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Abstract. The most important drawback to code-based cryptography 
has historically been its large key sizes. Recently, several promising ap­
proaches have been proposed to reduce keysizes. In particular, signifi­
cant keysize reduction has been achieved by using structured, but non-
algebraic codes, such as quasi-cyclic or quasi-dyadic Moderate Density 
Parity Check (MDPC) codes. Biasi et al. propose further reducing the 
keysizes of code-based schemes using cyclosymmetric (CS) codes. Bi­
asi et al analyze the complexity of attacking their scheme against stan­
dard information-set-decoding attacks. However, the research presented 
here shows that information set decoding algorithms can be modified, by 
choosing the columns of the information set in a way that takes advan­
tage of the added symmetry. The result is an attack that significantly 
reduces the security of the proposed CS-MDPC schemes to the point that 
they no longer offer an advantage in keysize over QC-MDPC schemes of 
the same security level. 
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1 Introduction 

The McEliece cryptosystem [1] is one of the oldest and most studied candidates 
for a postquantum cryptosystem. However, its keysizes, on the order of a million 
bits, are a ma jor drawback. The most aggressive approaches to keysize reduction 
have focused on imposing structure on the public generator and parity check 
matrices such that they consist of cyclic [2] or dyadic [3] blocks, each of which 
can be represented using only the top row of the block. 

However, these matrices have significant algebraic structure, and when the 
private code is itself an algebraic code, like the Goppa codes used in the original 
McEliece cryptosystem, such schemes tend to be open to algebraic attack[4]. A 
promising solution to this problem is to use nonalgebraic codes. In particular 
Misoczki et al. proposed [5] using moderate density parity check (MDPC) codes 
with quasicyclic structure (QC-MDPC). 
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A typical approach to attacking a scheme based on MDPC codes is to use 
information set decoding techniques to find low weight codewords in the dual 
code space (i.e. the row space of the public parity check matrix.) The concept of 
information set decoding originates with Prange [9]. Further optimizations were 
subsequently proposed by Lee and Brickell [10], Leon [11] and Stern [12]. 

Biasi et al. [6] attempt further keysize reduction by replacing blockwise cyclic 
structure with blockwise cyclosymmetric (CS) structure. The advantage of such 
matrices is that they can be represented by only half of the elements of their 
top rows. Indeed, a cyclosymmetric matrix consisting of smaller cyclosymmet­
ric blocks can be represented using only a quarter of the elements in its top 
row, which would seem to provide significant opportunities for keysize reduction 
above and beyond what can be achieved using cyclic matrices. This further opti­
mization was suggested by Biasi et al in earlier versions of their paper[7][8], but 
not in the published version, for reasons discussed in Section 4. 

This paper demonstrates that information set decoding techniques can be 
improved by restricting the selection of information set columns to take advan­
tage of CS symmetry. The complexity of the resulting attacks on a blockwise 
cyclosymmetric code is almost identical to the complexity of attacking a similar 
blockwise cyclic code with half the dimension, and half the row weight. 

2 Cyclosymmetric Matrices 

Ordinary cyclic matrices are those of the form: ⎤⎡ 

A = 
⎢⎢⎢⎣ 

a0 a1 . . . ar−1 

ar−1 a0 . . . ar−2 
. . .. . . . . .. . . 
a1 a2 . . . a0 

⎥⎥⎥⎦ (1) 

Each row is the right-cyclic rotation of the row above it. When their entries 
are elements of a field F, cyclic matrices form a commutative ring under matrix 

rmultiplication and addition, isomorphic to the polynomial ring F[x]/(x − 1). 
(In most code-based-cryptography applications, including the scheme attacked 
in this paper, F is F2.) 

Cyclosymmetric matrices are further restricted to be symmetric matrices, i.e. 
equal to their transpose. Using the commutativity of the ring of cyclic matrices 
we can show that the cyclosymmetric matrices are closed under multiplication 
and therefore form a subring of the cyclic matrices: 

(AB)T = BT AT = BA = AB (2) 

A relevant fact about cyclosymmetric matrices is that l r−1 J pairs of entries 2 
in the top row of a cyclosymmetric matrix are constrained by symmetry to be 
equal: 

r − 1 ∀x|1 ≤ x < : ax = ar−x (3)
2 
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3 MDPC cryptosystems 

The scheme of Biasi et al. [6] modifies an earlier proposal by Misoczki et al. [5]. 
Both schemes are variants of the Niederreiter[13] cryptosystem : The public key, 
Hpub is a (n − k) × n parity check matrix for a binary linear code, in systematic 
form —[M |I]. The plaintext, m, is encoded as an n-bit vector of Hamming 
weight at most t. The ciphertext is Hpubm

T . In the language of coding theory, 
the plaintext is the error vector, while the ciphertext is the syndrome. As in all 
variants of the Neiderreiter cryptosystem, the private key consists of trapdoor 
information that allows the owner to efficiently reconstruct the error vector m 

Tfrom the syndrome Hpubm
In the case of MDPC cryptosystems, the private key is a low density parity 

check matrix H sharing the same codespace as Hpub. The cryptographic scheme 
is described as using a moderate density parity check (MDPC) code, in contrast 
to the related low density parity check (LDPC) codes used for error correc­
tion in telecommunications applications. LDPC codes employ a significantly less 
dense parity check matrix and they correct more errors than the codes used in 
the proposed cryptographic scheme. The quasicyclic and cyclosymmetric vari­
ants of the MDPC encryption scheme construct the matrix H from n0 cyclic or 
cyclosymmetric blocks each with row weight dv , but otherwise randomly chosen:   

H = H0 H1 . . . Hn0−1 (4) 

Once a private parity check matrix is chosen as above, the public key is 
constructed from it as follows: 

  
Hpub = H−1 

n0 −1H = H−1 H0 | H−1 H1 | . . . | H−1 Hn0−2 | In0−1 n0−1 n0−1 (5) 

4 Previous Attack on Cyclosymmetric Matrices 

in their paper, Biasi et al. note that there is a more compact representation of 
the ring of cyclosymmetric matrices than that given in equation 1. For example 
matrices of form: ⎤⎡ 

M(a, b, c, d) = 

⎢⎢⎢⎢⎢⎢⎣ 

a b c d c b 
b a b c d c 
c b a b c d 
d c b a b c 
c d c b a b 
b c d c b a 

⎥⎥⎥⎥⎥⎥⎦ 

(6) 

obey exactly the same multiplication rules as matrices of the form ⎤⎡ 

M(a, b, c, d) = 
⎢⎢⎣ 

a 2b 2c d 
b a + c b + d c 
c b + d a + c b 
d 2c 2b a 

⎥⎥⎦ (7) 
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This however does not completely break the scheme. While, this observation 
allows the attacker to reduce the dimension of the scheme being attacked by 
a factor of 2 for large matrices, it does so at the cost of reducing the sparsity 
(increasing the row weight) of the target private matrix by a factor of 2. This 
observation forced Biasi et al. to make their parameter choices less agressive, 
but it did not force them to abandon the possibility of keysize reduction through 
cyclosymmetric matrices altogether. 

5 Modifying Information Set Decoding Techniques 

The goal of the attack presented in this paper is to extract the private key H, 
from the public key Hpub. As is clear from equations 4 and 5, the rows of H are 
linear combinations of the rows of Hpub. (In particular, as will become relevant 
later in this section, h = hn0−1Hpub, where h and hn0−1 represent the top rows 
of the matrices H and Hn0−1 respectively.) The rows of H are distinguished 
from other linear combinations of the rows of Hpub in that they are sparse. As 
it happens, finding sparse linear combinations of the rows of a binary matrix is 
precisely the application for which classical information set decoding algorithms 
were invented. 

All information set decoding algorithms follow the same basic script1: 

1. Permute the columns of Hpub 

H ' (8)pub = HpubP 

2. Check that the first r columns of the new matrix, H ' , form an invertible pub 
matrix A. These columns are referred to as the “information set.” If A is not 
invertible go back to step 1. 

3. Left-Multiply by A−1, resulting in a matrix of the form: 

M = A−1H ' = Ir | Q (9)pub 

4. Search for low weight row-vectors among linear combinations involving small 
subsets of the rows of M . If none are found, go back to step 1. If a low weight 

'vector x = vM is found, return x = vM P −1 

Most optimizations to information set decoding algorithms, for example that 
of Stern [12] involve step 4. However, the special blockwise cyclosymmetric form 
of Hpub allows us to make a much larger optimization based on the choice of 
the permutation P in step 1. To see how this works, we need to understand the 
significance of the row vector v in step 4: In particular, since the first r columns 
of M form an identity matrix, the first r bits of the candidate low weight row 
vector x' are equal to v. Moreover, x' is the unique element of the rowspace of 
H ' whose first r bits equal v.pub 

1 The variable names are chosen to reflect the scheme being attacked, so for example 
the matrix being attacked is represented as a parity check matrix Hpub rather than 
a generator matrix G, and its dimensions are given as r × n0r rather than k × n 
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' ' Proof. Suppose there were another element of the rowspace of H whosepub, yH pub
' first r bits equalled v. Then, since yH expands as: pub 

' yH = yAM = yA|yAQ (10)pub 

We may rewrite our requirement as 

yA = v (11) 

' ' Since A is invertible, this implies y = vA−1 and therefore, yH pub = vA−1Hpub = 
' vM = x . 

Thus, given the existence of a low weight vector x in the rowspace of Hpub, 
v represents a guess of all the bits of x within the information set. Since the 
most probable value of a bit contained within a sparse vector is zero, the choice 
of v with the highest probability of success is the guess which contains as many 
zeroes as possible. (Note that v must contain at least one nonzero bit, since 
we’re looking for a nontrivial solution.) As it happens, the best strategy involves 
checking multiple guesses of v for each choice of P , since checking a guess is 
computationally cheaper than inverting a matrix, but the point remains that our 
probability of success relies on the probability that we will choose an information 
set, such that the restriction v of x to the information set is significantly sparser 
than x itself. 

This is where the choice of permutation helps us. We are much more likely to 
get x to be oversparse on the information set, if the bits we are guessing are not 
independent. As it happens, the top row, h of the private parity check matrix is 
a sparse vector, consisting of subvectors, h0 . . . hn0−1, whose bits come in pairs 
obeying the relation given in equation 3. x = h will then be the target of our 
attack. If we restrict the permutation P to either leave both elements of such 
linked pairs outside of the information set, or to bring both elements in, then 
the probability of h matching one of our oversparse guesses v on the information 
set is significantly higher than it would be if P were chosen randomly. 

To give an example (based on the parameters given by Biasi at all for 128-bit 
security) if n0 = 3, r = 7232, and the row/column weight, dv, of the submatrices 
H0, H1, and H2, is equal to 98, then for a random choice of P the probability 

(7232)(2·7232 
2 292that T runcate(r, hP ) has weight 2 is 
(3·7232 

) 
= 2−160, but for a choice of P 

294 ) 
restricted to bring mirrored pairs of bits into the information set together, the 

(3616)(2·3616
 
1 146 )
probability is 
(3·3616 = 2−80 Thus, a (rather poorly optimized) information 

147 ) 
set decoding algorithm, which tried all the values of v with weight 2, would 
require 2160 matrix inversions on average to succeed if P were chosen randomly. 
Our optimization brings the complexity down to 280 matrix inversions, which, 
even accounting for the nontrivial complexity of the matrix inversion step, is 
already well below the claimed security level of the scheme. 
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6	 Modified Stern Algorithm 

In this section we present a variant of Stern’s algorithm modified to find the 
top row, h of the private parity check matrix of the CS-MDPC scheme of Biasi 
et al. The other rows of H may then be trivially computed as rotations of h. 
The attacker is given Hpub generated from H as in equation 5. Both H and 
Hpub have dimensions r × n0r, and consist of r × r cyclosymmetric blocks. H 
has column weight dv and row weight n0dv. The algorithm is parametrized by 
integers p and l. 

1. Permute the columns of Hpub 

' H	 (12)pub = HpubP
 

choosing P with the restriction that cyclosymmetry forces:
 

(hP ) = (hP ) f or i = 0 . . . lr/2J + l (13)2i 2i+1 
' 2. Check that the first r columns of the new matrix, H , form an invertible pub 

matrix A. If A is not invertible go back to step 1. 

3. Left-Multiply by A−1, resulting in a matrix of the form: 

' M = A−1Hpub = Ir | Q	 (14) 

4. Search for low-weight row-vectors among linear combinations involving small 
subsets of the rows of M . In particular these will involve 2p of the first r rows 2 
and 2p of the remaining rows. The search will succeed if hP has weight 2p on 
its first r bits, weight 2p on the next r/2 bits, and weight 0 on the next l bits.2 

(a) Sum paired rows and compile in two equal length lists, i.e.: 
rfor 0 ≤ i < 4 

xi = row2i(M) + row2i+1(M)	 (15) 
r rand for ≤ j < 4 2 

yi = row2j (M) + row2j+1(M)	 (16) 

(b) compute all the sums of	 p xis and all the sums of p yis and check for 
collisions on bits r . . . r + 2l − 1 

bitsr...r+2l+1(xi1 + . . . + xip ) = bits(r . . . r + 2l + 1, yj1 + . . . + yjp ) (17) 

(c) When such a collision is found, check the total weight of the sum w of 
the 2p colliding row vectors. 

w = xi1 + . . . + xip + yj1 + . . . + yjp (18) 

If the weight of any such w is less than or equal to n0dv retrurn wP . 
Otherwise, go back to step 1. 
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7 Attack Complexity for Suggested Parameters 

The ma jor contributions to the overall complexity of each iteration of the mod­
3ified Stern’s algorithm above may be approximated as: n0r for the matrix in­ m 

4version (step 3), 2(p − 1)n0r
r 

for the construction of hash tables for collision p 
r 2 

n0r( 4 
p )search (step 4b) and . However, the units for these complexity figures are 

2l 

single-bit addition operations. Since legitimate parties do computations on the 
order of n0r

2 during both public and private-key operations, it is reasonable to 
divide this factor out leaving a per iteration complexity estimate of:     2r r2(p − 1) 14 4r + + (19) 

r p 2lr p

The expected number of iterations is the inverse probability of success per 
iteration, which is:  n0r   r  −2 (n0−1)r − l 

 −1 

2 4 2 (20)
n0dv n0dvp − 2p2 2 

Note that the iteration count (equation 20) is identical to the iteration count 
' r dvof an unmodified Stern’s algorithm applied to a code with r = and d ' = ,2 v 2 

and the per iteration cost (equation 19) is identical up to polynomial factors in 
r/r ' = 2 (The discrepancy is due to the fact that linear algebra operations are 
being performed on a larger matrix.) Thus, our attack may be thought of as 
reducing the security of a cyclosymmetric MDPC scheme with block dimension 
r and private row density dv to that of a corresponding cyclic scheme which r 

rwith dimension and the same private row density. 2 
Table 1 gives the results of our attack when applied to the parameters sug­

gested by Biasi et al. For all parameter choices, the security level allowed by this 
attack is significantly lower than the claimed security level. 

Claimed Security n0 r dv This Attack p l 

80 
112 
128 
160 

3 3072 53 
3 5376 75 
3 7232 97 
3 19200 109 

46 
63 
81 
93 

2 20 
2 20 
2 22 
2 25 

Table 1. Claimed security levels and the results of the modified Stern’s algorithm 
attack for parameters given in [6] 

As our attack brings the security of Biasi et al.’s proposed 128-bit parameters 
down to nearly exactly 80 bits of security, it is informative to compare these 
parameters to the 80-bit security parameters of Misoczki et al.’s QC-MDPC 
scheme. Here we find that there is no longer any advantage to the cyclosymmetric 
scheme, either in public key size or cryptogram size: 
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CS-MDPC [6] QC-MDPC [5] 

Public Key Length 
Cryptogram Size 

7232 4801 
21696 9602 

Table 2. Comparison of proposed CS-MDPC and QC-MDPC parameters at 80 bits 
of security given this paper’s attack. 

8 Conclusion 

While the idea of using cyclosymmetric codes to reduce keysize beyond what 
is possible with blockwise cyclic codes seemed promising, the added structure 
appears to be as useful to the attacker as to the legitimate parties. In particular, 
information set decoding algorithms can be modified to take full advantage of 
the knowledge that the rows of the private parity check matrix of such a scheme 
are structured. It may be the case that cyclic MDPC codes are as far as we can 
go in keysize reduction for code-based cryptography. 
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