
Measuring and Specifying Combinatorial Coverage of Test Input Configurations
D. Richard Kuhn1, Raghu N. Kacker1, Yu Lei2

1 National Institute of
Standards and Technology

Gaithersburg, MD 20899, USA
{kuhn, raghu.kacker}@nist.gov

2Computer Science and Engineering
Univ. of Texas Arlington

Arlington, TX 76019
ylei@uta.edu

Abstract— A key issue in testing is how many tests are needed
for a required level of coverage or fault detection. Estimates are
often based on error rates in initial testing, or on code coverage.
For example, tests may be run until a desired level of statement
or branch coverage is achieved. Combinatorial methods present
an opportunity for a different approach to estimating required test
set size, using characteristics of the test set. This paper describes
methods for estimating the coverage of, and ability to detect, t-
way interaction faults of a test set based on a covering array. We
also develop a connection between (static) combinatorial
coverage and (dynamic) code coverage, such that if a specific
condition is satisfied, 100% branch coverage is assured. Using
these results, we propose practical recommendations for using
combinatorial coverage in specifying test requirements.

Keywords: combinatorial testing; configuration model; factor
covering array; state-space coverage; t-way testing; verification
and validation (V&V);

I. INTRODUCTION

 Specifying test coverage requirements is typically a
difficult and imprecise process for “black box” testing,
where no source code is used. A test goal may be to
positively demonstrate a collection of specified features,
often by a single test for each feature or option. Such a
process is not adequate for robustness or reliability testing,
because simply showing that a particular input can
demonstrate the feature does little to prove that it is
adequate for the wide range of inputs likely to be
encountered in real-world use.

 A more thorough approach involves exercising the
system with a broader range of inputs, often through
methodologies such as “fuzz testing” or other use of
random input data. While useful for discovering errors,
this approach still does not give a sound measure of the
extent to which a system is capable of operating correctly
for all inputs. Alternatively, an operational profile may be
developed which tests the system according to the
statistical distribution of inputs that occur in operational
use. This process can provide reasonable confidence for
the system’s behavior in normal operation, but may miss
the rare input configurations that can result in a failure. A
common approach for high assurance in these cases is to
supplement testing with tests designed to exercise the
system with rare scenarios, based on experience or
engineering judgment.

 This approach is clearly dependent on the skill of
testers, and it may leave a large proportion of the possible
input space untested. It also provides no quantitative
measure of the proportion of significant input
combinations that have been tested. Therefore, if test
services are to be contracted out, there is little sound basis
for developers to specify the level of testing required, or
for testers to prove that testing has been adequate for the
required assurance level. This paper describes
measurement methods derived from combinatorial testing
that can be used in analyzing the thoroughness of a test set,
based on characteristics of the test set separate from its
coverage of executable code.

II. COMBINATORIAL COVERAGE

 Combinatorial coverage measures the proportion of t-
way combinations of variable settings included in a test
set, for specified levels of t. For example, with three
binary variables a, b, and c, there are 12 possible 2-way
settings: ab = 00, 01, 10, or 11, and likewise for ac and bc.
A set of two tests, abc = 000 and abc = 001, covers five of
the 12 possible 2-way settings: ab=00, ac=00, bc=00,
ac=01, and bc=01, for total 2-way coverage of 5/12. In
addition to the total combinatorial coverage in this
example, other combinatorial measures are meaningful for
software testing, as explained in this paper. To understand
the significance of these measures, it is helpful to review
the basics of combinatorial methods in testing.

 Combinatorial testing [1][2][3][4][5] is based on the
observation that not every parameter contributes to every
failure and most failures are triggered by a single
parameter value, or interactions between a small number of
parameters, generally two to six [5], a relationship known
as the interaction rule. An example of a single-value fault
might be a buffer overflow that occurs whenever the length
of an input string exceeds a particular limit. Only a single
condition must be true to trigger the fault: input length >
buffer size. A 2-way interaction fault is more complex,
because two particular input values are needed to trigger
the fault. One example is a search/replace function that
only fails if both the search string and the replacement
string are single characters. If one of the strings is longer
than one character, the code does not fail, thus we refer to

this as a 2-way interaction fault. The effectiveness of a
software testing technique, including combinatorial testing,
depends on whether test settings corresponding to the
actual faults are included in the test sets. When test sets do
not include settings corresponding to actual faults, the
faults will not be detected. Matrices known as covering
arrays can be computed to cover all t-way combinations of
variable values, up to a specified level of t (typically t ≤
6), making it possible to efficiently test all such t-way
interactions [3][6]. As with all testing, it is necessary to
select a subset of values for variables with a large number
of values, and test effectiveness is also dependent on the
values selected, but combinatorial testing has been shown
to be highly effective.

 Combinatorial coverage [7][8][9][10][11] measures
address the question of what proportion of possible
settings of any t variables are covered by a test set. If the
test set is a t-way covering array, then t-way coverage is
100%, by definition, but many test sets not based on
covering arrays may still provide significant t-way
coverage. If the test set is large, but not designed as a
covering array, it is possible that it provides a high
percentage of 2-way coverage or better, and thus may be a
high quality test set from the standpoint of exercising
interactions. These measures have been applied on a pilot
project basis to IV&V for NASA software, with successful
results indicating further investigation [11].

 The effectiveness of a test set in detecting interaction
faults clearly depends on tests covering t-way
combinations, but not necessarily on the method of
producing the tests. A t-way covering array is guaranteed
to produce 100% coverage of combinations containing up
to t variables, but a randomly generated test set may also
produce 100% t-way combination coverage if enough tests
are generated. Note that the combination coverage of
random tests increases with the number of variables [4].
Thus in many ways, comparisons of “combinatorial vs.
random testing” present a false dichotomy – all tests
provide some degree of combinatorial coverage, and
randomly generated tests can cover a high proportion of
combinations for some configurations of variables and
number of values per variable [12]. The definitions below
are useful in measuring combinatorial coverage [8]:

Definition. Variable-value configuration: For a set of t
variables, a variable-value configuration is a set of t valid
values, one for each of the variables, i.e., the variable-
value configuration is a particular setting of the variables.

Example. Given four binary variables a, b, c, and d, for a
selection of three variables a, c, and d the set {a=0, c=1,
d=0} is a variable-value configuration, and the set { a=1,
c=1, d=0} is a different variable-value configuration.

Definition. Simple t-way combination coverage: For a
given test set for n variables, simple t-way combination

coverage is the proportion of t-way combinations of n
variables for which all valid variable-values configurations
are fully covered.

Example. Table I shows four binary variables, a, b, c, and
d, where each row represents a test. Of the six possible 2-
way variable combinations, ab, ac, ad, bc, bd, cd, only bd
and cd have all four binary values covered, so simple 2-
way coverage for the four tests in Table 1 is 2/6 = 33.3%.
There are four 3-way variable combinations, abc, abd, acd,
bcd, each with eight possible configurations: 000, 001,
010, 011, 100, 101, 110, 111. Of the four combinations,
none has all eight configurations covered, so simple 3-way
coverage for this test set is 0%. As shown later, test sets
may provide strong coverage for some measures even if
simple combinatorial coverage is low.

TABLE I. TEST ARRAY WITH FOUR BINARY COMPONENTS

a b c d
0 0 0 0
0 1 1 0
1 0 0 1
0 1 1 1

 Simple t-way coverage measures the proportion of
combinations of variables for which all configurations of t
variables are fully covered, or 33% for Table I. It is also
useful to measure the number of combinations covered out
of all possible combinations.

Definition. Total variable-value configuration coverage:
For a given combination of t variables, total variable-value
configuration coverage is the proportion of all t-way
variable-value configurations that are covered by at least
one test case in a test set. This measure may also be
referred to as total t-way coverage.

 The number of t-way combinations in an array of n
variables is C(n,t) = n!/(n-t!)t!, or “n choose t” in
combinatorics, the number of ways of taking t out of n
things at a time. Suppose each variable has v values, then
each set of t variables has vt configurations, so the total
number of possible combination settings is vt ×C(n, t).
Any test set covers at least some fraction of this amount.
For the array in Table I, there are C(4,2) = 6 possible
variable combinations and C(4,2)×22 = 24 possible
variable-value configurations. Of these, 19 variable-value
configurations are covered and the only ones missing are
ab=11, ac=11, ad=10, bc=01, bc=10, so the total variable-
value configuration coverage is 19/24 = 79%. But only
two, bd and cd, are covered with all 4 value pairs. So for
simple t-way coverage, we have only 33% (2/6) coverage,
but 79% (19/24) for total variable-value configuration
coverage. Although the example in Table 1 uses variables
with the same number of values, this is not essential for the
measurement, and the same approach can be used to
compute coverage for test sets in which parameters have
differing numbers of values.

 Figure 1 shows a graph of the coverage data for the
tests in Table 1. Coverage is given as the Y axis, with the
percentage of combinations reaching a particular coverage
level as the X axis.

Figure 1. Graph of coverage from test data

 Note from Figure 1 that all of the six 2-way
combinations of variables are covered to at least the .50
level, 83% are covered to the .75 level or higher, and a
third have 100% of variable-value configurations covered.
Thus the rightmost horizontal line on the graph
corresponds to the smallest coverage value from the test
set, in this case 50%. The symbol Φ in Figure 1 indicates
the proportion of combinations with 100% variable-value
coverage, and Μ indicates the minimum proportion of
coverage for all t-way variable combinations; here, t = 2.
In this case 33% (Φ) of the variable combinations have full
variable-value coverage, and all variable combinations are
covered to at least the 50% level (Μ). Since all variable
combinations are covered to at least the level of Μ, we will
refer to Μ as the “t-way minimum coverage”. Where the
value of t is not clear from the context, these measures are
designated Φt and Μt.

Suppose St = total variable-value coverage (i.e., the
proportion of variable-value configurations that are
covered by at least one test). It can be shown that [8]:

St ≥ Φt + Μt – Φt Μt (1)

If a test set has only one test, then it covers C(n, t)
combinations, so the total variable-value coverage St of a
test set containing one test is C(n, t)/ vt ×C(n, t). Thus for
any test set, Μt ≥ 1/vt > 0. Note that a test set which
provides 100% simple combinatorial coverage for t-way
combinations will also provide some degree of higher
strength, (t+k)-way coverage (the interaction level t in t-
way combinations is referred to as strength). It can be
shown that for a t-way covering array, Μt+1 ≥ 1/vt [8].

III. FAULT COVERAGE

 As described in Section II, combinatorial coverage
measures the extent to which t-way combination settings
have been included in a test set. Combinatorial coverage is
useful in a variety of testing problems, but estimating the

usefulness of t-way testing also requires some
understanding of the complexity of test value combinations
that are needed. For example, an application that has been
tested and used extensively is likely to have few single-
factor faults, because these would have already been
detected. But a new, untested application may have a
fairly high proportion of 1-way and 2-way faults. In this
case, we may confine initial testing of the new application
to 2-way or 3-way covering arrays, since we are likely to
detect faults with even limited testing. That is, the 2-way
and 3-way arrays are likely to cover the combinations that
trigger faults for this example, but less likely to cover the
remaining faults in the extensively tested application. We
can think of the relationship between fault distribution and
combinatorial coverage as fault coverage. Fault coverage
is useful in gauging the effectiveness of a test set because
it measures coverage of combinations related to fault
detection, allowing testers to estimate if tests are sufficient
or if more should be produced to cover relevant portions of
the input space.

 Common approaches to determining when to stop
testing often involve code coverage requirements or
tracking error detection rates. As errors are discovered and
removed, projections are made to estimate the number of
remaining faults and number of tests required to find them,
based on assumptions that fault discovery can be predicted
by statistical models such Rayleigh or Wiebull
distributions [13]. Alternatively, tests may be run until a
desired level of code coverage is reached, when source
code is available. In this paper we describe a different
approach, using combinatorial coverage measurement of
test set characteristics in estimating required test set size.

 A significant factor in fault detection effectiveness is
the distribution of t-way faults, which is not known prior to
testing. However based on past experience, an approximate
distribution of faults at different interaction strengths may
be known. For example, for a particular class of
application the fraction of 1-way faults may be F1 = 60%,
2-way faults F2 = 25%, 3-way faults F3 = 10%, and 4-way
faults F4 = 5%. Such information could be used in
estimating the required strength t for t-way covering array
from which test values will be derived.

 We assume deterministic software that computes the
same output for a given set of input parameters and values.
Faults are also deterministic in that we assume a failure-
triggering combination of input values will always produce
a failure if it is present in the input. Under these
assumptions, two factors in fault detection effectiveness
are the fault distribution within the SUT, and
combinatorial coverage of the tests. A range of probability
of detection can be estimated using the t-way coverage of
tests and an approximate distribution of t-way faults.

 Table II. Cumulative faults, Est. upper and lower bounds

Figure2.Cumulative fault distribution

 Figure 2 shows the cumulative percentage of faults at
t = 1 to 6 for various applications [5]. We refer to the
distribution of faults as shown in Figure 2 as the fault
profile. Figure 2 shows the fault profile for a variety of
fielded products in different application domains, and
results for initial testing of a NASA distributed database
system. As shown in Figure 2, the fault detection rate
increases rapidly with interaction strength, up to t=4. With
the medical device applications, for example, 66% of the
failures were triggered by only a single parameter value,
97% by 2-way combinations, and 99% by 3-way
combinations. The detection rate curves for the other
applications studied are similar, reaching 100% detection
with 4 to 6-way interactions. Studies by other researchers
have been consistent with these results [14][15]. (It is
interesting that the fault profile for the medical devices,
which were fielded products, is nearly the same as the fault
profile for initial testing of the NASA database software.)
Note that 100% of the medical device faults were 4-way or
lower strength, but the browser faults included some 6-way
faults. In other words, the browser faults were rarer and
harder to detect than those of the medical devices.

 To plan a level of testing appropriate for assurance
needs and resource budget, it is helpful to estimate the
fault detection that can be achieved with a given level of
combinatorial coverage. Although it is impossible to know
the fault distribution in advance, approximate lower and
upper bounds for fault detection at different interaction
levels can be approximated using data from similar

applications, a range of various applications relevant to the
problem, or for a hypothesized fault distribution. Table II
provides an example, showing lower and upper bounds for
cumulative fault detection at interaction levels of 1 to 6
based on the fault distribution shown in Figure 2. For
example, it can be seen that single values (“1-way”
interaction) account for between roughly 17% to 68% of
faults. Table II shows that 1-way or 2-way interactions
together account for roughly 62% to 97% of faults. Figure
3 shows the incremental growth in cumulative detection
rate for 1-way to 6-way interactions, using values from
Table II. Thus in the “best case”, upper bound line, 68%
of faults are discovered with tests covering all single
values, 1-way interactions, and an additional 29% may be
found by covering all 2-way interactions for a cumulative
total of 97%. In the lower bound, or “worst case”, 17%
and 45% of faults are 1-way and 2-way respectively, for
62% detection by covering all 2-way combinations.

 Note that the estimated lower and upper bounds for
fault detection converge rapidly with increasing interaction
strength. Applications with simple, easily discoverable
faults tend to have many single-value or 2-way
combinations that trigger failure, while for extensively
tested applications, the easy faults have been discovered.
Heavily used and tested applications tend to have a higher
proportion of 3-way to 6-way faults, and so far, faults
involving more than six variables have not been reported.
Thus testing 4-way to 6-way combinations can provide
strong assurance.

Figure 2. Fault distribution range estimates

 We refer to the proportion of t-way combinations
covered in a test set as St. Thus a t-way covering array has
St = 1.0, since by definition it covers all t-way
combinations. The t-way covering array also has Si = 1.0
for i < t because a covering array of strength t also covers
all combinations that include less than t variables. A
covering array of strength t can detect t-way faults because
all t-way combinations are covered, but the array will
always include other combinations beyond t-way as well.
Thus a proportion of (t+1)-way faults can be detected, as
well as those of higher strength up to n-way for n
variables. We will refer to the proportion of combination
settings covered beyond t as ancillary coverage for a t-way
covering array. For example, a particular 2-way covering
array may cover 80% of 3-way combinations and 55% of
4-way combinations, so it has S2 = 1.0, S3 = .80, S4 = .55. It
should detect 2-way interaction faults and any 3-way

0

0.2
0.4
0.6

0.8
1

1 2 3 4 5 6

LB

UB

t LB UB
cumulative

lower and upper
1 0.17 0.68 0.17 0.68
2 0.45 0.29 0.62 0.97
3 0.25 0.02 0.87 0.99
4 0.09 0.01 0.96 1.00
5 0 0 0.96
6 0.04 0 1.00

interaction faults that happen to be among the 80% of 3-
way combinations covered.

 The effectiveness of fault detection clearly depends on
both the proportion of t-way combinations covered and the
distribution of faults, at each level of t. That is, to detect t-
way faults, the test set must include relevant t-way
combinations. Although the distribution of t-way faults is
normally not known for a particular system under test,
empirical data on similar systems or software in general
may provide reasonable estimates of fault distribution. For
example, the fault distribution for similar systems may be
1-way faults F1 = 60%, 2-way faults F2 = 25%, 3-way
faults F3 = 10% and 4-way faults F4 = 5%. Such
information could be used in determining the required
strength t needed for testing, with the objective of covering
as many of the t-way combinations relevant to the system
as possible, within a given resource budget. Under this
model, we approximate the detection effectiveness using
fault coverage where k = maximum interaction strength in
failures, �� = proportion of faults that are t-way, and �� = t-
way coverage, as

					�����	��	
���
 = C = ∑ �� × ������� (2)

Thus for the example above, if we have a 2-way covering
array that also provides ancillary 3-way coverage of S3 =
.80 and 4-way coverage of S4 = .40, then fault coverage is
.60(1.0) + .25(1.0) + .1(.80) + .05(.40) = .95.

 Fault coverage can provide an approximation of fault
detection effectiveness. It is only an approximation
because faults are not necessarily uniformly distributed
across the input space. For example, we may have 80% of
3-way faults covered, but the failure-triggering faults may
by chance be in the 20% of 3-way combinations not
included in the test array. But for answering the key
question of what strength covering array is needed to
achieve a fault detection rate goal, fault coverage can be a
reasonable approximation given available information.

 Fault coverage may also be viewed as an estimator of
the proportion of relevant input space for which correct
operation of the software has been verified (assuming fully
passing tests). As such, it is a quantitative measure of
testing thoroughness. For instance, in the example above,
for which fault coverage is computed as .95, 100% of the
1-way and 2-way combinations have been covered, and
these are estimated in the fault distribution to account for
85% of the total set of faults. The test set also provides
80% coverage of 3-way combinations, which are 10% of
the faults, and 40% coverage of the 4-way combinations,
which are 5% of the faults. Thus the relevant input space
is covered to 95%, based on the estimated fault
distribution. A variety of possible fault distributions can
be studied in this way to evaluate a test set coverage of
fault-triggering combinations in the input space. Appendix
IV provides an example of this for spacecraft test software.

 The ancillary (t+k)-way coverage of a t-way covering
array varies depending on input configuration, but in
general will increase with increasing n and decline with
increasing v and t. Appendix I shows (t+1) and (t+2)-way
coverage for 2-way through 4-way covering arrays of n
variables, for n = 10, 20, 30, 40, 50; and v = 2, 4, 6, 8. The
number of tests, N, for a given covering array is
proportional to vt log n. Thus ancillary coverage can be
seen in Appendix I to increase with log n. It can be shown
[8] that ancillary (t+k)-way coverage is proportional to
1/vk, which can also be seen clearly in coverage at v=2, 4,
6, 8 in Appendix I and accompanying graphs.

 Using ancillary coverage data for various covering
arrays, and empirical data on failures, we can compute
approximate upper and lower bounds for fault coverage
from expression (2). We will use the data from Figure 1
to illustrate the development of a fault coverage model,
then consider specialized cases in later sections. Fault
distributions in Table II are used to compute the fault
coverage shown in Appendix II. An example is
reproduced below in Figure 4. Lower and upper bound
fault coverage computations are given for covering arrays
of t=2 through t=5. Table III below shows that a 2-way
covering array includes 100% coverage for 1-way and 2-
way combinations, 76.8% for 3-way, and 46.1% for 4-way
combinations. This results in lower and upper bound
estimates of .853 and .998 respectively.

Figure 4.

 The calculations in Table III and Appendix II are based
on averaged fault distributions for a variety of applications.
Individual programs can be expected to have significant
variation from these averages. For example, in [16], 2-
way tests detect 38% of faults, and fault detection does not
increase with 3-way tests, although 4-way tests obtain
100% fault detection. For applications that have been
thoroughly tested or used such that the “easy” bugs have
been found, 1-way or 2-way faults may be rare or non-
existent. Such a distribution can change the fault coverage
profile substantially. Appendix III gives two examples of
this effect.

0.000
0.200
0.400
0.600
0.800
1.000

 t = 2 3 4 5

TABLE II. FAULT COVERAGE AT T+1 AND T+2 FOR
10 VARIABLES, 2 VALUES, STRENGTH 2 TO 5

covering array
→ 2-way 3-way 4-way 5-way
t, coverage ↓
1 1.000 1.000 1.000 1.000
2 1.000 1.000 1.000 1.000
3 0.768 1.000 1.000 1.000
4 0.461 0.835 1.000 1.000
5 0.535 0.883 1.000
6 0.594 0.895
LB 0.853 0.945 0.984 0.996
UB 0.990 0.998 1.000 1.000

 In Appendix IV we estimate the fault coverage for a
test set for a NASA spacecraft. Previous work [9]
introduced combinatorial coverage and analyzed
coverage for this test set, which was not originally
designed as a t-way covering array. The test set had
been developed using conventional methods, and the
goal of the previous research was to determine if these
methods produced good combinatorial coverage. As
can be seen in Appendix IV, coverage for 2-way
through 4-way combinations is quite good, although not
a full covering array at any of these levels.

 To estimate the fault coverage, we consider different
fault distributions. For example, in previously untested
software, single value or 2-way faults may predominate,
similar to the upper bound range in Table II. As faults
are removed, single value faults become less common.
As the number of faults is reduced, more complex
faults, involving more parameters, may represent a
larger proportion of the total. Appendix IV illustrates
the fault coverage for various possible fault
distributions.

IV. RELATIONSHIP WITH CODE COVERAGE

 Suppose we have two test sets, T1 and T2, that both
provide 100% 1-way coverage and 80% 2-way coverage,
with coverage statistics T1: S2 = 0.80, M2 = 0.70 and T2: S2
= 0.80, Μ2 = 0.3. Their fault coverage as computed from
expression (2) will be the same, but the different values of
M suggest that there may be differences in fault detection
capability. Suppose the code contains the following
segment:

 if (x <= 0 && y <= 0){faulty code}
 else {good code}

and the input model partitions of values for x and y:

x = {-9999, -1, 0, 1, 9999}
y = {-9999, -1, 0, 1, 9999}

 Then for the 25 pairs of input values for x and y, 9 will
trigger the fault. Therefore if at least 17/25 = 68% of input
combinations are covered in a test set, at least one will

trigger the fault. T1 ensures this, because all 2-way
combinations are covered to at least 70% (M2 = .70).
Although T2 has the same level of overall simple coverage,
S2 = .80, its minimum coverage, M2, is only 30%, so pair
{ x, y} may have less than 17/25 coverage.

 We label as Bt the minimum proportion of t-way
settings triggering a branch for a given segment of code.
Thus for the example, 9/25 of 2-way settings trigger the
true branch, and 16/25 settings trigger the false branch.
Thus, for the true branch, the proportion of 2-way settings
triggering the branch is 9/25 = .36; and for the false
branch, 16/25 of the 2-way settings. Thus B2 = .36 for this
example code. For the example above, it is clear that at
least one combination in test set T1 will branch to the faulty
code, because minimum coverage M2 = .70 exceeds the
proportion of settings needed to ensure that at least one
will cause the predicate x <= 0 && y <= 0 to be true
(64%).

 We can show that if Bt + Mt > 1, to be referred to as the
branch coverage condition, then the test set will provide
100% branch coverage, where all variables included in
decision predicates have values in the variable set with
minimum coverage characteristic Mt. This makes sense
intuitively because it ensures that for every t-way variable
combination, there is an intersection between the set of
covered value configurations and the set of value
configurations that trigger a branch, as the example above
demonstrates.

Branch Coverage Condition: A test set provides 100%
branch coverage for t-way conditionals if Mt + Bt >1,
where Mt = minimum combinatorial coverage at level t,
and Bt = minimum proportion of t-way combinations that
trigger a branch within the code, where all variables in
decision predicates have values from the variable set with
minimum coverage characteristic Mt.

Proof: For minimum t-way coverage of Mt, let k = Mtv

t =
number of t-way combinations (out of vt) covered. That is,
for the t-way combination(s) with the lowest coverage, k
different settings are covered, so k or more settings are
covered for all t-way combinations in the test set. Let m
= Btv

t = minimum number of combinations triggering a
branch within the code. Thus any test set containing a test
with one of these m combination settings will trigger the
branch. So any test set will trigger the branch if k > vt – m
= vt(1-Bt) < Mt v

t or Mt + Bt > 1. □

 Example. If t=2 and M = .5 for a decision predicate
containing two binary parameters, then there are .5(22)=2
settings covered in the test set. There are C(4,2) =6 ways
in which two settings of two parameters can be included in
a test set: 00,01 | 00,10 | 00,11 | 01,10 | 01,11 | 10,11. If
every decision predicate is satisfied by at least one setting,
then Bt = .25, and there are three of the four settings that

do not satisfy the predicate. From these, there are
C(3,2)=3 ways in which the non-satisfying settings can be
included in a test set, so half of the possible test sets will
include at least one test that satisfies the predicate. If Bt is
increased to .5, two of the two-parameter settings will
satisfy the predicate, with C(2,2) = 1 possible test set
without a test that will satisfy the predicate. If Bt = .75,
then three settings will satisfy the predicate and the
possible test sets without a test containing a satisfying
parameter setting is C(1,2) = 0.

 Note the constraint in the branch coverage condition
that all variables in decision predicates have values from
the variable set with minimum coverage characteristic Mt.
This may be a relatively strong assumption in practice.
For example, it will hold if (a) the values in decision
predicates are only those from test inputs, rather than
including computed values for internal (non-input)
variables; or (b) values for variables in decision predicates
meet the combinatorial coverage requirement, even where
they include computed values. Some decision predicates
may meet requirement (a), but others may include input
variables whose value has changed, or internal variables
not included in the test set. In the latter case, the coverage
requirement may be validated by inspecting internal state
prior to execution of each decision predicate, through
means such as a debugger or assertions that write out
decision predicate variable values. The latter option may
in most cases be impractical. The branch coverage
condition therefore has most practical utility for decision
predicates containing input variables, but it also helps in
understanding the effectiveness of test sets with good
combinatorial coverage, though not necessarily a full
covering array.

 A corollary to the condition is that if every decision can
be satisfied by more than one parameter combination
setting, a full covering array is not needed for 100%
branch coverage. Again, this makes sense intuitively
because if two or more combination settings trigger each
branch, then a test set that that covers vt-1 settings for each
t-way combination must include at least one of the two
settings that will trigger the branch. We can generalize to
compute a level that Mt must exceed to provide full branch
coverage.

Branch Coverage Corollary: If k or more t-way settings
satisfy every decision predicate, then the branch coverage

condition is obtained with Mt > 1 − �
��

 , where all variables

in decision predicates have values from the variable set
with minimum coverage characteristic Mt.
Proof: If k or more t-way settings satisfy every predicate,

then Btv
t ≥ k, and �� +

�
��

> 1 implies Mt + Bt > 1. □

Note that if k=1, i.e., some decision predicates are satisfied
by only one of vt t-way combinations, then a full covering

array is needed for branch coverage because coverage
minimum M increases only with increments of 1/ vt.

Example. If the condition in the example in the first
paragraph of this section were x == 0 && y == 0 || x

== 1 && y == 1, then two of the 2-way settings would
ensure that the decision predicate was satisfied, so Btv

t ≥ 2.

If Mt is increased to 96% (24/25), then Mt + Bt = 1 − �
��
+

�
��

> 1. For 10 variables with 5 values each, the IPOG

algorithm [3] generates a 2-way covering array of 309
tests, but 96% coverage is reached after only 225 tests, a
reduction in test set size of more than 25%.

V. IMPLICATIONS FOR TESTING

 Combinatorial fault coverage can supplement, or
provide an alternative to, conventional methods of
specifying test requirements. Combinatorial coverage
provides a direct measure of the proportion of the relevant
input space covered by a test set, and incorporating fault
distribution data makes it possible to develop fault
coverage figures that approximate the proportion of faults
that the test set can detect. Thus, fault coverage can be
used for estimating the fault detection capacity of a test set.
It provides more useful information than raw
combinatorial coverage figures, because it takes account of
the approximate distribution of faults. By estimating lower
bounds on the distribution of t-way faults at each level of t,
we can estimate the number of tests needed to reach a
desired detection rate, or approximate fault detection
capacity for tests that can be produced within a given
resource budget. A number of considerations come into
play when applying this approach.

Number of variable values: As can be seen in Appendix II
and III, fault coverage varies inversely with the number of
values per variable, so two covering arrays do not
necessarily provide the same fault detection capacity even
though they both cover 100% of t-way combinations.
With some fault distributions, a t-way array of boolean
variables may provide better fault coverage than a (t+1)-
way array with more values per variable. For example, in
Appendix III, fault coverage for Distribution 1 at t=3, v=2
is .843, but only .832 for t=4 where v=8.

Uncertainty and range of estimates: The cumulative
distribution of faults in Figure 2 shows wide variation at
t=1 to t=3. This produces a similar variation in fault
coverage estimates, as can be seen in Appendix II. At t=4,
lower and upper estimates converge much more closely.
The variation and uncertainty for t ≤ 3 suggest that 4-way
coverage criterion should be the minimum for high-
assurance software. As noted in Section III, the number of
tests increases exponentially with t, so using 4-way
coverage, rather than 5-way or 6-way, may also represent a
sensible tradeoff between cost and assurance level in some
applications. For some applications, 4-way testing may be

optimal in that higher strength arrays become prohibitive
in time or resources.

Interaction with branch condition: The branch coverage
condition can be used with information from static analysis
of the source code to determine a level of minimum
combinatorial coverage that will provide full branch
coverage, a moderately strong (dynamic) code coverage
criterion. This code coverage goal can be achieved with
substantially fewer tests than would be required for a full t-
way covering array (although a full array would provide
stronger testing). The fact that branch coverage can be
obtained with many fewer tests than a full covering array
also helps to explain the effectiveness of randomly
generated tests in some cases.

 The branch coverage condition suggests that it is
generally best to keep M as high as possible when
executing tests if the code contains relational expressions,
which is nearly always the case. When we discretize
variable values, we end up with combinations like those in
the example, where multiple settings of a particular
variable combination can trigger branches. When multiple
combinations can trigger a branch to faulty code, we are
better off including tests that increase M evenly, rather
than covering all settings of a subset of combinations more
quickly, so that we reach the branch condition faster. For
example, adding a previously uncovered 2-way
combination in Figure 1 could either increase Φ to .5, or Μ
to .75. The first option makes no progress towards
reaching the branch condition, so the second option is
preferable.

Impact of ancillary coverage: The cumulative distribution
of interaction failures shown in Fig. 1 is based on analysis
of failure reports, identifying the number of factors
involved, rather than failures reported in t-way testing.
That is, the distribution was not developed by running 2-
way through 6-way tests and counting the failures
discovered at each level, because such a procedure could
not accurately determine failures triggered by each level of
t-way combinations. As shown in previous sections, a t-
way covering array also includes a significant (often high)
percentage of t+1, t+2, etc. coverage. So, for example, if
we run a 3-way covering array of tests and discover n
faults, it does not mean that all n faults were triggered by
single-value, 2-way, or 3-way combinations. It is highly
likely that some resulted from 4-way, 5-way, or
conceivably higher strength combinations.

 When reviewing case studies of combinatorial testing,
we often see that for some applications, all failures were
discovered by relatively low strength covering arrays,
including 3-way and 4-way [16]. In other words, a
significant number of testing studies seemed to find
failures a bit “easier” to detect than the distribution in
Figure 1 might suggest. The high levels of ancillary
coverage for t-way arrays mean that test effectiveness can

be higher than might be expected considering only the
interaction strength t. This is especially true for
applications with a high proportion of boolean inputs,
because coverage beyond t, with a t-way array, is much
higher for boolean variables than with larger numbers of
values per variable.

Estimating residual risk: One benefit of measuring the
combinatorial coverage of a test set is that it provides
information on risk through combinations not covered, one
of the original motivations for development of
combinatorial coverage ideas [8][9]. Knowing the
proportion of t-way combination settings not covered for
different values of t provides useful information for testers
and decision-makers, as it helps in estimating the risk that
the application will encounter a set of inputs for which its
behavior was not verified. Fault coverage allows a tighter
estimate of the risk of undetected faults, by factoring in the
fault distribution.

Test requirements specification: One application of fault
coverage is in supplementing requirements for black-box
testing. When specifying test requirements, if source code
is available, a variety of coverage measures may be used.
For example, it may be required that 100% statement or
branch coverage be achieved. Without source code, test
goals may be based on criteria such as a level of inter-
module call coverage and specific requirements based
criteria. Tests are typically required to trace back to
requirements, and conversely it must be shown that all
requirements have been tested with one or more tests.
However, this just insures that code works for a few
inputs, and is a relatively weak measure of how thorough
the requirements-based testing has been. Just because we
have multiple tests for all requirements, there may be no
indication of the range of input space for which the code
satisfies requirements. Even if two requirements-based
test sets “fully cover” all requirements, one may be better
than another if one evaluates the application on a broader
range of input configurations. The range of input space
covered is a separate dimension beyond a simple count of
tests per requirement. Fault coverage gives a more precise
measure of the degree to which requirements are covered.

VI. SUMMARY AND CONCLUSIONS

 The objective of this work was to build on previous
results to develop a relationship between the (static)
distribution of combinations in input data and (dynamic)
executable code coverage. The fault coverage estimation
introduced in Section III can be used for initial estimation
of test set size, using measures of combinatorial coverage
that can be computed with measurement tools such as
described in [8][10][11]. Appendices II and III illustrate
results of this computation for a variety of test problem
configurations. Results can be used in scoping the number
of tests and level of effort, and estimating residual risk
from complex combinations not tested. In the future, we

may also measure combinatorial coverage of the input
distribution, which could supplement operational profile
methods.

When source code is available, the method introduced in
Section IV can be used to the minimum level of (static)
combination coverage to ensure 100% (dynamic) branch
coverage (and therefore statement coverage also) of
executable code, where all variables in decision predicates
have values from test inputs. This approach may be useful
where cost considerations make it difficult to use a full
covering array in testing. Branch coverage is a reasonably
strong test criterion, and Section IV shows how it may be
achieved at substantial savings compared with full t-way
testing. Future work might evaluate fault detection rates of
partial versus full covering arrays, to enable better cost-
benefit tradeoffs in testing.

Certain products may be identified in this document, but such
identification does not imply recommendation by NIST nor that
the products identified are necessarily best for the purpose.

REFERENCES
[1] S. Dunietz, W. K. Ehrlich, B. D. Szablak, C. L. Mallows, A.

Iannino. Applying design of experiments to software testing, Proc.
Intl. Conf. on Software Engineering, (ICSE ’97), 1997, pp. 205-215

[2] M. Grindal, J. Offutt, S.F. Andler, Combination Testing Strategies:
a Survey, Software Testing, Verification, and Reliability, v. 15,
2005, pp. 167-199.

[3] Y. Lei, R. Kacker, D.R. Kuhn, V. Okun, J. Lawrence, IPOG: a
General Strategy for t-way Software Testing, Proc., IEEE
Engineering of Computer Based Systems 2007, pp. 549 – 556.

[4] Kuhn, D. R., Kacker, R. N., & Lei, Y. Practical combinatorial
testing. NIST SP 800-142, Oct. 2010.

[5] D.R. Kuhn, D.R. Wallace, Jr. A.M. Gallo, Software fault
interactions and implications for software testing, IEEE Trans.
Software Engineering, vol. 30, no. 6, June, 2004.

[6] Bryce, R. C.J. Colbourn, M.B. Cohen. A Framework of Greedy
Methods for Constructing Interaction Tests. The 27th International
Conference on Software Engineering (ICSE), St. Louis, Missouri,
pages 146-155. (May 2005).

[7] D.R. Kuhn, R. Kacker, Y. Lei. Combinatorial Coverage
Measurement, NIST IR 7878, Sept. 2012.

[8] Kuhn, D. R., Dominguez Mendoza, I., Kacker, R. N., & Lei, Y.
Combinatorial Coverage Measurement Concepts and Applications.
Proc. IEEE Sixth Intl Conf on Software Testing, Verification and
Validation Workshops (IWCT), 2013 pp. 352-361. IEEE.

[9] J.R. Maximoff, M.D. Trela, D.R. Kuhn, R. Kacker, “A Method for
Analyzing System State-space Coverage within a t-Wise Testing
Framework”, IEEE International Systems Conference 2010, Apr. 4-
11, 2010, San Diego.

[10] D.R. Kuhn, R.N. Kacker “Measuring Combinatorial Coverage of
System State-space for IV&V”, NASA IV&V Workshop, 2012.

[11] C. Price, R. Kuhn, R. Forquer, A. Lagoy, R. Kacker, “Evaluating
the t-way Combinatorial Technique for Determining the
Thoroughness of a Test Suite”, NASA IV&V Workshop, 2013.

[12] A. Arcuri, L. Briand, "Formal Analysis of the Probability of
Interaction Fault Detection Using Random Testing," IEEE Trans.
Software Engineering, 18 Aug. 2011. IEEE Computer Society.

[13] Lyu, M. R. (1996). Handbook of software reliability engineering
(Vol. 222). CA: IEEE computer society press.

[14] K. Z. Bell and Mladen A. Vouk. On effectiveness of pairwise
methodology for testing network-centric software. Proceedings of
the ITI Third IEEE Intl Conf. Information & Communications
Technology, pages 221–235, Cairo, Egypt, December 2005.

[15] L. du Bousquet, Y. Ledru, O. Maury, C. Oriat, J.-L. Lanet, A case
study in JML-based software validation. Proc. 19th Int. IEEE Conf.
on Automated Sofware Engineering, pp. 294-297, Linz, Sep. 2004

[16] Montanez, C., Kuhn, D. R., Brady, M., Rivello, R. M., Reyes, J., &
Michael, K. (2012). Evaluation of fault detection effectiveness for
combinatorial and exhaustive selection of discretized test inputs.
Software Quality Professional Magazine, 14(3).

Appendix I. Ancillary coverage, (t+1)-way and (t+2)-way for 10-variable covering arrays

t=2 t+1 t=3 t+1 t=4 t+1
n= 10 20 30 40 50 n = 10 20 30 40 50 n = 10 20 30 40 50

v = 2 0.768 0.815 0.848 0.851 0.856 v = 2 0.835 0.897 0.926 0.949 0.953 v = 2 0.883 0.945 0.967 0.979 0.984
4 0.444 0.509 0.531 0.551 0.565 4 0.483 0.598 0.671 0.712 0.741 4 0.548 0.709 0.794 0.834 0.861
6 0.28 0.339 0.367 0.38 0.396 6 0.364 0.466 0.522 0.558 0.586 6 0.423 0.576 0.65 0.696 0.727
8 0.208 0.257 0.272 0.289 0.3 8 0.272 0.367 0.419 0.453 0.478 8 0.326 0.469 0.541 0.587

t=2 t+2 t=3 t+2 t=4 t+2
n = 10 20 30 40 50 n = 10 20 30 40 50 n = 10 20 30 40 50

v = 2 0.461 0.521 0.572 0.571 0.576 v = 2 0.535 0.628 0.684 0.734 0.747 v = 2 0.594 0.715 0.777 0.818 0.841
4 0.126 0.153 0.162 0.172 0.178 4 0.14 0.19 0.228 0.253 0.272 4 0.167 0.251 0.312 0.349 0.377
6 0.049 0.063 0.07 0.074 0.078 6 0.068 0.095 0.111 0.123 0.132 6 0.082 0.128 0.156 0.176 0.191
8 0.027 0.035 0.038 0.04 0.042 8 0.037 0.054 0.064 0.071 0.076 8 0.046 0.074 0.091 0.103

t=2 t+1 coverage t=3 t+1 coverage t=4 t+1 coverage

t=2 t+2 coverage t=3 t+2 coverage t=4 t+2 coverage

0

0.2

0.4

0.6

0.8

1

n= 10 20 30 40 50

v=2

v=4

v=6

v=8

0

0.2

0.4

0.6

0.8

1

n= 10 20 30 40 50

v=2

v=4

v=6

v=8

0

0.2

0.4

0.6

0.8

1

n= 10 20 30 40 50

v=2

v=4

v=6

v=8

0

0.2

0.4

0.6

0.8

1

n= 10 20 30 40 50

v=2

v=4

v=6

v=8

0

0.2

0.4

0.6

0.8

1

n= 10 20 30 40 50

v=2

v=4

v=6

v=8

0

0.2

0.4

0.6

0.8

1

n= 10 20 30 40 50

v=2

v=4

v=6

v=8

Appendix II.
Explanation of charts: Lower and upper bounds on fault coverage are estimated for n-variable covering arrays, using ancillary
(t+1)-way and (t+2)-way coverage for t-way arrays, for t = 2 through 5. For example, the first column below indicates that a 2-
way covering array provides 100% 1-way and 100% 2-way coverage, 76.8% 3-way coverage, and 46.1% 4-way coverage.
Similarly, the second column shows 100% coverage of 1-way through 3-way for a 3-way array, with 83.5% and 53.5% 4-way
and 5-way coverage. Lower and upper bounds are then computed using the empirical data from Table 1 (reproduced right) and
expression (2).

t LB UB
1 0.17 0.68
2 0.45 0.29
3 0.25 0.02
4 0.09 0.01
5 0 0
6 0.04 0

Estimated fault coverage range for 10-variable covering arrays

10 vars x axis: t = 2 3 4 5 t = 2 3 4 5 t = 2 3 4 5 t = 2 3 4 5
LB UB 2 values per variable 4 values per variable 6 values per variable 8 values per variable

1 0.17 0.68 1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2 0.45 0.29 2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
3 0.25 0.02 3 0.768 1.000 1.000 1.000 0.444 1.000 1.000 1.000 0.280 1.000 1.000 1.000 0.208 1.000 1.000 1.000
4 0.09 0.01 4 0.461 0.835 1.000 1.000 0.126 0.483 1.000 1.000 0.049 0.364 1.000 1.000 0.027 0.272 1.000 1.000
5 0 0 5 0.535 0.883 1.000 0.140 0.548 1.000 0.068 0.423 1.000 0.037 0.326 1.000
6 0.04 0 6 0.594 0.895 0.167 0.573 0.082 0.451 0.046 0.353

LB LB 0.853 0.945 0.984 0.996 0.742 0.913 0.967 0.983 0.694 0.903 0.963 0.978 0.674 0.894 0.962 0.974
UB UB 0.990 0.998 1.000 1.000 0.980 0.995 1.000 1.000 0.976 0.994 1.000 1.000 0.974 0.993 1.000 1.000

0.000
0.200
0.400
0.600
0.800
1.000

 t = 2 3 4 5
0.000
0.200
0.400
0.600
0.800
1.000

 t = 2 3 4 5
0.000

0.200

0.400

0.600

0.800

1.000

 t = 2 3 4 5
0.000

0.200

0.400

0.600

0.800

1.000

 t = 2 3 4 5

Estimated fault coverage range for 20-variable covering arrays

Estimated fault coverage range for 30-variable covering arrays

20 vars t = 2 3 4 5 t = 2 3 4 5 t = 2 3 4 5 t = 2 3 4 5
LB UB 2 values per variable 4 values per variable 6 values per variable 8 values per variable

1 0.17 0.68 1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2 0.45 0.29 2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
3 0.25 0.02 3 0.815 1.000 1.000 1.000 0.509 1.000 1.000 1.000 0.339 1.000 1.000 1.000 0.257 1.000 1.000 1.000
4 0.09 0.01 4 0.521 0.897 1.000 1.000 0.153 0.598 1.000 1.000 0.063 0.466 1.000 1.000 0.035 0.367 1.000 1.000
5 0 0 5 0.628 0.945 1.000 0.19 0.709 1.000 0.095 0.576 1.000 0.054 0.469 1.000
6 0.04 0 6 0.715 0.972 0.251 0.784 0.128 0.655 0.074 0.544

LB LB 0.871 0.951 0.989 0.999 0.761 0.924 0.970 0.991 0.710 0.912 0.965 0.986 0.687 0.903 0.963 0.982
UB UB 0.992 0.999 1.000 1.000 0.982 0.996 1.000 1.000 0.977 0.995 1.000 1.000 0.975 0.994 1.000 1.000

0.000
0.200
0.400
0.600
0.800
1.000

 t = 2 3 4 5
0.000
0.200
0.400
0.600
0.800
1.000

 t = 2 3 4 5
0.000

0.200

0.400

0.600

0.800

1.000

 t = 2 3 4 5
0.000

0.200

0.400

0.600

0.800

1.000

 t = 2 3 4 5

30 vars t = 2 3 4 5 t = 2 3 4 5 t = 2 3 4 5 t = 2 3 4 5
LB UB 2 values per variable 4 values per variable 6 values per variable 8 values per variable

1 0.17 0.68 1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2 0.45 0.29 2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
3 0.25 0.02 3 0.848 1.000 1.000 1.000 0.531 1.000 1.000 1.000 0.367 1.000 1.000 1.000 0.272 1.000 1.000 1.000
4 0.09 0.01 4 0.572 0.926 1.000 1.000 0.162 0.671 1.000 1.000 0.07 0.522 1.000 1.000 0.038 0.419 1.000 1.000
5 0 0 5 0.684 0.967 1.000 0.228 0.794 1.000 0.111 0.65 1.000 0.064 0.541 1.000
6 0.04 0 6 0.777 0.986 0.312 0.868 0.156 0.739 0.091

LB LB 0.883 0.953 0.991 0.999 0.767 0.930 0.972 0.995 0.718 0.917 0.966 0.990 0.691 0.908 0.964 0.960
UB UB 0.993 0.999 1.000 1.000 0.982 0.997 1.000 1.000 0.978 0.995 1.000 1.000 0.976 0.994 1.000 1.000

0.17 0.68
0.62 0.97
0.87 0.99
0.96 1
0.96 1

1 1

0.000
0.200
0.400
0.600
0.800
1.000

 t = 2 3 4 5
0.000
0.200
0.400
0.600
0.800
1.000

 t = 2 3 4 5
0.000

0.200

0.400

0.600

0.800

1.000

 t = 2 3 4 5
0.000

0.200

0.400

0.600

0.800

1.000

 t = 2 3 4 5

Estimated fault coverage range for 40-variable covering arrays

 t = 2 3 4 5 t = 2 3 4 5 t = 2 3 4 5 t = 2 3 4 5
2 values per variable 4 values per variable 6 values per variable 8 values per variable

1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.851 1.000 1.000 1.000 0.551 1.000 1.000 1.000 0.380 1.000 1.000 1.000 0.289 1.000 1.000 1.000
0.571 0.949 1.000 1.000 0.172 0.712 1.000 1.000 0.074 0.558 1.000 1.000 0.040 0.453 1.000 1.000

0.734 0.979 1.000 0.253 0.834 1.000 0.123 0.696 1.000 0.071 0.587 1.000
0.818 0.991 0.349 0.903 0.176 0.103

0.884 0.955 0.993 1.000 0.773 0.934 0.974 0.996 0.722 0.920 0.967 0.960 0.696 0.911 0.964 0.960
0.993 0.999 1.000 1.000 0.983 0.997 1.000 1.000 0.978 0.996 1.000 1.000 0.976 0.995 1.000 1.000

0.000

0.200

0.400

0.600

0.800

1.000

 t = 2 3 4 5
0.000

0.200

0.400

0.600

0.800

1.000

 t = 2 3 4 5
0.000

0.200

0.400

0.600

0.800

1.000

 t = 2 3 4 5
0.000

0.200

0.400

0.600

0.800

1.000

 t = 2 3 4 5

Appendix III.
Explanation of charts: Comparison of fault coverage for two different hypothetical distributions of faults in 10-variable
covering arrays, using (t+1)-way and (t+2)-way coverage for t-way arrays, for t = 2 through 5. For example, the first column
below indicates that a 2-way covering array provides 100% 1-way and 100% 2-way coverage, 76.8% 3-way coverage, and
46.1% 4-way coverage, resulting in 2-way fault coverage of 49.9% for distribution 1 (right) and 23.1% for distribution 2.

 dist1 dist2
1 0 0
2 0 0
3 0.5 0
4 0.25 0.5
5 0.25 0.25
6 0 0.25

Estimated fault coverage range for two different distributions of faults in 10-variable covering arrays

 t = 2 3 4 5 t = 2 3 4 5 t = 2 3 4 5 t = 2 3 4 5
2 values per variable 4 values per variable 6 values per variable 8 values per variable

1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
3 0.768 1.000 1.000 1.000 0.444 1.000 1.000 1.000 0.280 1.000 1.000 1.000 0.208 1.000 1.000 1.000
4 0.461 0.835 1.000 1.000 0.126 0.483 1.000 1.000 0.049 0.364 1.000 1.000 0.027 0.272 1.000 1.000
5 0.535 0.883 1.000 0.140 0.548 1.000 0.068 0.423 1.000 0.037 0.326 1.000
6 0.594 0.895 0.167 0.573 0.082 0.451 0.046 0.353

dist1 0.499 0.843 0.971 1.000 0.254 0.656 0.887 1.000 0.152 0.608 0.856 1.000 0.111 0.577 0.832 1.000
dist2 0.231 0.551 0.869 0.974 0.063 0.277 0.679 0.893 0.025 0.199 0.626 0.863 0.014 0.145 0.593 0.838

0.000
0.200
0.400
0.600
0.800
1.000

 t =
2

3 4 5

dist1

dist2
0.000
0.200
0.400
0.600
0.800
1.000

 t =
2

3 4 5

dist1

dist2

0.000

0.200

0.400

0.600

0.800

1.000

 t = 2 3 4 5

dist1

dist2

0.000
0.200
0.400
0.600
0.800
1.000

 t =
2

3 4 5

dist1

dist2

Appendix IV.

 The left panel of Table IV shows the combinatorial coverage of 7,489 tests for a NASA spacecraft documented in [9].
The test set was developed using conventional methods and analyzed to determine the level of combinatorial coverage. The
right panel shows fault coverage estimated using expression (2) under various possible fault profiles for three hypothetical
systems under test.

 Profile P1 is approximately the upper bound from Table II, representing an average of fault distributions for previously
reported data [5]. P2 assumes an application for which single value faults have been removed. P3 assumes an application has
been thoroughly tested and all single value and 2-way faults have been removed. Fault coverage declines because t-way
combinatorial coverage decreases with increasing t. A fault profile such as P1 might be expected in an average application,
while P2 and P3 might be seen in more well-tested applications. Note that these figures estimate only the proportion of fault
coverage; a previously untested application could be expected to have a higher absolute number of faults than those that have
been used and tested extensively.

 Table IV. Fault coverage under various assumptions.

Test combination
coverage for t=1..6

 Fault distribution at t=1..6 for
three fault profiles

t = coverage P1 P2 P3
1 1.0 .65 .00 .00
2 .94 .25 .65 .00
3 .83 .05 .10 .45
4 .68 .02 .10 .20
5 .53 .02 .10 .20
6 .39 .01 .05 .15

fault

coverage 0.95 0.84 0.68

