensive, publically available, curated variant database to support variant interpretation.  This type of “clinical grade” database is 

needed in order to ensure useful and reliable diagnostic testing in general, and NGS in particular, as the returned amount of data quickly 

exceeds a single laboratory’s ability to properly assess all variants within a reasonable turnaround time.  The databases that are currently 

consulted were originally developed for research applications.  Nonetheless, these databases have been employed for clinical NGS testing 
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with users typically cross-checking the data obtained against primary peer-reviewed literature to assess its relevance and validity.  Manual 

retrieval and evaluation of data are time consuming thus a useful feature of a "clinical-grade" database is the capacity to extract data and use it 

in an automated process for analysis and interpretation100  Efforts are underway to create databases designed for clinical applications to 

address these needs.  For example, ClinGen, a joint effort between NCBI and several grantees funded through NGHRI 

(http://www.iccg.org/about-the-iccg/clingen, accessed February 10, 2014), are working to enhance the new ClinVar database 

(http://www.ncbi.nlm.nih.gov/clinvar/, accessed February 10, 2014), into a comprehensive and clinical grade resource.  ClinVar currently 

archives reports of the relationships among human variations and phenotypes, along with supporting evidence, submitted by laboratories or 

curation projects.   

While efforts like ClinVar can address some of the issues associated with data sharing, there is also a need for a gene-centric database 

that would allow clinical laboratories to annotate genes and curate gene-disease relationships.  Clinical laboratories should be able to share 

information about the genes they are analyzing and aggregated assertions about variants, but may have some challenges sharing patient-level 

variant observations, due to patient confidentiality requirements 76.  However, the ClinGen Resource is developing additional approaches to 

support the sharing of patient-level data that ensure patient privacy is protected.   

Widespread use of genomics in the clinical setting will also require appropriate decision support systems to help clinicians interpret 

possibly pathogenic genomic variants, integrate genomic information into diagnosis, and guide selection of preventative and 

personalized/stratified therapeutic options.  Most clinical decision support systems consist of three parts: a dynamic knowledge base; an 

inference engine based on consensus evidence rules and requirements to determine the pathogenicity for each type of variant; and an 

appropriate mechanism for communication with the health-care professional (or patient) 76,101.  In genomic terms, this might equate to: a 



66	
  
	
  

database (or databases) of genotype–phenotype associations, an analysis pipeline to prioritize a list of candidate variants of interest to a 

particular patient, and a user-friendly portal for inputting, accessing, and visualizing patient data both at the diagnostic laboratory and the 

clinic. Standardized representation of genomic and non-genomic patient data is essential to ensure reliable computer-based interpretation and 

processing 100,102.  

 Another shortcoming identified by the workgroup, but not addressed in the primary discussion, is the practical difficulty of sharing 

variant-level data among laboratories during test development and patient testing.  This sharing is essential for inter-laboratory comparison of 

data to determine the concordance among laboratories to identify variants.  Current file specifications (e.g., VCF, GVF) do not provide a strict 

enough definition of parameters to allow data comparison12,13.  For example, some laboratories deposit all variant calls, including some 

outside the intended reportable range, into their VCF file with minimum filtering.  Other laboratories deposit only those variant calls within 

their intended reportable range after filtering to remove those that do not meet certain quality criteria.  To address this issue, A workgroup 

should be convened to establish a clinical-grade variant file specification. (e.g., VCF) to permit data sharing among laboratories and 

with proficiency testing programs for quality assurance, to expedite sharing of data with medical data repositories, and its 

transmission to entities external to the clinical laboratory such as the patient's electronic record.  (CDC has established such a 

workgroup in 2013)  Other applications may include transmission of variant data to an entity external to the clinical laboratory tasked with 

performing the informatics analysis for primary or secondary findings, or to a patient's electronic medical record or to cloud storage for future 

analysis as warranted by new data or indications for testing.  It was further suggested that such a file format should be consistent with existing 

and evolving electronic health information standards such as HL7 messaging.  As a consequence of this recommendation, the CDC, in 

collaboration with other federal partners, organized and is actively facilitating a national workgroup tasked with meeting these objectives. 
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 The principles and recommendations described in this document are relevant to the design and optimization of the informatics pipeline 

based on current platforms and software tools.  It is expected that at some point in time there will be robust end-to-end solutions able to 

handle the informatics demands of NGS available through integrated software packages developed for clinical applications.  This would help 

to reduce the burden associated with in-house test development.  It is likely that alignment will become a more accurate and simplified 

process as read lengths increase with advances in the sequencing chemistry and instrumentation.  This may also reduce the laboratory's cost to 

assemble and optimize an informatics pipeline including the significant need for services provided by an informatician.  Data sharing to build 

up a reliable set of genotype/phenotype correlations will always be important.   
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