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Ambiguously Labeled Learning Using Dictionaries
Yi-Chen Chen, Student Member, IEEE, Vishal M. Patel, Member, IEEE,
Rama Chellappa, Fellow, IEEE, and P. Jonathon Phillips, Fellow, IEEE

Abstract— We propose a dictionary-based learning method for
ambiguously labeled multiclass classification, where each training
sample has multiple labels and only one of them is the correct
label. The dictionary learning problem is solved using an iterative
alternating algorithm. At each iteration of the algorithm, two
alternating steps are performed: 1) a confidence update and 2)
a dictionary update. The confidence of each sample is defined
as the probability distribution on its ambiguous labels. The
dictionaries are updated using either soft or hard decision rules.
Furthermore, using the kernel methods, we make the dictionary
learning framework nonlinear based on the soft decision rule.
Extensive evaluations on four unconstrained face recognition
datasets demonstrate that the proposed method performs signif-
icantly better than state-of-the-art ambiguously labeled learning
approaches.

Index Terms— Semi-supervised clustering, ambiguously
labeled learning, multiclass classification, dictionary learning,
kernel methods.

I. INTRODUCTION

IN MANY practical image and video applications, one has
access only to ambiguously labeled data. For example,

given a picture with multiple faces and a caption specifying
who is in the picture, the reader may not know which face goes
with the names in the caption (See Fig. 1). Another example
is that people may sometimes want to label humans or objects
of interest in an image based on their partial knowledge of
these objects. For instance, one may be asked to name the
recently introduced friends or colleagues he met at a meeting
or name the categories of plants he saw in a field trip. In these
cases, one may not be able to give the ground truth label of
an object or a person but only a set of possible labels. Data
labeling by humans can be time consuming and inaccurate.
This highlights the significance of learning from ambiguously
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Fig. 1. Each face is associated with three names out of which only one is
the true name.

labeled samples. The ambiguously labeled learning has a wide
range of applications including recognition of human faces,
fingerprints, actions and behaviors.

Several papers have been published in the literature that
address the ambiguous label problem. In [1], a discriminative
framework was proposed based on the Expectation Maximiza-
tion (EM) algorithm [2], with a maximum likelihood approach
to disambiguate correct labels from incorrect ones. A semi-
supervised dictionary-based learning method was proposed
in [3] under the assumption that there are either labeled
samples or totally unlabeled samples available for training.
The method iteratively estimates the confidence of unlabeled
samples belonging to each class and uses it to refine the
learned dictionaries. In [4] and [5], a method was presented
to determine the label using a multi-linear classifier that
minimizes a convex loss function. The loss function used
in [4] and [5] was shown to be a tighter convex upper bound on
0/1 loss when compared to an un-normalized ‘naive’ method
that treats each example as if it took on multiple correct labels.
Several non-parametric, instance-based algorithms for partially
labeled learning were proposed in [6].

In recent years, sparse and redundant signal representa-
tions have generated interest in the image processing, vision
and machine learning communities [7]–[11]. This is due in
part to the fact that objects and images of interest can be
represented sparsely in an appropriately chosen dictionary.
We say a signal x (in the column-vectorized form) is sparse
in dictionary D if it can be approximated by x ≈ Dt,
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Fig. 2. The proposed dictionary learning method. (a) Block diagram - In the learning stage, given ambiguously labeled training samples (e.g. faces), the
algorithm iterates with confidence update and dictionary update steps. In the testing stage, the learned dictionaries are used to determine the label of test images.
(b) An illustration of how common label samples are collected to learn intermediate dictionaries, which are used to update the confidence for sample xi .

where t is a sparse vector and D is a dictionary. Columns
of D have the same dimension as x and they are called
atoms. The dictionary D can be analytic such as a redundant
Gabor dictionary or it can be trained directly from data. It
has been observed that learning a dictionary directly from
training data rather than using a predetermined dictionary
usually leads to better representation. Thus, learned dictio-
naries generally have superior results in many practical image
processing applications such as restoration and classification.
This has motivated researchers to develop dictionary learning
algorithms for supervised [12]–[16] semi-supervised [3] and
unsupervised [17]–[19] learning. In this paper, we consider
a dictionary learning problem where each training sample is
provided with a set of possible labels and only one label
among them is the true one. We develop dictionary learning
algorithms that process ambiguously labeled data.

Fig. 2(a) shows the block diagram of the proposed dic-
tionary learning method. Given ambiguously labeled training
samples (e.g. faces), the algorithm consists of two main
steps: confidence update and dictionary update. The confidence
for each sample is defined as the probability distribution
on its ambiguous labels. In the confidence update phase,
the confidence is updated for each sample according to its
residuals when the sample is projected onto different class
dictionaries. Then, the dictionary is updated using a fixed
confidence. We propose two effective approaches for updating
the dictionary: dictionary learning with hard decision (DLHD),
and dictionary learning with soft decision (DLSD). The DLSD
is shown to be an EM-based dictionary learning approach,
where class dictionaries are learned using a weighted K-SVD
algorithm with weighting parameters computed by soft deci-
sion on the given confidence. In the testing stage, a novel test
image is projected onto the span of the atoms in each learned
dictionary. The resulting residual is then used for classifica-
tion. Furthermore, to handle the non-linearities present in the
data, we kernelize the proposed dictionary learning algorithm.
We evaluate our approaches on four face recognition datasets:

Labeled Faces in the Wild (LFW) [20], CMU PIE dataset [21],
TV series ‘LOST’ dataset [5] and a dataset collected at the
University of Maryland (UMD) [22].

The key contributions of our work are1:
1. We propose a dictionary-based learning method when

ambiguously labeled data are provided for training.
2. We present two effective approaches for updating the

dictionary.
3. We extend our method from linear to non-linear cases by

kernelizing dictionary learning in the high-dimensional
feature space.

The rest of the paper is organized as follows. In Section II,
we formulate the ambiguously labeled learning problem and
present the details of the proposed dictionary learning algo-
rithms. In Section III, we present the non-linear dictionary
learning in the kernel space. In Section IV, we demonstrate
experimental results with discussions. We conclude this paper
in Section V.

II. DICTIONARY LEARNING FROM AMBIGUOUSLY

LABELED DATA

Let L = {(xi , Li ), i = 1, . . . , N} be the training data. Here
xi denotes the i th training sample, Li ⊂ {1, 2, . . . , K } the
corresponding multiple label set, and N the number of training
samples. There are a total of K classes. The true label zi of the
i th training sample is in the multi-label set Li . Let xi ∈ R

d

denote the lexicographically ordered vector representing the
sample xi . For each feature vector xi and for each class j , we
define a latent variable pi, j , which represents the confidence
of xi belonging to the j th class. By definition, we have∑

j pi, j = 1, and

pi, j = 0 if j �∈ Li , i = 1, . . . , N,

pi, j ∈ (0, 1] if j ∈ Li , i = 1, . . . , N. (1)

1Items 1 and 2 summarize the preliminary version of this work that appeared
in [23]. Item 3 and experiments on the challenging UMD video dataset [22]
are extensions to [23].
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Let P be the confidence matrix with entry pi, j in the i -th row
and j -th column. Define C j to be the collection of samples in
class j represented as a matrix and C = [C1, C2, . . . , CK]
be the concatenation of all samples from different classes.
Similarly, let D j be the dictionary that is learned from the
data in C j and D = [D1, D2, . . . , DK] be the concatenation of
all dictionaries. Equipped with the above notation, the problem
we study can be formally stated as follows:

For each feature vector available during training, we are
given a set of labels, only one of which is correct. Given this
ambiguously labeled data, how can one learn dictionaries to
represent each class?

We solve the dictionary learning problem using an iter-
ative alternating algorithm. At each iteration, two major
steps are performed: confidence update and dictionary update.
We demonstrate that both soft and hard decision rules produce
robust dictionaries.

A. The Dictionary Learning Hard Decision Approach

The dictionary learning hard decision (DLHD) approach
learns dictionaries directly from class matrices,2 {Ci }Ki=1, that
are determined using a hard decision for class labels for each
sample xi by selecting the classes with the maximum pi,c

among all c’s belonging to Li . One iteration of the algorithm
consists of the following stages.

1) Confidence Update: We use the notation D(t), P(t) to
denote the dictionary matrix and confidence matrix respec-
tively, in the t th iteration. Keeping the dictionary D(t) fixed,
the confidence of a feature vector belonging to classes outside
its label set is fixed to 0 and is not updated. To update the
confidence of a sample belonging to classes in its label set,
we first make the observation that a sample xi which is well
represented by the dictionary of class j , should have high
confidence. In other words, the confidence of a sample xi

belonging to a class j should be inversely proportional to the
reconstruction error that results when xi is projected onto D j .
This can be done by updating the confidence matrix P(t) as
follows

p(t)
i, j =

β
(t)
j exp

(

− e(t)
i, j

2σ
(t)
j

)

∑

k∈Li

β
(t)
k exp

(

− e(t)
i,k

2σ
(t)
k

) , (2)

where β
(t)
j and σ

(t)
j are parameters (given in section II-C), and

e(t)
i, j = ‖xi − D(t)

j D(t)
j xi‖22 (3)

is the reconstruction error, when xi is projected onto
D(t)

j ,∀ j ∈ Li and

D(t)
j � ((D(t)

j )T D(t)
j )−1(D(t)

j )T

is the pseudo-inverse of D(t)
j . As shown in section II-C, we

derive (2) under the assumption that the likelihood of each
sample xi is a mixture of Gaussian densities, and β

(t)
j is the

weight associated with the density of label j .

2We refer to class matrices and clusters interchangeably.

2) Cluster Update3: Once the confidence matrix P(t) is
updated, we use it to update the class matrix C(t+1). For each
training sample xi , we assign it to the class j i which gives
the maximum confidence. That is,

j i = argmax
k∈Li

p(t)
i,k . (4)

3) Dictionary Update: The updated class matrices C(t+1)

are then used to train class-specific dictionaries. Given a class
matrix C(t+1)

j , we seek a dictionary D(t+1)
j that provides the

sparsest representation for each example feature in this matrix,
by solving the following optimization problem

(D(t+1)
j , �

(t+1)
j ) = argmin

D,�
‖C(t+1)

j − D�‖2F ,

subject to ‖γ i‖0 ≤ T0, ∀i, (5)

where γ i represents the i -th column of �, C(t+1)
j has a matrix

representation whose columns are feature vectors assigned
to the j -th class at iteration (t + 1), and T0 is the sparsity
parameter. Here, ‖ · ‖F denotes the Frobenius norm and ‖ · ‖0
represents the �0 norm which counts the number of nonzero
elements in a vector. Many approaches have been proposed
in the literature for solving such optimization problem. We
adapt the K-SVD algorithm [24] for solving (5) due to
its simplicity and fast convergence. The K-SVD algorithm
alternates between sparse-coding and dictionary update steps.
In the sparse-coding step, D is fixed and the representation

vectors γ i s are found for the i -th column in C(t+1)
j as follows

min
γ i
‖ci − Dγ i‖22, subject to ‖γ i‖0 ≤ T0 ∀i,

where ci is the i -th column of C(t+1)
j . Then, the dictionary is

updated atom-by-atom in an efficient way. For a given atom k,
the quadratic term in (5) can be rewritten as

∥
∥C(t+1)

j −
∑

i �=k

diγ
k
T − dkγ

k
T

∥
∥2

F = ‖Ek − dkγ
k
T ‖2F , (6)

where Ek is the residual matrix, dk is the k-th atom of the
dictionary D and γ k

T is the k-th row of �. The atom update is
obtained by minimizing (6) for dk and γ k

T through a simple
rank-1 approximation of Ek [24].

The entire approach for learning dictionaries from ambigu-
ously labeled data using hard decisions is summarized
in Algorithm 1.

B. The Dictionary Learning Soft Decision Approach

The dictionary learning soft decision (DLSD) approach
learns dictionaries that are used to update the confidence for
each sample xi , based on the weighted distribution of other
samples that share the same candidate label belonging to Li .
The weighted distribution of other samples sharing a given
candidate label c is computed through the normalization of all
pl,c’s with l �= i . In what follows, we describe the different
steps of the algorithm.

3This step is necessary only for the DLHD approach.
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Algorithm 1 Iteratively Learning Dictionaries Using Hard
Decision and Updating Confidence
Input: Training samples L = {(xi , Li )} and initial

dictionaries D(0) = [D(0)
1 |D(0)

2 | . . . |D(0)
K ].

Output: Dictionary D∗ = [D∗1|D∗2| . . . |D∗K ].
Algorithm:

1. Repeat the following steps to refine the confidence
until the maximum iteration number Tc is reached:
1.1 Confidence Update: For each feature vector xi ,

calculate the residuals e(t)
i, j using (3). Then use e(t)

i, j

to update confidence p(t)
i, j using (2).

1.2 Cluster Update: Assign each feature vector xi to
C(t+1)

j i according to (4).
1.3 Dictionary Update: When the class assignment for

all xi ’s is completed, build dictionary D(t+1)
j from

C(t+1)
j ,∀ j ∈ {1, 2, . . . , K } using the K-SVD

algorithm and obtain D(t+1) = [D(t+1)
1 |D(t+1)

2 | . . . |
D(t+1)

K ].
2. Return D∗ = D(Tc), where Tc is the iteration number
at which the learning algorithm converges.

1) Confidence Update: In this step, given the intermediate
dictionary D(t),i learned from the previous iteration for each
sample xi , we calculate the residuals e(t),i

i,nl
using D(t),i

nl for all
nl in Li as

e(t),i
i,nl
= ‖xi − D(t),i

nl
D(t),i

nl xi‖22. (7)

We then use (2) to update the confidence p(t)
i,nl

, with e(t)
i, j

replaced by e(t),i
i,nl

.
2) Dictionary Update: In this step, the confidence matrix

P(t) is given. For each xi , we build the intermediate
dictionaries for all labels in Li = {n1, n2, . . . n|Li |}.
In particular, we learn

D(t+1),i = [D(t+1),i
n1

|D(t+1),i
n2

| . . . |D(t+1),i
n|Li |

],

where each D(t+1),i
nl is built using soft decision from

samples xl’s, where l �= i and p(t+1)
l,nl

> 0. Fig. 2(b) shows
an example of how these common ambiguous label samples

are collected to learn the intermediate dictionaries D(t+1),i
nl .

The cell marked with ‘×’ at the (i, j) entry indicates a
non-zero p(t)

i, j . All the other empty cells indicate zero confi-
dence. As shown in this example, only samples corresponding
to green and blue cells are used to learn D(t+1),i

n1 and D(t+1),i
n2 ,

respectively. To learn the intermediate dictionaries for xi ,
exclusion of xi (corresponding to red cells) is necessary
to enhance discriminative learning. Let {xim }N(i,nl )

m=1 be the
collection of these samples. Its matrix form is denoted by
Y = [y1 y2... yN(i,nl )], where ym , m ∈ {1, . . . , N(i, nl )}, is a
column vectorized form of some collected sample xim . Let

w = [w1 w2... wN(i,nl )] = [p(t)
i1,nl

p(t)
i2,nl

... p(t)
iN(i,nl ),nl

],
where the weight wm reflects the relative amount of contri-
bution from xim when learning the dictionary. The objective

Algorithm 2 Iteratively Learning Dictionaries Using Soft
Decision and Updating Confidence

Input: Training samples L = {(xi , Li )}.
Output: Dictionary D∗ = [D∗1|D∗2| . . . |D∗K ].
Algorithm:

1. Repeat the following iterations to refine confidence
until the maximum iteration number Tc is reached:
1.1 Confidence Update: Use (7) to calculate

residuals e(t),i
i,nl

, ∀nl ∈ Li . Then, use e(t)
i,nl

to

update confidence p(t)
i,nl

by (2) to obtain the
confidence matrix P(t+1).

1.2 Dictionary Update: Based on P(t), do the
following for each xi with Li = {n1, n2, . . . n|Li |}:
Construct the weighting matrix W and use (8) to
build D(t+1),i

nl from which the dictionary

D(t+1),i = [D(t+1),i
n1

|D(t+1),i
n2

| . . . |D(t+1),i
n|Li |

]
is obtained.

2. When t = Tc, follow 1.2 and 1.3 in Algorithm 1 to
build the final dictionary D∗ = D(Tc)

c .

of the weighted K-SVD algorithm can then be formulated as

(D(t+1),i
nl

, �(t+1),i
nl

) = argmin
D,�

N(i,nl )∑

m=1

wm‖ym − Dγ m‖22,

subject to ‖γ m‖0 ≤ T0,∀m,

= argmin
D,�

‖(Y− D�)W‖2F ,

subject to ‖γ m‖0 ≤ T0,∀m, (8)

where W is a square weighting matrix with its diagonal

filled with {√wm}N(i,nl )
m=1 , and zeros elsewhere. One can solve

the above weighted optimization problem by modifying the
K-SVD algorithm as follows:

• Sparse Coding Stage: For m = 1, 2, . . . , N(i, nl ), com-
pute γ m for ym by solving

min
γ
‖(ym − Dγ )‖22, subject to ‖γ ‖0 ≤ T0.

• Codebook Update Stage: This step remains the same as
the original K-SVD algorithm except that the overall error
representation matrix Ek is changed to

Ek = (Y−
∑

j �=k

d jγ
j
T )W,

where d j is the j -th column of D and γ
j
T is the j -th row

of � found in the previous sparse coding stage.

After Tc soft decision iterations, for each training sample,
we assign the label with the maximum confidence. The labeled
class matrices are used to learn the final dictionary

D∗ = D(Tc) = [D(Tc)
1 |D(Tc)

2 | . . . |D(Tc)
K ]

via the K-SVD algorithm. This step is the same as 1.2 and 1.3
in Algorithm 1 with t set equal to Tc. The entire DLSD
approach is summarized in Algorithm 2.
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For our current implementation of DLSD, up to |Li | class
dictionaries need to be learned because of the exclusion of
sample xi . If xi remains in the training set to train all the |Li |
class dictionaries and the normalized confidences of xi with
respect to other samples assigned with the same label as xi are
similar among these |Li | classes then the resulting dictionaries
may not be discriminative for xi . Therefore, unlike DLHD, in
each iteration we don’t simply learn a common set of class dic-
tionaries that are used to compute the confidences for all xi ’s.

C. DLSD is an EM-Based Approach

The proposed DLSD is indeed an EM [25]– [27] dictionary
learning approach. In particular, to find D(t+1),i given xi and
D(t),i , in the E-step we first compute the following conditional
expectation4

E
[
log p({xl}Nl=1,l �=i , {Zl}Nl=1,l �=i |Di )|xi , D(t),i

]
, (9)

where Zl is the random variable that corresponds to the true
label zl of the observed sample xl . We assume the likelihood
of sample xl given Di is a mixture of Gaussian densities
expressed by

p(xl |Di ) =
K∑

j=1

α j p j (xl |Di
j ),

where α′j s are normalized weights associated with the density

of label j ′s with
∑K

j=1 α j = 1, and

p j (xl |Di
j ) =

1
√

2πσ j
exp

(

−‖xl − Di
jγ l‖22

2σ j

)

for some σ j . Moreover, γ l is a coefficient vector for repre-
senting xl using Di

j . For independent x′l s, it can be shown that
(9) equals

K∑

j=1

N∑

l=1,l �=i

p(t)
l, j

(
log(α j )+ log(p j (xl |Di

j ))
)
, (10)

where

p(t)
l, j � p(Zl = j |xl , D(t),i) = α j p j (xl |D(t),i

j )
∑K

k=1 αk pk(xl |D(t),i
k )

. (11)

In the M-step, we maximize (10) by finding

α(t+1) � [α(t+1)
1 , . . . , α

(t+1)
K ]

and

D(t+1),i = [D(t+1),i
1 |...|D(t+1),i

K ]

4Here our interpretation of the DLSD as an EM-based approach is con-
ditioned on the training sample and the corresponding class dictionaries. We
have not been able to show that the DLSD is an EM algorithm by minimizing
some global cost function.

such that

α(t+1) = argmax
α=[α1,α2,...,αK ]

K∑

j=1

N∑

l=1,l �=i

p(t)
l, j log(α j ),

= argmax
α j

N∑

l=1,l �=i

p(t)
l, j log(α j ), ∀ j ∈{1, . . . , K }, (12)

D(t+1),i = argmax
D=[Di

1|Di
2|...|Di

K ]

K∑

j=1

N∑

l=1,l �=i

p(t)
l, j log(p j (xl |Di

j )),

= argmax
Di

j

N∑

l=1,l �=i

p(t)
l, j log(p j (xl |Di

j )),

= argmax
Di

j

N∑

l=1,l �=i

p(t)
l, j

(

− log(σ j )

2
−‖xl − Di

jγ l‖22
2σ j

)

,

= argmin
Di

j

N∑

l=1,l �=i

p(t)
l, j‖xl−Di

jγ l‖22, ∀ j ∈{1, . . . , K },

= argmin
Di

nl

N(i,nl )∑

m=1

wm‖ym−Di
nl

γ m‖22, ∀nl ∈ Li . (13)

The optimization problem in (13) can be solved by the
weighted K-SVD algorithm in (8). σ

(t+1)
nl can be approximated

by the average residual over {ym}N(i,nl )
m=1 . That is,

σ (t+1)
nl
= 1

η(i, nl )

N(i,nl )∑

m=1

wm‖ym−D(t+1),i
nl

γ m‖22, ∀nl ∈ Li ,

where η(i, nl) = ∑N(i,nl )
m=1 wm . Moreover, as αnl sums to one

over nl , (12) leads to

α(t+1)
nl
= η(i, nl)

N(i, nl )
.

We then compute

β(t+1)
nl
= α

(t+1)
nl√

2πσ
(t+1)
nl

and update p(t+1)
i,nl

by (2).

D. Determining Initial Dictionaries

The performance of both DLSD and DLHD will depend
on the initial dictionaries as they determine how well the
final dictionaries are learned through successive alternating
iterations. As a result, initializing our method with proper
dictionaries is critical. In this section, we propose an algorithm
that uses both ambiguous labels and features to determine the
initial dictionaries.

For the i -th sample, we initialize the corresponding row of P
uniformly for all j ∈ Li . Hence,

P(0) �
[

p(0)
i, j

]
, where p(0)

i, j =
1

|Li | , if j ∈ Li , i = 1, . . . , N.

At iteration t = 0, we build dictionaries for the sample xi ,
denoted by

D(0),i = [D(0),i
n1
|D(0),i

n2
| . . . |D(0),i

n|Li |
],
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Algorithm 3 Using Initial Confidence to Learn Initial
Dictionaries
Input: Training samples L = {(xi , Li )} and the initial

confidence, P(0).
Output: Initial dictionaries D(0) = [D(0)

1 |D(0)
2 | . . . |D(0)

K ].
Algorithm:

1. Initialization: i ← 1;
C(0)

j ←{},∀ j ∈ {1, 2, . . . , K }.
2. Repeat the following for every xi :

2.1 Construct D(0),i = [D(0),i
n1 |D(0),i

n2 | . . . |D(0),i
n|Li | ],

where D(0),i
nk is built from xl’s such that l �= i .

2.2 Augment C(0)

ĵ i with xi , where ĵ i is obtained
from (14).

3. Establish initial dictionaries
D(0) = [D(0)

1 |D(0)
2 | . . . |D(0)

K ], where D(0)
j is learned

from C(0)
j using the K-SVD algorithm.

where the intermediate dictionary D(0),i
nk is learned from

samples other than xi with ambiguous label nk ∈ Li .
These samples are collected in the same way as described
in section II-B. Next, xi is assigned to class ĵ i such that it
gives the lowest residual. In other words,

ĵ i = argmin
nk∈Li

‖xi − D(0),i
nk

D(0),i
nk xi‖22. (14)

Initial clusters are obtained after the class assignment for
all samples is completed. Each initial dictionary is then
learned from the corresponding cluster using the K-SVD
algorithm [24]. We summarize this initialization approach
in Algorithm 3.

Note that our method is very different from the approach
of learning dictionaries from partially labeled data [3]. The
approach presented in [3] learns class discriminative dictio-
naries while our work learns class reconstructive dictionaries.
In addition, from the formulation in [3] we see there are
either labeled samples or totally unlabeled samples available
for training. In contrast, in our formulation, all samples are
ambiguously labeled according to three controlled parameters.
In fact, formulations in [3] and [17] (for totally unlabeled sam-
ples) are special cases of the ambiguously labeled formulation
presented in this paper.

III. NON-LINEAR KERNEL DICTIONARY LEARNING

The class identities in the face dataset may not be linearly
separable. This essentially requires the dictionary learning
model to be non-linear [28], [29]. In this section, we formulate
the problem of kernel dictionary learning with soft decision.
The kernel dictionary learning with hard decision can easily
be obtained by replacing the weight matrix with the one deter-
mined by the hard-threshold version of P, where pi, j i = 1, and
pi, j = 0,∀ j �= j i ∈ Li ,∀i . Note that j i is computed by (4).

Let � : R
d → H be a non-linear mapping from d

dimensional space into a dot product space H. A non-linear
dictionary can be trained in the feature space H. Using the
same notations in (8), we formulate the kernel dictionary

learning as the following optimization problem

(U(t+1),i
nl

,�(t+1),i
nl

) � (U,�)

= argmin
Û,�̂

∑

m

wm‖�(ym)−�(ym)Ûλ̂m‖22

subject to ‖λ̂m‖0 ≤ T0, ∀m
= argmin

Û,�̂

‖(�(Y)−�(Y)Û�̂)W‖2F ,

subject to ‖λ̂m‖0 ≤ T0, ∀m, (15)

where

�(Y) = [�(y1),�(y2), . . . ,�(yN(i,nl )],

λ̂m are the columns of �̂ and W is a square weighting

matrix with its diagonal filled with {√wm}N(i,nl )
m=1 , and zeros

elsewhere. In (15), since the dictionary lies in the linear span
of the samples �(Y), we have used the following model for
the dictionary in the feature space,

�(D) = �(Y)Û,

where Û ∈ R
d×K0 is a matrix with K0 atoms [28], [29].

This model provides adaptivity via modification of the matrix
Û. Through some algebraic manipulations, the cost function
in (15) can be rewritten as

‖(�(Y)−�(Y)Û�̂)W‖2F
= tr

(
((I − Û�̂)W)T K(Y, Y)(I− Û�̂)W

)
, (16)

where K(Y, Y) is a kernel matrix whose elements are com-
puted from

κ(r, s) = �(yr )
T �(ys).

It is apparent that the objective function is feasible since it only
involves a matrix of finite dimension K ∈ R

N(i,nl )×N(i,nl ),
instead of dealing with a possibly infinite dimensional
dictionary.

An important property of this formulation is that the com-
putation of K only requires dot products. Therefore, we are
able to employ Mercer kernel functions to compute these
dot products without carrying out the mapping �. Some
commonly used kernels include polynomial kernels

κ(x, y) = (〈x, y〉 + a1)
a2

and Gaussian kernels

κ(x, y) = exp

(

−‖x − y‖2
a3

)

,

where a1, a2 and a3 are the parameters.
Similar to the the linear K-SVD [24] algorithm, the opti-

mization of (15) involves sparse coding and dictionary update
steps in the feature space which results in the kernel K-SVD
algorithm [29]. Details of the optimization can be found
in [29].
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A. Computing Residuals in the Feature Space

Given kernel dictionary �(D) = �(Y)U obtained by
solving (15), we compute the residual e of each training
sample x in the feature space as follows.5

e = ‖�(x)−�(D)�(D)�(x)‖22, (17)

where �(D) is the pseudo-inverse of �(D) and computed as

�(D) = (�(D)T �(D))−1�(D)T

= (UT K(Y, Y)−1U)−1UT �(Y)T.

Hence, it can be shown the residual e has the following
close form

K(x, x)+K(x, Y)((K(Y, Y)−1)T−2K(Y, Y)−1)K(Y, x),

(18)

where

K(x, Y) = K(Y, x) = [K(y1, x), . . . ,K(yN(i,nl ), x)].
Using the result of (18), we update the confidence in each

iteration for DLHD and DLSD via (2).

IV. EXPERIMENTS

To evaluate the performance of our dictionary method, we
performed two sets of experiments defined in [4] and [5]:
inductive experiments and transductive experiments. We report
the average test error rates (for inductive experiments) and
the average labeling error rates (for transductive experiments),
which were computed over 5 trials.

In an inductive experiment, samples are split in half into a
training set and a test set. Each sample in the training set is
ambiguously labeled according to controlled parameters, while
each sample in the test set is unlabeled. In each trial, using the
learned dictionaries from the training set, the test error rate is
calculated as the ratio of the number of test samples that are
erroneously labeled, to the total number of test samples. In a
transductive experiment, all samples with ambiguous labels
are used to train the dictionaries. In each trial, the labeling
error rate is calculated as the ratio of the number of training
samples that are erroneously labeled, to the total number of
training samples.

Following the notations in [5], the controlled parameters
are: p (proportion of ambiguously labeled samples), q (the
number of extra labels for each ambiguously labeled sample)
and ε (the degree of ambiguity - the maximum probability of
an extra label co-occurring with a true label, over all labels and
inputs [5]). We selected the following four datasets for the per-
formance evaluations: Labeled Faces in the Wild (LFW) [20],
CMU PIE dataset [21], TV series ‘LOST’ dataset [5] and
the UMD dataset [22]. For the experiments implemented
using the dictionary-based methods, we set the sparsity
level T0 to be 5, and number of dictionary atoms per class
to be 20.

5For simplicity and clarity, here we omitted superscripts and subscripts of
the training samples, residuals and kernel dictionaries.

A. Labeled Faces in the Wild Dataset

The LFW database [20] was originally designed to address
pair matching problems. Cropped and resized images of the
LFW database were provided by the authors of [5]. In our
experiment, we use one of the resulting subsets, FIW(10b),
a balanced subset which contains the first 50 images for
each of the top 10 most frequent subjects [5]. Fig. 3(a)
shows this dataset, where faces of the same subject are
shown in one row. We resized each image to 55× 45 pixels,6

and took the histogram equalized column-vector (2475× 1)
as input features. The size of dictionary per class
is 2475× 20.

Fig. 5(a) and (b) show average test error rates (for inductive
experiments) of the proposed dictionary method (DLHD and
DLSD) versus p and ε, respectively. For comparison, in the
same figure we show the average test error rates of the
other existing baseline methods7 reported in [4] and [5]. Both
dictionary methods are comparable to the Convex Learning
from Partial Labels (CLPL) method (denoted as ‘mean’) [5].
Fig. 6 shows the average labeling error rates (for trans-
ductive experiments) versus q curves. The DLHD method
outperforms the other compared methods when the number
of extra labels is less than or equal to 5. For kernel dic-
tionary learning, we denote the corresponding soft decision
approach by KDLSD. We used Gaussian kernels in our
experiments. It is observed that both soft decision approaches
(DLSD and KDLSD) give better performance than the
DLHD approach.

B. CMU PIE Dataset

The CMU PIE dataset [21] was designed for illumination
challenges. The dataset contains 21 images under varying
illumination conditions of 68 subjects. We took the first
18 subjects for our experiments and the resulting dataset
is shown in Fig. 3(b), where each row presents images
of the same subject under various illumination conditions.
All images are resized to 48 × 40 and projected onto a
181-dimension subspace that is spanned by the 5th to the
185th eigenvectors obtained through the principle component
analysis (PCA). The size of dictionary per class is 181× 20.
Figures 7(a) and (b) show the average labeling error rates
versus p and q in transductive experiments. We compare the
proposed method with the CLPL method (denoted as (‘mean’)
and ‘naive’ methods) [4], [5]8 and two baseline methods
(no dictionary learning - ‘no DL’, and standard K-SVD on
DLSD - ‘K-SVD SD’). Clearly, when either p or q is zero in
transductive experiments, there exist no ambiguous labels and
hence the labeling errors are zero. In Fig. 7(a), all compared

6We experimentally chose the feature dimension for our dictionary-based
methods. Experiments have shown that the recognition accuracy does not
degrade much when the image size is above 30× 30 pixels. As a results, the
performance of our dictionary-based methods (currently 55×45 pixels on the
LFW dataset) is certainly able to remain the same with a higher dimension
of 60 × 90 (i.e. the cropped image size used in [5] without PCA) as well.

7As definitions of these baselines can be found in [4] and [5], these
definitions are not described again here due to space limitation.

8We obtained the code for CLPL (‘mean’) and ‘naive’ methods from
http://www.timotheecour.com/. Both the ‘naive’ method and the normalized
‘naive’ method [1] give very similar results [5].
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Fig. 3. (a) FIW(10b) 10-class dataset. (b) CMU PIE 18-class dataset - left: first 9 classes, right: second 9 classes. (c) TV series ‘LOST’ 12-class face dataset.
In each dataset, face images belonging to the same class are shown in a row.

Fig. 4. Example frames from the UMD dataset. (a) Standing sequences. (b) Walking sequences. (c) Frames with blurred subjects due to the camera motion.
Faces in standing sequences were sometimes non-frontal or partially occluded, while faces in walking sequences were frontal most of the time. Camera
movements raise the additional difficulty for face tracking and recognition. The subjects were at a distance of several tens of meters from the camera.

methods provides good labeling performances. When 95% of
samples are ambiguously labeled, the lowest average label-
ing error rate, 0.05%, is achieved by the DLSD approach.

As shown in Fig. 7(b), both DLHD, DLSD and KDLSD
outperform other compared methods for all numbers of extra
labels.
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Fig. 5. Performance of the proposed dictionary methods and other baselines [4], [5] on the LFW dataset. (a) Average test error rates versus the proportion
of ambiguously labeled samples (p ∈ [0, 0.95], q = 2, inductive). (b) Average test error rates versus the degree of ambiguity for each ambiguously labeled
sample (p = 1, q = 1, ε ∈ [1/(L − 1), 1], inductive).

Fig. 6. Performance of the proposed dictionary methods and other baselines
[4], [5] on the LFW dataset - average labeling error rates versus the number
of extra labels for each ambiguously labeled sample (p = 1, q ∈ [0, 1, . . . , 9],
transductive).

C. TV Series ‘LOST’ Dataset

We obtained cropped face images of TV series ’LOST’
that were provided on-line by the authors of [5]. The orig-
inal dataset contains 1122 registered face images across 14
subjects, and each subject contains from 18 up to 204 face
images. In our experiment, we chose 12 subjects with at least
25 faces images per subject and for each chosen subject,
we collected his/her first 25 face images. Fig. 3(c) shows
the resulting dataset where faces from the same subject are
shown in one row. We resized each image to 30× 30 pixels,
and took the histogram equalized column-vector (900× 1) as
input features. The size of dictionary per class is 900 × 20.
Fig. 8 show the average labeling error rates versus p curves
in transductive experiments. It is observed that when 95% of
samples are ambiguously labeled, DLSD achieves the lowest

labeling error rate, of 14.33%. KDLSD ranks the second,
giving labeling error rate of 14.68%. On the other hand, for
the overall performance averaged over p, KDLSD achieves the
lowest labeling error rate of 6.07%, and it outperforms 6.32%
given by DLSD.

D. UMD Video Dataset

The UMD video dataset [22] contains 12 videos recorded of
a group of 16 subjects positioned several tens of meters from
the camera. The videos were collected in a high definition
format (1920 × 1080 pixels). They contain sequences of
subjects standing without walking toward the camera, which
we refer to as standing sequences, and sequence of each
subject walking toward the camera, which we refer to as
walking sequences. After segmenting the videos according
to subjects and sequence types, we obtained 93 sequences
in total: 70 standing sequences and 23 walking sequences.
Figure 4(a) shows example frames from four different standing
sequences, where most subjects are standing in a group. As
some subjects were having conversations and others were
looking elsewhere, their faces were sometimes non-frontal or
partially occluded. Figure 4(b) shows example frames from
four different walking sequences, in each of which a single
subject was walking toward the camera, with a frontal face
for most of the time. However, the walking subject’s head
sometimes turned to the right or left showing a profile face.
Furthermore, for both types of sequences, the camera was
not always static. Figure 4(c) shows example frames with
blurred subjects due to the camera motion. Same as IV-C, we
resized each image to 30× 30 pixels, and took the histogram
equalized column-vector (900× 1) as input features. The size
of dictionary per class is 900× 20.

Fig. 9(a) shows the average labeling error rates versus p
(with q = 2) curves in transductive experiments. It is
observed that when 95% of samples are ambiguously labeled,
KDLSD achieves the lowest labeling error rate, of 12.90%.
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Fig. 7. Performance of the proposed dictionary methods, two baseline methods (no dictionary learning - ‘no DL’, and standard K-SVD on DLSD - ‘K-SVD
SD’), CLPL (‘mean’) and ‘naive’ methods [4], [5] on the PIE dataset. (a) Average labeling error rates versus the proportion of ambiguously labeled samples
(p ∈ [0, 0.95], q = 2). (b) Average labeling error rates versus the number of extra labels for each ambiguously labeled sample (p = 1, q ∈ [0, 1, . . . , 9]).

Fig. 8. Performance of the proposed dictionary methods, two baseline
methods (no dictionary learning - ‘no DL’, and standard K-SVD on DLSD -
‘K-SVD SD’), CLPL (‘mean’) and ‘naive’ methods [4], [5] on the LOST
dataset - average labeling error rates versus the proportion of ambiguously
labeled samples (p ∈ [0, 0.95], q = 2).

Fig. 9(b) shows the average labeling error rates versus q (with
p = 1) curves in transductive experiments. It is observed that
when the number of extra labels is 9, KDLSD achieves the
lowest labeling error rate, of 58.78%.

E. Discussions

To explain the performance gain of our dictionary learning
approach, in plots of Figs. 7, 8 and 9, we show curves of two
additional baseline methods: no dictionary learning (‘no DL’)
and standard K-SVD on DLSD (‘K-SVD SD’) methods. The
‘no DL’ method utilizes features and ambiguous labels only,
without learning dictionaries. This baseline collects for each
class c, all its possible samples (i.e, xi ’s with p(t)

i,c > 0) at each
iteration t , and uses them directly as a set of basis atoms. The
‘K-SVD SD’ method contrasts the DLSD method by simply

using equal weights among possible samples of each label for
dictionary learning. In other words, it ignores the weighting
matrix W in (8) and learns dictionaries by the standard K-SVD
algorithm. Reconstruction errors for both baseline methods are
computed using the same L-2 norm as in (7) to update the
confidence. As can be seen from these figures that the ‘no DL’
method was not able to obtain satisfactory results, while the
‘K-SVD SD’ method did not perform as well as DLHD and
DLSD either. In particular, the performance degradation of
the ‘K-SVD SD’ method highlights the importance of W
computed from the DLSD method. Comparing DLHD and
DLSD, we observe that DLHD performs not as well as the
DLSD in that the hard-threshold confidence in DLHD is
locally constrained, and hence it may not give the global
optimal W for the dictionary learning. We further observed
that the KDLSD outperforms the DLSD not for every case
shown in Figs. 5 - 9. We experimentally set parameters of the
Gaussian kernel for KDLSD, which may not be the optimal.
This explains those few cases where KDLSD did not obtain
better performance than the DLSD. In addition, while the state-
of-the-art CLPL (‘mean’) method may be sensitive to face
images with certain within-class variation due to illumination
changes (e.g., in Fig. 3(b), (c)) and noise, the learned dic-
tionary atoms in our method are able to account for these
variations to some degree. Therefore, the performance of our
dictionary-based approach is better than those of the CLPL
(‘mean’) and other compared baseline methods.

When the proportion of ambiguously labeled is smaller than
one, there are samples assigned to the correct label only. It is
interesting to compare the proposed approaches to a semi-
supervised method that ignores samples with extra ambiguous
labels. We implemented a dictionary-based semi-supervised
method in this setting. In particular, we used samples only
with exactly one given label (based on our assumption, this
label is the ground truth one) to learn the class specific
dictionaries while ignoring the other samples with more than
one labels. We then used the learned dictionaries to label all
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Fig. 9. Performance of the proposed dictionary methods, two baseline methods (no dictionary learning - ‘no DL’, and standard K-SVD on DLSD - ‘K-SVD
SD’), CLPL (‘mean’) and ‘naive’ methods [4], [5] on the UMD video. (a) Average labeling error rates versus the proportion of ambiguously labeled samples
(p ∈ [0, 0.95], q = 2). (b) Average labeling error rates versus the number of extra labels for each ambiguously labeled sample (p = 1, q ∈ [0, 1, . . . , 9]).

Fig. 10. Average labeling error rates versus the proportion of ambiguously labeled samples (p ∈ [0, 0.95], q = 2) of our methods and a semi-supervised
method on (a) the UMD video dataset and (b) the TV series “LOST” dataset.

samples based on the minimum distance criterion so that we
can compute the average labeling error rates. Fig. 10 shows
the average labeling error rates for p < 1 on the UMD
video and TV series “LOST" datasets. The semi-supervised
method is found to perform close to the proposed methods
when p is low. On the other hand, when p is high, the
gap becomes larger because the number of correctly labeled
samples are insufficient to represent classes in a generative
and discriminative way.

In Figs. 8, 7 and 9, we also included the performance curves
of initial dictionary without subsequent iterations (‘initial’).
We can see the improvement obtained with the proposed itera-
tive methods is significant. Initial dictionaries (not dictionaries
that are randomly assigned) are important to the subsequent
iterations. Based on good initial dictionaries with additional
iterations, the proposed dictionary-based methods are able to
boost the final performance. To further look into this behavior,

we plot the average labeling errors over iterations in Fig. 11
for the proposed DLHD, DLSD and KDLSD methods on the
UMD video when the portion of ambiguously labeled samples
is p = 0.42, and the number of additional labels for each
ambiguously labeled sample is q = 2. As can be seen from
this figure, our errors decrease with increase in iterations and
become stable after seven iterations.

Moreover, in order to examine the updates of the confidence
matrices, in Fig. 12, we further show the initial (at t = 0)
and updated (using DLSD at t = 20) confidence matrices
corresponding to this experiment, where samples and labels are
indexed vertically and horizontally, respectively. Without any
prior knowledge, ambiguously labeled samples have equally
probable initial confidences. At t = 20, we observe that the
updated confidences for most samples tend to converge as they
become impulse-shape where the confidence value is 1 for one
label, and zero for the other labels.
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Fig. 11. Average labeling error rates versus the number of iterations of our
methods: DLHD, DLSD and KDLSD (p = 0.42, q = 2) on the UMD video
dataset. The error curves tend to be stable for more than 7 iterations.

Fig. 12. Initial and updated confidence matrices on the TV series ‘LOST’
(12-class) dataset. (a) Initial confidence, P(0). (b) P(20) (using DLSD
at t = 20).

The computation complexity of our current DLSD/KDLSD
indeed increases with the number of training samples and the
number of additional labels. Solving the scalability problem of
DLSD/KDLSD is one of our future research directions. One
possible solution to this problem is to consider online dictio-
nary learning methods [30]. The other solution we consider is
that, like DLHD, we first build class dictionaries (by applying
weighted K-SVD algorithm on soft-thresholded classes). Next,
prior to computing the confidence of sample xi , we use the
eigen-space updating algorithm proposed in [31] and [32]
to dynamically update each of the |Li | class dictionaries
such that the corresponding component of xi itself under
the dictionary’s eigen-space is removed. Another possibility
is that we optimize the number of dictionary atoms via the
online singular value decomposition (SVD) algorithm when
learning the class dictionaries. These dictionaries are then
directly used to compute confidences for all xi ’s. We consider
this way because optimizing the number of dictionary atoms
can improve the discriminative power of dictionaries.

V. CONCLUSION

Dictionary learning methods have been shown to be state-of-
the-art in many supervised, unsupervised and semi-supervised
classification problems. We have extended the dictionary
learning to the case of ambiguously labeled learning, where

each example is supplied with multiple labels, only one of
which is correct. The proposed method iteratively estimates
the confidence of samples belonging to each of the classes
and uses it to refine the learned dictionaries. To enhance
the performance, we further extended our work to handle
the non-linearities in the data by learning kernel dictionaries.
Experiments using four datasets demonstrate the improved
accuracy of the proposed method compared to state-of-the-art
ambiguously labeled learning techniques.
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