Measuring and Specifying Combinatorial Coverage oTest Input Configurations
D. Richard Kuhf Raghu N. Kackeér Yu Lef

! National Institute of
Standards and Technology
Gaithersburg, MD 20899, USA
{kuhn, raghu.kacker}@nist.gov

“Computer Science and Engineering
Univ. of Texas Arlington
Arlington, TX 76019
ylei@uta.edu

Abstract— A key issue in testing is how many tests are needed This approach is clearly dependent on thel sil

for a required level of coverage or fault detectiBstimates are
often based on error rates in initial testing, nroode coverage.
For example, tests may be run until a desired le¥atatement
or branch coverage is achieved. Combinatorial ntthmresent
an opportunity for a different approach to estimgtiequired test
set size, using characteristics of the test Heis paper describes
methods for estimating the coverage of, and abibtgletectt-
way interaction faults of a test set based on &iGoyg array. We
also develop a connection between (static) combiizdt
coverage and (dynamic) code coverage, such thatspecific
condition is satisfied, 100% branch coverage isir@ss Using
these results, we propose practical recommendafomsising
combinatorial coverage in specifying test requiretae

Keywords combinatorial testing; configuration model; factor
covering array; state-space coverage; t-way testwggification
and validation (V&V);

l. INTRODUCTION

Specifying test coverage requirements is Bjlpica
difficult and imprecise process for “black box” tieg,
where no source code is used. A test goal mayobe
positively demonstrate a collection of specifieattges,
often by a single test for each feature or opti®uch a
process is not adequate for robustness or retialbdsting,

testers, and it may leave a large proportion ofpibgsible
input space untested. It also provides no qudivita
measure of the proportion of significant input
combinations that have been tested. Thereforeest
services are to be contracted out, there is Kitlend basis
for developers to specify the level of testing rieepl, or
for testers to prove that testing has been adedaatide
required assurance level. This paper describes
measurement methods derived from combinatoriainigst
that can be used in analyzing the thoroughnesdesdtaset,
based on characteristics of the test set separaie its
coverage of executable code.

[I. CoMBINATORIAL COVERAGE

Combinatorial coverage measures the propoiot
way combinations of variable settings included ineat
set, for specified levels of For example, with three
binary variablesa, b, andc, there are 12 possible 2-way
gettings:ab =00, 01, 10, or 11, and likewise fac andbc.

A set of two testsabc= 000 andcabc= 001, covers five of
the 12 possible 2-way settingsab=00, ac=00, bc=00,

ac=01, andbc=01, for total 2-way coverage of 5/12. In

because simply showing that a particular input carfddition to the total combinatorial coverage insthi

demonstrate the feature does little to prove thatsi

example, other combinatorial measures are meadifgfu

adequate for the wide range of inputs likely to besoftware testing, as explained in this paper. figeustand

encountered in real-world use.

A more thorough approach involves exercisihg t

system with a broader range of inputs, often thhoug

the significance of these measures, it is helpfutelview
the basics of combinatorial methods in testing.

Combinatorial testing [1][2][3][4][5] is basedn the

methodologies such as “fuzz testing” or other uge oObservation that not every parameter contributesvery

random input data. While useful for discoveringoesy
this approach still does not give a sound meastitde
extent to which a system is capable of operatingectly
for all inputs. Alternatively, an operational piefimay be

failure and most failures are triggered by a single
parameter value, or interactions between a smatlreu of
parameters, generally two to six [5], a relatiopskmown

as theinteraction rule An example of a single-value fault

developed which tests the system according to th&ight be a buffer overflow that occurs wheneverlémgth

statistical distribution of inputs that occur inesptional
use. This process can provide reasonable confdéorc
the system’s behavior in normal operation, but mags
the rare input configurations that can result failure. A
common approach for high assurance in these cases i
supplement testing with tests designed to exertise
system with rare scenarios, based on experience
engineering judgment.

of an input string exceeds a particular limit. Palsingle
condition must be true to trigger the faulhput length>
buffer size A 2-way interaction fault is more complex,
because two particular input values are neededigger
the fault. One example is a search/replace functiat
only fails if both the search string and the reptaent
gtring are single characters. If one of the sfirsglonger
than one character, the code does not fall, thusefez to

this as a 2-way interaction fault. The effectivenes a
software testing technique, including combinatowésking,
depends on whether test settings correspondinghéo
actual faults are included in the test sets. Wthehsets do
not include settings corresponding to actual faulke
faults will not be detected. Matrices known @svering
arrayscan be computed to cover glivay combinations of
variable values, up to a specified leveltdfypically t <
6), making it possible to efficiently test all suthvay
interactions [3][6]. As with all testing, it is oessary to
select a subset of values for variables with aclangmber
of values, and test effectiveness is also depenaerihe
values selected, but combinatorial testing has Isbemn
to be highly effective.

Combinatorial coverage [7][8][9][10][11] meass

coverage is the proportion dfway combinations oh
variables for which all valid variable-values canffations
t are fully covered.

Example. Table | shows four binary variables,b, ¢, and
d, where each row represents a test. Of the sigilples2-
way variable combinationsb, ac, ad, bc, bd, ¢anly bd

and cd have all four binary values covered, so simple 2-

way coverage for the four tests in Table 1 is 2/83=3%.
There are four 3-way variable combinatioal¢, abd, acd,
bcd each with eight possible configurations: 0001,00
010, 011, 100, 101, 110, 111. Of the four comipdmest
none has all eight configurations covered, so sn3plvay
coverage for this test set is 0%. As shown la&st sets
may provide strong coverage for some measures #ven
simple combinatorial coverage is low.

address the question of what proportion of possible
settings of any variables are covered by a test set. If the

test set is d-way covering array, thetway coverage is

100%, by definition, but many test sets not based o

covering arrays may still provide significantway
coverage. If the test set is large, but not desigas a
covering array, it is possible that it provides &hh
percentage of 2-way coverage or better, and thyshea
high quality test set from the standpoint of exang
interactions. These measures have been appliacbdat
project basis to IV&V for NASA software, with sucstul
results indicating further investigation [11].

The effectiveness of a test set in detectimgraction
faults clearly depends on tests coveringway
combinations, but not necessarily on the method

producing the tests. Away covering array is guaranteed

to produce 100% coverage of combinations containing

to t variables, but a randomly generated test set sy a
produce 100%-way combination coverage if enough tests

are generated. Note that the combination covewdge
random tests increases with the number of variallgs

Thus in many ways, comparisons of “combinatorial vs
random testing” present a false dichotomy — aIItstest
provide some degree of combinatorial coverage, ané]

randomly generated tests can cover a high propoudio
combinations for some configurations of variablesl a
number of values per variable [12]. The definiidrelow

are useful in measuring combinatorial coverage [8]:

Definition. Variable-value configuration For a set oft
variables, a variable-value configuration is a et valid
values, one for each of the variables, i.e., theakke-
value configuration is a particular setting of tleiables.

Example. Given four binary variables, b, ¢ andd, for a
selection of three variables ¢ andd the set §=0, c=1,
d=0} is a variable-value configuration, and the §at1,
c=1, d=0} is a different variable-value configuration.

Definition. Simple t-way combination coverageFor a
given test set fon variables, simplg¢-way combination

TABLE I. TEST ARRAY WITH FOUR BINARY COMPONENTS
a b c d
0 0 0 0
0 1 1 0
1 0 0 1
0 1 1 1

Simple t-way coverage measures the proportion of

combinations of variables for whi@ll configurations ot
variables are fully covered, or 33% for Table t.isl also
useful to measure the number of combinations calvets
of all possible combinations.

Definition. Total variable-value configuration coverage
or a given combination dfvariables, total variable-value
0 onfiguration coverage is the proportion of #livay
variable-value configurations that are covered byeast
one test case in a test set. This measure maybaso
referred to as totatway coverage.

The number of-way combinations in an array of
variables is Qft) n!/(n-tHt!, or “n chooset” in
combinatorics, the number of ways of takingut of n
ings at a time. Suppose each variablevhealues, then
ach set ot variables has' configurations, so the total
number of possible combination settingsvisxC(n, t).
Any test set covers at least some fraction of amsunt.
For the array in Table I, there are C(4,2) = 6 fbss
variable combinations and C(4,2fx2= 24 possible
variable-value configurations. Of these, 19 vddalalue
configurations are covered and the only ones ngsane
ab=11,ac=11,ad=10,bc=01, bc=10, so the total variable-
value configuration coverage is 19/24 = 79%. Balyo

two, bd andcd, are covered with all 4 value pairs. So for
simplet-way coverage, we have only 33% (2/6) coverage,

but 79% (19/24) for total variable-value configioat
coverage. Although the example in Table 1 usesabbes
with the same number of values, this is not esakfuati the

measurement, and the same approach can be used to

compute coverage for test sets in which paramétave
differing numbers of values.

Figure 1 shows a graph of the coverage datah® usefulness of t-way testing also requires some
tests in Table 1. Coverage is given as the Y axith the understanding of the complexity of test value carabons
percentage of combinations reaching a particulaeiame that are needed. For example, an applicationhiateen

level as the X axis. tested and used extensively is likely to have féwgle-
. 2 factor faults, because these would have alreadyn bee
09 detected. But a new, untested application may teave
0 fairly high proportion of 1-way and 2-way faultdn this
07 case, we may confine initial testing of the newlapgion
. to 2-way or 3-way covering arrays, since we areljiko
fos M detect faults with even limited testing. Thattle 2-way
o4 and 3-way arrays are likely to cover the combinaithat
o2 trigger faults for this example, but less likelydover the
oz remaining faults in the extensively tested appilicat We
D; can think of the relationship betwetult distributionand

wo o om o om T ow e e om ow 0w oo combinatorial coveragasfault coverage Fault coverage
Combiriers is useful in gauging the effectiveness of a tesbseause
it measures coverage of combinations related tdt fau
detection, allowing testers to estimate if tests sufficient
Note from Figure 1 that all of the six 2-way or if more should be produced to cover relevantipos of
combinations of variables are covered to at lelast.50 the input space.
level, 83% are covered to the .75 level or higler] a
third have 100% of variable-value configurationsered. Common approaches to determining when to stop
Thus the rightmost horizontal line on the graphtesting often involve code coverage requirements or
corresponds to the smallest coverage value fromese tracking error detection rates. As errors arealieced and
set, in this case 50%. The symtilin Figure 1 indicates removed, projections are made to estimate the nuwibe
the proportion of combinations with 100% variabldue remaining faults and number of tests requirednd them,
coverage, andM indicates the minimum proportion of based on assumptions that fault discovery can eeigied
coverage for alt-way variable combinations; herez 2. by statistical models such Rayleigh or Wiebull
In this case 33%) of the variable combinations have full distributions [13]. Alternatively, tests may benruntil a
variable-value coverage, and all variable combimatiare ~ desired level of code coverage is reached, whemcsou
covered to at least the 50% levdl)(Since all variable code is available. In this paper we describe &rifit
combinations are covered to at least the levdipive will ~ approach, using combinatorial coverage measuremient
refer toM as the t-way minimum coverage Where the test set characteristics in estimating requiretisessize.

value oft is not clear from the context, these measures are
designatedb, andM.. A significant factor in fault detection effaaness is

the distribution ot-way faults, which is not known prior to
Suppose S= total variable-value coverage (i.e., thetesting. However based on past experience, an sipmate
proportion of variable-value configurations thatear distribution of faults at different interaction stigths may

Figure 1. Graph of coverage from test data

covered by at least one test). It can be showr{8hat be known. For example, for a particular class of
application the fraction of 1-way faults may be=+60%,
S > @, +M,— DM, (1) 2-way faults i = 25%, 3-way faults £= 10%, and 4-way

faults B = 5%. Such information could be used in

If a test set has only one test, then it covers, § estimating the required strengtlfor t-way covering array
combinations, so the total variable-value coverggef a from which test values will be derived.

test set containing one test isnQ()/ V' xC(n, t). Thus for

any test setM; > 1A' > 0. Note that a test set which ~ We assume deterministic software that compties
provides 100% simple combinatorial coverage tfavay ~ Same output for a given set of input parametersvahaes.
combinations will also provide some degree of highe Faults are also deterministic in that we assumailaré-
strength, {+k)-way coverage (the interaction levieln t- triggering combination of input values will alwagsoduce
way combinations is referred to atrengtd. It can be @ failure if it is present in the input. Under ske

shown that for a-way covering arrayM..; > 1A' [8]. assumptions, two factors in fault detection effeatiess
are the fault distribution within the SUT, and

combinatorial coverage of the tests. A range obpbility
lll. FAULT COVERAGE of detection can be estimated using tiveay coverage of
As described in Section Ikombinatorial coverage tests and an approximate distributiort-gfay faults.
measures the extent to whittway combination settings
have been included in a test set. Combinatoriat@me is
useful in a variety of testing problems, but estinmqthe

Table II. Cumulative faults, Est. upper angdo bounds

100

ST L ity PN
50 L +_‘
P Ve
80 ¥ /-
g |2
3_@ 70 _.' 7
<] ’
E 7
e |\ 0 Med Dev
g 50 *// — Browser
.g 20 server
g / == NASA
E 30 NW sec
3
20
10
0
1 2 3 4 5 6
Number of parameters involved in faults
cumulative
t LB UB lower and upper
1 0.17 0.68 0.17 0.68
2 0.45 0.29 0.62 0.97
3 0.25 0.02 0.87 0.99
4 0.09 0.01 0.96 1.00
5 0 0 0.96
6 0.04 0 1.00

Figure2.Cumulative fault distribution

Figure 2 shows the cumulative percentddgauits at
t = 1 to 6 for various applications [5]. We refer the
distribution of faults as shown in Figure 2 as fhelt
profile. Figure 2 shows the fault profile for a variety of
fielded products in different application domairesd
results for initial testing of a NASA distributecatdbase
system. As shown in Figure 2, the fault detectiater
increases rapidly with interaction strength, up=té. With
the medical device applications, for example, 66%he
failures were triggered by only a single parametue,
97% by 2-way combinations, and 99% by 3-way
combinations. The detection rate curves for theerth
applications studied are similar, reaching 100%ect&in
with 4 to 6-way interactions. Studies by otheser@rchers
have been consistent with these results [14][1B].i5(
interesting that the fault profile for the mediagvices,
which were fielded products, is nearly the samthadault
profile for initial testing of the NASA databaseftseare.)
Note that 100% of the medical device faults wergador
lower strength, but the browser faults included sd@way
faults. In other words, the browser faults wereerand
harder to detect than those of the medical devices.

To plan a level of testing appropriate forumaasce
needs and resource budget, it is helpful to estinthé
fault detection that can be achieved with a giverel of
combinatorial coverage. Although it is impossitileknow
the fault distribution in advance, approximate lovead
upper bounds for fault detection at different iatdion
levels can be approximated using data from similar

applications, a range of various applications rahtvo the
problem, or for a hypothesized fault distributiom.able I
provides an example, showing lower and upper botords
cumulative fault detection at interaction levels Iofo 6
based on the fault distribution shown in Figure Bor
example, it can be seen that single values (“1-way”
interaction) account for between roughly 17% to 68f6
faults. Table Il shows that 1-way or 2-way intei@as
together account for roughly 62% to 97% of faulisgure

3 shows the incremental growth in cumulative débect
rate for 1-way to 6-way interactions, using valdesm
Table Il. Thus in the “best case”, upper bouna,li68%

of faults are discovered with tests covering algte
values, 1-way interactions, and an additional 298y ime
found by covering all 2-way interactions for a cuative
total of 97%. In the lower bound, or “worst cas&7%
and 45% of faults are 1-way and 2-way respectividy,
62% detection by covering all 2-way combinations.

Note that the estimated lower and upper boufods
fault detection converge rapidly with increasintenaction
strength. Applications with simple, easily discakde
faults tend to have many single-value or 2-way
combinations that trigger failure, while for extamdy
tested applications, the easy faults have beerovised.
Heavily used and tested applications tend to hahiglzer
proportion of 3-way to 6-way faults, and so farulfa
involving more than six variables have not beeroregul.
Thus testing 4-way to 6-way combinations can previd
strong assurance.

,-

0.8
0.6
0.4
0.2

Figure 2. Fault distribution range estimates

We refer to the proportion ofway combinations
covered in a test set & Thus a-way covering array has
S 1.0, since by definition it covers alt-way
combinations. Thé-way covering array also h&= 1.0
for i <t because a covering array of strengttiso covers
all combinations that include less tharvariables. A
covering array of strengthcan detect-way faults because
all t-way combinations are covered, but the array will
always include other combinations beydrday as well.
Thus a proportion oft¢1)-way faults can be detected, as
well as those of higher strength up teway for n
variables. We will refer to the proportion of coimdition
settings covered beyondsancillary coveragdor at-way
covering array. For example, a particular 2-wayeting
array may cover 80% of 3-way combinations and 535% o

4-way combinations, so it h& = 1.0,5 = .80,5, = .55. It
should detect 2-way interaction faults and any ¥-wa

interaction faults that happen to be among the &0%-
way combinations covered.

The effectiveness of fault detection cleargpends on

The ancillary f+k)-way coverage of &way covering
array varies depending on input configuration, lmut
general will increase with increasingand decline with
increasingv andt. Appendix | showst{1) and {+2)-way

both the proportion afway combinations covered and the coverage for 2-way through 4-way covering arraysnof

distribution of faults, at each level bf That is, to detedt
way faults, the test set must include relevamay
combinations. Although the distribution tbfvay faults is
normally not known for a particular system undestte
empirical data on similar systems or software imegal
may provide reasonable estimates of fault distidioutFor
example, the fault distribution for similar systemay be
1l-way faults = 60%, 2-way faults £= 25%, 3-way
faults i = 10% and 4-way faults sJF/= 5%. Such
information could be used in determining the reegir

variables, fom = 10, 20, 30, 40, 50; and= 2, 4, 6, 8. The
number of tests,N, for a given covering array is
proportional tov' log n. Thus ancillary coverage can be
seen in Appendix | to increase with lng It can be shown
[8] that ancillary {+k)-way coverage is proportional to
1A¥, which can also be seen clearly in coverage=2t 4,

6, 8 in Appendix | and accompanying graphs.

Using ancillary coverage data for various cowg
arrays, and empirical data on failures, we can adep

strengtht needed for testing, with the objective of coveringapproximate upper and lower bounds for fault cogera
as many of thé-way combinations relevant to the systemfrom expression (2). We will use the data fromureg 1

as possible, within a given resource budget. Uribisr
model, we approximate the detection effectivenesagu
fault coverage wherk = maximum interaction strength in
failures,F; = proportion of faults that ateway, andS, =t-
way coverage, as

()

Thus for the example above, if we have a 2-way Goge
array that also provides ancillary 3-way covera§&o=

fault coverage = C = ¥icr<i Fe X St

to illustrate the development of a fault coveragedei,
then consider specialized cases in later sectiGasllt
distributions in Table 1l are used to compute theiltf
coverage shown in Appendix Il. An example is
reproduced below in Figure 4. Lower and upper bound
fault coverage computations are given for coveangys

of t=2 throught=5. Table Ill below shows that a 2-way
covering array includes 100% coverage for 1-way and
way combinations, 76.8% for 3-way, and 46.1% fovaly
combinations. This results in lower and upper lbun

.80 and 4-way coverage of S .40, then fault coverage is estimates of .853 and .998 respectively.

.60(1.0) + .25(1.0) + .1(.80) + .05(.40) = .95.

Fault coverage can provide an approximatiorfaoft
detection effectiveness. It is only an approxiomti
because faults are not necessarily uniformly distad
across the input space. For example, we may haded
3-way faults covered, but the failure-triggeringilfa may

by chance be in the 20% of 3-way combinations not

included in the test array. But for answering they k
qguestion of what strength covering array is neetted
achieve a fault detection rate goal, fault covereaye be a
reasonable approximation given available infornratio

Fault coverage may also be viewed as an estinod
the proportion of relevant input space for whichrreot
operation of the software has been verified (assgrhilly
passing tests). As such, it is a quantitative mneaf
testing thoroughness. For instance, in the examiptee,
for which fault coverage is computed as .95, 10G%he

1.000
0.800
0.600
0.400
0.200
0.000 . . .

Figure 4

The calculations in Table Il and Appendixale based
on averaged fault distributions for a variety oplgations.
Individual programs can be expected to have sicpnifi
variation from these averages. For example, if,[26
way tests detect 38% of faults, and fault deteatioes not
increase with 3-way tests, although 4-way testsaiobt
100% fault detection. For applications that héesn

1l-way and 2-way combinations have been covered, af’l%oroughly tested or used such that the “easy” thaye

these are estimated in the fault distribution tocamt for
85% of the total set of faults. The test set gisavides

been found, 1-way or 2-way faults may be rare amn-no
existent. Such a distribution can change the famlerage

80% coverage of 3-way combinations, which are 1G% oprofile substantially. Appendix Il gives two exates of

the faults, and 40% coverage of the 4-way comlonati
which are 5% of the faults. Thus the relevant trgpace
is covered to 95%,
distribution. A variety of possible fault distritlons can
be studied in this way to evaluate a test set ameermof
fault-triggering combinations in the input spadppendix
IV provides an example of this for spacecraft segtware.

this effect.

based on the estimated fault

TABLE II. FAULT COVERAGE AT T+1 AND T+2 FOR
10VARIABLES, 2 VALUES, STRENGTH2 TO5

covering array

— 2-way 3-way 4-way 5-way
t, coverage |

1 1.000 1.000 1.000 1.000
2 1.000 1.000 1.000 1.000
3 0.768 1.000 1.000 1.000
4 0.461 0.835 1.000 1.000
5 0.535 0.883 1.000
6 0.594 0.895
LB 0.853 0.945 0.984 0.996
uUB 0.990 0.998 1.000 1.000

In Appendix IV we estimate the fault coverage for a
test set for a NASA spacecraft. Previous work [9]
introduced combinatorial coverage and analyzed
coverage for this test set, which was not originall
designed as &way covering array. The test set had
been developed using conventional methods, and the
goal of the previous research was to determinbei§e
methods produced good combinatorial coverage. As
can be seen in Appendix IV, coverage for 2-way
through 4-way combinations is quite good, althongh
a full covering array at any of these levels.

To estimate the fault coverage, we consider wiffe
fault distributions. For example, in previouslytested
software, single value or 2-way faults may predaten
similar to the upper bound range in Table Il. Aslfs
are removed, single value faults become less common
As the number of faults is reduced, more complex
faults, involving more parameters, may represent a
larger proportion of the total. Appendix IV illuates
the fault coverage for various possible fault
distributions.

IV. RELATIONSHIP WITH CODE COVERAGE
Suppose we have two test séfig,and T,, that both

trigger the fault. T, ensures this, because all 2-way
combinations are covered to at least 708, € .70).
Although T, has the same level of overall simple coverage,
S = .80, its minimum coverag®/,, is only 30%, so pair
{x, } may have less than 17/25 coverage.

We label asB; the minimum proportion oft-way
settings triggering a branch for a given segmentaufe.
Thus for the example, 9/25 of 2-way settings trigties
true branch, and 16/25 settings trigger the falsndh.
Thus, for the true branch, the proportion of 2-vgaytings
triggering the branch is 9/25 = .36; and for thésda
branch, 16/25 of the 2-way settings. Thas= .36 for this
example code. For the example above, it is clear &t
least one combination in test Sewill branch to the faulty
code, because minimum coveralgg = .70 exceeds the
proportion of settings needed to ensure that &t leae
will cause the predicate <= 0 & & y <= 0 to be true
(64%).

We can show that B;+ M, > 1, to be referred to as the
branch coverage condition, then the test set wilvide
100% branch coverage, where all variables inclughed
decision predicates have values in the variable with
minimum coverage characteristM,. This makes sense
intuitively because it ensures that for evesyay variable
combination, there is an intersection between #te o
covered value configurations and the set of value
configurations that trigger a branch, as the exanalove
demonstrates.

Branch Coverage ConditionA test set provides 100%
branch coverage fot-way conditionals ifM; + B, >1,
where M; = minimum combinatorial coverage at level
and B; = minimum proportion of-way combinations that
trigger a branch within the code, where all vagabln
decision predicates have values from the variablenith
minimum coverage characterisii;.

provide 100% 1-way coverage and 80% 2-way coveragd>roof: For minimumt-way coverage oM, letk = My' =

with coverage statistic;: S, = 0.80,M, = 0.70 andl,: S

number oft-way combinations (out of) covered. That is,

= 0.80,M, = 0.3. Their fault coverage as computed fromfor the t-way combination(s) with the lowest coverage,

expression (2) will be the same, but the diffenaaities of
M suggest that there may be differences in faukta®n

different settings are covered, &oor more settings are
covered for altk-way combinations in the test set. et

capability. Suppose the code contains the following= BV = minimum number of combinations triggering a

segment:

if (x <=0 &%y <= 0){faulty code}
el se {good code}

and the input model partitions of values foandy:

X
y

{-9999,

-1, 0, 1, 9999}
{-9999, -1 1

0
, 0, 1, 9999}

Then for the 25 pairs of input values foandy, 9 will
trigger the fault. Therefore if at least 17/258%6 of input
combinations are covered in a test set, at leastwiti

branch within the code. Thus any test set comigiai test
with one of thesem combination settings will trigger the
branch. So any test set will trigger the brandhsv —m

=V(1-B) <M V' orM;+B;>1.]

Example. If t=2 andM = .5 for a decision predicate
containing two binary parameters, then there af29)=2
settings covered in the test set. There are C&h2Ayays
in which two settings of two parameters can betidet in
a test set: 00,01 | 00,10 | 00,11 | 01,10 | Op1M11. If
every decision predicate is satisfied by at least setting,
thenB; = .25, and there are three of the four settings th

do not satisfy the predicate.
C(3,2)=3 ways in which the non-satisfying setticgs be
included in a test set, so half of the possiblé¢ $ess will
include at least one test that satisfies the patelicIfB; is
increased to .5, two of the two-parameter settings
satisfy the predicate, with C(2,2) = 1 possiblet test
without a test that will satisfy the predicate. Bif= .75,
then three settings will satisfy the predicate ahé
possible test sets without a test containing asfyatg
parameter setting is C(1,2) = 0.

Note the constraint in the branch coverageditiom
that all variables in decision predicates have eslfrom
the variable set with minimum coverage characierigi.
This may be a relatively strong assumption in pecact
For example, it will hold if (a) the values in dsioin
predicates are only those from test inputs, rathean
including computed values for internal
variables; or (b) values for variables in decigwadicates
meet the combinatorial coverage requirement, evieerev
they include computed values. Some decision préstica
may meet requirement (a), but others may inclugitin
variables whose value has changed, or internabbtas
not included in the test set. In the latter céise,coverage
requirement may be validated by inspecting intestate
prior to execution of each decision predicate, uggto

(non-input) specifying test requirements.

From these, theme ararray is needed for branch coverage because caverag

minimum M increases only with increments of/1/

Example. If the condition in the example in the first
paragraph of this section wexre== 0 && y == 0 || x
18&& Yy 1, then two of the 2-way settings would
ensure that the decision predicate was satisfeBvs> 2.

If M, is increased to 96% (24/25), theh+ B, =1 — %-I—

%> 1. For 10 variables with 5 values each, the IPOG

algorithm [3] generates a 2-way covering array 60 3
tests, but 96% coverage is reached after only 88t,ta
reduction in test set size of more than 25%.

V. IMPLICATIONS FORTESTING
Combinatorial fault coverage can supplement, o
provide an alternative to, conventional methods of

Combinatorial cogera
provides a direct measure of the proportion ofréievant
input space covered by a test set, and incorpgrdinlt
distribution data makes it possible to develop tfaul
coverage figures that approximate the proportiofaafts
that the test set can detect. Thus, fault ageican be
used for estimating the fault detection capacitg tdst set.

It provides more wuseful information than raw
combinatorial coverage figures, because it takeswatt of

means such as a debugger or assertions that wirite ahe approximate distribution of faults. By estimgtlower

decision predicate variable values. The lattefoopimay
in most cases be impractical.
condition therefore has most practical utility fecision
predicates containing input variables, but it ah&bps in
understanding the effectiveness of test sets witbdg

bounds on the distribution tfway faults at each level of t,

The branch coveragae can estimate the number of tests needed to raach

desired detection rate, or approximate fault deiect
capacity for tests that can be produced within eemi
resource budget. A number of considerations came i

combinatorial coverage, though not necessarily B fu play when applying this approach.

covering array.

A corollary to the condition is that if evedgcision can

Number of variable valuesAs can be seen in Appendix Il
and lll, fault coverage varies inversely with thewber of

be satisfied by more than one parameter combinationalues per variable, so two covering arrays do not

setting, a full covering array is not needed for0%0
branch coverage. Again, this makes sense intijtive
because if two or more combination settings triggech
branch, then a test set that that cowéfls settings for each

necessarily provide the same fault detection cépasien
though they both cover 100% dfway combinations.
With some fault distributions, &way array of boolean
variables may provide better fault coverage tha(+a)-

t-way combination must include at least one of the tw way array with more values per variable. For examin

settings that will trigger the branch. We can galiee to
compute a level thatl, must exceed to provide full branch
coverage.

Branch Coverage Corollary If k or moret-way settings
satisfy every decision predicate, then the brammleage

condition is obtained with; > 1 — % , Where all variables

in decision predicates have values from the vasiadt
with minimum coverage characterishit.
Proof. If k or moret-way settings satisfy every predicate,

thenBy' > k, andM, + % > 1 impliesM, +B;> 1. [

Appendix lll, fault coverage for Distribution 1 &3, v=2
is .843, but only .832 far=4 wherev=8.

Uncertainty and range of estimates The cumulative
distribution of faults in Figure 2 shows wide vdioa at
t=1 to t=3. This produces a similar variation in fault
coverage estimates, as can be seen in Appenditli=4,
lower and upper estimates converge much more glosel
The variation and uncertainty for< 3 suggest that 4-way
coverage criterion should be the minimum for high-
assurance software. As noted in Section Ill, thwalper of
tests increases exponentially with so using 4-way
coverage, rather than 5-way or 6-way, may alsoesspt a

Note that ifk=1, i.e., some decision predicates are satisfie@ensible tradeoff between cost and assuranceilegeime

by only one of' t-way combinations, then a full covering

applications. For some applications, 4-way testiay be

optimal in that higher strength arrays become (itike
in time or resources.

be higher than might be expected considering ohby t
interaction strengtht. This is especially true for
applications with a high proportion of boolean itgu
Interaction with branch conditian The branch coverage because coverage beyond t, with a t-way array, ushm
condition can be used with information from stati@lysis higher for boolean variables than with larger nurabef
of the source code to determine a level of minimumvalues per variable.
combinatorial coverage that will provide full brdnc
coverage, a moderately strong (dynamic) code cgeera Estimating residual risk One benefit of measuring the
criterion. This code coverage goal can be achieviéidl combinatorial coverage of a test set is that itvighes
substantially fewer tests than would be requirecaftull t- information on risk through combinations not covkrene
way covering array (although a full array would yade of the original motivations for development of
stronger testing). The fact that branch coverage lte combinatorial coverage ideas [8][9]. Knowing the
obtained with many fewer tests than a full coveramgpy proportion oft-way combination settings not covered for
also helps to explain the effectiveness of randomlhdifferent values of provides useful information for testers
generated tests in some cases. and decision-makers, as it helps in estimatingrigiethat
the application will encounter a set of inputs fdrich its
The branch coverage condition suggests thais it behavior was not verified. Fault coverage allowghter
generally best to keep M as high as possible whepstimate of the risk of undetected faults, by fantpin the
executing tests if the code contains relationakresgions, fault distribution.
which is nearly always the case. When we disaetiz
variable values, we end up with combinations likese in Test requirements specificationOne application of fault
the example, where multiple settings of a particula coverage is in supplementing requirements for blamk

variable combination can trigger branches. Wherntipial
combinations can trigger a branch to faulty code, ake
better off including tests that increase M evenlther
than covering all settings of a subset of combametimore
quickly, so that we reach the branch conditionefiast~or
example, adding a previously
combination in Figure 1 could either incred@séo .5, orM
to .75.
reaching the branch condition, so the second opison
preferable.

Impact ofancillary coverage The cumulative distribution
of interaction failures shown in Fig. 1 is basedamalysis
of failure reports, identifying the number of facto
involved, rather than failures reported tiway testing.
That is, the distribution was not developed by fgre-

testing. When specifying test requirements, ifree code
is available, a variety of coverage measures mayseel.
For example, it may be required that 100% stateroent
branch coverage be achieved. Without source cade,
goals may be based on criteria such as a levehtef-i

uncovered 2-waymodule call coverage and specific requirements dase

criteria. Tests are typically required to traceckdo

The first option makes no progress towardsequirements, and conversely it must be shown #flat

requirements have been tested with one or more.test
However, this just insures that code works for & fe
inputs, and is a relatively weak measure of howahgh
the requirements-based testing has been. Justideose
have multiple tests for all requirements, there rhayno
indication of the range of input space for whick ttode
satisfies requirements. Even if two requiremeratsell
test sets “fully cover” all requirements, one maytetter

way through 6-way tests and counting the failureghan another if one evaluates the application dmoader

discovered at each level, because such a proceduid
not accurately determine failures triggered by dagbl of
t-way combinations. As shown in previous sections; a
way covering array also includes a significanténfhigh)

percentage of+1, t+2, etc. coverage. So, for example, if

we run a 3-way covering array of tests and discaver
faults, it does not mean that all n faults werggeired by
single-value, 2-way, or 3-way combinations. lthighly
likely that some resulted from 4-way, 5-way,
conceivably higher strength combinations.

When reviewing case studies of combinatoeating,
we often see that for some applications, all fatuwere
discovered by relatively low strength covering gsia
including 3-way and 4-way [16].

range of input configurations. The range of inppace
covered is a separate dimension beyond a simpliet @ju
tests per requirement. Fault coverage gives a p@ese
measure of the degree to which requirements areredv

VI. SUMMARY AND CONCLUSIONS
The objective of this work was to build on yoais

orresults to develop a relationship between the itat

distribution of combinations in input data and (dymic)
executable code coverage. The fault coverage atstim
introduced in Section Ill can be used for initigtimation
of test set size, using measures of combinatodeé@age

that can be computed with measurement tools such as
In other words, adescribed in [8][10][11]. Appendices Il and Illutrate

significant number of testing studies seemed td fin results of this computation for a variety of tesblgem

failures a bit “easier” to detect than the disttibn in
Figure 1 might suggest. The high levels of aanjll

configurations. Results can be used in scopingtimber
of tests and level of effort, and estimating realdrisk

coverage fot-way arrays mean that test effectiveness cafrom complex combinations not tested. In the fetuve

may also measure combinatorial coverage of thetinpul4] K. Z. Bell and Mladen A. Vouk. On effectiveness phirwise

distribution, which could supplement operationabfipe
methods.

When source code is available, the method intradiuce
Section IV can be used to the minimum level oft{sta

combination coverage to ensure 100% (dynamic) trancl16]
coverage (and therefore statement coverage also) of

executable code, where all variables in decisi@dipates
have values from test inputs. This approach mayseéul
where cost considerations make it difficult to wsdull

covering array in testing. Branch coverage isasaoaably
strong test criterion, and Section IV shows homiy be
achieved at substantial savings compared withtfulhy

testing. Future work might evaluate fault detattiates of
partial versus full covering arrays, to enable drettost

benefit tradeoffs in testing.

Certain products may be identified in this documdnit such
identification does not imply recommendation by Ni®r that
the products identified are necessarily best ferphrpose.

REFERENCES

[1] S. Dunietz, W. K. Ehrlich, B. D. Szablak, C. L. Mals, A.
lannino. Applying design of experiments to softwéesting,Proc.
Intl. Conf. on Software Engineering, (ICSE ‘97997, pp. 205-215

[2] M. Grindal, J. Offutt, S.F. Andler, Combination Tieg Strategies:
a Survey, Software Testing, Verification, and Reliability. 15,
2005, pp. 167-199.

[3] Y. Lei, R. Kacker, D.R. Kuhn, V. Okun, J. Lawrend®OG: a
General Strategy fort-way Software Testing,Proc., IEEE
Engineering of Computer Based Systems 2007549 — 556.

[4] Kuhn, D. R., Kacker, R. N., & Lei, YPractical combinatorial
testing NIST SP 800-142, Oct. 2010.

[5] D.R. Kuhn, D.R. Wallace, Jr. AM. Gallo, Softwareuft
interactions and implications for software testinBEE Trans.
Software Engineeringvol. 30, no. 6, June, 2004.

[6] Bryce, R. C.J. Colbourn, M.B. CoheA. Framework of Greedy
Methods for Constructing Interaction Testhe 27" International
Conference on Software Engineering (ICSE), St. §oMissouri,
pages 146-155. (May 2005).

[71 D.R. Kuhn, R. Kacker, Y. Lei.Combinatorial Coverage
MeasurementNIST IR 7878, Sept. 2012.

[8] Kuhn, D. R., Dominguez Mendoza, |., Kacker, R. Bl.Lei, Y.
Combinatorial Coverage Measurement Concepts andio&pipns.
Proc. IEEE Sixth Intl Conf orSoftware Testing, Verification and
Validation Workshops (IWCT), 20pp. 352-361. IEEE.

[9] J.R. Maximoff, M.D. Trela, D.R. Kuhn, R. Kacker, ‘Wethod for
Analyzing System State-space Coverage withiVdise Testing
Framework”,IEEE International Systems Conference 204pr. 4-
11, 2010, San Diego.

[10] D.R. Kuhn, R.N. Kacker “Measuring Combinatorial @oage of
System State-space for IV&VNASA IV&V WorkshgR012.

[11] C. Price, R. Kuhn, R. Forquer, A. Lagoy, R. KacKtyaluating

the t-way Combinatorial Technique for Determining the

Thoroughness of a Test SuitdlASA V&V WorkshgR013.

[12] A. Arcuri, L. Briand, "Formal Analysis of the Prdhisty of
Interaction Fault Detection Using Random TestingEE Trans.
Software Engineerindl8 Aug. 2011. IEEE Computer Society.

[13] Lyu, M. R. (1996).Handbook of software reliability engineering
(Vol. 222). CA: IEEE computer society press.

methodology for testing network-centric softwaRroceedings of
the ITI Third IEEE Intl Conf. Information & Commuuaitions
Technologypages 221-235, Cairo, Egypt, December 2005.

L. du Bousquet, Y. Ledru, O. Maury, C. Oriat, J.tanet, A case
study in JML-based software validatidProc. 19th Int. IEEE Conf.
on Automated Sofware Engineerimpg. 294-297, Linz, Sep. 2004

Montanez, C., Kuhn, D. R., Brady, M., Rivello, R.,NReyes, J., &
Michael, K. (2012). Evaluation of fault detectioffeetiveness for
combinatorial and exhaustive selection of disceetizest inputs.
Software Quality Professional Magazjri€(3).

Appendix I.

Ancillary coverage, (t+1)-way and {+2)-way for 10-variable covering arrays

t=2 t+1 t=3 t+l t= t+1
n=10 20 30 40 50 n=10 20 30 40 50 n=10 20 30 40 50
v=2 0.768 0.815 0.848 0.851 0.856 v=2 0.835 0.897 0.926 0.949 0.953 v=2 0.883 0.945 0.967 0.979 0.984
4 0.444 0.509 0.531 0.551 0.565 4 0.483 0.598 0.671 0.712 0.741 4 0.548 0.709 0.794 0.834 0.861
6 0.28 0.339 0.367 0.38 0.396 6 0.364 0.466 0.522 0.558 0.586 6 0.423 0.576 0.65 0.696 0.727
8 0.208 0.257 0.272 0.289 0.3 8 0.272 0.367 0.419 0.453 0.478 8 0.326 0.469 0.541 0.587
t=2 t+2 t=3 t+2 t= t+2
n=10 20 30 40 50 n=10 20 30 40 50 n=10 20 30 40 50
v=2 0.461 0.521 0.572 0.571 0.576 v=2 0.535 0.628 0.684 0.734 0.747 v=2 0.594 0.715 0.777 0.818 0.841
4 0.126 0.153 0.162 0.172 0.178 4 0.14 0.19 0.228 0.253 0.272 0.167 0.251 0.312 0.349 0.377
6 0.049 0.063 0.07 0.074 0.078 6 0.068 0.095 0.111 0.123 0.132 6 0.082 0.128 0.156 0.176 0.191
8 0.027 0.035 0.038 0.04 0.042 8 0.037 0.054 0.064 0.071 0.076 8 0.046 0.074 0.091 0.103
0.8 0.8 0.8 e
v=2 [T v=2 v=2
0.6 0.6 0.6 =
"""""""""""""""""""""""""""""""""""""" v=4 R s v=4 = - y=4
0.4 - et O 6 04 -
P i —— . y=8 0.2 —— v=8 0.2 — = v=8
0 T T T ! 0 T T T | 0 T T T]
n=10 20 30 40 50 n=10 20 30 40 50 n=10 20 30 40 50
t=2 t+1 coverage t=3 t+1 coverage t=4 t+1 coverage
1 1 1
0.8 0.8 0.8
v=2 v=2 v=2
0.6 0.6 0.6
/—d --------- v=4 | | T e v=4 | e v=4
0.4 v=6 04 v=6 R T —— v=6
O ———— —— v=8 02 T —y=8 0.2 o ueg
0 FrEmm =T ST oo = N e f— - o _,._.._I.v_ | | |
n=10 20 30 40 50 n=10 20 30 40 50 n=10 20 30 40 50
t=2 t+2 coverage t=3 t+2 coverage t=4 t+2 coverage

Appendix Il

Explanation of charts: Lower and upper boundsauiit toverage are estimated for n-variable coveaimagys, using ancillary t LB UB
(t+1)-way and (t+2)-way coverage foway arrays, for t = 2 through 5. For example,fttet column below indicates that a 2- 1 0.17 0.68
way covering array provides 100% 1-way and 100%af-voverage, 76.8% 3-way coverage, and 46.1% 4deaagrage. 2 0.45 0.29
Similarly, the second column shows 100% coveradewhy through 3-way for a 3-way array, with 83.8%a 53.5% 4-way 3 0.25 0.02
and 5-way coverage. Lower and upper bounds arecthmiputed using the empirical data from Table pr/duced right) and 4 0.09 0.01
expression (2). 5 0 0
6 0.04 0
Estimated fault coverage range for 10-variable covering arrays
10 vars X axis: t=2 3 4 5 t=2 3 4 5 t=2 3 4 5 t=2 3 4 5
LB UB 2 values per variable 4values per variable 6 values per variable 8 values per variable
1 0.17 068 1 1.000 1000 1000 1.000 1000 1.000 1.000 1.000 1.000 1.000 1000 1.000 1000 1.000 1.000 1.000
2 0.45 029 2 1000 1000 1000 1.000 1000 1.000 1.000 1.000 1.000 1.000 1000 1.000 1000 1.000 1.000 1.000
3 0.25 002 3 0768 1000 1000 1.000 0.444 1000 1000 1.000 0280 1000 1000 1.000 0208 1000 1000 1.000
4 0.09 001 4 0461 0835 1000 1.000 0.126 048 1000 1.000 0.049 0364 1000 1.000 0.027 0272 1000 1.000
5 0 0 5 0535 0.883 1.000 0.140 0548 1.000 0.068 0423 1.000 0.037 0326 1.000
6 0.04 0 6 0.594 0.895 0.167 0.573 0082 0451 0.046 0.353
LB LB 0.853 0945 098 0.99 0742 0913 0967 0983 0.694 0903 0963 0978 0.674 0.8%4 0962 0.974
uB UB 0990 0998 1000 1.000 0980 0995 1.000 1.000 0.976 0.994 1000 1.000 0974 0993 1000 1.000
1.000 = 1.000 — 1.000 1000
0.800 < 0.800 f——="" 0800 4 0.800
0.600 0.600 0.600 - 0.600
0.400 0.400 0.400 0.400
0.200 0.200 0.200 0.200
0.000 ‘ .) 0.000 T \) 0.000 : . ‘ 0.000 ‘ ; ,
t=2 3 4 5 t=2 3 4 5 t=2 3 4 5 t=2 3 4 5

Estimated fault coverage range for 20-variable covering arrays

20vars
LB

1 0.17
2 0.45
3 0.25
4 0.09
5 0
6 0.04

LB

uB

30 vars

LB
UB

O U WN P

LB
0.17
0.45
0.25
0.09

0.04

0.17
0.62
0.87
0.96
0.96

1

UB
0.68
0.29
0.02
0.01

LB
uB

uB
0.68
0.29
0.02
0.01

LB

UB
0.68
0.97
0.99

1

U A WN

O U WN P

t=2 3 4 5 t=2 3 4 5
2 values per variable 4values per variable
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.815 1.000 1.000 1.000 0.509 1.000 1.000 1.000
0.521 0.897 1.000 1.000 0.153 0.598 1.000 1.000
0.628 0.945 1.000 0.19 0.709 1.000
0.715 0.972 0.251 0.784
0.871 0.951 0.989 0.999 0.761 0.924 0.970 0.991
0.992 0.999 1.000 1.000 0.982 0.996 1.000 1.000
1.000 = 1.000 F——
0.800 | 0.800
0.600 0.600
0.400 0.400
0.200 0.200
0.000 T T] 0.000 T T |
t=2 3 4 5 t=2 3 4 5
Estimated fault coverage range for 30-variable covering arrays
t=2 3 4 5 t=2 3 4 5
2 values per variable 4values per variable
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.848 1.000 1.000 1.000 0.531 1.000 1.000 1.000
0.572 0.926 1.000 1.000 0.162 0.671 1.000 1.000
0.684 0.967 1.000 0.228 0.794 1.000
0.777 0.986 0.312 0.868
0.883 0.953 0.991 0.999 0.767 0.930 0.972 0.995
0.993 0.999 1.000 1.000 0.982 0.997 1.000 1.000
1.000 —————————— 1000
0800 I 0.800
0.600 0.600
0.400 0.400
0.200 0.200
0.000 T T] 0.000 T T]
t=2 3 4 5 t=2 3 4 5

t=2 3 4 5
6 values per variable
1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000
0.339 1.000 1.000 1.000
0.063 0.466 1.000 1.000
0.095 0.576 1.000
0.128 0.655
0.710 0.912 0.965 0.986
0.977 0.995 1.000 1.000
1,000
0.800
0.600
0.400
0.200
0.000 T T)
t=2 3 4 5
t=2 3 4 5
6 values per variable
1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000
0.367 1.000 1.000 1.000
0.07 0.522 1.000 1.000
0.111 0.65 1.000
0.156 0.739
0.718 0.917 0.966 0.990
0.978 0.995 1.000 1.000
1000
0.800
0.600
0.400
0.200
0.000 T T !
t=2 3 4 5

t=2 3 4 5
8 values per variable
1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000
0.257 1.000 1.000 1.000
0.035 0.367 1.000 1.000
0.054 0.469 1.000
0.074 0.544
0.687 0.903 0.963 0.982
0.975 0.994 1.000 1.000
1000
0.800 -
0.600
0.400
0.200
0.000 T T]
t=2 3 4 5
t=2 3 4 5
8values per variable
1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000
0.272 1.000 1.000 1.000
0.038 0.419 1.000 1.000
0.064 0.541 1.000
0.091
0.691 0.908 0.964 0.960
0.976 0.994 1.000 1.000
1.000 e
0.800 -
0.600
0.400
0.200
0.000 T T ,
t=2 3 4 5

Estimated fault coverage range for 40-variable covering arrays

t=2 3 4 5 t=2 3 4 5 t=2 3 4 5 t=2 3 4 5
2 values per variable 4 values per variable 6 values per variable 8 values per variable
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.851 1.000 1.000 1.000 0.551 1.000 1.000 1.000 0.380 1.000 1.000 1.000 0.289 1.000 1.000 1.000
0.571 0.949 1.000 1.000 0.172 0.712 1.000 1.000 0.074 0.558 1.000 1.000 0.040 0.453 1.000 1.000
0.734 0.979 1.000 0.253 0.834 1.000 0.123 0.696 1.000 0.071 0.587 1.000
0.818 0.991 0.349 0.903 0.176 0.103
0.884 0.955 0.993 1.000 0.773 0.934 0.974 0.996 0.722 0.920 0.967 0.960 0.696 0.911 0.964 0.960
0.993 0.999 1.000 1.000 0.983 0.997 1.000 1.000 0.978 0.996 1.000 1.000 0.976 0.995 1.000 1.000
1000 T 1,000 1.000 1000
0.800 1— 0.800 = 0.800 s 0.800
0.600 0.600 0.600 0.600
0.400 0.400 0.400 0.400
0.200 0.200 0.200 0.200
0.000 T T 1 0.000 T T 1 0.000 T T 1 0.000 T T)
t=2 3 4 5 t=2 3 4 5 t=2 3 4 5 t=2 3 4 5

Appendix 1.

Explanation of charts: Comparison of fault coveréay two different hypothetical distributions afulits in 10-variable
covering arrays, using (t+1)-way and (t+2)-way qage fort-way arrays, for t = 2 through 5. For example,fite column
below indicates that a 2-way covering array progitile0% 1-way and 100% 2-way coverage, 76.8% 3-wagrage, and
46.1% 4-way coverage, resulting in 2-way fault cage of 49.9% for distribution 1 (right) and 23.18#6 distribution 2.

Estimated fault coverage range for two different distributions of faults in 10-variable covering arrays

t=2

1.000
1.000
0.768
0.461

DU As WN P

distl 0.499
dist2 0.231

3 4
2values per variable
1.000 1.000
1.000 1.000
1.000 1.000
0.835 1.000
0.535 0.883
0.594

0.843 0.971
0.551 0.869

5

1.000
1.000
1.000
1.000
1.000
0.895
1.000
0.974

1.000
0.800
0.600
0.400
0.200
0.000

t=2 3 4 5
4 values per variable

1.000 1.000 1.000 1.000

1.000 1.000 1.000 1.000

0.444 1.000 1.000 1.000

0.126 0.483 1.000 1.000

0.140 0.548 1.000

0.167 0.573

0.254 0.656 0.887 1.000

0.063 0.277 0.679 0.893

1.000

0.800
0.600
0.400
0.200
0.000

t=2 3 4 5
6 values per variable

1.000 1.000 1.000 1.000

1.000 1.000 1.000 1.000

0.280 1.000 1.000 1.000

0.049 0.364 1.000 1.000

0.068 0.423 1.000

0.082 0.451

0.152 0.608 0.856 1.000

0.025 0.199 0.626 0.863

1.000

0.800
0.600
0.400

0.200

0.000 F—————

distl dist2

1 0 0

2 0 0

3 0.5 0

4 0.25 0.5

5 0.25 0.25

6 0 0.25
t=2 3 4 5

8 values per variable
1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000
0.208 1.000 1.000 1.000
0.027 0.272 1.000 1.000
0.037 0.326 1.000
0.046 0.353
0.111 0.577 0.832 1.000
0.014 0.145 0.593 0.838
1.000

0.800
0.600
0.400
0.200
0.000

Appendix IV.

The left panel of Table IV shows the combiniaiccoverage of 7,489 tests for a NASA spaceataftumented in [9].
The test set was developed using conventional rdetand analyzed to determine the level of combiretcoverage. The

right panel shows fault coverage estimated usimpgession (2) under various possible fault profitesthree hypothetical
systems under test.

Profile R is approximately the upper bound from Table Ipresenting an average of fault distributions favusly
reported data [5]. Fassumes an application for which single valuet$héve been removeds &#sumes an application has
been thoroughly tested and all single value andagfaults have been removed. Fault coverage aechacauseway
combinatorial coverage decreases with increatsing fault profile such as;Rnight be expected in an average application,
while P, and B might be seen in more well-tested applicationsteNhat these figures estimate only pineportion of fault

coverage; a previously untested application coeléxpected to have a higher absolute number dkfthdn those that have
been used and tested extensively.

Test combination Fault distribution at t=1..6 for
coverage for t=1..6 three fault profiles
t=| coverage Py P, Ps
1 1.0 .65 .00 .00
2 .94 .25 .65 .00
3 .83 .05 .10 .45
4 .68 .02 .10 .20
5 .53 .02 .10 .20
6 .39 .01 .05 .15
fault
coverage| 0.95 0.84 0.68

Table IV. Fault coverage under variagsumptions.

