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Abstract. Enterprise networks are migrating to the public cloud to ac-
quire computing resources for promising benefits in terms of efficiency,
expense, and flexibility. Except for some public services, the enterprise
network islands in cloud are expected to be absolutely isolated from
each other. However, some “stealthy bridges” may be created to break
such isolation due to two features of the public cloud: virtual machine
image sharing and virtual machine co-residency. This paper proposes
to use cross-layer Bayesian networks to infer the stealthy bridges exist-
ing between enterprise network islands. Prior to constructing cross-layer
Bayesian networks, cloud-level attack graphs are built to capture the po-
tential attacks enabled by stealthy bridges and reveal hidden possible at-
tack paths. The result of the experiment justifies the cross-layer Bayesian
network’s capability of inferring the existence of stealthy bridges given
supporting evidence from other intrusion steps in a multi-step attack.
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1 Introduction

Enterprises have begun to move parts of their networks (such as web server, mail
server, etc.) from traditional infrastructure into cloud computing environments.
Cloud providers such as Amazon Elastic Compute Cloud (EC2) [1], Rackspace
[2], and Microsoft’s Azure cloud platform [3] provide virtual servers that can be
rented on demand by users. This paradigm enables cloud customers to acquire
computing resources with high efficiency, low cost, and great flexibility. However,
it also introduces some security issues that are yet to be solved.

A public cloud can provide virtual infrastructures to many enterprises. Ex-
cept for some public services, enterprise networks are expected to be like isolated
islands in the cloud: connections from the outside network to the protected inter-
nal network should be prohibited. Consequently, an attack path that shows the
multi-step exploitation sequence in an enterprise network should also be confined
inside this island. However, as enterprise networks migrate into the cloud and
replace traditional physical hosts with virtual machines, some “stealthy bridges”
could be created between the isolated enterprise network islands, as shown in
Fig. 1. Moreover, with the stealthy bridges, the attack path confined inside an
enterprise network is able to traverse to another enterprise network in cloud.
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Fig. 1: The Attack Scenario

The creation of such “stealthy bridges” is enabled by two unique features
of the public cloud. First, cloud users are allowed to create and share virtual
machine images (VMIs) with other users. Besides, cloud providers also provide
VMIs with pre-configured software, saving users’ efforts of installing the software
from scratch. These VMIs provided by both cloud providers and users form a
large repository. For convenience, users can take a VMI directly from the repos-
itory and instantiate it with ease. The instance virtual machine inherits all the
security characteristics from the parent image, such as the security configura-
tions and vulnerabilities. Therefore, if a user instantiates a malicious VMI, it’s
like moving the attacker’s machine directly into the internal enterprise network,
without triggering the Intrusion Detection Systems (IDSs) or the firewall. In this
case, a “stealthy bridge” can be created via security holes such as backdoors.
For example, in Amazon EC2, if an attacker intentionally leaves his public key
unremoved when publishing an AMI (Amazon Machine Image), the attacker can
later login into the running instances of this AMI with his own private key.

Second, virtual machines owned by different tenants may co-reside on the
same physical host machine. To achieve high efficiency, customer workloads are
multiplexed onto a single physical machine utilizing virtualization. Virtual ma-
chines on the same host may belong to unrelated users, or even rivals. Thus co-
resident virtual machines are expected to be absolutely isolated from each other.
However, current virutalization mechanisms cannot ensure perfect isolation. The
co-residency relationship can still enable security problems such as information
leakage, performance interference [4], or even co-resident virtual machine crash-
ing. Previous work [5] has shown that it is possible to identify on which physical
host a target virtual machine is likely to reside, and then intentionally place
an attacker virtual machine onto the same host in Amazon EC2. Once the co-
residency is achieved, a “stealthy bridge” can be further established, such as a
side-channel for passively observing the activities of the target machine to ex-
tract information for credential recovering [6], or a covert-channel for actively
sending information from the target machine [8].
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Stealthy bridges are stealthy information tunnels existing between disparate
networks in cloud, that are unknown to security sensors and should have been
forbidden. Stealthy bridges are developed mainly by exploiting vulnerabilities
that are unknown to vulnerability scanners. Isolated enterprise network islands
are connected via these stealthy tunnels, through which information (data, com-
mands, etc.) can be acquired, transmitted or exchanged maliciously. Therefore
stealthy bridges pose very severe threats to the security of public cloud. How-
ever, the stealthy bridges are inherently unknown or hard to detect: they either
exploit unknown vulnerabilities, or cannot be easily distinguished from autho-
rized activities by security sensors. For example, side-channel attacks extract
information by passively observing the activities of resources shared by the at-
tacker and the target virtual machine (e.g. CPU, cache), without interfering the
normal running of the target virtual machine. Similarly, the activity of logging
into an instance by leveraging intentionally left credentials (passwords, public
keys, etc.) also hides in the authorized user activties.

The stealthy bridges can be used to construct a multi-step attack and facil-
itate subsequent intrusion steps across enterprise network islands in cloud. The
stealthy bridges per se are difficult to detect, but the intrusion steps before and
after the construction of stealthy bridges may trigger some abnormal activities.
Human administrators or security sensors like IDS could notice such abnormal
activities and raise corresponding alerts, which can be collected as the evidence
of attack happening1. So our approach has two insights: 1) It is quite straightfor-
ward to build a cloud-level attack graph to capture the potential attacks enabled
by stealthy bridges. 2) To leverage the evidence collected from other intrusion
steps, we construct a cross-layer Bayesian Network (BN) to infer the existence
of stealthy bridges. Based on the inference, security analysts will know where
stealthy bridges are most likely to exist and need to be further scrutinized.

The main contributions of this paper are as follows:
First, a cloud-level attack graph is built by crafting new interaction rules in

MulVAL [18], an attack graph generation tool. The cloud-level attack graph can
capture the potential attacks enabled by stealthy bridges and reveal possible
hidden attack paths that are previously missed by individual enterprise network
attack graphs.

Second, based on the cloud-level attack graph, a cross-layer Bayesian net-
work is constructed by identifying four types of uncertainties. The cross-layer
Bayesian network is able to infer the existence of stealthy bridges given support-
ing evidence from other intrusion steps.

2 Cloud-level Attack Graph Model
A Bayesian network is a probabilistic graphical model that is applicable for
real-time security analysis. Prior to the construction of a Bayesian Network, an
attack graph should be built to reflect the attacks enabled by stealthy bridges.

1 In our trust model, we assume cloud providers are fully trusted by cloud customers.
In addition to security alerts generated at cloud level, such as alerts from hypervisors
or cache monitors, the cloud providers also have the privilege of accessing alerts
generated by customers’ virtual machines.
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2.1 Logical Attack Graph

An attack graph is a valuable tool for network vulnerability analysis. Current
network defenders should not only understand how attackers could exploit a
specific vulnerability to compromise one single host, but also clearly know how
the security holes can be combined together for achieving an attack goal. An
attack graph is powerful for dealing with the combination of security holes. Tak-
ing vulnerabilities existing in a network as the input, attack graph can generate
the possible attack paths for a network. An attack path shows a sequence of
potential exploitations to specific attack goals. For instance, an attacker may
first exploit a vulnerability on Web Server to obtain the root privilege, and then
further compromise Database Server through the acquired privilege. A variety
of attack graphs have been developed for vulnerability analysis, mainly includ-
ing state enumeration attack graphs [12, 13, 14] and dependency attack graphs
[15, 16, 17]. The tool MulVAL employed in this paper is able to generate the
logical attack graph, which is a type of dependency attack graph.

Fig. 2 shows part of an exemplar logical attack graph. There are two types
of nodes in logical attack graph: derivation nodes (also called rule nodes, repre-
sented with ellipse), and fact nodes. The fact nodes could be further classified
into primitive fact nodes (in rectangles), and derived fact nodes (in diamonds).
Primitive fact nodes are typically objective conditions of the network, including
network connectivity, host configuration, and vulnerability information. Derived
fact nodes represent the facts inferred from logical derivation. Derivation nodes
represent the interaction rules used for derivation. The directed edges in this
graph represent the causality relationship between nodes. In a logical depen-
dency attack graph, one or more fact nodes could serve as the preconditions of a
derivation node and cause it to take effect. One or more derivation nodes could
further cause a derived fact node to become true. Each derivation node repre-
sents the application of an interaction rule given in [19] that yields the derived
fact.

26:networkServiceInfo(web
Server,openssl,tcp,22,_)

27:vulExists(webServer,’CVE-2008-
0166’,openssl,remoteExploit,privEscalation)

22:Rule(remote exploit of a server program)

14:execCode(webServer,root)

23:netAccess(webServer,tcp,22)

...

...

Fig. 2: A Portion of an Example Logical Attack Graph

For example, in Fig. 2, Node 26, 27 (primitive fact nodes) and Node 23
(derived fact node) are three fact nodes. They represent three preconditions
respectively: Node 23, the attacker has access to the Web Server; Node 26, Web
Server provides OpenSSL service; Node 27, Openssl has a vulnerability CVE-
2008-0166. With the three preconditions satisfied simultaneously, the rule of
Node 22 (derivation node) can take effect, meaning the remote exploit of a server
program could happen. This derivation rule can further cause Node 14 (derived
fact node) to be valid, meaning attacker can execute code on Web Server.
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2.2 Cloud-level Attack Graph
In the cloud, each enterprise network can scan its own virtual machines for ex-
isting vulnerabilities and then generate an attack graph. The individual attack
graph shows how attackers could exploit certain vulnerabilities and conduct a
sequence of attack steps inside the enterprise network. However, such individ-
ual attack graphs are confined to the enterprise networks without considering
the potential threats from cloud environment. The existence of stealthy bridges
could activate the prerequisites of some attacks that are previously impossible
in traditional network environment and thus enable new attack paths. These at-
tack paths are easily missed by individual attack graphs. For example, in Fig. 1,
without assuming the stealthy bridge existing between enterprise A and B, the
individual attack graph for enterprise B can be incomplete or even not estab-
lished due to lack of exploitable vulnerabilities. Therefore, a cloud-level attack
graph needs to be built to incorporate the existence of stealthy bridges in the
cloud. By considering the attack preconditions enabled by stealthy bridges, the
cloud-level attack graph can reveal hidden potential attack paths that are missed
by individual attack graphs.

The cloud-level attack graph should be modeled based on the cloud structure.
Due to the VMI sharing feature and the co-residency feature of cloud, a public
cloud has the following structural characteristics. First, virtual machines can be
created by instantiating VMIs. Therefore virtual machines residing on different
hosts may actually be instances of the same VMI. In simple words, they could
have the same VMI parents. Second, virtual machines belong to one enterprise
network may be assigned to a number of different physical hosts that are shared
by other enterprise networks. That is, the virtual machines employed by different
enterprise networks are likely to reside on the same host. As shown in Fig. 3,
the vm11 on host 1 and vm2j on host 2 may be instances of the same VMI,
while vm12 and vm2k could belong to the same enterprise network. Third, the
real enterprise network could be a hybrid of a cloud network and a traditional
network. For example, the servers of an enterprise network could be implemented
in the cloud, while the personal computers and workstations could be in the
traditional network infrastructure.

vm11 vm12 vm1i

Hypervisor 1

... vm21 vm2j vm2k

Hypervisor 2

...

Host 1 Host 2

May be instantiated from the same virtual machine image

May belong to the same enterprise network

Fig. 3: Features of the Public Cloud Structure

Due to the above characteristics of cloud structure, the model for the cloud-
level attack graph should have the following corresponding characteristics.

1) The cloud-level attack graph is a cross-layer graph that is composed of
three layers: virtual machine layer, VMI layer, and host layer, as shown in Fig. 4.

2) The virtual machine layer is the major layer in the attack graph stack. This
layer reflects the causality relationship between vulnerabilities existing inside
the virtual machines and the potential exploits towards these vulnerabilities. If
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Fig. 4: An Example Cloud-level Attack Graph Model

stealthy bridges do not exist, the attack graph generated in this layer is scattered:
each enterprise network has an individual attack graph that is isolated from
others. The individual attack graphs can be the same as the ones generated by
cloud customers themselves through scanning the virtual machines for known
vulnerabilities. However, if stealthy bridges exist on the other two layers, the
isolated attack graph could be connected, or even experience dramatic changes:
some hidden potential attack paths will be revealed and the original attack
graph is enriched. For example, in Fig. 4, without the stealthy bridge on h1,
attack paths in enterprise network C will be missing or incomplete because no
exploitable vulnerability is available as the entry point for attack.

3) The VMI layer mainly captures the stealthy bridges and corresponding
attacks caused by VMI sharing. Since virtual machines in different enterprise
networks may be instantiated from the same parent VMI, they could inherit the
same security issues from parent image, such as software vulnerabilities, malware,
or backdoors, etc. Evidence from [20] shows that 98% of Windows VMI and 58%
of Linux VMIs in Amazon EC2 contain software with critical vulnerabilities. A
large number of software on these VMIs are more than two years old. Since cloud
customers take full responsibility for securing their virtual machines, many of
these vulnerabilities remain unpatched and thus pose great risks to cloud. Once a
vulnerability or an attack type is identified in the parent VMI, the attack graph
for all the children virtual machine instances may be affected: a precondition
node could be activated, or a new interaction rule should be constructed in
attack graph generation tool.

The incorporation of the VMI layer provides another benefit to the subse-
quent Bayesian network analysis. It enables the interaction between the virtual
machine layer and the VMI layer. On one hand, the probability of a vulnerability
existence on a VMI will affect the probability of the vulnerability existence on its
children instance virtual machines. On the other hand, if new evidence is found
regarding the vulnerability existence on the children instances, the probability
change will in turn influence the parent VMI. If the same evidence is observed
on multiple instances of the VMI, this VMI is very likely to be problematic.

4) The host layer is able to reason exploits of stealthy bridges caused by
virtual machine co-residency. Exploits on this layer could lead to further pene-
trations on the virtual machine layer. In addition, this layer actually captures
all attacks that could happen on the host level, including those on pure physical
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hosts with no virtual machines. Hence it provides a good interface to hybrid
enterprise networks that are implemented with partial cloud and partial tradi-
tional infrastructures. The potential attack paths identified on the cloud part
could possibly extend to traditional infrastructures if all prerequisites for the re-
mote exploits are satisfied, such as network access being allowed, and exploitable
vulnerabilities existing, etc. As in Fig. 4, the attack graph for enterprise C ex-
tends from virtual machine layer to host layer.

3 Cross-layer Bayesian Networks

A Bayesian network (BN) is a probabilistic graphical model representing cause
and effect relations. For example, it is able to show the probabilistic causal
relationships between a disease and the corresponding symptoms. Formally, a
Bayesian network is a Directed Acyclic Graph (DAG) that contains a set of nodes
and directed edges. The nodes represent random variables of interest and the
directed edges represent the causal influence among the variables. The strength
of such influence is represented with a conditional probability table (CPT). For
example, Fig. 5 shows a portion of a BN constructed directly from the attack
graph in Fig. 2 by removing the rule Node 22. Node 14 can be associated with
the CPT table as shown. This CPT means that if all of the preconditions of
Node 14 are satisfied, the probability of Node 14 being true is 0.9. Node 14 is
false in all other cases.

26_networkServiceInfo

27_vulExists

...

...

23_netAccess

14_execCode
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a precondition node could be activated, or a new interaction rule should be
constructed in attack graph generation tool.

The incorporation of VMI layer provides another benefit to the subsequent
Bayesian network analysis. It enables the interaction between virtual machine
layer and VMI layer. On one hand, the probability of a vulnerability existence
on a VMI will a↵ect the probability of the vulnerability existence on its chil-
dren instance virtual machines. On the other hand, if new evidences are found
regarding the vulnerability existence on the children instances, the probability
change will in turn influence the parent VMI. If the same evidences are observed
on multiple instances of the VMI, this VMI is very likely to be problematic.

4) The host layer is able to reason exploits of stealthy bridges caused by
virtual machine co-residency. Exploits on this layer could lead to further pene-
trations on the virtual machine layer. In addition, this layer actually captures
all attacks that could happen on the host level, including those on pure physical
hosts with no virtual machines. Hence it provides a good interface to hybrid
enterprise networks that are implemented with partial cloud and partial tradi-
tional infrastructures. The potential attack paths identified on cloud part could
possibly extend to traditional infrastructures if all prerequisites for the remote
exploits are satisfied, such as network access being allowed, and exploitable vul-
nerabilities existing, etc. As in Fig. 4, the attack graph for enterprise C extends
from virtual machine layer to host layer.

3 Cross-layer Bayesian Networks

Bayesian network is a probabilistic graphical model representing the cause and
e↵ect relations. For example, it is able to show the probabilistic causal relation-
ships between a disease and the corresponding symptoms. Formally, a Bayesian
network is a Directed Acyclic Graph (DAG) that contains a set of nodes and
directed edges. The nodes represent random variables of interest and the di-
rected edges represent the causal influence among the variables. The strength
of such influence is represented with a conditional probability table (CPT). For
example, Fig. 5 shows a portion of Bayesian network constructed directly from
the attack graph shown in Fig. 2 by removing the rule Node 22, Node 14 can be
associated with a CPT as shown in Table 1. This CPT means that if all of the
preconditions of Node 14 are satisfied, the probability of Node 14 being true is
0.9. Node 14 is false in all other cases.

Table 1. a simple CPT table

26 27 23 14
T T T 0.9
otherwise 0

Bayesian network can be used to compute the probabilities of interested vari-
ables. It is especially powerful for diagnosis and prediction analysis. For example,
in diagnosis analysis, given the symptoms being observed, the network can calcu-
late the probability of the causing fact (respresented with P(cause—symptom=True)).

Fig. 5: A Portion of Bayesian Network with associated CPT table

A Bayesian network can be used to compute the probabilities of variables of
interest. It is especially powerful for diagnosis and prediction analysis. For exam-
ple, in diagnosis analysis, given the symptoms being observed, a BN can calcu-
late the probability of the causing fact (respresented with Pr(cause | symptom =
True)). While in prediction analysis, given the causing fact, a BN will predict the
probability of the corresponding symptoms showing up (Pr(symptom|cause =
True)). In the cybersecurity field, similar diagnosis and prediction analysis can
also be performed, such as calculating the probability of an exploitation hap-
pening if related IDS alerts are observed(Pr(exploitation|IDSalert = True)),
or the probability of the IDS raising an alert if an exploitation already hap-
pened (Pr(IDSalert|exploitation = True)). This paper mainly carries out a
diagnosis analysis that computes the probability of stealthy bridge existence
by collecting evidence from other intrusion steps. Diagnosis analysis is a kind
of “backward” computation. In the cause-and-symptom model, a concrete evi-
dence about the symptom could change the posterior probability of the cause by
computing Pr(cause|symptom = True). More intuitively, as more evidence is
collected regarding the symptom, the probability of the cause will become closer
to reality if the BN is constructed properly.
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3.1 Identify the Uncertainties

Inferring the existence of stealthy bridges requires real-time evidence being col-
lected and analyzed. BN has the capability, which attack graphs lack, of perform-
ing such real-time security analysis. Attack graphs correlate vulnerabilities and
potential exploits in different machines and enables determinstic reasoning. For
example, if all the preconditions of an attack are satisfied, the attacker should
be able to launch the attack. However, in real-time security analysis, there are
a range of uncertainties associated with this attack that cannot be reflected in
an attack graph. For example, has the attacker chosen to launch the attack?
If he launched it, did he succeed to compromise the host? Are the Snort [22]
alerts raised on this host related to the attack? Should we be more confident if
we got other alerts from other hosts in this network? Such uncertainty aspects
should be taken into account when performing real-time security analysis. BN
is a valuable tool for capturing these uncertainties.

One non-trivial difficulty for constructing a well functioning BN is to identify
and model the uncertainty types existing in the attack procedure. In this paper,
we mainly consider four types of uncertainties related to cloud security.

Uncertainty of stealthy bridges existence. The presence of known vul-
nerabilities is usually deterministic due to the availability of vulnerability scan-
ners. After scanning a virtual machine or a physical host, the vulnerability scan-
ner such as Nessus [24] is able to tell whether a known vulnerability exists or
not2. However, due to its unknown or hard-to-detect feature, effective scanners
for stealthy bridges are rare. Therefore, the existence of stealthy bridges itself is
a type of uncertainty. In this paper, to enable the construction of a complete at-
tack graph, stealthy bridges are hypothesized to be existing when corresponding
conditions are met. For example, if two virtual machines co-reside on the same
physical host and one of them has been compromised by the attacker, the attack
graph will be generated by making a hypothesis that a stealthy bridge can be
created between these two virtual machines. This is enforced by crafting a new
interaction rule as follows in MulVAL:

interaction rule(
(stealthyBridgeExists(Vm_1,Vm_2, Host, stealthyBridge_id):-

execCode(Vm_1,_user),
ResideOn(Vm_1, Host),
ResideOn(Vm_2, Host)),

rule_desc(‘A stealthy bridge could be built between virtual machines co-residing on
the same host after one virtual machine is compromised’)).

Afterwards, the BN constructed based on the attack graph will infer the
probability of this hypothesis being true.

Uncertainty of attacker action. Uncertainty of attacker action is first
identified by [23]. Even if all the prerequsites for an attack are satisfied, the
attack may not happen because attackers may not take action. Therefore, a kind
of Attack Action Node (AAN) is added to the BN to model attackers’ actions.
An AAN node is introduced as an additional parent node for the attack. For
example, the BN shown in Fig. 5 is changed to Fig. 6 after adding an AAN node.

2 The assumption here is that a capable vulnerability scanner is able to scan out all
the known vulnerabilities.
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Correspondingly, the CPT table is modified as in Fig. 6. This means “attacker
taking action” is another prerequisite to be satisfied for the attack to happen.

...

...

23 26 27 AAN

14
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cedure. In this paper, we mainly consider four types of uncertainties related to
cloud security.

Uncertainty of stealthy bridges existence. Vulnerability existence is
usually deterministic due to the availability of vulnerability scanners. After
scanning a virtual machine or a physical host, the vulnerability scanner like
Nessus[24] is able to tell whether a vulnerability exists or not2. However, due
to the unknown or hard-to-detect feature of stealthy bridges, e↵ective scan-
ners for this kind of vulnerability are rare. Therefore, the existence of stealthy
bridges itself is a type of uncertainty. In this paper, to enable the construction of
a complete attack graph, stealthy bridges are hypothesized to be existing when
corresponding conditions are met. For example, if two virtual machines co-reside
on the same physical host, the attack graph will be generated by making a hy-
pothesis that a stealthy bridge exists between these two virtual machines. This
is enforced by crafting a new interaction rule as follows in MulVAL:

interaction rule(
(stealthyBridgeExists(Vm_1,Vm_2, Host, stealthyBridge_id):-

execCode(Vm_1,_user),
ResideOn(Vm_1, Host),
ResideOn(Vm_2, Host)),

rule_desc(‘A stealthy bridge could be built between virtual machines co-residing on
the same host after one virtual machine is compromised’)).

Afterwards, the Bayesian network constructed based on this attack graph
will infer the probability of this hypothesis being true.

Uncertainty of attacker action. Uncertainty of attacker action is first
identified by [23]. As pointed out in [23], even if all the prerequsites for an
attack are satisfied, the attack may not happen because the attacker may even
not take action. Therefore, a kind of Attack Action Node (AAN) is added into
Bayesian network to model the attackers’ actions. An AAN node is introduced
as an additional parent node for the attack. For example, the Bayesian network
shown in Fig. 5 is changed to Fig. 6 after adding the AAN node. Correspondingly,
the CPT table shown in Table 1 is modified into Table 2. This means “attackers
taking action” is another prerequisite to be satisfied for the attack to happen.

Table 2. a CPT table with AAN node

26 27 23 AAN 14
T T T T 0.9

otherwise 0

AAN node is not added for all attacks. They are needed only for important
attacks such as the very first intrustion steps in a multi-step attack, or attacks
that need attackers’ action. Since an AAN node represents the primitive fact of
whether an attacker taking action and it has no parent node, a prior probability
should be assigned to an AAN node to indicate the likelihood of attack. The
posterior probability of AAN will change as more evidences are collected.

2 The assumption here is that a capable vulnerability scanner is able to scan out
all the known vulnerabilities. The unknown vulnerabilities are ruled out and not
considered in this paper.

Fig. 6: A Portion of Bayesian Network with AAN node

An AAN node is not added for all attacks. They are needed only for important
attacks such as the very first intrustion steps in a multi-step attack, or attacks
that need attackers’ action. Since an AAN node represents the primitive fact of
whether an attacker taking action and has no parent nodes, a prior probability
distribution should be assigned to an AAN to indicate the likelihood of an attack.
The posterior probability of AAN will change as more evidence is collected.

Uncertainty of exploitation success. Uncertainty of exploitation success
goes to the question of “did the attacker succeed in this step?”. Even if all the
prerequisites are satisfied and the attacker indeed launches the attack, the attack
is not guarenteed to succeed. The success likelihood of an attack mainly depends
on the exploit difficulty of vulnerabilities. For some vulnerabilities, usable ex-
ploit code is already publicly available. While for some other vulnerabilities, the
exploit is still in the proof-of-concept stage and no successful exploit has been
demonstrated. Therefore, the exploit difficulty of a vulnerability can be used to
derive the CPT table of an exploitation. For example, if the exploit difficulty
for the vulnerability in Fig. 5 is very high, the probability for Node 14 when all
parent nodes are true could be assigned as very low, such as 0.3. If in the future
a public exploit code is made available for this vulnerability, the probability for
Node 14 may be changed to a higher value accordingly. The National Vulnerabil-
ity Database (NVD) [25] maintains a CVSS [26] scoring system for all CVE [27]
vulnerabilities. In CVSS, Access Complexity (AC) is a metric that describes the
exploit complexity of a vulnerability using values of “high”, “medium”, “low”.
Hence the AC metric can be employed to derive CPT tables of exploitations and
model the uncertainty of exploitation success.

Uncertainty of evidence. Evidence is the key factor for BN to function.
In BN, uncertainties are indicated with probability of related nodes. Each node
describes a real or hypothetical event, such as “attacker can execute code on
Web Server”, or “a stealthy bridge exists between virtual machine A and B”,
etc. Evidence is collected to reduce uncertainty and calculate the probabilities of
these events. According to the uncertainty types mentioned above, evidence is
also classified into three types: evidence for stealthy bridges existence, evidence
for attacker action, and evidence for exploitation success. Therefore, whenever a
piece of evidence is observed, it is assigned to one of the above evidence types to
support the corresponding event. This is done by adding evidence as the children
nodes to the event nodes related to uncertainty. For example, an IDS alert about
a large number of login attempts can be regarded as evidence of attacker action,
showing that an attacker could have tried to launch an attack. This evidence is
then added as the child node to an AAN, as exemplified in Fig. 7. For another
example, the alert “system log is deleted” given by Tripwire [28] can be the
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child of the node “attacker can execute code”, showing that an exploit has been
successfully achieved.

However, evidence per se contain uncertainty. The uncertainty is twofold.
First, the support of evidence to an event is uncertain. For analogy, a symptom
of coughing cannot completely prove the presence of lung disease. In the above
examples, could the multiple login attempts testify that attackers have launched
the attack? How likely is it that attackers have succeeded in compromising the
host if a system log deletion is observed? Second, evidence from security sensors
is not 100% accurate. IDS systems such as Snort, Tripwire, etc. suffer a lot from
a high false alert rate. For example, an event may trigger an IDS to raise an
alert while actually no attack happens. In this case, the alert is a false positive.
The reverse case is a false negative, that is, when an IDS should have raised an
alarm but doesn’t. Therefore, we propose to model the uncertainty of evidence
with an Evidence-Confidence(EC) pair as shown in Fig. 7. The EC pair has two
nodes, an Evidence node and an Evidence Confidence Node (ECN). An ECN
is assigned as the parent of an Evidence node to model the confidence level of
the evidence. If the confidence level is high, the child evidence node will have
larger impact on other nodes. Otherwise, the evidence will have lower impact on
others. An example CPT associated with the evidence node is given in Fig. 7.
Whenever new evidence is observed, an EC pair is attached to the supported
node. A node can have several EC pairs attached with it if multiple instances of
evidence are observed. With ECN nodes, security experts can tune confidence
levels of evidence with ease based on their domain knowledge and experience.
This will greatly enhance the flexibility and accuracy of BN analysis.

26 27

...

...

23

14

AAN

Evidence

ECN

Inferring the Stealthy Bridges in Cloud 11

ease based on their domain knowledge and experience. This will greatly enhance
the accuracy of BN analysis.

Table 1: a simple CPT table

AAN True False
ECN VeryHigh High Medium Low None VeryHigh High Medium Low None
True 0.95 0.8 0.6 0.55 0.5 0.05 0.2 0.4 0.45 0.5
False 0.05 0.2 0.4 0.45 0.5 0.95 0.8 0.6 0.55 0.5
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Fig. 7: the Evidence-Condidence Pair

4 Implementation

MulVAL SAMIAM

4.1 Interaction Rules

This paper uses MulVAL[19] as the attack graph generation tool. To construct
a cloud-level cross-layer attack graph, new primitive fact nodes and interaction
rules have to be crafted in MulVAL on VMI layer and host layer to model the
existence of stealthy bridges. Each virtual machine has an ID tuple (Vm id,
VMI id, H id) associated with it, which represents the ID for the virtual ma-
chine itself, the VMI it was derived from, and the host it resides on. The VMI
layer mainly focuses on the model of VMI vulnerability inheritance and the
VMI backdoor problems. The host layer mainly focuses on modeling the virtual
machine co-residency problems. Table 2 provides a sample set of newly crafted
interaction rules that are incorporated into MulVAL for cloud-level attack graph
generation.

4.2 Construction of Bayesian Networks

Deriving Bayesian networks from the cross-layer attack graphs contains four
major components: removing rule nodes in attack graph, adding new nodes,
determining the prior probabilities, and constructing the CPT tables.

Fig. 7: The Evidence-Condidence Pair and Associated Exemplar CPT

4 Implementation

4.1 Cloud-level Attack Graph Generation
This paper uses MulVAL [19] as the attack graph generation tool. To construct a
cloud-level attack graph, new primitive fact nodes and interaction rules have to
be crafted in MulVAL on the VMI layer and host layer to model the existence of
stealthy bridges. Each virtual machine has an ID tuple (Vm id, VMI id, H id)
associated with it, which represents the ID for the virtual machine itself, the
VMI it was derived from, and the host it resides on. The VMI layer mainly
focuses on the model of VMI vulnerability inheritance and the VMI backdoor
problems. The host layer mainly focuses on modeling the virtual machine co-
residency problems. Table 1 provides a sample set of newly crafted interaction
rules that are incorporated into MulVAL for cloud-level attack graph generation.

4.2 Construction of Bayesian Networks
Deriving Bayesian networks from cross-layer attack graphs consists of four ma-
jor components: removing rule nodes in the attack graph, adding new nodes,
determining prior probabilities, and constructing CPT tables.
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Table 1: a Sample Set of Interaction Rules

/***Model the Virtual Machine Image Vulnerability Inheritance***/
primitive(IsInstance(Vm_id, VMI_id))
primitive(ImageVulExists(VMI_id, vulID, _program, _range, _consequence))
derived(VulExists(Vm_id, vulID, _program,_range,_consequence)).

%remove vulExists from the primitive fact set
primitive(vulExists(_host, _vulID, _program, _range, _consequence)

interaction rule(
(VulExists(Vm_id, vulID, _program, _range, _consequence):-

ImageVulExists(VMI_id, vulID, _program, _range, _consequence),
IsInstance(Vm_id, VMI_id)),

rule_desc(‘A virtual machine instance inherits the vulnerability from the parent VMI’)).

/***Model the Virtual Machine Image Backdoor Problem***/
primitive(IsThirdPartyImage(VMI_id)).
derived(ImageVulExists(VMI_id, sealthyBridge_id, _, _remoteExploit, privEscalation)).

interaction rule(
(ImageVulExists(VMI_id,stealthyBridge_id, _, _remoteExploit, privEscalation):-

IsThirdPartyImage(VMI_id)),
rule_desc(‘A third party VMI could contain a stealthy bridge’)).

interaction rule(
(execCode(Vm_id, Perm):

VulEixsts(Vm_id, stealthyBridge_id, _, _, privEscalation),
netAccess(H, _Protocol, _Port)),

rule_desc(‘remoteExploit of a stealthy bridge’)).

/***Model the Virtual Machine Co-residency Problem***/
primitive(ResideOn(VM_id, H_id)).
derived(stealthyBridgeExists(Vm_1,Vm_2, H_id, stealthyBridge_id).

interaction rule(
(stealthyBridgeExists(Vm_1,Vm_2, Host, stealthyBridge_id):-

execCode(Vm_1,_user),
ResideOn(Vm_1, Host),
ResideOn(Vm_2, Host)),

rule_desc(‘A stealthy bridge could be built between virtual machines co-residing on
the same host after one virtual machine is compromised’)).

interaction rule(
(execCode(Vm_2,_user):-

stealthyBridgeExists(Vm_1,Vm_2, Host, stealthyBridge_id)),
rule_desc(‘A stealthy bridge could lead to privilege escalation on victim machine’)).

interaction rule(
(canAccessHost(Vm_2):-

logInService(Vm_2,Protocol,Port),
stealthyBridgeExists(Vm_1,Vm_2,Host,stealthyBridge_id)),

rule_desc(‘Access a host through a log-in service by obtaining authentication
information through stealthy bridges’)).

Remove rule nodes of attack graph. In an attack graph, the rule nodes
imply how postconditions are derived from preconditions. The derivation is de-
terministic and contains no uncertainty. Therefore, these rule nodes have no
effect on the reasoning process, and thus can be removed when constructing
the BN. To remove a rule node, its preconditions are connected directly to its
postconditions. For example, in Fig. 2, Node 26, 27, and 23 will be connected
directly to Node 14 by removing Node 22.

Adding new nodes. New nodes are added to capture the uncertainty of
attacker action and the uncertainty of evidence. To capture the uncertainty of



12 Xiaoyan Sun et al.

attacker action, each step has a separate AAN node as the parent, rather than
sharing the same AAN among multiple steps. The AAN node models attacker
action at the granularity of attack steps, and thus reflects the actual attack paths.
To model the uncertainty of evidence, whenever new evidence is observed, an
EC pair is constructed and attached to the supported node with uncertainty.

Determining prior probabilities. Prior probability distributions should
be determined for all root nodes that have no parents, such as the vulnerability
existence nodes, the network access nodes, or the AAN nodes.

Constructing CPT tables. Some CPT tables can be determined according
to a standard, such as the the AC metric in CVSS scoring system. The AC
metric describes the exploit complexity of vulnerabilities and thus can be used
to derive the CPT tables for corresponding exploitations. Some other CPT tables
may involve security experts’ domain knowledge and experience. For example,
the VMIs from a trusted third party may have lower probability of containing
security holes such as backdoors, while those created and shared by individual
cloud users may have higher probability.

The constructed BN should be robust against small changes in prior prob-
abilities and CPT tables. To ensure such robustness, we use SamIam [33] for
sensitivity analysis when constructing and debugging the BN. By specifying the
requirements for an interested node’s probability, SamIam will check the asso-
ciated CPT tables and provide suggestions on feasible changes. For example, if
we want to change P (N5 = True) from 0.34 to 0.2, SamIam will provide two
suggestions, either changing P (N5 = True|N2 = True,N3 = True) from 0.9
to <= 0.43, or changing P (N3 = True|N1 = True) from 0.3 to <= 0.125.

5 Experiment
5.1 Attack Scenario

Fig. 1 shows the network structure in our attack scenario. We have 3 major
enterprise networks: A, B, and C. A and B are all implemented within the cloud,
while C is implemented by partially cloud, and partially traditional network
(the servers are located in the cloud and the workstations are in a traditional
network). The attack includes several steps conducted by attacker Mallory.

Step 1, Mallory first publishes a VMI that provides a web service in the cloud.
This VMI is malicious in that it contains a security hole that Mallory knows how
to exploit. For example, this security hole could be an SSH user authentication
key (the public key located in .ssh/authorized keys) that is intentionally left in
the VMI by Mallory. The leftover creates a backdoor that allows Mallory to login
into any instances derived from this malicious VMI using his own private key.
The security hole could also be an unknown vulnerability that is not yet publicly
known. To make the attack scenario more generic, we choose a vulnerability
CVE-2007-2446 [29], existing in Samba 3.0.0 [30], as the one imbedded in the
malicious VMI, but assume it as unknown for the purpose of simulation.

Step 2, the malicious VMI is then adopted and instantiated as a web server
by an innocent user from A. Mallory now wants to compromise the live instances,
but he needs to know which instances are derived from his malicious VMI. [20]
provides three possible ways for machine fingerprinting: ssh matching, service
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matching, and web matching. Through ssh key matching, Mallory finds the right
instance in A and completes the exploitation towards CVE-2007-2446 [29].

Step 3, enterprise network B provides web services to a limited number of
customers, including A. With the acquired root privilege from A’s web server,
Mallory is able to access B’s web server, exploit one of its vulnerabilities CVE-
2007-5423 [31] from application tikiwiki 1.9.8 [32], and create a reverse shell.

Step 4, Mallory notices that enterprise B and C has a special relationship:
their web servers are implemented with virtual machines co-residing on the same
host. C is a start-up company that has some valuable information stored on
its CEO’s workstation. Mallory then leverages the co-residency relationship of
the web servers and launches a side-channel attack towards C’s web server to
extract its password. Mallory obtains user privilege through the attack. Mallory
also establishes a covert channel between the co-resident virtual machines for
convenient information exchange.

Step 5, the NFS server in C has a directory that is shared by all the servers
and workstations inside the company. Normally C’s web server should not have
write permission to this shared directory. But due to a configuration error of
the NFS export table, the web server is given write permission. Therefore, if
Mallory can upload a Trojan horse to the shared directory, other innocent users
may download the Trojan horse from this directory and install it. Hence Mallory
crafts a Trojan horse management tool.deb and uploads it into the shared NSF
directory on web server.

Step 6, The innocent CEO from C downloads management tool.deb and in-
stalls it. Mallory then exploits the Trojan horse and creats a unsolicited connec-
tion back to his own machine.

Step 7, Mallory’s VMI is also adopted by several other enterprise networks,
so Mallory compromises their instances using the same method in Step 2.

In this scenario, two stealthy bridges are established3: one is from Internet
to enterprise network A through exploiting an unknown vulnerability, the other
one is between enterprise network B and C by leveraging virtual machine co-
residency. The attack path crosses over three enterprise networks that reside in
the same cloud, and extends to C’s traditional network.

5.2 Experiment Result

The purpose of our experiment is to check whether the BN-based tool is able to
infer the existence of stealthy bridges given the evidence. The Bayesian network
has two inputs: the network deployment (network connection, host configuration,
and vulnerability information, etc.) and the evidence. The output of BN is the
probability of specific events, such as the probability of stealthy bridges being
established, or the probability of a web server being compromised. We view the
attackers’ sequence of attack steps as a set of ground truth. To evaluate the
effectiveness of the constructed BN, we compare the output of the BN with the
ground truth of the attack sequence. For example, given the ground truth that a

3 The enterprise networks in Step 7 are not key players, so we do not analyze the
stealthy bridges established in this step, but still use the raised alerts as evidence.
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stealthy bridge has been established, we will check the corresponding probability
provided by the BN to see whether the result is convincible.

For the attack scenario illustrated in Fig. 1, the cross-layer BN is constructed
as in Fig. 8. By taking into account the existence of stealthy bridges, the cloud-
level attack graph has the capability of revealing potential hidden attack paths.
Therefore, the constructed BN also inherits the revealed hidden paths from the
cloud-level attack graph. For example, the white part in Fig. 8 shows the hidden
paths enabled by the stealthy bridge between enterprise network B and C. These
paths will be missed by individual attack graphs if the stealthy bridge is not
considered. The inputs for this BN are respectively the network deployment
shown in Table 24 and the collected evidence is shown in Table 3. Evidence is
collected against the attack steps described in our attack scenario. Not all attack
steps have corresponding observed evidence.

Table 2: Network Deployment

Node Deployed Facts
N1 IsThirdPartyImage(VMI)
N2 IsInstance(Aws, VMI)
N4 netAccess(Aws, protocol, port)
N17 netServiceInfo(Bws,tikiwiki,http,80, )
N19 ResideOn(Bws,H)
N20 ResideOn(Cws,H)
N21 hacl(Cws,Cnfs,nfsProtocol,nfsPort)
N27 nfsExport(Cnfs,’/export’,write,Cws)
N30 nfsMountd(CworkStation,’/mnt/share’, Cnfs,’/export’,read)
N32 VulExists(CworkStation,’CVE-2009-2692’,kernel,localExploit,privEscalation)
N41 IsInstance(Dws,VMI)
N43 netAccess(Dws, protocol, port)

Table 3: Collected Evidence Corresponding to Attack Steps

Node Step Collected Evidence
N9 2 Wireshark shows multiple suspicious connections established
N11 2 IDS shows malicious packet detected
N13 2 Wireshark “follow tcp stream” shows a back telnet connection is instructed to open
N23 4 Cache monitor observes abnormal cache activities
N34 5 Tripwire shows several file modification toward management tool.deb
N37 6 IDS shows Trojan horse installation
N39 6 Wireshark “follow tcp stream” find plain text in supposed encrypted-connection
N47 7 Wireshark shows a back telnet connection is instructed to open
N49 7 IDS shows malicious packet detected

We conducted four sets of simulation experiments, each with a specific pur-
pose. For simplicity, we assume all attack steps are completed instantly with no
time delay. The ground truth in our attack scenario tells that one stealthy bridge
between attacker and enterprise A is established in attack step 2, and the other
one between B and C is established in step 4. By taking evidence with a certain
order as input, the BN will generate a corresponding sequence of probabilities
for events of interest. The probabilities are compared with the ground truth to
evaluate the performance of the BN.

In experiment 1, we assume all the evidence is observed in the order of the
corresponding attack steps. We are interested in four events, a stealthy bridge
exists in enterprise A’s web server (N5), the attacker can execute arbitrary code

4 Aws,Bws,Cws,Cnfs,Cworkstation denote A’s web server, B’s web server, C’s web
server, C’s NFS server, C’s workstation respectively.
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Fig. 8: The Cross-Layer Bayesian Network Constructed for the Attack Scenario

on A’s web server (N8), a stealthy bridge exists in the host that B’s web server
reside (N22), and the attacker can execute arbitrary code on C’s web server
(N25). N8 and N25 respectively imply that the stealthy bridges in N5 and N22
are successfully established. Table 4 shows the results of experiment 1 given
supporting evidence with corresponding confidence values. The results indicate
that the probability of stealthy bridge existence is initially very low, and increases
as more evidence is collected. For example, Pr(N5 = True) increases from 34%
with no evidence observed to 88.95% given all evidence presented. This means
that a stealthy bridge is very likely to exist on enterprise A’s web server after
enough evidence is collected.

The first stealthy bridge in our attack scenario is established in attack step 2,
and the corresponding pieces of evidence are N9, N11, and N13. Pr(N8 = True)
is 95.77% after all the evidence from step 2 is observed, but Pr(N5 = True) is
only 74.64%. This means that although the BN is almost sure that A’s web server
has been compromised, it doesn’t have the same confidence of attributing the
exploitation to the stealthy bridge, which is caused by the unknown vulnerability
inherited from a VMI. Pr(N5 = True) increases to 88.95% only after evidence
N47 and N49 from other enterprise networks is observed for attack step 7. This
means that if the same alerts appear in other instances of the same VMI, the
VMI is very likely to contain the related unknown vulnerability.

The second stealthy bridge is established in step 4, and the corresponding
evidence is N23. Pr(N22 = True) is 57.45% after evidence N9 to N23 is collected.
The number seems to be low. However, considering the unusual difficulty of
leveraging a co-residency relationship, this low probability still should be treated
with great attention. After all evidence is observed, the increase of Pr(N22 =
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True) from 13.91% to 73.29% may require security experts to carefully scrutinize
the virtual machine isolation status on the related host.

Table 4: Results of Experiment 1

Events
No N9 N11 N13 N23 N34 N37 N39 N47 N49

evidence Medium High High High VeryHigh High VeryHigh VeryHigh VeryHigh

N5=True 34% 34% 51.54% 74.64% 75.22% 75.22% 75.41% 75.5% 86.07% 88.95%
N8=True 20.25% 22.96% 54.38% 95.77% 96.81% 96.81% 97.14% 97.31% 98.14% 98.37%
N22=True 13.91% 14.32% 19.03% 25.23% 57.45% 57.45% 67.67% 73.04% 73.24% 73.29%
N25=True 17.52% 17.89% 22.13% 27.71% 56.7% 56.7% 68.11% 74.1% 74.27% 74.32%

Experiment 2 tests the influence of false alerts to BN. In this experiment,
we assume evidence N11 is a false alert generated by IDS. We perform the same
analysis as in experiment 1 and compare results with it. Table 5 shows that when
only 3 pieces of evidence (N9, N11, and N13) are observed, the probability of the
related event is greatly affected by the false alert. For instance, Pr(N5 = True)
is 74.64% when N11 is correct, and is 53.9% when N11 is a false alert. But
Pr(N8 = True) is not greatly influenced by N11 because it’s not closely related
to the false alert. When all evidence is input into the BN, the influence of false
alerts to related events is reduced to an acceptable level. This shows that a BN
can provide relatively correct answer by combining the overall evidence set.

Table 5: Results of Experiment 2

Events
with 3 pieces of evidence with all evidence
N11=True N11=False N11=True N11=False

N5 74.64% 53.9% 88.95% 79.59%
N8 95.77% 58.6% 98.37% 79.07%
N22 25.23% 19.66% 73.29% 68.62%
N25 27.71% 22.7% 74.32% 70.24%

Since security experts may change their confidence value towards evidence
based on their new knowledge and observation, experiment 3 tests the influence
of evidence confidence value to the BN. This experiment generates similar results
as in experiment 2, as shown in Table 6. When evidence is rare, the confidence
value changes from VeryHigh to Low has larger influence to related events than
when evidence is sufficient.

Table 6: Results of Experiment 3

Events
with 3 pieces of evidence with all evidence
N14=VeryHigh N14=Low N14=VeryHigh N14=Low

N5 74.64% 54.29% 88.95% 79.82%
N8 95.77% 59.30% 98.37% 79.54%
N22 25.23% 19.77% 73.29% 68.73%
N25 27.71% 22.79% 74.32% 70.34%

In experiment 4, we test the affect of evidence input order to the BN analysis
result. We bring forward the evidence N47 and N49 from step 7 and insert them
before N23 and N37 respectively. The analysis shows that a BN can still produce
reliable results in the presence of changing evidence order.

6 Related Work

We explore the literature for the following topics that are related to our paper.
VMI sharing. [34] explores a variety of attacks that leverage the virtual

machine image sharing in Amazon EC2. Researchers were able to extract highly
sensitive information from publicly available VMIs. The analysis revealed that
30% of the 1100 analyzed AMIs (Amazon Machine Images) at the time of the
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analysis contained public keys that are backdoors for the AMI Publishers. The
backdoor problem is not limited to AMIs created by individuals, but also affects
those from well-known open-source projects and companies.

Co-Residency. The security issues caused by virtual machine co-residency
have attracted researchers’ attention recently. [11] pointed out that the shared
resource environment of cloud will introduce security issues that are fundamen-
tally new and unique to cloud. [5] shows how attackers can identify on which
host a target virtual machine is likely to reside in Amazon EC2, and then place
the malicious virtual machine onto the same host through a number of instan-
tiating attemps. Such co-residency can be used for further malicious activities,
such as launching side-channel attack to extract information from a target vir-
tual machine [6]. [10] takes an opposite perspective and proposes to detect co-
residency via side-channel analysis. [4] demonstrates a new class of attacks called
resource-freeing attacks (RFAs), which leverage the performance interference of
co-resident virtual machine. [8] presents a traffic analysis attack that can ini-
tiate a covert channel and confirm co-residency with a target virtual machine
instance. [7] also considers attacks towards hypervisor and propose to eliminate
the hypervisor attack surface through new system design.

Bayesian Networks. BNs have been applied to intrusion detection [35] and
cyber security analysis in traditional networks [23]. [23] analyzes which hosts are
likely to be compromised based on known vulnerabilities and observed alerts.
Our work lands on a different cloud environment and takes a reverse strategy
by using BN to infer the stealthy bridges, which are unknown in nature. In the
future, the inference of stealthy bridges can be further extended to identify the
zero-day attack paths in cloud, as in [9] for traditional networks.

7 Conclusion and Discussion

This paper identifies the problem of stealthy bridges between isolated enterprise
networks in the public cloud. To infer the existence of stealthy bridges, we pro-
pose a two-step approach. A cloud-level attack graph is first built to capture
the potential attacks enabled by stealthy bridges. Based on the attack graph,
a cross-layer Bayesian network is constructed by identifying uncertainty types
existing in attacks exploiting stealthy bridges. The experiments show that the
cross-layer Bayesian network is able to infer the existence of stealthy bridges
given supporting evidence from other intrusion steps. However, one challenge
posed by cloud environments needs further effort. Since the structure of cloud
is very dynamic, generating the cloud-level attack graph from scratch whenever
a change happens is expensive and time-consuming. Therefore, an incremental
algorithm needs to be developed to address such frequent changes such as virtual
machine turning on and off, configuration changes, etc.

Disclaimer

This paper is not subject to copyright in the United States. Commercial products
are identified in order to adequately specify certain procedures. In no case does
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