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Abstract 

Recent development of accurate instruments for measuring greenhouse gas concentrations 
and the ability to mount them in ground-based vehicles has provided an opportunity to make 
temporally and spatially resolved measurements in the vicinity of suspected source locations, 
and for subsequently estimating the source location and strength. The basic approach of us­
ing downwind atmospheric measurements in an inversion methodology to predict the source 
strength and location is an ill-posed problem and results in large uncertainty. In this report, 
we present a new measurement methodology for reducing the uncertainty in predicting source 
strength from downwind measurements associated with inverse modeling. In order to demon­
strate the approach, an inversion methodology built around a plume dispersion model is de­
veloped. Synthetic data derived from an assumed source distribution is used to compare and 
contrast the predicted source strength and location. The effect of introducing various levels of 
noise in the synthetic data or uncertainty in meteorological variables on the inversion method­
ology is studied. Results indicate that the use of noisy measurement data had a small effect 
on the total predicted source strength, but gave rise to several spurious sources (in many cases 
8-10 sources were detected, while the assumed source distribution only consisted of 2 sources). 
Use of noisy measurement data for inversion also introduced large uncertainty in the location 
of the predicted sources. A mathematical model for estimating an upper bound on the un­
certainty, and a bootstrap statistical approach for determining the variability in the predicted 
source distribution is demonstrated. The new measurement methodology, which involves using 
measurement data from two or more wind directions, combined together as part of a single 
inversion process is presented. Results of the bootstrap process indicated that the uncertainty 
in locating sources reduced significantly when measurements are made using the new proposed 
measurement approach. The proposed measurement system can be significant in determining 
emission inventories in urban domains at a high level of reliability, and for studying the role of 
remediation measures. 

Introduction 

There has been renewed interest in recent years, in using inverse atmospheric dispersion methods 
as part of a top-down analysis, to estimate the source location and strength of greenhouse gas 
(GHG) emissions [1]-[16]. Development of accurate instruments [17]-[19] for measuring temporally 
resolved greenhouse gas concentrations and the ability to mount them in mobile vans, airplanes 
and towers has enabled us to conduct such inversion analysis. However, the basic approach of 
using atmospheric measurements to locate and characterize sources (the inverse problem) is an 
inherently ill-posed problem, and can lead to large uncertainty in the predicted results. In this 
paper, we present sources of uncertainty in inversion analysis, quantify the error, and put forward 
a measurement methodology for reducing the uncertainty in estimating emissions. 

Methods for estimating source strength and/or location from measurements of concentration 
can be divided into two major categories depending on the physical scale of the problem. For urban, 
regional, or continental scale inversions, researchers [1]-[7] have used ground-based observations and 
a high-resolution mesoscale atmospheric transport model to determine greenhouse gas emissions. 
They combine prior emission inventories and atmospheric observations using a Bayesian statistical 
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approach to estimate the emissions and the corresponding uncertainty. Enting et al. [9] has reported 
that characterizing and calculating the uncertainties in emissions at regional scale is difficult, and 
that the uncertainty structure in space and time is difficult to interpret. When the physical distance 
between the sources and sensor measurements are smaller, it becomes difficult to use the mesoscale 
atmospheric transport models for inversion. Typical examples include measurements made with 
instruments mounted inside ground-based vehicles operating on roads close to a possible source. 
For such scales atmospheric inversions are usually done using plume dispersion and surface layer 
models [10],[11],[12]. In this report, we are primarily interested in measurements that are made 
relatively close to the source and restrict ourselves to studying the uncertainty in inverse modeling 
related to plume dispersion models. A large number of inversion studies based on plume inversion 
models have appeared in the literature. A few of these studies that deal with uncertainty estimates 
are discussed below. 

Lushi et al. used a Gaussian plume model to provide inverse estimates of particulate emissions 
[14]. They added artificial, randomly generated noise to their measurements at levels of ± 30 % 
of the measured values and found that the introduction of noise had little effect on the estimates 
of source strength. It was speculated that the positive and negative contributions of noise tend to 
cancel out its effect [14]. Their approach does not exhibit the high levels of sensitivity normally 
found in ill-conditioned problems, and this was attributed to the fact that measurement locations 
were close to the sources (< 1 km). Using monthly deposition data for the inverse estimates, aggre­
gate (year long) estimates were within 10%-20% of reported emissions. However, large variations 
in monthly output were estimated and these variations were ascribed to errors in the measurement 
data, and the fact that detailed meteorological data for assessing atmospheric stability were not 
available. Lushi et al. (unlike the focus of the current study) did not investigate the sources of 
uncertainty in their predicted source distribution, nor did they put forth an approach for reducing 
the uncertainty. The result of our current research study show that noisy measurement data can 
have a large effect on the predicted source strength and location, a result that contradicts the work 
reported by [14]. 

Jeong et al. [15] have reported experiments in which sulfur hexafluoride (SF6) was released at 
strengths of 110 kg/h to 115 kg/h from a single point source at 57 m above ground level near a 
nuclear power plant. Measurements were made at various heights and at two downwind distance 
(3 km and 8 km) from the source. Atmospheric conditions were moderately unstable during both 
trials comprising the experiment. They subsequently employed an inversion technique based on the 
Gaussian plume model; however, only source strengths, not locations, were estimated. Despite the 
fact that the source location was known, source strengths were overestimated by about 47 % using 
data from only the 3 km arc, and by about 72 % when data from only the 8 km arc were used 
[15]. The experiments reported by Jeong et al. provide a useful way to test the inversion method. 
Although they report some uncertainty in the predicted results, Jeong et al. did not investigate 
the source of this uncertainty, nor did they provide a scientific basis for reducing or managing the 
uncertainty in their predicted results. 

Finally, Rudd et al. [16], studied the sensitivities of predicting source strength and location 
to the number of downwind sensors, sensor configuration, averaging time and noise in the input 
data. Data from wind tunnel experiments, in which a tracer gas (propane) was released into the 
air from a single source location, were used to test their inverse model. Using data from the 
wind tunnel experiment, dispersion coefficients and wind speed necessary in the Gaussian plume 
model were customized to provide the best possible model of downwind concentrations. Rudd et 
al. estimated that the Gaussian plume model introduced an error of 1.5 ppmv into estimates of 
downwind concentration when the wind tunnel experiment was assumed to have a scale of 1:500, 
corresponding to a reference wind speed of 10 m s−1 at 32 m, a boundary layer height of 500 m and 
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a source strength of 0.1 m3 s−1 [16]. It was noted that uncertainties in wind speed and dispersion 
coefficients will be greater in field applications than in the controlled wind tunnel experiment, and 
therefore greater model error would be expected [16]. 

The literature review presented above clearly shows that plume dispersion models have been 
used extensively for estimating the source strength and location from various tracer release exper­
iments. Researchers also reported large uncertainty in their inverse estimates, but have provided 
limited explanation for the observed uncertainties. In this report, we use synthetic data to under­
stand the sources of the uncertainty in plume inversion models. There has been limited research 
on developing methods for reducing the uncertainties and for studying the variability of the source 
distribution. The goal of this report is to propose a new measurement methodology for reducing 
the uncertainty in inversion analysis. 

In Section 2, we provide a brief description of the physical problem and provide the basic 
mathematical framework of an inverse problem. Governing equations for the plume dispersion 
model are presented and the numerical methods for solving the inversion problem are discussed. 
Section 3 provides a description of the basic source - sensor configuration that is used to test the ideal 
(base-case) inversion problem. Several sources of uncertainty such as noise in the measurement data, 
lack of accurate information on wind speed and direction, as well as atmospheric stability conditions 
are explored, and their effect on inversion are quantified. Section 4 presents a methodology for 
estimating the upper bound on the uncertainty in inversion, while section 5.1 provides an approach 
for quantifying the variability in predicting source strength and location. Finally, section 6 presents 
a measurement approach for reducing the uncertainty in inversion. We conclude by providing 
suggestion for incorporating the new measurement approach into future mobile campaigns for 
estimating emission inventories. 

2 Model Formulation and Description of the Problem 

Consider a source of known strength Q (kg s−1) that is releasing a tracer gas into the atmosphere. 
We also assume that a sensor is located downwind of the source, where we need to estimate the 
concentration of the tracer gas. The concentration C (measured in kg m−3) of the tracer gas at 
the sensor location can be modeled using the equation 

C 
Q + Cbg = C (1)

Q est 

where Cbg is the background concentration, and (C/Q)est, represents the influence of the source 
on the sensor (influence function). This ratio can be estimated from a variety of models such as 
plume models, computational fluid dynamics models or from tracer experiments. The difficulty in 
this seemingly trivial model lies in obtaining an accurate value of the ratio (C/Q)est for the given 
configuration of source and measurement point. 

2.1 Estimating source strength and location - the inverse problem 

The inverse of this problem occurs when concentrations are known, but source strengths, or their 
locations, are not. In the above model, a single source strength could be estimated from a single 
measurement simply by solving for Q in Equation 1. 

C − Cbg
Q =   (2)

C
 
Q
 est 
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Note, that the predicted source strength is a function of the reciprocal of the estimated ratio, 
(C/Q)est. Thus, small changes (errors) in the estimated ratio may produce large changes in the 
inverse estimate of Q. 

The problem becomes more complicated when multiple sources and measurements are involved. 
For n sources that generate concentrations measured at m locations, the necessary set of equations 
may be written as [11]: ⎛
 ⎞⎛⎞⎛⎞⎛⎞C1,1 C1,2 C1,n· · · Q1 C1 C1Q1 Q2 Qn
 

C2,1 C2,2 C2,n
· · · Q1 Q2 Qn 
. . .. . . . .
 .. . . 

Cm,1 Cm,2 Cm,n· · · 

⎜⎜⎜⎜⎝
 

⎜⎜⎜⎝
 

⎟⎟⎟⎟⎠
 

⎟⎟⎟⎠
 
+
 
⎜⎜⎜⎝
 

⎟⎟⎟⎠
 
=
 
⎜⎜⎜⎝
 

⎟⎟⎟⎠


Q2 
.
 .
 

C2 
.
 .
 

C2 
.
 .
 ,
 (3)
 

.
 .
 .
 
Qn Cm CmbgQ1 Q2 Qn est 

where for visual clarity, the subscript “est” has been applied to the entire matrix instead of its 
individual elements. Equation 3 may be written in a more compact notational form as 

GQ + Cbg = C, (4) 

where G represents a matrix of the estimated ratio terms (C )est, Q represents a vector of the Q 
source terms, and Cbg and C represent the vector of background concentrations and the sensor 
measurement, respectively. 

The challenge of the inverse problem however, lies in the fact that the coefficient matrix G is 
usually ill-conditioned for physically realistic scenarios, rendering the inverse problem extremely 
sensitive to very small changes in concentration measurements as well as error introduced by the 
dispersion model [8]. Any model relating source strength to downwind concentration could be 
used to calculate the elements of G and to subsequently conduct an inverse analysis. Since the 
purpose of this report is to identify the sources of uncertainty in inversion analysis, and to develop a 
methodology for reducing this uncertainty, we use a simple plume model to construct the inversion 
matrix, so that computations can be carried out in a quick and efficient manner. It should be 
pointed out that the predicted source strengths will be sensitive to errors introduced in the analysis, 
irrespective of the choice of the actual model that is used to construct the elements of the inversion 
matrix because of the ill-conditioned nature of the inversion matrix G. 

2.2 Gaussian plume model 

The time-evolution of the concentration of a passive, conserved scalar in the atmosphere may be 
modeled as a diffusion equation: 

∂C(x, y, z, t) 
= Kx,y,z'2C(x, y, z, t), (5)

∂t 

where t is time, and the diffusion coefficients, Kx,y,z, represent turbulent (eddy) diffusivity rather 
than molecular diffusion Assuming the source strength, Q, as a forcing term, a solution to this 
equation in a cartesian coordinate system was provided by Ermak et al. [20]  
   
      

C(x, y, z) 

Q 
= 

1 
2πuσyσz 

exp − 
1 
2 

y 
σy 

2

exp − 
1 
2 

z − H 
σz 

2

+ exp − 
1 
2 

z + H 
σz 

2

, (6) 

where u is the mean streamwise wind speed; σy and σz (m) are dispersion coefficients in the 
crosswind and vertical directions, respectively, y is crosswind distance from the plume centerline
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(m), z is height above ground (m) and H is the height of the source (m). This form of the plume 
model (Equation 6) includes the portion of the plume “reflected” from the ground (2nd term in the 
large brackets). 

The diffusion coefficients in the crosswind (Ky) and vertical (Kz) directions are related to the 
dispersion coefficients σ through the relation [18].  

σy	 = 2Ky(x/u) (7)  
σz	 = 2Kz(x/u) (8) 

The values of the dispersion coefficients are therefore functions of streamwise (x-axis) distance, 
and may be estimated according to atmospheric stability and downwind distance from the source. 
For simplicity, we use the Pasquill-Gifford-Turner (PGT) categories which partition atmospheric 
stability into six groups, ranging from “A” (very unstable), to “F” (very stable). Formulas relating 
σy and σz to downwind distance were determined empirically for each of these classes [21], [22]. 

Several assumptions are made in the simple dispersion model that is proposed in this section. 
Emissions for the sources are assumed to be constant and continuous over time. It is also assumed 
that the gases or pollutants are conserved as they disperse (i.e., there is no deposition) and that they 
do not react with, or decay into other products. Meteorological conditions (wind speed, direction 
and static stability) are assumed to be constant throughout the domain and over the time that it 
takes for gases to be transported between sources and receptors. 

2.3 Solving the inverse problem 

In the inverse simulations below, we assume that source strengths are unknown and that all sources 
are contained somewhere within an upwind area defined and represented by a grid of points. Ratios 
of downwind concentration to source strength were calculated for each combination of source grid 
point and measurement (concentration) location using Equation 6. The values of these ratios 
populate the matrix in Equation 3. The dimensions of the resulting matrix are therefore m x n, 
where m is the number of measurement points, and n is the number of locations within the source 
area. 

A solution to the inverse problem was estimated using the non-negative least squares (nnls) al­
gorithm of Lawson and Hanson [23]. This numerical algorithm minimizes the norm of the difference 
between the left and right hand sides of Equation 3, i.e., it produces a vector, Q, with all elements 
greater than or equal to zero, that minimizes IGQ − CI. Proof of convergence and details of the 
algorithm may be found in [23]- [26]. 

3	 Basic Configuration for Predicting Source Strength and Loca­
tion 

The objective of this study is to estimate and reduce the uncertainty in locating the sources and 
their strength from downwind measurement data. In this section, we present the basic configuration 
of measurement locations relative to the source area, that is used in our simulations. 

Figure 1 illustrates a schematic diagram, in plan view, of the configuration of sensor measure­
ments and source area for evaluating the plume inversion model. The square area shown in Figure 
1 has dimensions of 2.5 km × 2.5 km, and represents a domain where the sources are located. It 
is assumed that the wind direction is from left to right (parallel to the x-axis). Downwind of the 
source are three lines located at x = 4000, 5000 and 6000 m, which schematically represent the 
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location of the measurements. Measurement data1 can be obtained from a variety of sources such 
as tower measurements, aircraft measurements or from an instrument mounted inside a vehicle. 
Synthetic measurements that attempt to mimic measurement made from an instrument mounted 
inside a vehicle can also be generated. Since the goal of this report is to estimate and reduce un­
certainty in source location and strength, we employ the approach of using synthetic measurement 
data. The use of synthetic data has the additional advantage that we can compare the inversion 
results with the total known source strength as well as checking the accuracy of the location of the 
predicted sources. The lines in Figure 1 each indicate the location of 502 measurement points, with 
a total of 1506 measurements points on the three lines. Since the assumed wind direction in this 
ideal (base) configuration is from the West, the lines of measurement points are perpendicular to 
the flow. The source and measurement domains depicted in Figure 1 have been chosen to roughly 
match what is expected in real deployments. 

Figure 1: Plan view of source-sensor configuration that is used for estimating and reducing the 
uncertainty in prediction of sources and their location. The square (2.5 km × 2.5 km) represents 
the location of the sources, while the lines indicate an array of measurement locations downwind 
of the source. All units are in meters. 

As discussed earlier, we assume a set of known sources (located inside the square area of Figure 
1) to create synthetic data that is subsequently used in the algorithm. The location of these known 
(assumed) sources and their source strength are shown in detail in the surface plot (Figure 2 left 
sub-figure). The source area is represented as a regular grid of 40 x 37 elements (i.e., the area is 
resolved into 62.5 m x 67.6 m cells). The elements of the source grid are therefore represented by 
a vector of 1480 elements. The surface plot shows the presence of two sources; one that is located 
in the leftmost corner of the grid has a source strength of 0.1398 kg/s, while the other located in 
the rightmost corner has a source strength of 0.0975 kg/s. 

The known (assumed) sources and their strength are also indicated by the bar plot on the right 
side of Figure 2, where they are referred to by the index number of the cells within the source area 
grid. The spikes shown in the bar plot represent, from left to right, source strengths of 0.1398 kg/s 
and 0.0975 kg/s (total = 0.2373 kg/s), respectively. Hereon, the stronger (leftmost) and weaker 
(rightmost) source will be referred to as sources “A” and ”B,” respectively. In all simulations 
described below, the location of the assumed sources and their strengths remained constant, while 
the configuration of measurement locations, the assumed wind direction, measurement noise and 

1Certain commercial equipment, instruments, or materials are identified in this report in order to specify the 
experimental procedure adequately. Such identification is not intended to imply recommendation or endoresement 
by the National Insitute of Standards and Technology, nor is it intended to imply that the materials or equipment 
identified are necessarily the best available for the purpose. 
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atmospheric stability class were varied to study their effect on inversion.
 

Figure 2: Surface plot (left sub-figure) and bar chart (right sub-figure) showing the location of the 
assumed sources and source strength measured in kg/s. 

The assumed sources are used to create synthetic data at the measurement locations, as well 
as for comparison with the predicted source distribution. Uncertainty in the prediction can be 
estimated by evaluating the differences between the predicted and assumed source distribution. 
Qualitative comparisons can be made through comparison of the surface and bar plots shown 
in Figure 2. Synthetic data is generated by using the plume Equation 6 to calculate downwind 
concentrations at the measurement locations (illustrated by the lines in Figure 1). A wind speed of 
2.5 m/s and a neutral atmospheric stability (PGT class D, urban) was assumed. The synthetic data 
is shown in Figure 3, which shows a 3D line plot of downwind concentrations (density measured in 
kg/m3) plotted on the three measurement lines. Synthetic data at measurement lines located at x= 
4000 m, 5000 m and 6000 m are shown with red, green, and blue lines, respectively. Note that the 
nearest line of measurement points (x = 4000 m) shows two separate peaks corresponding to the 
separate sources. As expected, the peak concentrations diminish with distance from the sources. 

Figure 3: Synthetic data obtained at the sensor locations using the assumed source location and 
strength. 

The synthetic data generated above is next used in an inversion framework to identify the 
source strength and locations. The synthetic data forms the concentration vector C in Equation 
4; the coefficient matrix, G was generated from Equation 6, and the nnls algorithm (discussed in 
Section 2) was used to solve the inverse problem by estimating the source vector, Q. The predicted 
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source distribution Q obtained after inverting the matrix is shown in Figure 4. Comparison of the 
predicted source distribution (Figure 4) and the assumed source distribution (Figure 2) indicates 
that the predicted and assumed source distributions are essentially identical. The total predicted 
source strength was only 0.001 % greater than the assumed total source strength. The location of 
the predicted sources was also identical to that of the assumed sources (as seen clearly in the bar 
plots). Since the synthetic data was generated from the plume model, this case represent perfect 
inversion. This perfect inversion is a verification of the underlying algorithms that have been used 
and the validity of the matrix inversion process. 

Figure 4: Surface and bar chart showing the location of the predicted sources and source strength 
for the base (ideal) case scenario. 

3.1 Effect of measurement distance from the source area 

In order to further evaluate the inversion methodology, we study the effect of moving the mea­
surement locations further away from the source. It is well known that dispersion increases with 
downwind distance from the source, but it is not clear if moving the measurement locations further 
downwind will adversely affect the inversion results. 

To study the effects of this phenomenon on the inverse estimates, the ideal case, in which the 
array of measurement locations began at x=4000 m, was repeated with the array moved further 
downwind. In three separate simulations, the array began at x=8000, 12000 and 16000 m, respec­
tively. The distance between the rows (1000 m) array was held constant. Concentrations at each 
measurement location were estimated using Equation 6. These concentration values were then used 
in the inverse estimates to find the locations and strengths of the individual sources. 

The results are illustrated in Figure 5 below, where distance to the measurement rows increases 
from the top to bottom of the page. The top panels are for measurements that begin at 8000 m 
downwind of the source, the middle two panels for 12000 m downwind of the source, and bottom 
panels for 16000 m from the source. The total source strength for the three cases was 0.23728 kg/s, 
0.23729 kg/s and 0.23726 kg/s. Error in the estimate of total source strength was insignificant 
(<< 1%), but it is clear from the surface and bar plots, that estimates of source locations become 
less accurate with increasing distance to the measurement locations. 

In all three cases, multiple source locations were estimated, with a total of 13 sources in the 8000 
m case, and 10 sources in each of the other two. Many of these sources were of negligible strength 
(∼ 10−3 kg/s) compared to the true source strengths, and are barely, or not at all, visible on either 
the surface or bar plots. However, it is clear that the number of non-negligible (∼ 10−1 kg/s) 
spurious sources increased with distance to the measurement locations, though these sources tend 
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Figure 5: Inverse estimates of source strength and location when the set of measurements begins 
at 8000 m (top two panels), 12000 m (middle panels) and 16,000 m (bottom panels) downwind of 
the source area. 

to be grouped relatively near the true source locations. For example, in the bottom panel of Figure 
5, the inverse estimate of source B comprises four sources with a total strength approximately equal 
to the true strength of source B. 

Since dispersion increases with downwind distance from the source, details of the combined gas 
plume such as the two separate peaks of the leftmost line of measurements in Figure 3 become 
less distinguishable with increasing distance from the sources. In effect, information that can be 
used to estimate separate source locations is lost with increasing downwind distance as seen in our 
results. 
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3.2 Effect of noise in measurement data 

Measurements are usually collected with instruments mounted on a vehicle traversing along a road 
that is nominally perpendicular to the wind direction. As the vehicle path intercepts the plume, 
the on-board instruments record the local concentration in the plume. Since the plume itself is 
continuously evolving in time, the vehicle may intercept different portions of a turbulent plume 
at different locations. The microscopic turbulent eddies that are part of a plume can result in 
significant noise in the measurement data. Noise in the measurement data can also be attributed 
to changes in meteorological conditions during a transect. Usually data from a few transects 
are averaged together, but it is conceivable that this averaged concentration may not be a true 
representation of a Gaussian plume. 

In this section, we investigate the effect of using noisy measurement data on the inverse calcula­
tion. Results are shown for two cases with different levels of noise incorporated in the measurement 
data. Noisy data was created by adding random variations to the downwind concentrations that 
were calculated in the ideal case (base case) synthetic data. The level of noise was chosen based 
on observations of real data from mobile campaigns [19]. At the location of each measurement, 
a random percentage of its concentration, taken from a uniform distribution was added to the 
synthetic data. 

Figure 6: Synthetic data modified with 10 % noise 

In the first case, 10% noise (i.e., variation of ± 5 % of the signal above the background level) was 
added to each of the measurement points. The synthetic data modified with 10 % noise is shown 
in Figure 6. The resulting effect of using the noisy data on the inverse calculation is illustrated 
in Figure 7, which shows surface and bar charts for the predicted source distribution. The total 
predicted source strength was 0.2415 kg/s, which was only about 1.8 % greater than the actual 
(assumed) source strength. However the surface and bar charts (Figure 7) indicated the presence 
of multiple sources. Results also indicate that the location of the sources was significantly different 
than the assumed source distribution shown in Figure 2. Estimates of crosswind locations were 
accurate for both of the sources, but the streamwise (x-axis) location of the stronger source (source 
A) was estimated to be at the windward edge of the source area, about 300 m upwind of the true 
location, and was spread over adjacent source grid locations. Overall, ten source locations were 
identified in the inverse calculation, though only four had values of the same order (∼ 10−1) as the 
true sources. 

In the second case, 30 % noise (variation of ± 15 %) was added to the downwind concentrations 
above the base-case levels. The modified synthetic data with 30 % noise is shown in Figure 8, 
while the predicted source distribution is shown in Figure 9. Despite tripling the amount of noise 
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Figure 7: Predicted source distribution (surface and bar charts) for inversion of synthetic data 
modified with 10 % noise. 

in the measurements, total source strength was overestimated by only about 3 %, but there was 
significant error in the location of the predicted sources. Once again, the larger source location was 
spread over two cells, and estimated to be at the windward edge of the domain. The sum of source 
strengths for these two locations (leftmost vertical red bars in the lower right panel of Figure 9) was 
0.15 kg/s, an overestimate of about 8 % from the value of source A. As before, ten source locations 
were identified, although only five were of the same order as the true sources. 

Figure 8: Synthetic data modified with 30% noise 

In both of these cases, the estimated streamwise position of the source furthest from the mea­
surement locations (source A) was most affected by the random noise added to the measurements. 
This is due to the fact that the measurements are much less dense in the streamwise direction, 
where the relevant information for the inverse estimate comes essentially from the concentration 
gradients between only three rows of data, rather than between closely neighboring points as in the 
crosswind case. 

3.3 Other sources of uncertainty 

The previous section demonstrated the effect of using noisy measurement data on the predicted 
source location and strength, following an inversion analysis. Besides noisy measurement data, 
there are several other sources of uncertainty that can have a direct effect on the predicted source 
strength and location. They include factors such as changes in meteorological conditions, such 
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Figure 9: Predicted source distribution (surface and bar charts) for inversion of synthetic data 
modified with 30 % noise. 

as wind speed and direction, as well as the uncertainty in the ability of the model to simulate 
the atmospheric conditions (atmospheric stability). In this section we demonstrate the effect of 
uncertainty in using incorrect wind direction information and its effect on the inversion process. 

Downwind concentrations estimated by the forward dispersion model (Equations 1) are based 
on the assumption that mean wind direction is known to a high degree of accuracy. However, there 
are several sources of uncertainty in measurements of wind direction including instrument calibra­
tion errors, and accuracy and placement of anemometers or wind vanes. The latter is especially 
important since the mean wind direction near a source location may not be the same as that near 
the measurement location (instrument is located far away from the sources). A different kind of 
uncertainty arises when atmospheric models are used to estimate mean wind direction between 
sources and measurement locations. 

Figure 10: Effect of uncertainty in wind-direction on the predicted source strength and location. 
Synthetic data is created with a wind in the x-direction (270.0 ◦), but a wind direction of 265.0 ◦ 

is assumed during the inversion process. 

We report two specific calculations that were conducted to understand and evaluate the effect 
of using an incorrect wind-direction vector in the inversion algorithm. Downwind concentrations 
from the ideal case, in which wind direction was parallel to the x-axis, were used in both cases. 
However, in the first case, the terms of the inversion matrix G were computed by assuming that 
the wind direction was in-correctly estimated to be 5◦ counter-clockwise (CCW) from the original 
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direction (i.e., from the x-axis). Figure 10 shows the predicted source strength and location when 
wind direction was assumed to be 5◦ counter-clockwise (CCW) from the x-axis. The error in the 
wind direction had little effect on the estimate of total source strength, with an overestimate of only 
0.6 %, but it is clear from Figure 10 that the locations and strengths of the individual sources were 
not well-characterized. Figure 11 shows the source strength and location when wind direction was 
in error by 5◦ clockwise (CW) from the original direction. In this case, the total source strength 
was underestimated by 3.4 %, but the estimated locations of the individual sources again departed 
significantly from the true locations. 

Figure 11: Effect of error in wind-direction on the predicted source strength and location. Synthetic 
data is created with a wind in the x-direction (270.0 ◦), but a wind direction of 275.0 ◦ is assumed 
during the inversion process. 

The asymmetry in the estimates of source strength for the two cases reflects the lack of symmetry 
around the x-axis in the true source and measurement locations. Relative to the true source 
locations, the rows of measurement points extend further in the positive y-axis direction than in 
the negative (see Figure 1). Inspite of this asymmetry, these cases illustrate the strong effect of error 
in wind direction on the location of individual sources within the estimated source area. However, 
the results also suggest that total source strength can be estimated with reasonable accuracy as 
long as the measurement field intersects the majority of the plume. 

Upper Bound on Uncertainty in Source Strength 

In the previous section, we have presented several examples that demonstrate the uncertainty in 
predictions of source strength and location attributed to noisy measurement data or incorrect mete­
orological data. This uncertainty in prediction of source strength and location can be mathematical 
quantified through the concept of condition number. 

In order to predict emission from downwind measurement data, the system of linear Equations 
4 are inverted. The relative error, or uncertainty, in the calculation of source strength can be 
written mathematically as 

IΔQI IΔGI IΔCI IΔCbgI 
≤ κ + + (9)

IQI IGI ICI ICbgI 

where Δ signifies a change or error, the operator I · I represents a norm (usually the Euclidean 
or spectral norm), and κ indicates the condition number [10]. If G is square (i.e., m = n) and 
non-singular, the condition number κ may be calculated as IGI/IG−1I. For rectangular matrices 
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(m  = n), the condition number may be calculated as the ratio of the largest and smallest singular 
values [26]. 

Equation 9 provides an upper bound on the relative error in the estimated source strength. This 
relative error is proportional to the condition number κ, as well as the relative error in estimating the 
coefficient matrix, the measured concentrations and background concentrations [10][25]. Therefore, 
a low value of κ implies a low sensitivity to error, but a large value does not necessarily imply a 
high sensitivity. The uncertainty in source strength increases, if the configuration of measurement 
locations and sources is ill-posed and is reflected in large values of the condition number. 

For the ideal case shown in Section 3, the condition number of the coefficient matrix was 
calculated to be 2.87 × 1026 . Inspite of the large value for the condition number, the errors in the 
inversion process were found to be extremely small (Figure 4). This is due to the fact that the 
uncertainties in the (prescribed) background concentration, “measurements,” and the coefficient 
matrix (see Equation 9) are at the level of machine precision (∼ 2 × 10−16). 

In section 3.1, we show the effect of increasing the distance between sources and measurement 
locations on the predicted source strength and location. As the distance increases, the condition 
number does not change significantly; in-fact it becomes marginally smaller. However, the relative 
error in the measurement becomes larger, as the absolute value of the measurement reduce with 
distance (plume becomes more diluted further away from the source). As a result of this large 
relative error, the uncertainty in the prediction of source strength and location increases with 
distance (consistent with Equation 9). 

The use of noisy measurement data can result in large uncertainty in the predicted source 
strength as seen in section 3.2. Large levels of noise result in large relative errors, which in turn 
results in large uncertainty in source location and strength, consistent with Equation 4). Uncer­
tainty in meteorological variables (shown in section 3.3) such as wind direction or wind speed also 
results in large uncertainty in the terms of the coefficient matrix IΔGI, which in turn results in 
uncertainty in the source prediction. 

5 Quantification of Uncertainty due to Noisy Measurement Data 

The results shown in Section 4 clearly illustrated that error is introduced in predicting source 
strength and location due to noisy measurement data or in-correct meteorological data. The goal 
of this section is to quantify the distribution of this uncertainty and to develop a measurement 
methodology that reduces the uncertainty. In order to characterize and quantify the measurement 
uncertainty, we employ a statistical bootstrap procedure discussed below. 

5.1 The bootstrap method 

The bootstrap was introduced by Efron et al. [27], [28] and is widely used for estimating uncertainty 
in various applications. Generally speaking, the bootstrap proceeds by re-sampling the observed 

˜data with replacement, and the parameters (e.g. Q) are re-computed with the bootstrap datasets. 
After this is done many times, the variability in the bootstrap replicates provide an estimate of the 
variability in the original parameter estimate. 

To begin, we modify Equation 1 so that it explicitly recognizes the measurement error in C. 

C = GQ + Cbg + E, (10) 

where E is a random vector with mean vector 0 and co-variance matrix σ2Diag(GQ), where Diag(x) 
is a diagonal matrix with x on its diagonal. Next, define ĩ = C − GQ̃ and r̃ = ĩ/GQ̃, where the 
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“/” operator implies element-wise division. Now, carry out these steps:
 

∗1. Re-sample with replacement the elements of r̃ to get r . 

2. Calculate i∗ = r ∗ × GQ̃, where the “×” operator implies element-wise multiplication. 

3. Calculate C∗ = GQ̃+ i∗ . 

4. Calculate Q̃∗ by solving the inverse problem using C∗ instead of C. 

Q∗ Q∗5. Repeat 1 – 4 B times to get Q̃∗ 
1, ˜ 2, · · · , ˜B 

The bootstrap replicates ˜ 1, · · · , are used to summarize the variability in ˜ For exam-Q∗ Q̃∗ 
2, Q̃∗ 

B Q. 
ple, if Q̃(i) is the ith element of ˜ Q∗ ˜

2(i), · , Q∗Q, the standard deviation of ˜ 1(i), Q
∗ · · ˜ (i) is an estimate B 
Q∗ ˜ Q∗of the standard deviation of Q̃(i). Also, the α and 1 − α quantiles of ˜ 1(i), Q2

∗(i), · · · , ˜ (i) are 2 2 B 
an approximate (1 − α)100% confidence interval for Q(i), the true source strength. 

To choose B, we take an initial guess, B0 and run the bootstrap procedure twice. If the 
difference in the results between the two runs is practically trivial, B0 is sufficiently large. If not, 
repeat with a larger value of B until the difference between the two runs is as small as required, 
i.e. the number of decimal places of accuracy that are required. 

5.2 Application of the bootstrap process to estimate uncertainty 

The bootstrap iterative process described in section 5.1 was used to iteratively estimate the source 
strength with various estimates of the measurement vector. The measurement vector was obtained 
by adding an error vector (difference between the predicted concentrations and measurements) 
through re-sampling with replacement. Before employing the bootstrap procedure to estimate the 
variability, it was important to determine the maximum number of iterations that were needed to 
obtain a converged solution. Figure 12 shows bar plots of the maximum source strength at each 
index locations at three different points during the evolution of the bootstrap process. Results are 
shown after 100 bootstrap replications(left panel), 500 bootstrap replications (middle panel) and 
1000 replications (right panel). While convergence has not been achieved after 100 replications, 
comparison between the results for 500 replications and 1000 replications show that convergence has 
been achieved. Based on Figure 12, results for 1000 replications will be used to quantify uncertainty 
in the inversion process. 

Figure 13 shows a surface plot of the maximum sources strength at each grid point of the 
rectangular domain, obtained over 1000 replications of the bootstrap procedure. This plot shows 
the uncertainty in predicting source strength and location due to use of noisy measurement data. 
Comparison of the bootstrap results shown in Figure 13 with the assumed source distribution shown 
in Figure 1 indicates that there was considerable uncertainty in the location of the sources. The 
stronger (leftmost) source ”A” as well as the weaker (rightmost) source ”B” are visible in the plot 
shown in Figure 13, but their exact location and strength seems to be unclear. It is important 
to note that the estimated locations varies along the x-axis, while the variability along the y-axis 
is relatively small. The results of the bootstrap procedure indicate that the uncertainty in source 
prediction is not distributed uniformly over the entire domain. Instead the uncertainty is limited 
to the streamwise direction (in this case the x-direction) for both the sources. 

In order to test if the distribution of uncertainty in source identification is limited to the 
streamwise direction, a set of simulations were conducted where the wind direction was shifted to 
be parallel to the y-axis (southerly wind). The measurement locations were also shifted so that 
they were nominally perpendicular to the wind direction. Figure 14 shows a schematic diagram 
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Figure 12: Bar chart showing the maximum source strength plotted as a function of grid index 
for various levels of iteration. Results are shown for 100 iterations (left sub-figure), 500 iterations 
(middle sub-figure) and 1000 iterations (right sub-figure). 

Figure 13: Surface plot showing the maximum source strength at each grid location, plotted at the 
end of 1000 iterations of a bootstrap method. The wind is parallel to the x-axis. 

of the new configuration. The only difference between the configuration shown in figure 14 and 
the one shown in Figure 1 is the wind direction and the measurement locations. The location of 
the square source area did not change, nor did the strength and location of the assumed sources 
A and B. Synthetic data was generated using the plume model Equation 6 to calculate downwind 
concentrations at the locations illustrated by the lines in Figure 14. As for the previous cases, a 
wind speed of 2.5 m/s (parallel to the X-axis) and a neutral atmospheric stability (PGT class D, 
urban) was assumed. 

Using only the downwind measurements and the coefficient matrix, G, generated from Equation 
6, the nnls algorithm was used to solve the inverse problem by estimating the source vector, Q. 
The resulting effect of using noisy data on the inverse calculation is illustrated in Figure 15, which 
shows surface and bar charts for the predicted source distribution. Comparison of the predicted 
source distribution (Figure 15) and the assumed source distribution (Figure 2) again indicates that 
there are significant differences in the predicted source strength and location due to the noise in 
the measurement data. The total predicted source strength was 0.0.2451 kg/s, which is only 3.2% 
greater than the actual (assumed) source strength. Surface and bar charts (Figure 15) indicate 
the presence of multiple sources, and the location of the sources was significantly different from 
the assumed source distribution. Estimates of crosswind locations were accurate for both of the 
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Figure 14: Plan view of the model domain used to investigate the effect of a wind in a direction 
parallel to the y-axis. 

sources, but the streamwise (y-axis) location of the stronger source (source A) was not estimated 
accurately. Overall, seven source locations were identified in the inverse calculation, though only 
two sources had strengths of the same order as the true sources. 

Figure 15: Surface and bar chart showing the location of the predicted sources and their strength, 
when the wind is parallel to the y-direction. 

As for the case when the wind was in the x-direction, we used the bootstrap procedure to 
quantify the uncertainty for the case when the wind is in the y-direction. Figure 16 shows a 
surface plot of the maximum source strength over 1000 bootstrap replicates at each grid point of 
the rectangular domain, assuming that the wind was in the y-direction. Results indicate that that 
the stronger (leftmost) source ”A” as well as the weaker (rightmost) source ”B” are visible in the 
plot shown in Figure 16, but their location and strength is not clear. It should be noted that 
the uncertainty in the location of the sources and the variability is primarily in the y-direction 
(streamwise), while the variability in the x-direction is relatively small. Results of the bootstrap 
procedure with a wind in either the x or y-direction, both indicate that the uncertainty in source 
prediction is primarily in the streamwise direction. This is an important conclusion, and is the basis 
for designing a measurement methodology aimed at reducing the uncertainty in source prediction, 
as discussed in the next section. 
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6 

Figure 16: Surface plot showing the maximum source strength at each grid location, plotted at the 
end of 1000 iterations of a bootstrap method. The wind is parallel to the y-axis. 

A Novel Measurement Methodology for Reducing the Uncer­
tainty in Source Prediction 

In this section we propose a new measurement methodology for reducing the uncertainty introduced 
in the source prediction due to noisy data. The application of the bootstrap procedure demonstrated 
the uncertainty in source strength and location when the wind was in the +x-direction (Figure 13), 
or in the + y-direction (Figure 16). Results clearly illustrated that the uncertainty is distributed 
in the streamwise direction. 

In order to reduce this uncertainty, we investigate the feasibility of taking data from two different 
wind directions and combining them together in a single calculation. Figure 17 (left sub-figure) 
illustrates a typical configuration for collecting data with two different wind directions. The set of 
measurement lines parallel to the y-axis, were used to collect data when the wind was blowing in 
the +ve x-direction. The set of measurement lines parallel to the x-axis were used to collect data 
when the wind was in the +y-direction. For each wind direction, synthetic data was generated on 
the measurement lines using an assumed source distribution shown in Figure 2. Note, that the 
source area and the location / strength of the assumed sources has not changed in any of these 
configurations. Next, we introduced 10% noise in the measurement data collected at each location 
for both the wind directions. The noisy measurement data from the two wind directions is combined 
into a single data set and is used for inversion. It should be pointed out that there is twice as much 
data available for inversion as compared to the earlier cases. The inversion approach was similar 
to the one discussed in the previous section, the primary difference being that the data from two 
different wind directions was combined in one single calculation. 

Figure 17 (right sub-figure) shows the results of the inversion process, where synthetic data 
with noise from two different wind directions was utilized. Comparison of the predicted source 
strength and location following the inversion process (Figure 17 right sub-figure) and the assumed 
source distribution (Figure 2), indicates that the results are quite similar. The total source strength 
predicted from the inversion process was computed at 0.2333 kg/s, which compared favorably with 
the total assumed source strength of 0.2373 kg/s. Moreover, the location of the predicted sources 
also compared favorably with the assumed source distribution. The bootstrap process (described in 
section 5.1) was used again on the configuration described in Figure 17 (left sub-figure) to quantify 
the variability and uncertainty in source location and strength. Figure 18 left sub-figure) shows 
the maximum source strength and location over 1000 bootstrap replications, while Figure 18 right 
sub-figure shows the minimum source strength and location over 1000 iterations. The same data is 
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shown in bar format in Figure 19.
 

Figure 17: Left sub-figure shows a plan view of the source-sensor configuration that was used for 
estimating and reducing the uncertainty in prediction of sources and their location. Data from two 
different wind directions was utilized. The right sub-figure shows a surface plot of the predicted 
source distributions obtained when noisy data (synthetic data with 10% noise) from two different 
wind directions was combined in a single inversion step. 

Figure 18: Results of the bootstrap procedure when noisy measurement data from two different 
wind directions are used in a single inversion procedure. The left sub-figure shows surface plot of 
the maximum predicted values over 1000 iterations, while the left sub-figure shows a surface plot 
of the minimum values. 

These results clearly demonstrate that the uncertainty due to noisy measurement data can be 
reduced by using measurements from two different wind directions combined together as part of 
a single inversion procedure. In general, the best results are obtained under conditions when the 
two wind directions are perpendicular to each. However, it should be noted that the two wind 
directions do not have to be perpendicular to each other, and that the analysis can be conducted 
with the two winds at a non-right angle to each other. Furthermore, utilizing data from more than 
two different wind directions can further reduce uncertainty in the analysis. 

It should also be pointed out that collecting data for two different wind directions is not very 
challenging, since the mean wind speed and direction changes several times during the course of a 
single day. As a result collecting data from two or more wind directions / speed is not a significant 
issue, as long as appropriate roads are available for collecting downwind data. Moreover, the 
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7 

Figure 19: Results of the bootstrap procedure when noisy measurement data from two different 
wind directions are used in a single inversion procedure. The left sub-figure shows a bar plot of the 
maximum predicted values over 1000 iterations, while the left sub-figure shows a bar plot of the 
minimum values. 

reduction in uncertainty (shown in this section) is due to the presence of wind data in two different 
directions, and not due to the availability of more data. This was confirmed by reducing (halving) 
the number of measurement points, and finding no change in the computed results or the reduction 
in uncertainty. The approach for reducing uncertainty is also independent of the model used for 
plume dispersion, and as a result is applicable for all scenarios where one needs to estimate source 
location and strength from measurement data. 

Conclusions and Suggestions for Future Research 

Recent development of accurate instruments for measuring greenhouse gas concentrations and the 
ability to mount them in ground-based vehicles has provided an opportunity to make temporally and 
spatially resolved measurements in the vicinity of suspected source locations. The basic approach of 
using downwind atmospheric measurements in an inversion methodology to predict source strength 
and location can be an ill-posed problem and results in high degree of uncertainty, if the wrong 
measurement methodology is used. 

In this report, we have presented a new measurement strategy for reducing the uncertainty in 
predicting source strength and location from downwind measurements. In order to demonstrate the 
approach, the basic inversion methodology built around a plume dispersion model was presented. 
Synthetic data derived form an assumed source distribution was used to allow us to compare and 
contrast the predicted source strength and location. The effect of introducing various levels of 
noise in the synthetic data on the inversion methodology was presented. It was concluded that 
the presence of noise in synthetic data resulted in large uncertainty in the location of the sources. 
The use of noisy measurement data had a small effect on the total predicted source strength, but 
gave rise to several spurious sources (in many cases 8-10 sources were detected, while the assumed 
source distribution only consisted of 2 sources). Uncertainty in wind direction also resulted in large 
uncertainty in the location of the predicted sources. Similar results were obtained when uncertainty 
in determining the meteorological variables was incorporated in the inversion process. The new 
measurement strategy involved collecting data from two or more wind directions. The data is 
subsequently combined together as part of a single inversion process. Results of the bootstrap 
procedure indicated that the uncertainty in locating sources reduced significantly when data from 
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8 

two or more wind directions is used simultaneously. 
Future research will involve collecting data as part of a mobile measurement campaign around 

suspected methane sources such as landfills, natural gas transmission and regulating stations, and 
waste-water treatment plants. The measurement methodology presented in this report will be 
incorporated as part of the mobile campaign to accurately identify sources and their strength. 
Such approaches can be very useful in developing an emissions inventory for mega cities and for 
evaluating the role of remediation measures on greenhouse gas emissions. 
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	Abstract 
	Recent development of accurate instruments for measuring greenhouse gas concentrations and the ability to mount them in ground-based vehicles has provided an opportunity to make temporally and spatially resolved measurements in the vicinity of suspected source locations, and for subsequently estimating the source location and strength. The basic approach of us­ing downwind atmospheric measurements in an inversion methodology to predict the source strength and location is an ill-posed problem and results in 
	Introduction 
	Introduction 
	There has been renewed interest in recent years, in using inverse atmospheric dispersion methods as part of a top-down analysis, to estimate the source location and strength of greenhouse gas (GHG) emissions [1]-[16]. Development of accurate instruments [17]-[19] for measuring temporally resolved greenhouse gas concentrations and the ability to mount them in mobile vans, airplanes and towers has enabled us to conduct such inversion analysis. However, the basic approach of using atmospheric measurements to l
	Methods for estimating source strength and/or location from measurements of concentration can be divided into two major categories depending on the physical scale of the problem. For urban, regional, or continental scale inversions, researchers [1]-[7] have used ground-based observations and a high-resolution mesoscale atmospheric transport model to determine greenhouse gas emissions. They combine prior emission inventories and atmospheric observations using a Bayesian statistical 
	Methods for estimating source strength and/or location from measurements of concentration can be divided into two major categories depending on the physical scale of the problem. For urban, regional, or continental scale inversions, researchers [1]-[7] have used ground-based observations and a high-resolution mesoscale atmospheric transport model to determine greenhouse gas emissions. They combine prior emission inventories and atmospheric observations using a Bayesian statistical 
	approach to estimate the emissions and the corresponding uncertainty. Enting et al. [9] has reported that characterizing and calculating the uncertainties in emissions at regional scale is diﬃcult, and that the uncertainty structure in space and time is diﬃcult to interpret. When the physical distance between the sources and sensor measurements are smaller, it becomes diﬃcult to use the mesoscale atmospheric transport models for inversion. Typical examples include measurements made with instruments mounted 

	Lushi et al. used a Gaussian plume model to provide inverse estimates of particulate emissions [14]. They added artiﬁcial, randomly generated noise to their measurements at levels of ± 30 % of the measured values and found that the introduction of noise had little eﬀect on the estimates of source strength. It was speculated that the positive and negative contributions of noise tend to cancel out its eﬀect [14]. Their approach does not exhibit the high levels of sensitivity normally found in ill-conditioned 
	Jeong et al. [15] have reported experiments in which sulfur hexaﬂuoride (SF6) was released at strengths of 110 kg/h to 115 kg/h from a single point source at 57 m above ground level near a nuclear power plant. Measurements were made at various heights and at two downwind distance (3 km and 8 km) from the source. Atmospheric conditions were moderately unstable during both trials comprising the experiment. They subsequently employed an inversion technique based on the Gaussian plume model; however, only sourc
	Finally, Rudd et al. [16], studied the sensitivities of predicting source strength and location to the number of downwind sensors, sensor conﬁguration, averaging time and noise in the input data. Data from wind tunnel experiments, in which a tracer gas (propane) was released into the air from a single source location, were used to test their inverse model. Using data from the wind tunnel experiment, dispersion coeﬃcients and wind speed necessary in the Gaussian plume model were customized to provide the bes
	Finally, Rudd et al. [16], studied the sensitivities of predicting source strength and location to the number of downwind sensors, sensor conﬁguration, averaging time and noise in the input data. Data from wind tunnel experiments, in which a tracer gas (propane) was released into the air from a single source location, were used to test their inverse model. Using data from the wind tunnel experiment, dispersion coeﬃcients and wind speed necessary in the Gaussian plume model were customized to provide the bes
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	a source strength of 0.1 ms[16]. It was noted that uncertainties in wind speed and dispersion coeﬃcients will be greater in ﬁeld applications than in the controlled wind tunnel experiment, and therefore greater model error would be expected [16]. 
	3 
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	The literature review presented above clearly shows that plume dispersion models have been used extensively for estimating the source strength and location from various tracer release exper­iments. Researchers also reported large uncertainty in their inverse estimates, but have provided limited explanation for the observed uncertainties. In this report, we use synthetic data to under­stand the sources of the uncertainty in plume inversion models. There has been limited research on developing methods for red
	In Section 2, we provide a brief description of the physical problem and provide the basic mathematical framework of an inverse problem. Governing equations for the plume dispersion model are presented and the numerical methods for solving the inversion problem are discussed. Section 3 provides a description of the basic source -sensor conﬁguration that is used to test the ideal (base-case) inversion problem. Several sources of uncertainty such as noise in the measurement data, lack of accurate information 
	2 Model Formulation and Description of the Problem 
	2 Model Formulation and Description of the Problem 
	Consider a source of known strength Q (kg s) that is releasing a tracer gas into the atmosphere. We also assume that a sensor is located downwind of the source, where we need to estimate the concentration of the tracer gas. The concentration C (measured in kg m) of the tracer gas at the sensor location can be modeled using the equation 
	−1
	−3

	C 
	Q + Cbg = C (1)
	Q 
	Q 

	est 
	where Cbg is the background concentration, and (C/Q)est, represents the inﬂuence of the source on the sensor (inﬂuence function). This ratio can be estimated from a variety of models such as plume models, computational ﬂuid dynamics models or from tracer experiments. The diﬃculty in this seemingly trivial model lies in obtaining an accurate value of the ratio (C/Q)est for the given conﬁguration of source and measurement point. 
	2.1 Estimating source strength and location -the inverse problem 
	2.1 Estimating source strength and location -the inverse problem 
	The inverse of this problem occurs when concentrations are known, but source strengths, or their locations, are not. In the above model, a single source strength could be estimated from a single measurement simply by solving for Q in Equation 1. 
	C − Cbg
	Q =   (2)
	Q.
	C. 

	est 
	Note, that the predicted source strength is a function of the reciprocal of the estimated ratio, (C/Q)est. Thus, small changes (errors) in the estimated ratio may produce large changes in the inverse estimate of Q. 
	The problem becomes more complicated when multiple sources and measurements are involved. For n sources that generate concentrations measured at m locations, the necessary set of equations may be written as [11]: 
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	where for visual clarity, the subscript “est” has been applied to the entire matrix instead of its individual elements. Equation 3 may be written in a more compact notational form as 
	GQ + Cbg = C, (4) 
	where G represents a matrix of the estimated ratio terms ()est, Q represents a vector of the 
	C 

	Q 
	source terms, and Cbg and C represent the vector of background concentrations and the sensor measurement, respectively. 
	The challenge of the inverse problem however, lies in the fact that the coeﬃcient matrix G is usually ill-conditioned for physically realistic scenarios, rendering the inverse problem extremely sensitive to very small changes in concentration measurements as well as error introduced by the dispersion model [8]. Any model relating source strength to downwind concentration could be used to calculate the elements of G and to subsequently conduct an inverse analysis. Since the purpose of this report is to ident

	2.2 Gaussian plume model 
	2.2 Gaussian plume model 
	The time-evolution of the concentration of a passive, conserved scalar in the atmosphere may be modeled as a diﬀusion equation: 
	∂C(x, y, z, t) 
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	∂C(x, y, z, t) 
	= Kx,y,z'C(x, y, z, t), (5)
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	where t is time, and the diﬀusion coeﬃcients, Kx,y,z, represent turbulent (eddy) diﬀusivity rather than molecular diﬀusion Assuming the source strength, Q, as a forcing term, a solution to this equation in a cartesian coordinate system was provided by Ermak et al. [20] 
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	where 
	where 
	u 
	is the 
	mean 
	streamwise wind speed; 
	σy 
	and σz 
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	dispersion 
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	crosswind and vertical directions, respectively, y is crosswind distance from the plume centerline. 
	(m), z is height above ground (m) and H is the height of the source (m). This form of the plume model (Equation 6) includes the portion of the plume “reﬂected” from the ground (2nd term in the large brackets). 
	The diﬀusion coeﬃcients in the crosswind (Ky) and vertical (Kz) directions are related to the dispersion coeﬃcients σ through the relation [18]. 
	 
	σy. =2Ky(x/u) (7) 
	 
	σz. =(8) 
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	The values of the dispersion coeﬃcients are therefore functions of streamwise (x-axis) distance, and may be estimated according to atmospheric stability and downwind distance from the source. For simplicity, we use the Pasquill-Giﬀord-Turner (PGT) categories which partition atmospheric stability into six groups, ranging from “A” (very unstable), to “F” (very stable). Formulas relating σy and σz to downwind distance were determined empirically for each of these classes [21], [22]. 
	Several assumptions are made in the simple dispersion model that is proposed in this section. Emissions for the sources are assumed to be constant and continuous over time. It is also assumed that the gases or pollutants are conserved as they disperse (i.e., there is no deposition) and that they do not react with, or decay into other products. Meteorological conditions (wind speed, direction and static stability) are assumed to be constant throughout the domain and over the time that it takes for gases to b

	2.3 Solving the inverse problem 
	2.3 Solving the inverse problem 
	In the inverse simulations below, we assume that source strengths are unknown and that all sources are contained somewhere within an upwind area deﬁned and represented by a grid of points. Ratios of downwind concentration to source strength were calculated for each combination of source grid point and measurement (concentration) location using Equation 6. The values of these ratios populate the matrix in Equation 3. The dimensions of the resulting matrix are therefore m x n, where m is the number of measure
	A solution to the inverse problem was estimated using the non-negative least squares (nnls) al­gorithm of Lawson and Hanson [23]. This numerical algorithm minimizes the norm of the diﬀerence between the left and right hand sides of Equation 3, i.e., it produces a vector, Q, with all elements greater than or equal to zero, that minimizes IGQ − CI. Proof of convergence and details of the algorithm may be found in [23]-[26]. 


	3. Basic Conﬁguration for Predicting Source Strength and Loca­tion 
	3. Basic Conﬁguration for Predicting Source Strength and Loca­tion 
	The objective of this study is to estimate and reduce the uncertainty in locating the sources and their strength from downwind measurement data. In this section, we present the basic conﬁguration of measurement locations relative to the source area, that is used in our simulations. 
	Figure 1 illustrates a schematic diagram, in plan view, of the conﬁguration of sensor measure­ments and source area for evaluating the plume inversion model. The square area shown in Figure 1 has dimensions of 2.5 km × 2.5 km, and represents a domain where the sources are located. It is assumed that the wind direction is from left to right (parallel to the x-axis). Downwind of the source are three lines located at x = 4000, 5000 and 6000 m, which schematically represent the 
	Figure 1 illustrates a schematic diagram, in plan view, of the conﬁguration of sensor measure­ments and source area for evaluating the plume inversion model. The square area shown in Figure 1 has dimensions of 2.5 km × 2.5 km, and represents a domain where the sources are located. It is assumed that the wind direction is from left to right (parallel to the x-axis). Downwind of the source are three lines located at x = 4000, 5000 and 6000 m, which schematically represent the 
	location of the measurements. Measurement datacan be obtained from a variety of sources such as tower measurements, aircraft measurements or from an instrument mounted inside a vehicle. Synthetic measurements that attempt to mimic measurement made from an instrument mounted inside a vehicle can also be generated. Since the goal of this report is to estimate and reduce un­certainty in source location and strength, we employ the approach of using synthetic measurement data. The use of synthetic data has the a
	1 


	Figure
	Figure 1: Plan view of source-sensor conﬁguration that is used for estimating and reducing the uncertainty in prediction of sources and their location. The square (2.5 km × 2.5 km) represents the location of the sources, while the lines indicate an array of measurement locations downwind of the source. All units are in meters. 
	As discussed earlier, we assume a set of known sources (located inside the square area of Figure 1) to create synthetic data that is subsequently used in the algorithm. The location of these known (assumed) sources and their source strength are shown in detail in the surface plot (Figure 2 left sub-ﬁgure). The source area is represented as a regular grid of 40 x 37 elements (i.e., the area is resolved into 62.5 m x 67.6 m cells). The elements of the source grid are therefore represented by a vector of 1480 
	The known (assumed) sources and their strength are also indicated by the bar plot on the right side of Figure 2, where they are referred to by the index number of the cells within the source area grid. The spikes shown in the bar plot represent, from left to right, source strengths of 0.1398 kg/s and 0.0975 kg/s (total = 0.2373 kg/s), respectively. Hereon, the stronger (leftmost) and weaker (rightmost) source will be referred to as sources “A” and ”B,” respectively. In all simulations described below, the l
	Certain commercial equipment, instruments, or materials are identiﬁed in this report in order to specify the experimental procedure adequately. Such identiﬁcation is not intended to imply recommendation or endoresement by the National Insitute of Standards and Technology, nor is it intended to imply that the materials or equipment identiﬁed are necessarily the best available for the purpose. 
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	atmospheric stability class were varied to study their eﬀect on inversion.. 
	Figure
	Figure 2: Surface plot (left sub-ﬁgure) and bar chart (right sub-ﬁgure) showing the location of the assumed sources and source strength measured in kg/s. 
	The assumed sources are used to create synthetic data at the measurement locations, as well as for comparison with the predicted source distribution. Uncertainty in the prediction can be estimated by evaluating the diﬀerences between the predicted and assumed source distribution. Qualitative comparisons can be made through comparison of the surface and bar plots shown in Figure 2. Synthetic data is generated by using the plume Equation 6 to calculate downwind concentrations at the measurement locations (ill
	2.5 m/s and a neutral atmospheric stability (PGT class D, urban) was assumed. The synthetic data is shown in Figure 3, which shows a 3D line plot of downwind concentrations (density measured in kg/m) plotted on the three measurement lines. Synthetic data at measurement lines located at x= 4000 m, 5000 m and 6000 m are shown with red, green, and blue lines, respectively. Note that the nearest line of measurement points (x = 4000 m) shows two separate peaks corresponding to the separate sources. As expected, 
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	Figure
	Figure 3: Synthetic data obtained at the sensor locations using the assumed source location and strength. 
	The synthetic data generated above is next used in an inversion framework to identify the source strength and locations. The synthetic data forms the concentration vector C in Equation 4; the coeﬃcient matrix, G was generated from Equation 6, and the nnls algorithm (discussed in Section 2) was used to solve the inverse problem by estimating the source vector, Q. The predicted 
	The synthetic data generated above is next used in an inversion framework to identify the source strength and locations. The synthetic data forms the concentration vector C in Equation 4; the coeﬃcient matrix, G was generated from Equation 6, and the nnls algorithm (discussed in Section 2) was used to solve the inverse problem by estimating the source vector, Q. The predicted 
	source distribution Q obtained after inverting the matrix is shown in Figure 4. Comparison of the predicted source distribution (Figure 4) and the assumed source distribution (Figure 2) indicates that the predicted and assumed source distributions are essentially identical. The total predicted source strength was only 0.001 % greater than the assumed total source strength. The location of the predicted sources was also identical to that of the assumed sources (as seen clearly in the bar plots). Since the sy

	Figure
	Figure 4: Surface and bar chart showing the location of the predicted sources and source strength for the base (ideal) case scenario. 
	3.1 Eﬀect of measurement distance from the source area 
	3.1 Eﬀect of measurement distance from the source area 
	In order to further evaluate the inversion methodology, we study the eﬀect of moving the mea­surement locations further away from the source. It is well known that dispersion increases with downwind distance from the source, but it is not clear if moving the measurement locations further downwind will adversely aﬀect the inversion results. 
	To study the eﬀects of this phenomenon on the inverse estimates, the ideal case, in which the array of measurement locations began at x=4000 m, was repeated with the array moved further downwind. In three separate simulations, the array began at x=8000, 12000 and 16000 m, respec­tively. The distance between the rows (1000 m) array was held constant. Concentrations at each measurement location were estimated using Equation 6. These concentration values were then used in the inverse estimates to ﬁnd the locat
	The results are illustrated in Figure 5 below, where distance to the measurement rows increases from the top to bottom of the page. The top panels are for measurements that begin at 8000 m downwind of the source, the middle two panels for 12000 m downwind of the source, and bottom panels for 16000 m from the source. The total source strength for the three cases was 0.23728 kg/s, 0.23729 kg/s and 0.23726 kg/s. Error in the estimate of total source strength was insigniﬁcant (<< 1%), but it is clear from the s
	In all three cases, multiple source locations were estimated, with a total of 13 sources in the 8000 m case, and 10 sources in each of the other two. Many of these sources were of negligible strength (∼ 10kg/s) compared to the true source strengths, and are barely, or not at all, visible on either the surface or bar plots. However, it is clear that the number of non-negligible (∼ 10kg/s) spurious sources increased with distance to the measurement locations, though these sources tend 
	In all three cases, multiple source locations were estimated, with a total of 13 sources in the 8000 m case, and 10 sources in each of the other two. Many of these sources were of negligible strength (∼ 10kg/s) compared to the true source strengths, and are barely, or not at all, visible on either the surface or bar plots. However, it is clear that the number of non-negligible (∼ 10kg/s) spurious sources increased with distance to the measurement locations, though these sources tend 
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	Figure 5: Inverse estimates of source strength and location when the set of measurements begins at 8000 m (top two panels), 12000 m (middle panels) and 16,000 m (bottom panels) downwind of the source area. 

	Figure
	to be grouped relatively near the true source locations. For example, in the bottom panel of Figure 5, the inverse estimate of source B comprises four sources with a total strength approximately equal to the true strength of source B. 
	Since dispersion increases with downwind distance from the source, details of the combined gas plume such as the two separate peaks of the leftmost line of measurements in Figure 3 become less distinguishable with increasing distance from the sources. In eﬀect, information that can be used to estimate separate source locations is lost with increasing downwind distance as seen in our results. 

	3.2 Eﬀect of noise in measurement data 
	3.2 Eﬀect of noise in measurement data 
	Measurements are usually collected with instruments mounted on a vehicle traversing along a road that is nominally perpendicular to the wind direction. As the vehicle path intercepts the plume, the on-board instruments record the local concentration in the plume. Since the plume itself is continuously evolving in time, the vehicle may intercept diﬀerent portions of a turbulent plume at diﬀerent locations. The microscopic turbulent eddies that are part of a plume can result in signiﬁcant noise in the measure
	In this section, we investigate the eﬀect of using noisy measurement data on the inverse calcula­tion. Results are shown for two cases with diﬀerent levels of noise incorporated in the measurement data. Noisy data was created by adding random variations to the downwind concentrations that were calculated in the ideal case (base case) synthetic data. The level of noise was chosen based on observations of real data from mobile campaigns [19]. At the location of each measurement, a random percentage of its con
	Figure
	Figure 6: Synthetic data modiﬁed with 10 % noise 
	In the ﬁrst case, 10% noise (i.e., variation of ± 5 % of the signal above the background level) was added to each of the measurement points. The synthetic data modiﬁed with 10 % noise is shown in Figure 6. The resulting eﬀect of using the noisy data on the inverse calculation is illustrated in Figure 7, which shows surface and bar charts for the predicted source distribution. The total predicted source strength was 0.2415 kg/s, which was only about 1.8 % greater than the actual (assumed) source strength. Ho
	−1

	In the second case, 30 % noise (variation of ± 15 %) was added to the downwind concentrations above the base-case levels. The modiﬁed synthetic data with 30 % noise is shown in Figure 8, while the predicted source distribution is shown in Figure 9. Despite tripling the amount of noise 
	In the second case, 30 % noise (variation of ± 15 %) was added to the downwind concentrations above the base-case levels. The modiﬁed synthetic data with 30 % noise is shown in Figure 8, while the predicted source distribution is shown in Figure 9. Despite tripling the amount of noise 
	Figure 7: Predicted source distribution (surface and bar charts) for inversion of synthetic data modiﬁed with 10 % noise. 

	Figure
	in the measurements, total source strength was overestimated by only about 3 %, but there was signiﬁcant error in the location of the predicted sources. Once again, the larger source location was spread over two cells, and estimated to be at the windward edge of the domain. The sum of source strengths for these two locations (leftmost vertical red bars in the lower right panel of Figure 9) was 
	0.15 kg/s, an overestimate of about 8 % from the value of source A. As before, ten source locations were identiﬁed, although only ﬁve were of the same order as the true sources. 
	Figure
	Figure 8: Synthetic data modiﬁed with 30% noise 
	In both of these cases, the estimated streamwise position of the source furthest from the mea­surement locations (source A) was most aﬀected by the random noise added to the measurements. This is due to the fact that the measurements are much less dense in the streamwise direction, where the relevant information for the inverse estimate comes essentially from the concentration gradients between only three rows of data, rather than between closely neighboring points as in the crosswind case. 

	3.3 Other sources of uncertainty 
	3.3 Other sources of uncertainty 
	The previous section demonstrated the eﬀect of using noisy measurement data on the predicted source location and strength, following an inversion analysis. Besides noisy measurement data, there are several other sources of uncertainty that can have a direct eﬀect on the predicted source strength and location. They include factors such as changes in meteorological conditions, such 
	The previous section demonstrated the eﬀect of using noisy measurement data on the predicted source location and strength, following an inversion analysis. Besides noisy measurement data, there are several other sources of uncertainty that can have a direct eﬀect on the predicted source strength and location. They include factors such as changes in meteorological conditions, such 
	Figure 9: Predicted source distribution (surface and bar charts) for inversion of synthetic data modiﬁed with 30 % noise. 

	Figure
	as wind speed and direction, as well as the uncertainty in the ability of the model to simulate the atmospheric conditions (atmospheric stability). In this section we demonstrate the eﬀect of uncertainty in using incorrect wind direction information and its eﬀect on the inversion process. 
	Downwind concentrations estimated by the forward dispersion model (Equations 1) are based on the assumption that mean wind direction is known to a high degree of accuracy. However, there are several sources of uncertainty in measurements of wind direction including instrument calibra­tion errors, and accuracy and placement of anemometers or wind vanes. The latter is especially important since the mean wind direction near a source location may not be the same as that near the measurement location (instrument
	Figure
	Figure 10: Eﬀect of uncertainty in wind-direction on the predicted source strength and location. Synthetic data is created with a wind in the x-direction (270.0 ), but a wind direction of 265.0 is assumed during the inversion process. 
	Figure 10: Eﬀect of uncertainty in wind-direction on the predicted source strength and location. Synthetic data is created with a wind in the x-direction (270.0 ), but a wind direction of 265.0 is assumed during the inversion process. 
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	We report two speciﬁc calculations that were conducted to understand and evaluate the eﬀect of using an incorrect wind-direction vector in the inversion algorithm. Downwind concentrations from the ideal case, in which wind direction was parallel to the x-axis, were used in both cases. However, in the ﬁrst case, the terms of the inversion matrix G were computed by assuming that the wind direction was in-correctly estimated to be 5counter-clockwise (CCW) from the original 
	We report two speciﬁc calculations that were conducted to understand and evaluate the eﬀect of using an incorrect wind-direction vector in the inversion algorithm. Downwind concentrations from the ideal case, in which wind direction was parallel to the x-axis, were used in both cases. However, in the ﬁrst case, the terms of the inversion matrix G were computed by assuming that the wind direction was in-correctly estimated to be 5counter-clockwise (CCW) from the original 
	◦ 

	direction (i.e., from the x-axis). Figure 10 shows the predicted source strength and location when wind direction was assumed to be 5counter-clockwise (CCW) from the x-axis. The error in the wind direction had little eﬀect on the estimate of total source strength, with an overestimate of only 
	◦ 


	0.6 %, but it is clear from Figure 10 that the locations and strengths of the individual sources were not well-characterized. Figure 11 shows the source strength and location when wind direction was in error by 5clockwise (CW) from the original direction. In this case, the total source strength was underestimated by 3.4 %, but the estimated locations of the individual sources again departed signiﬁcantly from the true locations. 
	◦ 

	Figure
	Figure 11: Eﬀect of error in wind-direction on the predicted source strength and location. Synthetic data is created with a wind in the x-direction (270.0 ), but a wind direction of 275.0 is assumed during the inversion process. 
	Figure 11: Eﬀect of error in wind-direction on the predicted source strength and location. Synthetic data is created with a wind in the x-direction (270.0 ), but a wind direction of 275.0 is assumed during the inversion process. 
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	The asymmetry in the estimates of source strength for the two cases reﬂects the lack of symmetry around the x-axis in the true source and measurement locations. Relative to the true source locations, the rows of measurement points extend further in the positive y-axis direction than in the negative (see Figure 1). Inspite of this asymmetry, these cases illustrate the strong eﬀect of error in wind direction on the location of individual sources within the estimated source area. However, the results also sugg



	Upper Bound on Uncertainty in Source Strength 
	Upper Bound on Uncertainty in Source Strength 
	In the previous section, we have presented several examples that demonstrate the uncertainty in predictions of source strength and location attributed to noisy measurement data or incorrect mete­orological data. This uncertainty in prediction of source strength and location can be mathematical quantiﬁed through the concept of condition number. 
	In order to predict emission from downwind measurement data, the system of linear Equations 4 are inverted. The relative error, or uncertainty, in the calculation of source strength can be written mathematically as 
	IΔQIIΔGIIΔCIIΔCbgI 
	≤ κ + + (9)
	IQIIGIICIICbgI 
	where Δ signiﬁes a change or error, the operator I·I represents a norm (usually the Euclidean or spectral norm), and κ indicates the condition number [10]. If G is square (i.e., m = n) and non-singular, the condition number κ may be calculated as IGI/IGI. For rectangular matrices 
	where Δ signiﬁes a change or error, the operator I·I represents a norm (usually the Euclidean or spectral norm), and κ indicates the condition number [10]. If G is square (i.e., m = n) and non-singular, the condition number κ may be calculated as IGI/IGI. For rectangular matrices 
	−1

	(m 

	= n), the condition number may be calculated as the ratio of the largest and smallest singular values [26]. 
	Equation 9 provides an upper bound on the relative error in the estimated source strength. This relative error is proportional to the condition number κ, as well as the relative error in estimating the coeﬃcient matrix, the measured concentrations and background concentrations [10][25]. Therefore, a low value of κ implies a low sensitivity to error, but a large value does not necessarily imply a high sensitivity. The uncertainty in source strength increases, if the conﬁguration of measurement locations and 
	For the ideal case shown in Section 3, the condition number of the coeﬃcient matrix was calculated to be 2.87 × 10. Inspite of the large value for the condition number, the errors in the inversion process were found to be extremely small (Figure 4). This is due to the fact that the uncertainties in the (prescribed) background concentration, “measurements,” and the coeﬃcient matrix (see Equation 9) are at the level of machine precision (∼ 2 × 10). 
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	In section 3.1, we show the eﬀect of increasing the distance between sources and measurement locations on the predicted source strength and location. As the distance increases, the condition number does not change signiﬁcantly; in-fact it becomes marginally smaller. However, the relative error in the measurement becomes larger, as the absolute value of the measurement reduce with distance (plume becomes more diluted further away from the source). As a result of this large relative error, the uncertainty in 
	The use of noisy measurement data can result in large uncertainty in the predicted source strength as seen in section 3.2. Large levels of noise result in large relative errors, which in turn results in large uncertainty in source location and strength, consistent with Equation 4). Uncer­tainty in meteorological variables (shown in section 3.3) such as wind direction or wind speed also results in large uncertainty in the terms of the coeﬃcient matrix IΔGI, which in turn results in uncertainty in the source 
	5 Quantiﬁcation of Uncertainty due to Noisy Measurement Data 
	5 Quantiﬁcation of Uncertainty due to Noisy Measurement Data 
	The results shown in Section 4 clearly illustrated that error is introduced in predicting source strength and location due to noisy measurement data or in-correct meteorological data. The goal of this section is to quantify the distribution of this uncertainty and to develop a measurement methodology that reduces the uncertainty. In order to characterize and quantify the measurement uncertainty, we employ a statistical bootstrap procedure discussed below. 
	5.1 The bootstrap method 
	5.1 The bootstrap method 
	The bootstrap was introduced by Efron et al. [27], [28] and is widely used for estimating uncertainty in various applications. Generally speaking, the bootstrap proceeds by re-sampling the observed 
	˜
	data with replacement, and the parameters (e.g. Q) are re-computed with the bootstrap datasets. After this is done many times, the variability in the bootstrap replicates provide an estimate of the variability in the original parameter estimate. 
	To begin, we modify Equation 1 so that it explicitly recognizes the measurement error in C. 
	C = GQ + Cbg + E, (10) 
	where E is a random vector with mean vector 0 and co-variance matrix σDiag(GQ), where Diag(x) is a diagonal matrix with x on its diagonal. Next, deﬁne i˜= C − GQand ˜r = i˜/GQ, where the 
	2
	˜
	˜

	“/” operator implies element-wise division. Now, carry out these steps:. 
	∗
	1. 
	1. 
	1. 
	Re-sample with replacement the elements of ˜r to get r . 

	2. 
	2. 
	Calculate i= r × GQ, where the “×” operator implies element-wise multiplication. 
	∗ 
	∗ 
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	3. 
	3. 
	Calculate C= GQ+ i. 
	∗ 
	˜
	∗ 


	4. 
	4. 
	Calculate Qby solving the inverse problem using Cinstead of C. 
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	an approximate (1 − α)100% conﬁdence interval for Q(i), the true source strength. 
	To choose B, we take an initial guess, B0 and run the bootstrap procedure twice. If the diﬀerence in the results between the two runs is practically trivial, B0 is suﬃciently large. If not, repeat with a larger value of B until the diﬀerence between the two runs is as small as required, 
	i.e. the number of decimal places of accuracy that are required. 

	5.2 Application of the bootstrap process to estimate uncertainty 
	5.2 Application of the bootstrap process to estimate uncertainty 
	The bootstrap iterative process described in section 5.1 was used to iteratively estimate the source strength with various estimates of the measurement vector. The measurement vector was obtained by adding an error vector (diﬀerence between the predicted concentrations and measurements) through re-sampling with replacement. Before employing the bootstrap procedure to estimate the variability, it was important to determine the maximum number of iterations that were needed to obtain a converged solution. Figu
	Figure 13 shows a surface plot of the maximum sources strength at each grid point of the rectangular domain, obtained over 1000 replications of the bootstrap procedure. This plot shows the uncertainty in predicting source strength and location due to use of noisy measurement data. Comparison of the bootstrap results shown in Figure 13 with the assumed source distribution shown in Figure 1 indicates that there was considerable uncertainty in the location of the sources. The stronger (leftmost) source ”A” as 
	In order to test if the distribution of uncertainty in source identiﬁcation is limited to the streamwise direction, a set of simulations were conducted where the wind direction was shifted to be parallel to the y-axis (southerly wind). The measurement locations were also shifted so that they were nominally perpendicular to the wind direction. Figure 14 shows a schematic diagram 
	In order to test if the distribution of uncertainty in source identiﬁcation is limited to the streamwise direction, a set of simulations were conducted where the wind direction was shifted to be parallel to the y-axis (southerly wind). The measurement locations were also shifted so that they were nominally perpendicular to the wind direction. Figure 14 shows a schematic diagram 
	of the new conﬁguration. The only diﬀerence between the conﬁguration shown in ﬁgure 14 and the one shown in Figure 1 is the wind direction and the measurement locations. The location of the square source area did not change, nor did the strength and location of the assumed sources A and B. Synthetic data was generated using the plume model Equation 6 to calculate downwind concentrations at the locations illustrated by the lines in Figure 14. As for the previous cases, a wind speed of 2.5 m/s (parallel to th

	Figure
	Figure 12: Bar chart showing the maximum source strength plotted as a function of grid index for various levels of iteration. Results are shown for 100 iterations (left sub-ﬁgure), 500 iterations (middle sub-ﬁgure) and 1000 iterations (right sub-ﬁgure). 
	Figure 12: Bar chart showing the maximum source strength plotted as a function of grid index for various levels of iteration. Results are shown for 100 iterations (left sub-ﬁgure), 500 iterations (middle sub-ﬁgure) and 1000 iterations (right sub-ﬁgure). 


	Figure
	Figure 13: Surface plot showing the maximum source strength at each grid location, plotted at the end of 1000 iterations of a bootstrap method. The wind is parallel to the x-axis. 
	Figure 13: Surface plot showing the maximum source strength at each grid location, plotted at the end of 1000 iterations of a bootstrap method. The wind is parallel to the x-axis. 


	Using only the downwind measurements and the coeﬃcient matrix, G, generated from Equation 6, the nnls algorithm was used to solve the inverse problem by estimating the source vector, Q. The resulting eﬀect of using noisy data on the inverse calculation is illustrated in Figure 15, which shows surface and bar charts for the predicted source distribution. Comparison of the predicted source distribution (Figure 15) and the assumed source distribution (Figure 2) again indicates that there are signiﬁcant diﬀeren
	Using only the downwind measurements and the coeﬃcient matrix, G, generated from Equation 6, the nnls algorithm was used to solve the inverse problem by estimating the source vector, Q. The resulting eﬀect of using noisy data on the inverse calculation is illustrated in Figure 15, which shows surface and bar charts for the predicted source distribution. Comparison of the predicted source distribution (Figure 15) and the assumed source distribution (Figure 2) again indicates that there are signiﬁcant diﬀeren
	sources, but the streamwise (y-axis) location of the stronger source (source A) was not estimated accurately. Overall, seven source locations were identiﬁed in the inverse calculation, though only two sources had strengths of the same order as the true sources. 

	Figure
	Figure 14: Plan view of the model domain used to investigate the eﬀect of a wind in a direction parallel to the y-axis. 
	Figure 14: Plan view of the model domain used to investigate the eﬀect of a wind in a direction parallel to the y-axis. 


	Figure
	Figure 15: Surface and bar chart showing the location of the predicted sources and their strength, when the wind is parallel to the y-direction. 
	Figure 15: Surface and bar chart showing the location of the predicted sources and their strength, when the wind is parallel to the y-direction. 


	As for the case when the wind was in the x-direction, we used the bootstrap procedure to quantify the uncertainty for the case when the wind is in the y-direction. Figure 16 shows a surface plot of the maximum source strength over 1000 bootstrap replicates at each grid point of the rectangular domain, assuming that the wind was in the y-direction. Results indicate that that the stronger (leftmost) source ”A” as well as the weaker (rightmost) source ”B” are visible in the plot shown in Figure 16, but their l
	Figure
	Figure 16: Surface plot showing the maximum source strength at each grid location, plotted at the end of 1000 iterations of a bootstrap method. The wind is parallel to the y-axis. 
	Figure 16: Surface plot showing the maximum source strength at each grid location, plotted at the end of 1000 iterations of a bootstrap method. The wind is parallel to the y-axis. 




	A Novel Measurement Methodology for Reducing the Uncer­tainty in Source Prediction 
	A Novel Measurement Methodology for Reducing the Uncer­tainty in Source Prediction 
	In this section we propose a new measurement methodology for reducing the uncertainty introduced in the source prediction due to noisy data. The application of the bootstrap procedure demonstrated the uncertainty in source strength and location when the wind was in the +x-direction (Figure 13), or in the + y-direction (Figure 16). Results clearly illustrated that the uncertainty is distributed in the streamwise direction. 
	In order to reduce this uncertainty, we investigate the feasibility of taking data from two diﬀerent wind directions and combining them together in a single calculation. Figure 17 (left sub-ﬁgure) illustrates a typical conﬁguration for collecting data with two diﬀerent wind directions. The set of measurement lines parallel to the y-axis, were used to collect data when the wind was blowing in the +ve x-direction. The set of measurement lines parallel to the x-axis were used to collect data when the wind was 
	Figure 17 (right sub-ﬁgure) shows the results of the inversion process, where synthetic data with noise from two diﬀerent wind directions was utilized. Comparison of the predicted source strength and location following the inversion process (Figure 17 right sub-ﬁgure) and the assumed source distribution (Figure 2), indicates that the results are quite similar. The total source strength predicted from the inversion process was computed at 0.2333 kg/s, which compared favorably with the total assumed source st
	shown in bar format in Figure 19.. 
	Figure
	Figure 17: Left sub-ﬁgure shows a plan view of the source-sensor conﬁguration that was used for estimating and reducing the uncertainty in prediction of sources and their location. Data from two diﬀerent wind directions was utilized. The right sub-ﬁgure shows a surface plot of the predicted source distributions obtained when noisy data (synthetic data with 10% noise) from two diﬀerent wind directions was combined in a single inversion step. 
	Figure 17: Left sub-ﬁgure shows a plan view of the source-sensor conﬁguration that was used for estimating and reducing the uncertainty in prediction of sources and their location. Data from two diﬀerent wind directions was utilized. The right sub-ﬁgure shows a surface plot of the predicted source distributions obtained when noisy data (synthetic data with 10% noise) from two diﬀerent wind directions was combined in a single inversion step. 


	Figure
	Figure 18: Results of the bootstrap procedure when noisy measurement data from two diﬀerent wind directions are used in a single inversion procedure. The left sub-ﬁgure shows surface plot of the maximum predicted values over 1000 iterations, while the left sub-ﬁgure shows a surface plot of the minimum values. 
	Figure 18: Results of the bootstrap procedure when noisy measurement data from two diﬀerent wind directions are used in a single inversion procedure. The left sub-ﬁgure shows surface plot of the maximum predicted values over 1000 iterations, while the left sub-ﬁgure shows a surface plot of the minimum values. 


	These results clearly demonstrate that the uncertainty due to noisy measurement data can be reduced by using measurements from two diﬀerent wind directions combined together as part of a single inversion procedure. In general, the best results are obtained under conditions when the two wind directions are perpendicular to each. However, it should be noted that the two wind directions do not have to be perpendicular to each other, and that the analysis can be conducted with the two winds at a non-right angle
	It should also be pointed out that collecting data for two diﬀerent wind directions is not very challenging, since the mean wind speed and direction changes several times during the course of a single day. As a result collecting data from two or more wind directions / speed is not a signiﬁcant issue, as long as appropriate roads are available for collecting downwind data. Moreover, the 
	It should also be pointed out that collecting data for two diﬀerent wind directions is not very challenging, since the mean wind speed and direction changes several times during the course of a single day. As a result collecting data from two or more wind directions / speed is not a signiﬁcant issue, as long as appropriate roads are available for collecting downwind data. Moreover, the 
	reduction in uncertainty (shown in this section) is due to the presence of wind data in two diﬀerent directions, and not due to the availability of more data. This was conﬁrmed by reducing (halving) the number of measurement points, and ﬁnding no change in the computed results or the reduction in uncertainty. The approach for reducing uncertainty is also independent of the model used for plume dispersion, and as a result is applicable for all scenarios where one needs to estimate source location and strengt

	Figure
	Figure 19: Results of the bootstrap procedure when noisy measurement data from two diﬀerent wind directions are used in a single inversion procedure. The left sub-ﬁgure shows a bar plot of the maximum predicted values over 1000 iterations, while the left sub-ﬁgure shows a bar plot of the minimum values. 
	Figure 19: Results of the bootstrap procedure when noisy measurement data from two diﬀerent wind directions are used in a single inversion procedure. The left sub-ﬁgure shows a bar plot of the maximum predicted values over 1000 iterations, while the left sub-ﬁgure shows a bar plot of the minimum values. 
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	Conclusions and Suggestions for Future Research 
	Conclusions and Suggestions for Future Research 
	Recent development of accurate instruments for measuring greenhouse gas concentrations and the ability to mount them in ground-based vehicles has provided an opportunity to make temporally and spatially resolved measurements in the vicinity of suspected source locations. The basic approach of using downwind atmospheric measurements in an inversion methodology to predict source strength and location can be an ill-posed problem and results in high degree of uncertainty, if the wrong measurement methodology is
	In this report, we have presented a new measurement strategy for reducing the uncertainty in predicting source strength and location from downwind measurements. In order to demonstrate the approach, the basic inversion methodology built around a plume dispersion model was presented. Synthetic data derived form an assumed source distribution was used to allow us to compare and contrast the predicted source strength and location. The eﬀect of introducing various levels of noise in the synthetic data on the in
	In this report, we have presented a new measurement strategy for reducing the uncertainty in predicting source strength and location from downwind measurements. In order to demonstrate the approach, the basic inversion methodology built around a plume dispersion model was presented. Synthetic data derived form an assumed source distribution was used to allow us to compare and contrast the predicted source strength and location. The eﬀect of introducing various levels of noise in the synthetic data on the in
	two or more wind directions is used simultaneously. 

	Future research will involve collecting data as part of a mobile measurement campaign around suspected methane sources such as landﬁlls, natural gas transmission and regulating stations, and waste-water treatment plants. The measurement methodology presented in this report will be incorporated as part of the mobile campaign to accurately identify sources and their strength. Such approaches can be very useful in developing an emissions inventory for mega cities and for evaluating the role of remediation meas
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