
Implementing Role Based Access Control
 

using
 

Ob ject Technology
 

John Barkley
 

NIST
 

B266 Tech
 

Gaithersburg MD 20899
 

(301) 975-3346
 

jbarkley@nist.gov
 

November 28, 1995
 

With Role Based Access Control (RBAC), each role is associated with a set of operations 

which a user in that role may perform. The power of RBAC a s a n a c c e s s c o n trol mechanism 

is the concept that an operation may theoretically be anything. This is contrasted to other 

access control mechanisms where bits or labels are associated with information blocks. These 

bits or labels indicate relatively simple operations, such as, read or write, which can be 

performed on an information block. Operations in RBAC m a y be arbitrarily complex, e.g., 

\a night surgical nurse can only append surgical information to a patient record from a 

workstation in the operating theater while on duty in that operating theater from midnight 

to 8 AM." A goal for implementing RBAC i s t o a l l o w operations associated with roles to 

be as general as possible while not adversely impacting the administrative fexibility o r t h e 

be  h  a  vior of applications. 

Consider the possible activities associated with defning and modifying roles: 

� Add a role and its associated operations.1 

� Remove a role and its associated operations. 

� Modify an existing role: 

{ Add an operation. 

{ Remove an operation. 

{ Modify an existing operation. 

Information is usually accessed by applications based on a fxed set of operations defned 

by the mechanism or processor which is used to access the information. Applications are 

1 Some operations may b e a vailable to more than one role, e.g., a credit account m a y be read by both a 

bank teller and a bank supervisor. 

1
 

mailto:jbarkley@nist.gov


Application	 Basic Access 
RoleA Interface Methods 

Objectp Object Object 
p 
l 

.	 

. 

. . 
. 
. 

method method method1 1	 1
i 

method method method . 2 . 2 . 2c .	 .. .	 .. 
a	 . . .

method n method n method n 
. .	 . 

t 
i 
o 
n 

I 
n 
f 
o 
r 
m 
a 
t 
i 
o 
n 

Figure 1: Implementing RBAC w i t h l a yered ob jects 

built based on a fxed set of operations which they routinely perform. For example, Unix fles 

are accessed by the operations defned by the procedures: open(), close(), read(), write(), 

fseek(), etc.; tables in a relational data base are accessed by the operations defned by SQL. 

Modifying the operations available to an application can have a great impact on an 

existing application. Removing an operation or modifying the semantics of an operation 

seriously afects an application's functioning and can produce very unpredictable results. 

One approach w h i c h can be used to maintain fexible administration, minimize impact 

on applications, and maintain a signifcant capability for defning complex role operations is 

to use Ob ject Technology in the following manner (see fg. 1). A complete set of operations 

based on access methods associated with the information storage mechanism is defned and 

held fxed. These are the operations that are made available to an application. These 

operations become the methods in a basic access methods class. 

Access control for the basic access methods class is provided by role classes, one for each 

defned role. The methods of the role classes have the same names, types and parameters as 

the methods of the basic access methods class. Access control to the information accessed 

by the basic access methods class is located exclusively in the role classes and not in any 

other part of the application. The bodies of the methods in the role classes are restricted to: 

� conditionals which determine access for the role associated with that role class; and/or 

� flters which constrict the fow of information between the application interface and 

the basic access methods. 

If access is permitted for a role, the methods of the role class then invoke the correspond-
ing methods of the basic access methods class. If not all information obtained by the basic 

access methods is permitted to a role, then the parts of the information not permitted can 

be fltered out. Filtering may be more desirable in a application rather than generating an 

access violation for the entire information block. 

2
 



class Access_PRDBO{ 

public: 

Idlist GetIdinfo(); 

Patrec GetPR(Patid pid); 

}; 

Figure 2: Example basic access methods class for accessing patient information 

The methods of the application interface class also have the same names, types and 

parameters as the methods of the basic access methods class. The methods of the application 

interface class invoke the corresponding methods of the role classes. It is the methods of an 

application interface ob ject which the application invokes. Given the current role associated 

with the application, the methods of the application interface ob ject select the appropriate 

role ob ject. 

This approach has the following advantages: 

� Applications need not change when access conditions for roles are changed. 

Applications use the methods of the application interface class whose methods have 

the same names, types, and parameters as the methods in the basic access methods 

class. The methods of the application interface class and the methods of the basic 

access methods class are fxed and remain constant o ver time. When access conditions 

for roles change, applications fail only because of access violations. This type of failure 

is comparable to the failures that typically occur when information protection bits or 

labels are changed. Applications are normally implemented to be able to handle access 

violations. 

� Access conditions for roles are easily changed. 

Access conditions for roles are located exclusively within the role classes. Consequently, 

role policy changes do not require modifcations to the applications themselves. One 

can conceive of a simple language, suitable for use by data and security administrators, 

for expressing access conditions restricted to conditionals and flters. A processor for 

such a language could generate the role ob jects and place them in the libraries used 

by applications. Most environments today support dynamically linked libraries which 

link when an application is loaded into memory for execution. Thus, applications do 

not need to be relinked when role classes are changed. This ability to easily change 

access conditions associated with roles permits rapid response to policy changes. 

The following example in C++ illustrates the approach. See: 

http://waltz.ncsl.nist.gov/rbac/vision/proj/applint.cc.txt 

3
 

http://waltz.ncsl.nist.gov/rbac/vision/proj/applint.cc.txt


for the complete C++ example which m a y be compiled and run. In actual practice, RBAC 

roles, operations, and policy can be numerous and complex. In order to simplify this example, 

only a small subset of the roles, operations, and policy that would normally be required are 

illustrated. 

This example has the following operations which can be performed by applications on a 

patient record database: 

Get patient I D l i s t This operation obtains a complete list of patient names and their IDs. 

Get patient record This operation obtains the patient record given the patient I D . 

Figure 2 shows C++ code for a basic access methods class (Access PRDBO) w h i c h has 

methods (GetIDinfo(), and GetPR()) for performing these operations. 

Figure 3 shows C++ code for role classes associated with a patient ( Pat PRDBO) a n d 

doctor role (Doc PRDBO). These role classes inherit from a base class (Role PRDBO) w h i c h 

defnes the names, types, and parameters for the methods which correspond to the methods 

in the basic access methods class. The patient and doctor role classes together implement 

the following RBAC policy: 

� Only Doctors are permitted to read the list of patient names and IDs. 

� Doctors are permitted to read the records for all patients. 

� Patients are only permitted to read their own record. 

In order to ensure that patients only access their own records, the patient role ob ject 

(Pat PRDBO) calls a system procedure which returns the patient ID for the user. 

Figure 4 shows the application interface class (PRDBO) u s e d b y applications. When an 

ob ject of this class is instantiated and a method of that ob ject is called, that method frst 

calls a system procedure (get role()) w h i c h returns the user's current role. The method then 

calls another system procedure (get role obj()) w h i c h returns a pointer to the role ob ject for 

that role. This procedure is shown in Figure 5. Finally, the method calls its corresponding 

method in the role ob ject passing its input arguments to the role ob ject method. 

4
 



class Role_PRDBO{ 

public:
 

virtual Idlist GetIdinfo()=0;
 

virtual Patrec GetPR(Patid patid)=0;
 

}; 

class Pat_PRDBO:public Role_PRDBO{ 

public: 

virtual Idlist GetIdinfo(){ 

return("ERROR: patient cannot access patient id list\n"); 

}; 

virtual Patrec GetPR(Patid pid){ 

if (pid == get_user_pid()) 

return(access_prdbo.GetPR(pid)); 

else 

return("ERROR: patients cannot get other's records\n"); 

}; 

}; 

class Doc_PRDBO:public Role_PRDBO{ 

public: 

virtual Idlist GetIdinfo(){ 

return(access_prdbo.GetIdinfo()); 

}; 

virtual Patrec GetPR(Patid pid){ 

return(access_prdbo.GetPR(pid)); 

}; 

}; 

Figure 3: Example role classes for accessing patient information 

5
 



class PRDBO{ 

public: 

Idlist GetIdinfo(){ 

char * role_name; 

Role_PRDBO *roleobj; 

role_name = get_role(); 

roleobj = get_role_obj(role_name); 

if (roleobj == (Role_PRDBO *)NULL) 

return("ERROR: no such role\n"); 

return(roleobj->GetIdinfo()); 

}; 

Patrec GetPR(Patid patid){ 

char * role_name;
 

Role_PRDBO *roleobj;
 

role_name = get_role();
 

roleobj = get_role_obj(role_name);
 

if (roleobj == (Role_PRDBO *)NULL)
 

return("ERROR: no such role\n"); 

return(roleobj->GetPR(patid)); 

}; 

}; 

Figure 4: Example application interface class for accessing patient information 

Role_PRDBO *get_role_obj(char *role_name){ 

struct{ 

char role_name[ROLE_NAME_LENGTH]; 

Role_PRDBO *role_object; 

} role_tab[NUMBER_OF_ROLES] = 

{ 

{"patient", &pat_prdbo}, 

{"doctor", &doc_prdbo} 

}; 

for(int i=0; i<NUMBER_OF_ROLES; i++) 

if (strcmp(role_name, role_tab[i].role_name) = = 0 ) 

return(role_tab[i].role_object); 

return((Role_PRDBO *) NULL); 

}; 

Figure 5: Example procedure to locate the proper role ob ject 

6 




