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Abstract— A key issue in testing is how many tests are needed 
for a required level of coverage or fault detection. Estimates are 
often based on error rates in initial testing, or on code coverage.  
For example, tests may be run until a desired level of statement 
or branch coverage is achieved. Combinatorial methods present 
an opportunity for a different approach to estimating required test 
set size, using characteristics of the test set. This paper describes 
methods for estimating the coverage of, and ability to detect, t-
way interaction faults of a test set based on a covering array. We 
also develop a connection between (static) combinatorial 
coverage and (dynamic) code coverage, such that if a specific 
condition is satisfied, 100% branch coverage is assured. Using 
these results, we propose practical recommendations for using 
combinatorial coverage in specifying test requirements.  
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I.  INTRODUCTION 

     Specifying test coverage requirements is typically a 
difficult and imprecise process for “black box” testing, 
where no source code is used.  A test goal may be to 
positively demonstrate a collection of specified features, 
often by a single test for each feature or option.  Such a 
process is not adequate for robustness or reliability testing, 
because simply showing that a particular input can 
demonstrate the feature does little to prove that it is 
adequate for the wide range of inputs likely to be 
encountered in real-world use.   
      
     A more thorough approach involves exercising the 
system with a broader range of inputs, often through 
methodologies such as “fuzz testing” or other use of 
random input data. While useful for discovering errors, 
this approach still does not give a sound measure of the 
extent to which a system is capable of operating correctly 
for all inputs. Alternatively, an operational profile may be 
developed which tests the system according to the 
statistical distribution of inputs that occur in operational 
use.  This process can provide reasonable confidence for 
the system’s behavior in normal operation, but may miss 
the rare input configurations that can result in a failure.  A 
common approach for high assurance in these cases is to 
supplement testing with tests designed to exercise the 
system with rare scenarios, based on experience or 
engineering judgment.   

     This approach is clearly dependent on the skill of 
testers, and it may leave a large proportion of the possible 
input space untested.  It also provides no quantitative 
measure of the proportion of significant input 
combinations that have been tested.  Therefore, if test 
services are to be contracted out, there is little sound basis 
for developers to specify the level of testing required, or 
for testers to prove that testing has been adequate for the 
required assurance level. This paper describes 
measurement methods derived from combinatorial testing  
that can be used in analyzing the thoroughness of a test set, 
based on characteristics of the test set separate from its 
coverage of executable code.   
 

II. COMBINATORIAL COVERAGE 

     Combinatorial coverage measures the proportion of t-
way combinations of variable settings included in a test 
set, for specified levels of t.  For example, with three 
binary variables a, b, and c, there are 12 possible 2-way 
settings:  ab = 00, 01, 10, or 11, and likewise for ac and bc.  
A set of two tests, abc = 000 and abc = 001, covers five of 
the 12 possible 2-way settings:  ab=00, ac=00, bc=00, 
ac=01, and bc=01, for total 2-way coverage of 5/12.  In 
addition to the total combinatorial coverage in this 
example, other combinatorial measures are meaningful for 
software testing, as explained in this paper.  To understand 
the significance of these measures, it is helpful to review 
the basics of combinatorial methods in testing.   
 
     Combinatorial testing [1][2][3][4][5] is based on the 
observation that not every parameter contributes to every 
failure and most failures are triggered by a single 
parameter value, or interactions between a small number of 
parameters, generally two to six [5], a relationship known 
as the interaction rule. An example of a single-value fault 
might be a buffer overflow that occurs whenever the length 
of an input string exceeds a particular limit.  Only a single 
condition must be true to trigger the fault:  input length > 
buffer size.  A 2-way interaction fault is more complex, 
because two particular input values are needed to trigger 
the fault.  One example is a search/replace function that 
only fails if both the search string and the replacement 
string are single characters.  If one of the strings is longer 
than one character, the code does not fail, thus we refer to 



this as a 2-way interaction fault. The effectiveness of a 
software testing technique, including combinatorial testing, 
depends on whether test settings corresponding to the 
actual faults are included in the test sets.  When test sets do 
not include settings corresponding to actual faults, the 
faults will not be detected. Matrices known as covering 
arrays can be computed to cover all t-way combinations of 
variable values, up to a specified level of t (typically t ≤ 
6), making it possible to efficiently test all such t-way 
interactions [3][6].  As with all testing, it is necessary to 
select a subset of values for variables with a large number 
of values, and test effectiveness is also dependent on the 
values selected, but combinatorial testing has been shown 
to be highly effective.  
 
     Combinatorial coverage [7][8][9][10][11] measures 
address the question of what proportion of possible 
settings of any t variables are covered by a test set.  If the 
test set is a t-way covering array, then t-way coverage is 
100%, by definition, but many test sets not based on 
covering arrays may still provide significant t-way 
coverage.  If the test set is large, but not designed as a 
covering array, it is possible that it provides a high 
percentage of 2-way coverage or better, and thus may be a 
high quality test set from the standpoint of exercising 
interactions.   These measures have been applied on a pilot 
project basis to IV&V for NASA software, with successful 
results indicating further investigation [11]. 
 
     The effectiveness of a test set in detecting interaction 
faults clearly depends on tests covering t-way 
combinations, but not necessarily on the method of 
producing the tests. A t-way covering array is guaranteed 
to produce 100% coverage of combinations containing up 
to t variables, but a randomly generated test set may also 
produce 100% t-way combination coverage if enough tests 
are generated.  Note that the combination coverage of 
random tests increases with the number of variables [4].  
Thus in many ways, comparisons of “combinatorial vs. 
random testing” present a false dichotomy – all tests 
provide some degree of combinatorial coverage, and 
randomly generated tests can cover a high proportion of 
combinations for some configurations of variables and 
number of values per variable [12].  The definitions below 
are useful in measuring combinatorial coverage [8]: 
 
Definition. Variable-value configuration:  For a set of t 
variables, a variable-value configuration is a set of t valid 
values, one for each of the variables, i.e., the variable-
value configuration is a particular setting of the variables.     
 
Example.  Given four binary variables a, b, c, and d, for a 
selection of three variables a, c, and d the set {a=0, c=1, 
d=0} is a variable-value configuration, and the set { a=1, 
c=1, d=0} is a different variable-value configuration.  
 
Definition. Simple t-way combination coverage:  For a 
given test set for n variables, simple t-way combination 

coverage is the proportion of t-way combinations of n 
variables for which all valid variable-values configurations 
are fully covered.     
 
Example.  Table I shows four binary variables, a, b, c, and 
d, where each row represents a test.  Of the six possible 2-
way variable combinations, ab, ac, ad, bc, bd, cd, only bd 
and cd have all four binary values covered, so simple 2-
way coverage for the four tests in Table 1 is 2/6 = 33.3%.  
There are four 3-way variable combinations, abc, abd, acd, 
bcd, each with eight possible configurations:  000, 001, 
010, 011, 100, 101, 110, 111.  Of the four combinations, 
none has all eight configurations covered, so simple 3-way 
coverage for this test set is 0%.  As shown later, test sets 
may provide strong coverage for some measures even if 
simple combinatorial coverage is low.  
 

TABLE I.  TEST ARRAY WITH FOUR BINARY COMPONENTS 

a b c d 
0 0 0 0 
0 1 1 0 
1 0 0 1 
0 1 1 1 

      Simple t-way coverage measures the proportion of 
combinations of variables for which all configurations of t 
variables are fully covered, or 33% for Table I.  It is also 
useful to measure the number of combinations covered out 
of all possible combinations.   
 
Definition. Total variable-value configuration coverage:  
For a given combination of t variables, total variable-value 
configuration coverage is the proportion of all t-way 
variable-value configurations that are covered by at least 
one test case in a test set.  This measure may also be 
referred to as total t-way coverage.  
 
     The number of t-way combinations in an array of n 
variables is C(n,t) = n!/(n-t!)t!, or “n choose t” in 
combinatorics, the number of ways of taking t out of n 
things at a time.  Suppose each variable has v values, then 
each set of t variables has vt configurations, so the total 
number of possible combination settings is vt ×C(n, t).  
Any test set covers at least some fraction of this amount.  
For the array in Table I, there are C(4,2) = 6 possible 
variable combinations and C(4,2)×22 = 24 possible 
variable-value configurations.  Of these, 19 variable-value 
configurations are covered and the only ones missing are 
ab=11, ac=11, ad=10, bc=01, bc=10, so the total variable-
value configuration coverage is 19/24 = 79%.  But only 
two, bd and cd, are covered with all 4 value pairs.  So for 
simple t-way coverage, we have only 33% (2/6) coverage, 
but 79% (19/24) for total variable-value configuration 
coverage. Although the example in Table 1 uses variables 
with the same number of values, this is not essential for the 
measurement, and the same approach can be used to 
compute coverage for test sets in which parameters have 
differing numbers of values. 



     Figure 1 shows a graph of the coverage data for the 
tests in Table 1.  Coverage is given as the Y axis, with the 
percentage of combinations reaching a particular coverage 
level as the X axis.   

   
Figure 1.  Graph of coverage from test data 

     Note from Figure 1 that all of the six 2-way 
combinations of variables are covered to at least the .50 
level, 83% are covered to the .75 level or higher, and a 
third have 100% of variable-value configurations covered.  
Thus the rightmost horizontal line on the graph 
corresponds to the smallest coverage value from the test 
set, in this case 50%. The symbol Φ in Figure 1 indicates 
the proportion of combinations with 100% variable-value 
coverage, and Μ indicates the minimum proportion of 
coverage for all t-way variable combinations; here, t = 2.  
In this case 33% (Φ) of the variable combinations have full 
variable-value coverage, and all variable combinations are 
covered to at least the 50% level (Μ).   Since all variable 
combinations are covered to at least the level of Μ, we will 
refer to Μ as the “t-way minimum coverage”.  Where the 
value of t is not clear from the context, these measures are 
designated Φt and Μt.   
 
Suppose St = total variable-value coverage (i.e., the 
proportion of variable-value configurations that are 
covered by at least one test). It can be shown that [8]: 
 

St  ≥  Φt + Μt – Φt Μt      (1) 
 

If a test set has only one test, then it covers C(n, t) 
combinations, so the total variable-value coverage St of a 
test set containing one test is C(n, t)/ vt ×C(n, t).  Thus for 
any test set, Μt ≥  1/vt  >  0.  Note that a test set which 
provides 100% simple combinatorial coverage for t-way 
combinations will also provide some degree of higher 
strength, (t+k)-way coverage (the interaction level t in t-
way combinations is referred to as strength).  It can be 
shown that for a t-way covering array, Μt+1 ≥  1/vt  [8].  
  

III.  FAULT COVERAGE   

     As described in Section II, combinatorial coverage 
measures the extent to which t-way combination settings 
have been included in a test set. Combinatorial coverage is 
useful in a variety of testing problems, but estimating the 

usefulness of t-way testing also requires some 
understanding of the complexity of test value combinations 
that are needed.  For example, an application that has been 
tested and used extensively is likely to have few single-
factor faults, because these would have already been 
detected.  But a new, untested application may have a 
fairly high proportion of 1-way and 2-way faults.  In this 
case, we may confine initial testing of the new application 
to 2-way or 3-way covering arrays, since we are likely to 
detect faults with even limited testing.  That is, the 2-way 
and 3-way arrays are likely to cover the combinations that 
trigger faults for this example, but less likely to cover the 
remaining faults in the extensively tested application.  We 
can think of the relationship between fault distribution and 
combinatorial coverage as fault coverage.  Fault coverage 
is useful in gauging the effectiveness of a test set because 
it measures coverage of combinations related to fault 
detection, allowing testers to estimate if tests are sufficient 
or if more should be produced to cover relevant portions of 
the input space.    
 
     Common approaches to determining when to stop 
testing often involve code coverage requirements or 
tracking error detection rates.  As errors are discovered and 
removed, projections are made to estimate the number of 
remaining faults and number of tests required to find them, 
based on assumptions that fault discovery can be predicted 
by statistical models such Rayleigh or Wiebull 
distributions [13].  Alternatively, tests may be run until a 
desired level of code coverage is reached, when source 
code is available.  In this paper we describe a different 
approach, using combinatorial coverage measurement of 
test set characteristics in estimating required test set size.   
 
     A significant factor in fault detection effectiveness is 
the distribution of t-way faults, which is not known prior to 
testing. However based on past experience, an approximate 
distribution of faults at different interaction strengths may 
be known.  For example, for a particular class of 
application the fraction of 1-way faults may be F1 = 60%, 
2-way faults F2 = 25%, 3-way faults F3 = 10%, and 4-way 
faults F4 = 5%.  Such information could be used in 
estimating the required strength t for t-way covering array 
from which test values will be derived.   
 
     We assume deterministic software that computes the 
same output for a given set of input parameters and values.  
Faults are also deterministic in that we assume a failure-
triggering combination of input values will always produce 
a failure if it is present in the input.  Under these 
assumptions, two factors in fault detection effectiveness 
are the fault distribution within the SUT, and 
combinatorial coverage of the tests.  A range of probability 
of detection can be estimated using the t-way coverage of 
tests and an approximate distribution of t-way faults.    
  
 
 



 
     Table II. Cumulative faults, Est. upper and lower bounds 
 

 
 

 
 
 
 
 
 

 
 

Figure2.Cumulative fault distribution 

         Figure 2 shows the cumulative percentage of faults at 
t = 1 to 6 for various applications [5].  We refer to the 
distribution of faults as shown in Figure 2 as the fault 
profile.  Figure 2 shows the fault profile for a variety of 
fielded products in different application domains, and 
results for initial testing of a NASA distributed database 
system. As shown in Figure 2, the fault detection rate 
increases rapidly with interaction strength, up to t=4.  With 
the medical device applications, for example, 66% of the 
failures were triggered by only a single parameter value, 
97% by 2-way combinations, and 99% by 3-way 
combinations. The detection rate curves for the other 
applications studied are similar, reaching 100% detection 
with 4 to 6-way interactions.   Studies by other researchers 
have been consistent with these results [14][15]. (It is 
interesting that the fault profile for the medical devices, 
which were fielded products, is nearly the same as the fault 
profile for initial testing of the NASA database software.)  
Note that 100% of the medical device faults were 4-way or 
lower strength, but the browser faults included some 6-way 
faults.  In other words, the browser faults were rarer and 
harder to detect than those of the medical devices.   
  
     To plan a level of testing appropriate for assurance 
needs and resource budget, it is helpful to estimate the 
fault detection that can be achieved with a given level of 
combinatorial coverage.  Although it is impossible to know 
the fault distribution in advance, approximate lower and 
upper bounds for fault detection at different interaction 
levels can be approximated using data from similar 

applications, a range of various applications relevant to the 
problem, or for a hypothesized fault distribution.   Table II 
provides an example, showing lower and upper bounds for 
cumulative fault detection at interaction levels of 1 to 6 
based on the fault distribution shown in Figure 2.  For 
example, it can be seen that single values (“1-way” 
interaction) account for between roughly 17% to 68% of 
faults.  Table II shows that 1-way or 2-way interactions 
together account for roughly 62% to 97% of faults.  Figure 
3 shows the incremental growth in cumulative detection 
rate for 1-way to 6-way interactions, using values from 
Table II.  Thus in the “best case”, upper bound line, 68% 
of faults are discovered with tests covering all single 
values, 1-way interactions, and an additional 29% may be 
found by covering all 2-way interactions for a cumulative 
total of 97%.  In the lower bound, or “worst case”, 17% 
and 45% of faults are 1-way and 2-way respectively, for 
62% detection by covering all 2-way combinations.   
 
     Note that the estimated lower and upper bounds for 
fault detection converge rapidly with increasing interaction 
strength.  Applications with simple, easily discoverable 
faults tend to have many single-value or 2-way 
combinations that trigger failure, while for extensively 
tested applications, the easy faults have been discovered.  
Heavily used and tested applications tend to have a higher 
proportion of 3-way to 6-way faults, and so far, faults 
involving more than six variables have not been reported.  
Thus testing 4-way to 6-way combinations can provide 
strong assurance.   

 

 

 

Figure 2.  Fault distribution range estimates 

     We refer to the proportion of t-way combinations 
covered in a test set as St.  Thus a t-way covering array has 
St = 1.0, since by definition it covers all t-way 
combinations.  The t-way covering array also has Si = 1.0 
for i < t because a covering array of strength t also covers 
all combinations that include less than t variables.  A 
covering array of strength t can detect t-way faults because 
all t-way combinations are covered, but the array will 
always include other combinations beyond t-way as well.  
Thus a proportion of (t+1)-way faults can be detected, as 
well as those of higher strength up to n-way for n 
variables.  We will refer to the proportion of combination 
settings covered beyond t as ancillary coverage for a t-way 
covering array.  For example, a particular 2-way covering 
array may cover 80% of 3-way combinations and 55% of 
4-way combinations, so it has S2 = 1.0, S3 = .80, S4 = .55. It 
should detect 2-way interaction faults and any 3-way 
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lower and upper 
1 0.17 0.68 0.17 0.68 
2 0.45 0.29 0.62 0.97 
3 0.25 0.02 0.87 0.99 
4 0.09 0.01 0.96 1.00 
5 0 0 0.96  
6 0.04 0 1.00  



interaction faults that happen to be among the 80% of 3-
way combinations covered.   
 
     The effectiveness of fault detection clearly depends on 
both the proportion of t-way combinations covered and the 
distribution of faults, at each level of t.  That is, to detect t-
way faults, the test set must include relevant t-way 
combinations. Although the distribution of t-way faults is 
normally not known for a particular system under test, 
empirical data on similar systems or software in general 
may provide reasonable estimates of fault distribution. For 
example, the fault distribution for similar systems may be 
1-way faults F1 = 60%, 2-way faults F2 = 25%, 3-way 
faults F3 = 10% and 4-way faults F4 = 5%.  Such 
information could be used in determining the required 
strength t needed for testing, with the objective of covering 
as many of the t-way combinations relevant to the system 
as possible, within a given resource budget.  Under this 
model, we approximate the detection effectiveness using 
fault coverage where k = maximum interaction strength in 
failures, �� = proportion of faults that are t-way, and �� = t-
way coverage, as 
 
					�����	��	
���
 = C = ∑ �� × �������                  (2) 
 
Thus for the example above, if we have a 2-way covering 
array that also provides ancillary 3-way coverage of S3 = 
.80 and 4-way coverage of S4 = .40, then fault coverage is 
.60(1.0) + .25(1.0) + .1(.80)  + .05(.40) = .95.  
 
     Fault coverage can provide an approximation of fault 
detection effectiveness.  It is only an approximation 
because faults are not necessarily uniformly distributed 
across the input space.  For example, we may have 80% of 
3-way faults covered, but the failure-triggering faults may 
by chance be in the 20% of 3-way combinations not 
included in the test array. But for answering the key 
question of what strength covering array is needed to 
achieve a fault detection rate goal, fault coverage can be a 
reasonable approximation given available information.  
 
     Fault coverage may also be viewed as an estimator of 
the proportion of relevant input space for which correct 
operation of the software has been verified (assuming fully 
passing tests).  As such, it is a quantitative measure of 
testing thoroughness.  For instance, in the example above, 
for which fault coverage is computed as .95, 100% of the 
1-way and 2-way combinations have been covered, and 
these are estimated in the fault distribution to account for 
85% of the total set of faults.  The test set also provides 
80% coverage of 3-way combinations, which are 10% of 
the faults, and 40% coverage of the 4-way combinations, 
which are 5% of the faults.  Thus the relevant input space 
is covered to 95%, based on the estimated fault 
distribution.  A variety of possible fault distributions can 
be studied in this way to evaluate a test set coverage of 
fault-triggering combinations in the input space.  Appendix 
IV provides an example of this for spacecraft test software. 

     The ancillary (t+k)-way coverage of a t-way covering 
array varies depending on input configuration, but in 
general will increase with increasing n and decline with 
increasing v and t.  Appendix I shows (t+1) and (t+2)-way 
coverage for 2-way through 4-way covering arrays of n 
variables, for n = 10, 20, 30, 40, 50; and v = 2, 4, 6, 8.  The 
number of tests, N, for a given covering array is 
proportional to vt log n.  Thus ancillary coverage can be 
seen in Appendix I to increase with log n.   It can be shown 
[8] that ancillary (t+k)-way coverage is proportional to 
1/vk, which can also be seen clearly in coverage at v=2, 4, 
6, 8 in Appendix I and accompanying graphs.  
 
     Using ancillary coverage data for various covering 
arrays, and empirical data on failures, we can compute 
approximate upper and lower bounds for fault coverage 
from expression (2).  We will use the data from Figure  1 
to illustrate the development of a fault coverage model, 
then consider specialized cases in later sections. Fault 
distributions in Table II are used to compute the fault 
coverage shown in Appendix II.  An example is 
reproduced below in Figure 4. Lower and upper bound 
fault coverage computations are given for covering arrays 
of t=2 through t=5.  Table III below shows that a 2-way 
covering array includes 100% coverage for 1-way and 2-
way combinations, 76.8% for 3-way, and 46.1% for 4-way 
combinations.  This results in lower and upper bound 
estimates of .853 and .998 respectively.   
 

 
Figure  4. 

          
     The calculations in Table III and Appendix II are based 
on averaged fault distributions for a variety of applications.  
Individual programs can be expected to have significant 
variation from these averages.  For example, in [16], 2-
way tests detect 38% of faults, and fault detection does not 
increase with 3-way tests, although 4-way tests obtain 
100% fault detection.   For applications that have been 
thoroughly tested or used such that the “easy” bugs have 
been found, 1-way or 2-way faults may be rare or non-
existent.  Such a distribution can change the fault coverage 
profile substantially.  Appendix III gives two examples of 
this effect.   
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TABLE II.  FAULT COVERAGE AT T+1 AND T+2 FOR  
10 VARIABLES, 2 VALUES, STRENGTH 2 TO 5  

covering array
→ 2-way 3-way 4-way 5-way 
t, coverage ↓ 
1 1.000 1.000 1.000 1.000 
2 1.000 1.000 1.000 1.000 
3 0.768 1.000 1.000 1.000 
4 0.461 0.835 1.000 1.000 
5  0.535 0.883 1.000 
6   0.594 0.895 
LB 0.853 0.945 0.984 0.996 
UB 0.990 0.998 1.000 1.000 

 

 
 
 
 
 
 
 
 
 
 

 
     In Appendix IV we estimate the fault coverage for a 
test set for a NASA spacecraft.  Previous work [9] 
introduced combinatorial coverage and analyzed 
coverage for this test set, which was not originally 
designed as a t-way covering array.  The test set had 
been developed using conventional methods, and the 
goal of the previous research was to determine if these 
methods produced good combinatorial coverage.  As 
can be seen in Appendix IV, coverage for 2-way 
through 4-way combinations is quite good, although not 
a full covering array at any of these levels.   
 
    
  To estimate the fault coverage, we consider different 
fault distributions.  For example, in previously untested 
software, single value or 2-way faults may predominate, 
similar to the upper bound range in Table II.  As faults 
are removed, single value faults become less common.  
As the number of faults is reduced, more complex 
faults, involving more parameters, may represent a 
larger proportion of the total.  Appendix IV illustrates 
the fault coverage for various possible fault 
distributions.  

 

IV.  RELATIONSHIP WITH CODE COVERAGE 

     Suppose we have two test sets, T1 and T2, that both 
provide 100% 1-way coverage and 80% 2-way coverage, 
with coverage statistics T1: S2 = 0.80, M2 = 0.70 and T2: S2 
= 0.80, Μ2 = 0.3. Their fault coverage as computed from 
expression (2) will be the same, but the different values of 
M suggest that there may be differences in fault detection 
capability. Suppose the code contains the following 
segment: 
 
   if (x <= 0 && y <= 0){faulty code} 
   else            {good code} 
 
and the input model partitions of values for x and y: 

 
x = {-9999, -1, 0, 1, 9999} 
y = {-9999, -1, 0, 1, 9999} 

      
     Then for the 25 pairs of input values for x and y, 9 will 
trigger the fault.  Therefore if at least 17/25 = 68% of input 
combinations are covered in a test set, at least one will 

trigger the fault.  T1 ensures this, because all 2-way 
combinations are covered to at least 70% (M2 = .70).  
Although T2 has the same level of overall simple coverage, 
S2 = .80, its minimum coverage, M2, is only 30%, so pair 
{ x, y} may have less than 17/25 coverage.  
 
     We label as Bt the minimum proportion of t-way 
settings triggering a branch for a given segment of code.  
Thus for the example, 9/25 of 2-way settings trigger the 
true branch, and 16/25 settings trigger the false branch. 
Thus, for the true branch, the proportion of 2-way settings 
triggering the branch is 9/25 = .36; and for the false 
branch, 16/25 of the 2-way settings. Thus B2 = .36 for this 
example code.  For the example above, it is clear that at 
least one combination in test set T1 will branch to the faulty 
code, because minimum coverage M2 = .70 exceeds the 
proportion of settings needed to ensure that at least one 
will cause the predicate x <= 0 && y <= 0 to be true 
(64%).      
   
     We can show that if Bt + Mt > 1, to be referred to as the 
branch coverage condition, then the test set will provide 
100% branch coverage, where all variables included in 
decision predicates have values in the variable set  with 
minimum coverage characteristic Mt.  This makes sense 
intuitively because it ensures that for every t-way variable 
combination, there is an intersection between the set of 
covered value configurations and the set of value 
configurations that trigger a branch, as the example above 
demonstrates.   
 
Branch Coverage Condition: A test set provides 100% 
branch coverage for t-way conditionals if Mt + Bt >1, 
where Mt = minimum combinatorial coverage at level t, 
and Bt = minimum proportion of t-way combinations that 
trigger a branch within the code, where all variables in 
decision predicates have values from the variable set with 
minimum coverage characteristic Mt. 
 
Proof:  For minimum t-way coverage of Mt, let k = Mtv

t = 
number of t-way combinations (out of vt) covered.  That is, 
for the t-way combination(s) with the lowest coverage, k 
different settings are covered, so k or more settings are 
covered for all t-way combinations in the test set.    Let m 
= Btv

t = minimum number of combinations triggering a 
branch within the code.  Thus any test set containing a test 
with one of these m combination settings will trigger the 
branch.  So any test set will trigger the branch if k > vt – m  
= vt(1-Bt) < Mt v

t  or Mt + Bt > 1. □ 
 
     Example. If t=2 and M = .5 for a decision predicate 
containing two binary parameters, then there are .5(22)=2 
settings covered in the test set.  There are C(4,2) =6 ways 
in which two settings of two parameters can be included in 
a test set:  00,01 | 00,10 | 00,11 | 01,10 | 01,11 | 10,11.  If 
every decision predicate is satisfied by at least one setting, 
then Bt = .25, and there are three of the four settings that 



do not satisfy the predicate.  From these, there are 
C(3,2)=3 ways in which the non-satisfying settings can be 
included in a test set, so half of the possible test sets will 
include at least one test that satisfies the predicate.  If Bt is 
increased to .5, two of the two-parameter settings will 
satisfy the predicate, with C(2,2) = 1 possible test set 
without a test that will satisfy the predicate.  If Bt = .75, 
then three settings will satisfy the predicate and the 
possible test sets without a test containing a satisfying 
parameter setting is C(1,2) = 0.   
 
     Note the constraint in the branch coverage condition 
that all variables in decision predicates have values from 
the variable set with minimum coverage characteristic Mt. 
This may be a relatively strong assumption in practice.  
For example, it will hold if (a) the values in decision 
predicates are only those from test inputs, rather than 
including computed values for internal (non-input) 
variables; or (b) values for variables in decision predicates 
meet the combinatorial coverage requirement, even where 
they include computed values. Some decision predicates 
may meet requirement (a), but others may include input 
variables whose value has changed, or internal variables 
not included in the test set.  In the latter case, the coverage 
requirement may be validated by inspecting internal state 
prior to execution of each decision predicate, through 
means such as a debugger or assertions that write out 
decision predicate variable values.  The latter option may 
in most cases be impractical.  The branch coverage 
condition therefore has most practical utility for decision 
predicates containing input variables, but it also helps in 
understanding the effectiveness of test sets with good 
combinatorial coverage, though not necessarily a full 
covering array.   
      
     A corollary to the condition is that if every decision can 
be satisfied by more than one parameter combination 
setting, a full covering array is not needed for 100% 
branch coverage.  Again, this makes sense intuitively 
because if two or more combination settings trigger each 
branch, then a test set that that covers vt-1 settings for each 
t-way combination must include at least one of the two 
settings that will trigger the branch. We can generalize to 
compute a level that Mt must exceed to provide full branch 
coverage.  
  
Branch Coverage Corollary:  If k or more t-way settings 
satisfy every decision predicate, then the branch coverage 

condition is obtained with Mt > 1 − �
��

 , where all variables 

in decision predicates have values from the variable set 
with minimum coverage characteristic Mt. 
Proof:  If k or more t-way settings satisfy every predicate, 

then Btv
t ≥ k, and �� +

�
��

> 1 implies Mt + Bt > 1.  □ 

 
Note that if k=1, i.e., some decision predicates are satisfied 
by only one of vt t-way combinations, then a full covering 

array is needed for branch coverage because coverage 
minimum M increases only with increments of 1/ vt.   
       
Example.  If the condition in the example in the first 
paragraph of this section were x == 0 && y == 0 || x 

== 1 && y == 1, then two of the 2-way settings would 
ensure that the decision predicate was satisfied, so Btv

t ≥ 2. 

If Mt is increased to 96% (24/25), then Mt + Bt = 1 − �
��
+

�
��

> 1.  For 10 variables with 5 values each, the IPOG 

algorithm [3] generates a 2-way covering array of 309 
tests, but 96% coverage is reached after only 225 tests, a 
reduction in test set size of more than 25%.       

V. IMPLICATIONS FOR TESTING 

     Combinatorial fault coverage can supplement, or 
provide an alternative to, conventional methods of 
specifying test requirements.  Combinatorial coverage 
provides a direct measure of the proportion of the relevant 
input space covered by a test set, and incorporating fault 
distribution data makes it possible to develop fault 
coverage figures that approximate the proportion of faults 
that the test set can detect.     Thus, fault coverage can be 
used for estimating the fault detection capacity of a test set.  
It provides more useful information than raw 
combinatorial coverage figures, because it takes account of 
the approximate distribution of faults.  By estimating lower 
bounds on the distribution of t-way faults at each level of t, 
we can estimate the number of tests needed to reach a 
desired detection rate, or approximate fault detection 
capacity for tests that can be produced within a given 
resource budget.  A number of considerations come into 
play when applying this approach. 
 
Number of variable values:  As can be seen in Appendix II 
and III, fault coverage varies inversely with the number of 
values per variable, so two covering arrays do not 
necessarily provide the same fault detection capacity even 
though they both cover 100% of t-way combinations.  
With some fault distributions, a t-way array of boolean 
variables may provide better fault coverage than a (t+1)-
way array with more values per variable.  For example, in 
Appendix III, fault coverage for Distribution 1 at t=3, v=2 
is .843, but only .832 for t=4 where v=8.     
 
Uncertainty and range of estimates:  The cumulative 
distribution of faults in Figure 2 shows wide variation at 
t=1 to t=3.  This produces a similar variation in fault 
coverage estimates, as can be seen in Appendix II.  At t=4, 
lower and upper estimates converge much more closely.  
The variation and uncertainty for t ≤ 3 suggest that 4-way 
coverage criterion should be the minimum for high-
assurance software.  As noted in Section III, the number of 
tests increases exponentially with t, so using 4-way 
coverage, rather than 5-way or 6-way, may also represent a 
sensible tradeoff between cost and assurance level in some 
applications.  For some applications, 4-way testing may be 



optimal in that higher strength arrays become prohibitive 
in time or resources. 
 
Interaction with branch condition:  The branch coverage 
condition can be used with information from static analysis 
of the source code to determine a level of minimum 
combinatorial coverage that will provide full branch 
coverage, a moderately strong (dynamic) code coverage 
criterion.  This code coverage goal can be achieved with 
substantially fewer tests than would be required for a full t-
way covering array (although a full array would provide 
stronger testing).  The fact that branch coverage can be 
obtained with many fewer tests than a full covering array 
also helps to explain the effectiveness of randomly 
generated tests in some cases.   
 
     The branch coverage condition suggests that it is 
generally best to keep M as high as possible when 
executing tests if the code contains relational expressions, 
which is nearly always the case.  When we discretize 
variable values, we end up with combinations like those in 
the example, where multiple settings of a particular 
variable combination can trigger branches. When multiple 
combinations can trigger a branch to faulty code, we are 
better off including tests that increase M evenly, rather 
than covering all settings of a subset of combinations more 
quickly, so that we reach the branch condition faster.  For 
example, adding a previously uncovered 2-way 
combination in Figure 1 could either increase Φ to .5, or Μ 
to .75.  The first option makes no progress towards 
reaching the branch condition, so the second option is 
preferable.    
 
Impact of ancillary coverage:  The cumulative distribution 
of interaction failures shown in Fig. 1 is based on analysis 
of failure reports, identifying the number of factors 
involved, rather than failures reported in t-way testing.  
That is, the distribution was not developed by running 2-
way through 6-way tests and counting the failures 
discovered at each level, because such a procedure could 
not accurately determine failures triggered by each level of 
t-way combinations. As shown in previous sections, a t-
way covering array also includes a significant (often high) 
percentage of t+1, t+2, etc. coverage.  So, for example, if 
we run a 3-way covering array of tests and discover n 
faults, it does not mean that all n faults were triggered by 
single-value, 2-way, or 3-way combinations.  It is highly 
likely that some resulted from 4-way, 5-way, or 
conceivably higher strength combinations.   
 
     When reviewing case studies of combinatorial testing, 
we often see that for some applications, all failures were 
discovered by relatively low strength covering arrays, 
including 3-way and 4-way [16].  In other words, a 
significant number of testing studies seemed to find 
failures a bit “easier” to detect than the distribution in 
Figure  1 might suggest.  The high levels of ancillary 
coverage for t-way arrays mean that test effectiveness can 

be higher than might be expected considering only the 
interaction strength t.  This is especially true for 
applications with a high proportion of boolean inputs, 
because coverage beyond t, with a t-way array, is much 
higher for boolean variables than with larger numbers of 
values per variable.   
 
Estimating residual risk:  One benefit of measuring the 
combinatorial coverage of a test set is that it provides 
information on risk through combinations not covered, one 
of the original motivations for development of 
combinatorial coverage ideas [8][9]. Knowing the 
proportion of t-way combination settings not covered for 
different values of t provides useful information for testers 
and decision-makers, as it helps in estimating the risk that 
the application will encounter a set of inputs for which its 
behavior was not verified.  Fault coverage allows a tighter 
estimate of the risk of undetected faults, by factoring in the 
fault distribution.  
 
Test requirements specification:  One application of fault 
coverage is in supplementing requirements for black-box 
testing.   When specifying test requirements, if source code 
is available, a variety of coverage measures may be used.  
For example, it may be required that 100% statement or 
branch coverage be achieved.  Without source code, test 
goals may be based on criteria such as a level of inter-
module call coverage and specific requirements based 
criteria.  Tests are typically required to trace back to 
requirements, and conversely it must be shown that all 
requirements have been tested with one or more tests.  
However, this just insures that code works for a few 
inputs, and is a relatively weak measure of how thorough 
the requirements-based testing has been.  Just because we 
have multiple tests for all requirements, there may be no 
indication of the range of input space for which the code 
satisfies requirements.  Even if two requirements-based 
test sets “fully cover” all requirements, one may be better 
than another if one evaluates the application on a broader 
range of input configurations.  The range of input space 
covered is a separate dimension beyond a simple count of 
tests per requirement. Fault coverage gives a more precise 
measure of the degree to which requirements are covered. 
 

VI.  SUMMARY AND CONCLUSIONS 

     The objective of this work was to build on previous 
results to develop a relationship between the (static) 
distribution of combinations in input data and (dynamic) 
executable code coverage.  The fault coverage estimation 
introduced in Section III can be used for initial estimation 
of test set size, using measures of combinatorial coverage 
that can be computed with measurement tools such as 
described in [8][10][11].  Appendices II and III illustrate 
results of this computation for a variety of test problem 
configurations.  Results can be used in scoping the number 
of tests and level of effort, and estimating residual risk 
from complex combinations not tested.  In the future, we 



may also measure combinatorial coverage of the input 
distribution, which could supplement operational profile 
methods.   
 
When source code is available, the method introduced in 
Section IV can be used to the minimum level of (static) 
combination coverage to ensure 100% (dynamic) branch 
coverage (and therefore statement coverage also) of 
executable code, where all variables in decision predicates 
have values from test inputs.  This approach may be useful 
where cost considerations make it difficult to use a full 
covering array in testing.  Branch coverage is a reasonably 
strong test criterion, and Section IV shows how it may be 
achieved at substantial savings compared with full t-way 
testing.  Future work might evaluate fault detection rates of 
partial versus full covering arrays, to enable better cost-
benefit tradeoffs in testing.   
 
Certain products may be identified in this document, but such 
identification does not imply recommendation by NIST nor that 
the products identified are necessarily best for the purpose. 
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Appendix I.     Ancillary coverage, (t+1)-way and (t+2)-way for 10-variable covering arrays  

 

t=2 t+1 t=3 t+1 t=4 t+1
n= 10 20 30 40 50 n = 10 20 30 40 50 n = 10 20 30 40 50

v = 2 0.768 0.815 0.848 0.851 0.856 v = 2 0.835 0.897 0.926 0.949 0.953 v = 2 0.883 0.945 0.967 0.979 0.984
4 0.444 0.509 0.531 0.551 0.565 4 0.483 0.598 0.671 0.712 0.741 4 0.548 0.709 0.794 0.834 0.861
6 0.28 0.339 0.367 0.38 0.396 6 0.364 0.466 0.522 0.558 0.586 6 0.423 0.576 0.65 0.696 0.727
8 0.208 0.257 0.272 0.289 0.3 8 0.272 0.367 0.419 0.453 0.478 8 0.326 0.469 0.541 0.587

t=2 t+2 t=3 t+2 t=4 t+2
n = 10 20 30 40 50 n = 10 20 30 40 50 n = 10 20 30 40 50

v = 2 0.461 0.521 0.572 0.571 0.576 v = 2 0.535 0.628 0.684 0.734 0.747 v = 2 0.594 0.715 0.777 0.818 0.841
4 0.126 0.153 0.162 0.172 0.178 4 0.14 0.19 0.228 0.253 0.272 4 0.167 0.251 0.312 0.349 0.377
6 0.049 0.063 0.07 0.074 0.078 6 0.068 0.095 0.111 0.123 0.132 6 0.082 0.128 0.156 0.176 0.191
8 0.027 0.035 0.038 0.04 0.042 8 0.037 0.054 0.064 0.071 0.076 8 0.046 0.074 0.091 0.103

t=2 t+1 coverage t=3 t+1 coverage t=4 t+1 coverage
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Appendix II.   
Explanation of charts:  Lower and upper bounds on fault coverage are estimated for n-variable covering arrays, using ancillary 
(t+1)-way and (t+2)-way coverage for t-way arrays, for t = 2 through 5.  For example, the first column below indicates that a 2-
way covering array provides 100% 1-way and 100% 2-way coverage, 76.8% 3-way coverage, and 46.1% 4-way coverage.  
Similarly, the second column shows 100% coverage of 1-way through 3-way for a 3-way array, with 83.5% and 53.5% 4-way 
and 5-way coverage. Lower and upper bounds are then computed using the empirical data from Table 1 (reproduced right) and 
expression (2).   

 

t LB UB 
1  0.17 0.68 
2 0.45 0.29 
3 0.25 0.02 
4 0.09 0.01 
5 0 0 
6 0.04 0 

 
Estimated fault coverage range for 10-variable covering arrays 

 

10 vars  x axis:  t = 2 3 4 5  t = 2 3 4 5  t = 2 3 4 5  t = 2 3 4 5
LB UB 2 values per variable 4 values per variable 6 values per variable 8 values per variable

1 0.17 0.68 1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2 0.45 0.29 2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
3 0.25 0.02 3 0.768 1.000 1.000 1.000 0.444 1.000 1.000 1.000 0.280 1.000 1.000 1.000 0.208 1.000 1.000 1.000
4 0.09 0.01 4 0.461 0.835 1.000 1.000 0.126 0.483 1.000 1.000 0.049 0.364 1.000 1.000 0.027 0.272 1.000 1.000
5 0 0 5 0.535 0.883 1.000 0.140 0.548 1.000 0.068 0.423 1.000 0.037 0.326 1.000
6 0.04 0 6 0.594 0.895 0.167 0.573 0.082 0.451 0.046 0.353

LB LB 0.853 0.945 0.984 0.996 0.742 0.913 0.967 0.983 0.694 0.903 0.963 0.978 0.674 0.894 0.962 0.974
UB UB 0.990 0.998 1.000 1.000 0.980 0.995 1.000 1.000 0.976 0.994 1.000 1.000 0.974 0.993 1.000 1.000
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Estimated fault coverage range for 20-variable covering arrays 

 
 
Estimated fault coverage range for 30-variable covering arrays 

 
 
 
 
  

20 vars  t = 2 3 4 5  t = 2 3 4 5  t = 2 3 4 5  t = 2 3 4 5
LB UB 2 values per variable 4 values per variable 6 values per variable 8 values per variable

1 0.17 0.68 1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2 0.45 0.29 2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
3 0.25 0.02 3 0.815 1.000 1.000 1.000 0.509 1.000 1.000 1.000 0.339 1.000 1.000 1.000 0.257 1.000 1.000 1.000
4 0.09 0.01 4 0.521 0.897 1.000 1.000 0.153 0.598 1.000 1.000 0.063 0.466 1.000 1.000 0.035 0.367 1.000 1.000
5 0 0 5 0.628 0.945 1.000 0.19 0.709 1.000 0.095 0.576 1.000 0.054 0.469 1.000
6 0.04 0 6 0.715 0.972 0.251 0.784 0.128 0.655 0.074 0.544

LB LB 0.871 0.951 0.989 0.999 0.761 0.924 0.970 0.991 0.710 0.912 0.965 0.986 0.687 0.903 0.963 0.982
UB UB 0.992 0.999 1.000 1.000 0.982 0.996 1.000 1.000 0.977 0.995 1.000 1.000 0.975 0.994 1.000 1.000
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30 vars  t = 2 3 4 5  t = 2 3 4 5  t = 2 3 4 5  t = 2 3 4 5
LB UB 2 values per variable 4 values per variable 6 values per variable 8 values per variable

1 0.17 0.68 1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2 0.45 0.29 2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
3 0.25 0.02 3 0.848 1.000 1.000 1.000 0.531 1.000 1.000 1.000 0.367 1.000 1.000 1.000 0.272 1.000 1.000 1.000
4 0.09 0.01 4 0.572 0.926 1.000 1.000 0.162 0.671 1.000 1.000 0.07 0.522 1.000 1.000 0.038 0.419 1.000 1.000
5 0 0 5 0.684 0.967 1.000 0.228 0.794 1.000 0.111 0.65 1.000 0.064 0.541 1.000
6 0.04 0 6 0.777 0.986 0.312 0.868 0.156 0.739 0.091

LB LB 0.883 0.953 0.991 0.999 0.767 0.930 0.972 0.995 0.718 0.917 0.966 0.990 0.691 0.908 0.964 0.960
UB UB 0.993 0.999 1.000 1.000 0.982 0.997 1.000 1.000 0.978 0.995 1.000 1.000 0.976 0.994 1.000 1.000
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Estimated fault coverage range for 40-variable covering arrays 

 
 
 
  

 t = 2 3 4 5  t = 2 3 4 5  t = 2 3 4 5  t = 2 3 4 5
2 values per variable 4 values per variable 6 values per variable 8 values per variable

1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.851 1.000 1.000 1.000 0.551 1.000 1.000 1.000 0.380 1.000 1.000 1.000 0.289 1.000 1.000 1.000
0.571 0.949 1.000 1.000 0.172 0.712 1.000 1.000 0.074 0.558 1.000 1.000 0.040 0.453 1.000 1.000

0.734 0.979 1.000 0.253 0.834 1.000 0.123 0.696 1.000 0.071 0.587 1.000
0.818 0.991 0.349 0.903 0.176 0.103

0.884 0.955 0.993 1.000 0.773 0.934 0.974 0.996 0.722 0.920 0.967 0.960 0.696 0.911 0.964 0.960
0.993 0.999 1.000 1.000 0.983 0.997 1.000 1.000 0.978 0.996 1.000 1.000 0.976 0.995 1.000 1.000
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Appendix III.   
Explanation of charts:  Comparison of fault coverage for two different hypothetical distributions of faults in 10-variable 
covering arrays, using (t+1)-way and (t+2)-way coverage for t-way arrays, for t = 2 through 5.  For example, the first column 
below indicates that a 2-way covering array provides 100% 1-way and 100% 2-way coverage, 76.8% 3-way coverage, and 
46.1% 4-way coverage, resulting in 2-way fault coverage of 49.9% for distribution 1 (right) and 23.1% for distribution 2.   
 
 

 

  dist1 dist2 
1 0 0 
2 0 0 
3 0.5 0 
4 0.25 0.5 
5 0.25 0.25 
6 0 0.25 

 
Estimated fault coverage range for two different distributions of faults in 10-variable covering arrays 

 t = 2 3 4 5  t = 2 3 4 5  t = 2 3 4 5  t = 2 3 4 5
2 values per variable 4 values per variable 6 values per variable 8 values per variable

1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
3 0.768 1.000 1.000 1.000 0.444 1.000 1.000 1.000 0.280 1.000 1.000 1.000 0.208 1.000 1.000 1.000
4 0.461 0.835 1.000 1.000 0.126 0.483 1.000 1.000 0.049 0.364 1.000 1.000 0.027 0.272 1.000 1.000
5 0.535 0.883 1.000 0.140 0.548 1.000 0.068 0.423 1.000 0.037 0.326 1.000
6 0.594 0.895 0.167 0.573 0.082 0.451 0.046 0.353

dist1 0.499 0.843 0.971 1.000 0.254 0.656 0.887 1.000 0.152 0.608 0.856 1.000 0.111 0.577 0.832 1.000
dist2 0.231 0.551 0.869 0.974 0.063 0.277 0.679 0.893 0.025 0.199 0.626 0.863 0.014 0.145 0.593 0.838
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Appendix IV.    
 
     The left panel of Table IV shows the combinatorial coverage of 7,489 tests for a NASA spacecraft documented in [9].  
The test set was developed using conventional methods and analyzed to determine the level of combinatorial coverage.  The 
right panel shows fault coverage estimated using expression (2) under various possible fault profiles for three hypothetical 
systems under test.   
 
     Profile P1 is approximately the upper bound from Table II, representing an average of fault distributions for previously 
reported data [5].  P2 assumes an application for which single value faults have been removed.  P3 assumes an application has 
been thoroughly tested and all single value and 2-way faults have been removed.  Fault coverage declines because t-way 
combinatorial coverage decreases with increasing t.   A fault profile such as P1 might be expected in an average application, 
while P2 and P3 might be seen in more well-tested applications.  Note that these figures estimate only the proportion of fault 
coverage; a previously untested application could be expected to have a higher absolute number of faults than those that have 
been used and tested extensively.  

 
                             
 
 
 
 
 
 
 
 
 

            Table IV.  Fault coverage under various assumptions.                                
 
 
 

Test combination 
coverage for t=1..6 

 Fault distribution at t=1..6 for  
three fault profiles 

t = coverage P1 P2 P3 
1 1.0 .65 .00 .00 
2 .94 .25 .65 .00 
3 .83 .05 .10 .45 
4 .68 .02 .10 .20 
5 .53 .02 .10 .20 
6 .39 .01 .05 .15 

 
fault 

coverage 0.95 0.84 0.68 


