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Abstract

We report performance of one-to-many fingerprint iden-
tification algorithms using one, two, four, eight or ten fin-
gers for recognition. Performance is quantified in terms
of recognition accuracy (false positive and false negative
identification rate), robustness of algorithms (failure to pro-
cess images) and computational efficiency (time to execute
and size of the generated templates). We measured per-
formance on a large dataset of fingerprint images of op-
erational quality using varying enrollment sizes. The main
contributions of this paper are two fold: a) open-set iden-
tification performance measures and b) an assessment of
core capability of current one-to-many fingerprint recog-
nition algorithms. This is accomplished using a subset of
algorithms reported in the Fingerprint Vendor Technology
Evaluation (FpVTE2012) that show the range and bounds
of performance seen in that evaluation.

1. Introduction

Biometric identification is defined as the “process of
searching against a biometric enrollment database to find
and return the biometric reference identifier(s) attributable
to a single individual [4].” Biometric identification is
broadly categorized into closed-set and open-set identifica-
tion.

Closed-set identification refers to cases where all
searches have a corresponding enrolled mate in the biomet-
ric enrollment database. An example of a closed-set identi-
fication application is a cruise ship on which all passengers
are enrolled. The outcome of a closed-set identification sub-
system is a candidate list which contains the identity of one
or more of the enrolled individuals whose enrolled samples
are most similar to the search (query) sample. Ideally, the
correct mate appears in the first rank. As such, the primary

accuracy metric for closed-set identification is hit rate (or its
complement, miss rate = 1.0 − hit rate), which is the frac-
tion of times the system returns the correct identity within
the specified top ranks.

Closed-set identification has very limited applications
because in the majority of real-world applications not all
the individuals are or can be enrolled. Most real-world bio-
metric identification applications are open-set, where some
searches do not have corresponding enrolled mates in the
biometric enrollment database. One example of an open-
set identification application is searches against a watch-list.
The expected outcome of an open-set identification subsys-
tem is a candidate list of L closest (or most similar) enrolled
identities when the search sample is from an enrolled indi-
vidual, or a signal that the search sample is from an individ-
ual not in the biometric enrollment database. Therefore, the
primary accuracy metrics for an open-set identification are
false positive identification (false alarm or Type I error) rate
and false negative identification (miss or Type II error) rate.
These metrics are described in section 4.

Biometric performance evaluation is an important
task, particularly for fingerprint identification, given its
widespread applications. Large-scale evaluations of core
accuracy and functionality of biometric recognition algo-
rithms using operational data will not only reveal the capa-
bilities of the current state of the art but can also identify the
limitations and gaps of the current algorithms. The former
sets realistic operational expectations and the latter could
direct future research to improve and enhance the current
status. The National Institute of Standards and Technol-
ogy (NIST) in the United States [8] and the University of
Bologna in Italy [2] run ongoing evaluations of one-to-one
fingerprint recognition algorithms. Except for the one-to-
many test of fingerprint recognition technologies that the
National Institute of Standards and Technology ran in 2003
[13], and the Unique Identification Authority of India’s re-



(a) (b)

Figure 1: Example of multi-finger and single-finger plain:
(a) left slap (4L) + right slap (4R) and thumbs, (b) left index
(1L) + right index (1R)

port on its enrollment proof of concept [11], the authors are
not aware of any recent evaluations of one-to-many finger-
print identification.

The purpose of this paper is to review metrics for a per-
formance evaluation of open-set identification algorithms
and apply them to report performance of fingerprint recog-
nition algorithms that participated in NIST FpVTE2012 [7],
using different numbers of fingers (one, two, four, eight or
ten). While recognition error rates are the most important
and widely reported performance metrics, computational
resources required by algorithms are a significant aspect of
performance, especially for large-scale operations. To that
end, we report the computation time, storage requirements
and their accuracy tradeoffs for each of the algorithms under
test.

The rest of the paper is organized as follows: section
2 overviews the data used for the evaluation, section 3 ex-
plains the method, section 4 details the metrics we used fol-
lowed by results and discussion in section 5. We summarize
and conclude in section 6.

Providers of the algorithms under test remain unnamed,
and algorithms are identified by roman numerals.

2. Data
The FpVTE2012 evaluation dataset is a representation

of fingerprints collected from operational biometric deploy-
ments. It is a larger sample of data used in previous NIST
evaluations, such as PFT [1], MINEX [3] and FpVTE 2003
[13].

The evaluation dataset is comprised of several fingers
and fingerprint impression types, including single-finger
and multi-finger plains. While FpVTE2012 evaluated roll
impression, we do not report performance of roll finger-
prints in this paper.

Single finger plains are individual captures of the left and
right index fingers on a single finger capture device. Exam-
ples of these image types are shown in Figure 1. The single-
finger capture and identification flat fingerprint images (all
live-scan) were provided by the Department of Homeland
Security (DHS).

Multi-finger plains consist of capturing the four left fin-

gers, the four right fingers and the capture of the two thumbs
in a single transaction such that four fingers (or slap) of
the right hand, the left hand and the two thumbs are cap-
tured in three separate images. Multi-finger plain images
are passed to the algorithms under test as a single image —
in other words, we did not segment multiple finger plain im-
ages into individual fingerprints prior to passing them to the
algorithms. Whether or not algorithms under test performed
any segmentation prior to search was not apparent to us.

The multi-finger plain (slap) fingerprint images are 70%
live-scan and 30% re-scanned ink. These images came from
law enforcement and other government agencies. The live-
scan data was captured between 2000–2008, and the re-
scanned ink are much older.

Table 1 lists the number of individuals in our evaluation
dataset whose fingerprint images are used for enrollment
and for search sets.

Evaluation images are of varying sizes, but all are 8-bit
grayscale at 500 pixels per inch resolution. Images were
originally compressed using Wavelet Scalar Quantization
(WSQ) compression.

We used the NIST Fingerprint Image Quality (NFIQ) al-
gorithm [9, 10] to assess the diversity of the quality of eval-
uation images. NFIQ scores are in the range [1,5], where
NFIQ = 1 means highest quality and NFIQ = 5 means low-
est quality. Distribution of NFIQ scores of evaluation data is
shown in Figure 3.

To ensure data integrity and ground truth, we visually
inspected dubious results, corrected ground truth errors and
removed blank or non-fingerprint images from our evalu-
ation set. Ground truth of identities could be erroneous
in two ways: the same individual is in the database under
two different identifiers or two different individuals are in
the database using the same identifier. The first category
wrongly elevates the false positives. We resolved this issue
by vertically flipping fingerprint images used for nonmated
searches. To correct topology, left/right labelings are re-
versed after flipping. An example is shown in Figure 2. The
second category of ground truth errors would wrongly ele-
vate false negatives. This was mitigated by visual inspection
of most of the low scoring mates. Additionally, cases with
more than one strong hit on a candidate list were manually
inspected to resolve duplicated enrollments.

3. Experiments
A one-to-many identification has two main phases, en-

rollment and search or identification. We employed a two-
step enrollment: first, all the templates used in the enroll-
ment set are extracted from the fingerprint images, and sec-
ond, a process is run that finalizes the enrollment templates
used during identification.

Search or identification consists of generating templates



Enrolled
Size

Search
Size

Num
Fingers Finger Positions Capture

Type

100 000 30 000 1 Left Index (1L) Single
100 000 30 000 1 Right Index (1R) Single
1 600 000 30 000 2 Left+Right Index (2LR) Single
3 000 000 30 000 4 Left Slap (4L) Multi
3 000 000 30 000 4 Right Slap (4R) Multi
3 000 000 30 000 8 Left+Right Slap (8LR) Multi
3 000 000 30 000 10 L/R Slap, Thumbs (10LR) Multi

Table 1: Evaluation dataset. Number of images for enrolled
and search sets. The search set in all cases is a disjoint
set of 10 000 images for mated searches (where there is an
enrolled template for the search image) and 20 000 images
for nonmated searches (where there is no enrolled template
for the search image). Different enrollment sizes are due
to limitation on data availability — we opted for the largest
possible enrollment size for each case of single or multi-
finger capture types.

Figure 2: Example of flipping an image. The image on the
left is the original image of a right slap and its reflection
across the y-axis is shown on the right. We flipped images
to resolve ground truth error cases where the same individ-
ual is in the evaluation set under two different identities.
Right/left labelings are reversed for the flipped images (i.e.,
the image on the right is considered a left slap).

from search (query) images and performing a one-to-many
search against the enrollment set. We performed two types
of searches on two disjoint subsets of test images: mated
and nonmated searches. Mated searches are those where
the search sample has an enrolled mate in the enrollment
dataset. Mated searches are used to compute false negative
identification or miss rates. Nonmated searches are those
for which no enrolled mate exists. Nonmated searches are
used to compute false positive identification or false alarm
rates. The nonmated searches are necessary to preclude any
gaming possibility.

The FpVTE2012 testing protocol [7] required recogni-
tion algorithms to produce, for each search, a ranked list
of L ≤ 100 most similar candidates along with the corre-
sponding comparison scores. Rankings were to be based on
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Figure 3: Distribution of NFIQ scores for the evaluation
data. NFIQ = 1 means highest quality and NFIQ = 5 means
lows quality.

the comparison scores, in descending order (e.g., rank one
means the most similar or most probable match). As shown
in Table 1, 10 000 images were used in mated searches
and 20 000 for nonmated searches. Therefore, algorithms
are required to produce 10 000 candidate lists for mated
searches and 20 000 for nonmated searches. We treated
failure to produce a candidate list as a miss — this treat-
ment (correctly) increases false negative identification rate
but (slightly) decreases false positive identification rate.

All accuracy measurements and reporting are based on
the candidate lists produced by the algorithms. Addition-
ally, we measured and reported template generation time,
search time and template sizes as an indication of computa-
tional resources needed by the algorithms.

Enrollment sizes are shown in Table 1. We aimed for the
largest possible enrollment sizes. Due to limitations on data
availability, we opted for different enrollment sizes for each
case of single or multi-finger capture types.

FpVTE2012 tested implementations from eighteen
providers, but this paper reports performance of six (three
top performers and three others) due to space limitation.
Thus we keep the identity of algorithm providers (partici-
pants) anonymous. Participants are labeled with roman nu-
merals. The evaluation considers an algorithm as a “black
box” in order to protect the provider’s intellectual property.
No information on the internal workings of the algorithms,
(e.g., indexing, pre-selection techniques) were provided.

4. Performance metrics
Details on our quantification of accuracy, efficiency and

robustness of algorithms follows.

4.1. Accuracy

Open-set identification algorithms can make two types
of recognition error: a) search of a biometric sample of an
individual not enrolled in the biometric enrollment database



(a nonmated search) returns the biometric reference identi-
fier(s) attributable to one or more enrolled person (Type I or
false alarm because it returns a false identity); or b) search
of a biometric sample of an enrolled individual (a mated
search) returns the incorrect enrolled identity (Type II or
miss because it misses the correct identity).

Occasionally, recognition algorithms fail to process bio-
metric samples to generate templates or fail to execute one-
to-many searches to produce comparison scores. The result
is that a valid candidate list is not produced. Such failures
might be voluntary (e.g., refusal to process a poor quality
image) or involuntary (e.g., software crashes). Either way,
it is an undesirable behavior and should be included in com-
putation of recognition errors particularly to allow for fair
comparison of algorithms. We treated such failure cases as
a miss and added them to the Type II errors.

To summarize, we quantified the accuracy of the open-
set identification algorithms as follows:

• False positive identification rate (FPIR) or Type I er-
ror rate is the fraction of the nonmated searches where
one or more enrolled identities are returned at or above
threshold, T . FPIR is a function of: the size of the en-
rollment database, N , length of candidate lists, L and
score threshold, T .

• False negative identification rate (FNIR) or Type II er-
ror rate is the fraction of the mated searches where the
enrolled mate is outside the top R ranks or compari-
son score is below threshold, T . FNIR is a function of:
the size of the enrollment database, N , length of can-
didate lists, L, score threshold, T and the number of
top candidates being considered, R.

Note that FNIR computation does not care about the
cause of a miss: failure to correctly identify a sample (due
to poor quality), failure to extract a template, failure to gen-
erate a comparison score or software crashes are all dealt
with similarly.

The terms “hit rate,” “reliability” and “sensitivity” that
have been mentioned in some literature on automated fin-
gerprint identification systems (AFIS) [5, 12] are just the
complement of FNIR, computed as 1.0−FNIR .

As it is conventional, we plotted detection error tradeoff
curves (DET) [6]. In a DET curve, Type I and II error rates
are plotted on both axes, giving uniform treatment to both
types of error. Both axes use log scale, which spreads out
the plot and better distinguishes different well-performing
systems.

Another widely used accuracy metric is cumulative
match characteristic (CMC), which is the fraction of the
mated searches where the enrolled mate is at rank R or bet-
ter — regardless of its comparison score. CMC is a special
case of FNIR, or more precisely, hit rate, when the constraint

on threshold is removed: CMC(N, L, R) = 1 − FNIR(N, L,
T=0, R).

Rank-one hit rate CMC(N, L, R=1) is the most common
accuracy metric reported in academic and AFIS-related liter-
atures. While we report CMC for the tested algorithms, we
believe it is an inadequate accuracy metric. Because sim-
ilarity scores are ignored, CMC makes strong or weak hits
indistinguishable. Additionally, with CMC, Type I errors re-
main unreported.

4.2. Failure to extract a template

Failure to extract is the fraction of images for which a
template is not generated. Template generation can fail for
the enrollment sample or the search sample. In both cases,
failure to extract a template is included as a miss in the com-
putation of FNIR (see section 4.1).

4.3. Computational efficiency

Another aspect of performance is the computational re-
sources required by an algorithm. We report template gen-
eration time, one-to-many search time and template sizes
for the algorithms we tested along with their tradeoff be-
tween accuracy and the required computational resources.
Timing computations were performed on a Dell M610 with
two Intel X5690 3.47 GHz processors and 192 GB of RAM.
The algorithm under the test was the only process being run
on the machine (except for a minimal set of required Linux
daemons).

5. Results
This section reports the results of comparative analysis

of six fingerprint identification algorithms using the perfor-
mance metrics described in section 4. FpVTE2012 tested
implementations from eighteen providers, but we report re-
sults for the top three performers (I, IV, VI) and another
three (II, III, V) selected to exhibit the range and bounds
of performance of current one-to-many fingerprint identi-
fications. The main reason is space limitation, but also
that this selection provides sufficient information for study
and examination of open-set fingerprint identification per-
formance metrics and evaluation results. Algorithms are la-
beled with roman numerals: I, II, III, IV, V, and VI. The
rest of this section details performance reporting of these
six algorithms. Table 2 summarizes the results.

5.1. Detection error tradeoff

Figure 4 shows detection error tradeoff (DET) curves. X-
axis and y-axis show, in log scale, false negative identifica-
tion and false positive identification rates respectively. The
lower curves demonstrate lower FNIR, and the bottom left
corner displays the lowest error rates. In general, flat DET
curves are desired as they indicate a more stable impostor
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Figure 4: Detection error tradeoff (DET) curves. Panels
show results for each algorithm (identified by a roman nu-
meral on the top of the panel). In each panel, there are
seven DET curves for the different number of fingers tested
as shown in the figure legend: one finger searches comprise
of left index (1L) or right index (1R); two finger searches
used left and right index (2LR); four finger searches include
left slap (4L) or right slap (4R); eight finger searches used
left and right slaps (8LR); and finally ten finger searches
used all ten fingers in left/right slaps and the two thumbs
(10LR). The size of the enrollment set (N ) is: for one fin-
ger identification (1L and 1R) N = 100 000, for two fin-
ger identification (2LR) N = 1600 000, for four (4L, 4R),
eight (8LR) and ten finger (10LR) identification searches
N = 3000 000. The performance of the most accurate par-
ticipants are shown in the bottom row.

distribution, meaning change of operating threshold would
have little or no effect on FPIR. Top performers are I, IV
and VI. For all the algorithms, the lowest error rates are
achieved using ten finger (10LR), followed by eight finger
searches (8LR). This is expected, as more information is
passed to the algorithms. Right hand (1R or 4R) performs
(sometimes just slightly) better than left hand (1L or 4L).
This might be explained by usability issues such as handed-
ness, and we plan to study this later.

An interesting observation is that for all algorithms ex-
cept II, two finger (2LR) searches perform better than four
finger (4L or 4R). We will further investigate its cause. To
the best of our knowledge, the better performance of the
two finger searches can be explained by a) correlation of
the quality of fingers in the same hand and b) segmenta-
tion error. As previously mentioned, four finger searches
are performed on a slap image (Figure 2). The algorithms
under test had to first segment the image and then perform
the search. Therefore, any error in the segmentation process
would propagate through the whole search process.
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Figure 5: Cumulative match characteristic (CMC). Panels
show results for each algorithm (identified by a roman nu-
meral on the top of the panel). In each panel, there are seven
CMC curves for the different number of fingers tested as
shown in the figure legend: one finger searches comprise
of left index (1L) or right index (1R); two finger searches
used left and right index (2LR); four finger searches include
left slap (4L) or right slap (4R); eight finger searches used
left and right slaps (8LR); and finally ten finger searches
used all ten fingers in left/right slaps and the two thumbs
(10LR). The size of the enrollment set (N ) is: for one fin-
ger identification (1L and 1R) N = 100 000, for two fin-
ger identification (2LR) N = 1600 000, for four (4L, 4R),
eight (8LR) and ten finger (10LR) identification searches
N = 3000 000. The performance of the most accurate par-
ticipants are shown in the bottom row.

5.2. Cumulative match characteristic

Figure 5 shows CMC or miss rate as a function of rank
for the six algorithms tested. Note that almost always, the
correct mate is identified at ranks 1 or 2. This has implica-
tions for human adjudication — it is sufficient to examine
only the first five candidates in a candidate list.

Similar to results in section 5.1, algorithms I, IV and
VI produce the lowest error rates. For all algorithms, ten
and eight finger searches are the most accurate (except VI,
where two finger outperforms eight finger searches) and
right hand yields better accuracy than left hand.

5.3. Template size

Size of the templates is an important parameter in de-
sign of a biometric identification system for two reasons: a)
the size of the storage required for the enrolled templates is
considered a cost to the overall system; and b) for mobile
applications, network bandwidth places a constraint on the
size of search templates. Figure 6 shows the tradeoff of ac-
curacy versus median search template size. While we report
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Figure 6: False negative identification rate versus template
size in bytes. Symbols represent algorithms and colors rep-
resent different fingers. Template size is quantified by me-
dian of search templates sizes. FNIR is computed at the
score threshold that gives FPIR = 0.001.

search template size here, we note that enrollment templates
are of similar sizes. Accuracy is quantified by FNIR at the
score threshold that gives FPIR = 0.001.

Not surprisingly, template sizes correlate with the num-
ber of fingers — for each algorithm, templates generated
from one finger are the smallest in size and templates gen-
erated from ten fingers are the largest in size.

Generally speaking, the larger template sizes provide
better accuracy. This result is somewhat expected since it
is assumed that the size of a template correlates with the
amount of information encoded in the template. The excep-
tion is algorithm IV, which has lowest template sizes and
lowest FNIR for four, eight and ten fingers (although algo-
rithm IV has the largest one finger templates). Algorithms
VI and IV have comparable accuracy, but VI has larger
templates by a factor of 4. In fact, algorithm VI produces
the largest templates for (almost) any number of fingers
used for the search. Algorithm II is the least costly algo-
rithm among the test algorithms, but its accuracy is among
the worst.

5.4. Timing Statistics

Figure 7 shows the tradeoff of accuracy versus computa-
tion time. We quantified computation time as the median of
total computation time. Total computation time is measured
as the sum of search template generation time and one-to-
many search time. This is motivated by real-world opera-
tional scenarios that give enrollment more relaxed time con-
straints than the search phase. As before, accuracy is quanti-
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Figure 7: False negative identification rate versus computa-
tion time in seconds. Symbols represent algorithms and col-
ors represent different fingers. Computation time is quanti-
fied as the median of the sum of search template genera-
tion times and search times. FNIR is computed at the score
threshold that gives FPIR = 0.001.

fied by FNIR at the score threshold that gives FPIR = 0.001.
One finger searches are the fastest and least accurate.

Ten finger searches take slightly less time than four or eight
finger searches. Computation time of four and eight fingers
are comparable, but their error rates differ significantly —
eight finger searches produce roughly twice as many false
negatives as four finger searches.

Another interesting observation is the relatively tight
clustering of the three top performers (I, IV and VI) for
one, four, eight and ten fingers searches.

6. Summary and Conclusion
We reviewed performance metrics for evaluation of core

capability of open-set one-to-many fingerprint recognition
algorithms. We considered and reported algorithm effi-
ciency and robustness along with accuracy metrics. Algo-
rithm efficiency is measured by computational resources re-
quired by the algorithm. Algorithm robustness is quantified
by failure to extract templates or failure to compute com-
parison score. Employing these metrics, we reported per-
formance of six open-set one-to-many fingerprint recogni-
tion algorithms who participated in NIST FpVTE2012. We
showed that lowest error rates are achieved using ten fingers
followed by eight fingers (right and left slaps). However,
both of these cases require higher computational resources
than one or two finger searches.

Using an enrollment size of three million individuals, the



Enrollment Search Finger(s) Participant FNIR Median Template Mean Template Computation
Size Size @ FPIR = 0.001 Size (bytes) Size (bytes) Time (seconds)

100 000 30 000 1L I 0.0198 3 343 3 368 10.2091

1 600 000 30 000 2LR I 0.0030 6 649 6 692 77.3341

3 000 000 30 000 4L I 0.0165 11 502 11 457 54.9344

3 000 000 30 000 8LR I 0.0031 22 538 22 480 68.0086

3 000 000 30 000 10LR I 0.0020 30 725 30 758 54.522

100 000 30 000 1L IV 0.0258 7 063 7 042 13.5339

1 600 000 30 000 2LR IV 0.0058 10 380 10 383 25.0500

3 000 000 30 000 4L IV 0.0116 8 908 8 885 64.8854

3 000 000 30 000 8LR IV 0.0022 14 144 14 038 55.0444

3 000 000 30 000 10LR IV 0.0012 17 497 17 372 41.3894

100 000 30 000 1L VI 0.0222 6 694 6 750 16.5853

1 600 000 30 000 2LR VI 0.0028 13 215 13 322 212.5220

3 000 000 30 000 4L VI 0.0098 29 509 29 506 59.6385

3 000 000 30 000 8LR VI 0.0021 58 147 58 220 77.1740

3 000 000 30 000 10LR VI 0.0012 78 387 78 576 58.3660

100 000 30 000 1L II 0.1090 2 402 2 546 10.2799

1 600 000 30 000 2LR II 0.0515 4 868 5 072 6.2604

3 000 000 30 000 4L II 0.0372 10 347 10 714 19.1478

3 000 000 30 000 8LR II 0.0106 20 644 21 202 9.7079

3 000 000 30 000 10LR II 0.0062 26 684 27 346 11.5341

100 000 30 000 1L V 0.0791 2 775 2 816 0.9892

1 600 000 30 000 2LR V 0.0144 5 301 5 372 14.5267

3 000 000 30 000 4L V 0.0287 13 023 13 071 28.3454

3 000 000 30 000 8LR V 0.0068 25 359 25 460 31.6330

3 000 000 30 000 10LR V 0.0049 35 497 35 540 32.2278

100 000 30 000 1L III 0.1582 3 072 3 068 4.0766

1 600 000 30 000 2LR III 0.0683 6 144 6 137 37.6436

3 000 000 30 000 4L III 0.0993 12 288 12 139 52.0084

3 000 000 30 000 8LR III 0.0351 24 576 24 299 74.8950

3 000 000 30 000 10LR III 0.0202 30 720 30 262 88.3038

Table 2: Tabulation of results presented in this paper. The best performance in each category is shaded in green and the
worst in pink. Reported template sizes are the median and mean of search templates sizes. Reported computation times are
the median of the sum of search template generation times and one-to-many search times. FNIR is computed at the score
threshold that gives FPIR = 0.001.

lowest error rates are FNIR = 0.0012 for ten fingers and
FNIR = 0.0021 for eight fingers (both computed at FPIR =
0.001). The most accurate algorithm (VI) is also the most
expensive both in terms of template size and computation
time.

Two finger searches (left and right index) outperformed
four finger (right or left slap) searches. We will further in-
vestigate the cause, but for now, we speculate that it is due
to either segmentation errors or correlation of fingers in the
same hand. Current and future works include examination
of the effect of enrollment size, quality, time lapse between

the enrollment and search images on performance, and in-
vestigating the cause/source of effect of handedness on ac-
curacy.

Disclaimer: Certain commercial equipment, instruments, or
materials are identified in this paper in order to specify the exper-
imental procedure adequately. Such identification is not intended
to imply recommendation or endorsement by the National Institute
of Standards and Technology, nor is it intended to imply that the
materials or equipment identified are necessarily the best available
for the purpose.
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