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Abstract: - To detect a fault in software, a test case execution must enable an intermediate error to propagate to 
the output. We describe two specification-based mutation testing methods that use a model checker to guarantee 
propagation of faults to the visible outputs. We evaluate the methods empirically and show that they are better 
than the previous “direct reflection” approach. 
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1 Introduction 
Specification-based testing is a black-box technique, 
that is, it assumes that internal states of the program 
implementing the specification are unknown, hence 
failures can only be detected in external responses. 
Although model checkers can be used to generate 
tests [3, 5], existing methods allow the model checker 
to choose tests that do not cause faults to propagate to 
the program’s output. Further details, references and 
examples can be found in [13]. 

Goradia [9] presents typical cases that prevent a 
fault in an intermediate state from propagating to 
the output. For example, in a relational expres­
sion such as state_var > z, an incorrect value of 
state_var may still yield the correct Boolean value 
of the relational expression. 

In this paper, we present two new approaches using 
model checker to guarantee that tests cause detectable 
output failures. We briefly introduce model checking, 
test generation using model checkers, and mutation ad­
equacy criterion here. 

1.1 Model Checking 
Model checking is a formal technique based on state 
exploration. Input to a model checker has two parts. 
One part is a state machine defined in terms of vari­
ables, initial values for the variables, environmental 
assumptions, and a description of the conditions un­
der which variables may change value. The other part 
is temporal logic expressions over states and execution 

paths. Conceptually, a model checker visits all reach­
able states and verifies that the temporal logic expres­
sions are satisfied over all paths. If an expression is 
not satisfied, the model checker attempts to generate a 
counterexample in the form of a sequence of states. 

A common logic for model checking is the 
branching-time Computation Tree Logic (CTL) [12], 
which extends propositional logic with temporal op­
erators. For example, a CTL formula AG safe 
means that all reachable states are safe, and AG (re­
quest -> AX response) means that a request is 
always followed by a response on the next step. 

We use SMV, a CTL symbolic model checker [12]. 
In SMV, a specification consists of one or more mod­
ules. One module, named main, is the top level 
module in SMV. Fig. 1 is an SMV example derived 
from [14]. We refer to this example throughout the pa­
per. Variables d, b, and f are inputs, e and a are inter­
mediate variables. The statement init(e) := 0; 
sets e to 0 initially. The next value of e is 1 if the 
guard f = On is true, otherwise it is 0. The output 
is the variable out, which may be Low or High. Its 
value is High if a is greater than 10, otherwise it is 
Low. The SPEC clause states that if f is On, it is possi­
ble to get to some state where out is High. We often 
drop the keyword SPEC when clear from the context. 

1.2 Generating Software Tests 
Model checking is being applied to test generation and 
test coverage evaluation [3, 5]. In both uses, one first 



MODULE main
 
VAR
 
d: 0..5; b: 0..11;
 
f: {On, Off};
 
out: {Low, High};
 
a: 0..16; e: 0..1;
 

ASSIGN
 
init(e) := 0;
 
next(e) := case
 
f = On : 1;
 
1 : 0;
 

esac;
 
a := e * d + b;
 
out := case
 
a > 10 : High;
 
1 : Low;
 

esac;
 
SPEC AG (f = On -> EF out = High)
 

Fig. 1: An SMV Example 

chooses a test criterion [8], that is, decides on a philos­
ophy about what properties of a specification must be 
exercised to constitute a thorough test. 

One applies the chosen test criterion to the specifi­
cation to derive test requirements, i.e., a set of individ­
ual properties to be tested. To use a model checker, 
these requirements must be represented as temporal 
logic formulas [2]. To generate tests, the test crite­
rion is applied to yield negative requirements, that is, 
requirements that are considered satisfied if the corre­
sponding temporal logic formulas are inconsistent with 
the state machine. For instance, if the criterion is state 
coverage, the negative requirements are that the ma­
chine is never in state 1, never in state 2, etc. 

When the model checker finds that a requirement is 
inconsistent, it produces a counterexample. Again, in 
the case of state coverage, the counterexamples would 
have stimulus that puts the machine in state 1 (if it is 
reachable), another to put the machine in state 2, etc. 

The set of counterexamples is reduced, or win­
nowed, by eliminating duplicates and those that are 
prefixes of other, longer counterexamples. 

1.3 Specification Mutation Criterion 
Mutation adequacy [6] is a test criterion that naturally 
yields negative requirements. The specification-based 
mutation analysis scheme in [3] applies mutation oper­
ators to the state machine or the temporal logic expres­
sions yielding a set of faulty, or mutant, expressions. 

Some mutation operators are replacing a variable with 
another variable, replacing an integer variable a with 
a + 1, replacing a conjunction with a disjunction. 

Any particular mutant might be consistent or incon­
sistent with the state machine [2]. A consistent mutant 
is a temporal logic formula that is true over all possible 
executions defined by the state machine. Such mutants 
are not useful and may be discarded. A mutation ad­
equate test set should distinguish between the correct 
behavior and the behavior of inconsistent mutants. 

The rest of the paper is organized as follows. Sec­
tion 2 briefly reviews similar previous work and the ex­
isting specification-based mutation method. Section 3 
presents our two approaches: in-line expansion and 
state machine duplication (SM duplication). Section 4 
uses the example in Fig. 1 to compare approaches. In 
the second part of the section, we evaluate the effec­
tiveness of the approaches at detecting seeded faults 
in a C program implementing a portion of TCAS. Our 
conclusions are in Section 5. 

2 Existing Approaches 
First, some terminology. A fault is a defect in the code, 
informally, a bug. A (visible) failure is an unaccept­
able result of execution on some test data; in other 
words, it is observable incorrect behavior. A failure 
is caused by one or more faults. A potential failure, or 
potential error, is an intermediate incorrect result. 

2.1 Related Work 
There is an extensive body of research in program-
based testing that studied conditions for detecting 
a fault from external responses [15, 9]. The RE­
LAY model [15] defines the revealing conditions un­
der which a fault is detected. First, a potential er­
ror originates at the smallest subexpression containing 
the fault. Then the potential error propagates through 
computations and information flow until a failure is re­
vealed. Test data can be selected to satisfy revealing 
conditions. In our work we rely on the model checker 
to achieve error propagation. 

Program mutation testing in its original 
formulation—often referred to as strong mutation— 
requires the output of a mutant to differ from the 
original. Weak mutation [10] only requires that the 
execution of a component of the mutant and the orig­
inal produce different values. Since in this paper we 
deal with visible failures, we require strong mutation. 



AG (f = On -> AX e = 1)
 
AG (!(f = On) -> AX e = 0)
 
AG (a = e * d + b)
 
AG (a > 10 -> out = High)
 
AG (a <= 10 -> out = Low)
 

Fig. 2: Applying Direct Reflection 

Fabbri et. al. [7] categorized mutation operators 
for different components of Statecharts and provided 
strategies to abstract and incrementally test the com­
ponents. 

2.2 Direct Reflection 
The test criterion we concentrate on in this paper is 
specification-based mutation adequacy. It is imple­
mented by mutating temporal logic formulas. These 
formulas may be derived from the state machine by a 
mechanical process called reflection [2, 1]. 

Fig. 2 contains formulas derived from the assign­
ment statements in Fig. 1. For instance, the next 
clause for the variable e in Fig. 1 is reflected into 
the first two formulas. The formulas directly reflect 
the state machine transition relation; we refer to this 
method as Direct Reflection to differentiate it from the 
In-line expansion approach which we describe in Sec­
tion 3.1. 

For each mutant, the model checker finds a coun­
terexample that leads to a potential failure if possible. 
However, there is no guarantee that the potential fail­
ure will propagate to a visible output. Consider a mu­
tant of the third formula in Fig. 2: 

AG (a = e * (d + 1) + b) (1) 

Choosing b = 0, d = 0, and f = On shows an in­
consistency in an intermediate variable a, but not in 
the output variable out. Such a test is of little value. 

3 Two New Approaches 
In this section we present two new approaches which 
use a model checker to produce counterexamples that 
cause faults to be visible. 

3.1 In-line Expansion 
In this approach, only reflections of the transition re­
lation for output variables are generated and consid­
ered for mutation. In these reflected temporal logic 
formulas, any intermediate variables are replaced with 

AG (f=On -> AX(d+b>10 -> out=High))
 
AG (f!=On -> AX(b>10 -> out=High))
 
AG (f=On -> AX(d+b<=10 -> out=Low))
 
AG (f!=On -> AX(b<=10 -> out=Low))
 

Fig. 3: Applying In-line Expansion 

in-line copies of their transition relations. This substi­
tution is performed repeatedly until the formulas are 
comprised exclusively of input and output variables. 
Fig. 3 contains formulas derived from the statements in 
Fig. 1 using in-line expansion method. Since only in­
puts and outputs appear, the model checker finds coun­
terexamples that affect the outputs. As in direct reflec­
tion, all mutants can be checked against the original 
state machine in a single run. 

If there are conditional expressions in the transi­
tion relations for intermediate variables, this approach 
leads to an exponential increase in the number or size 
of logical formulas: different paths must be specified 
explicitly. The example in Fig. 1 has two conditional 
statements, each with two branches, for a total of four 
possible paths, so there are four formulas in Fig. 3. 

3.2 State Machine (SM) Duplication 
The rest of Section 3 deals with the other approach: 
duplicating the state machine. Suppose the model 
checker compares the external behavior of the origi­
nal and mutated state machines. Any counterexamples 
produced must exhibit failures, that is, inputs must be 
chosen to manifest differences in the outputs. To facil­
itate this comparison, we begin by duplicating the state 
machine and insure that the duplicate always takes the 
same transition as the original. Then we can mutate 
the duplicate to implement the mutation test criterion. 

More formally, let S M be the description of the 
original state machine. Let S Md be a duplicate of S M 
containing a mutation. S M and S Md have separate 
sets of outputs. We combine the two machines into 
a single state machine S M + . We then assert that the 
values of the outputs of S M and S Md are identical 
over S M +. If S Md has an observable fault, the model 
checker will produce a counterexample leading to the 
state where S M and S Md differ in an output value. 

From the counterexample, we can construct a test 
case containing values for inputs and the expected val­
ues for the outputs of the original state machine, S M . 
If the specification allows nondeterministic behavior, 
the expected outputs might not be adequate as an ora­
cle. Nevertheless, the tests are expected to cause some 



MODULE original(d, b, f)
 
VAR
 
out: {Low, High};
 
a: 0..16; e: 0..1;
 

ASSIGN
 
... same transitions as in Fig. 1
 
MODULE duplicate(d, b, f)
 
... same as original, to be mutated
 
MODULE main
 
VAR
 
d: 0..5; b: 0..11;
 
f: {On, Off};
 
good : original(d, b, f);
 
mutant : duplicate(d, b, f);
 

SPEC AG (good.out = mutant.out)
 

Fig. 4: A Duplication Example 

faulty implementation to exhibit failures. 

3.3 Handling Nondeterminism 
If there are any nondeterministic transitions in the orig­
inal state machine, S M and S Md embedded in S M + 

are allowed to make different choices. For example, 
the statement var := {1, 2}; assigns var the 
value of 1 or 2. 

When a variable is assigned a set of values, all pos­
sible values are explored independently of each other. 
If S M is duplicated naively, SMV could provide a 
counterexample that chooses one value of a variable 
in S M and another value of the corresponding vari­
able in S Md, that is, the “difference” arises from acci­
dental differences or differences in execution, not from 
semantic differences. We can force S M and S Md to 
make the same choices by declaring a new global vari­
able for each nondeterministic choice. We modify both 
S M and S Md to choose depending on this common 
global variable. 

While this method is general, it is excessive for vari­
ables without explicit transitions, such as inputs. We 
can simply move their declarations to the main mod­
ule and pass them to S M and S Md as parameters. 

3.4 An Illustrative Example 
Consider the sample model in Fig. 1. As Fig. 4 illus­
trates, we rename main to original1, move decla­
rations of input variables into the new main module, 
instantiate the original and duplicate modules 

1If the original state machine description has more than one 
module, all of them must be renamed for duplication. 

(S M and S Md, respectively) in the new main, and 
pass inputs as parameters. The CTL formula asserts 
that outputs of the original and mutant modules are al­
ways the same. 

Assignment statements in the duplicate module 
from Fig. 4 are candidates for mutation. Some muta­
tions may result in a semantically invalid SMV model. 
Two cases are common. First, a mutation operator re­
placing one variable with another may generate a mu­
tant containing a circular dependency. Our tools use 
SMV’s built-in analysis to automatically remove such 
mutants from further consideration. Second, the value 
of an expression on the right hand side of an assign­
ment in the mutant may be outside of the range of the 
variable on the left hand side. Consider a mutant of an 
assignment for variable a in Fig. 1. 

a := e * (d + 1) + b; (2) 

We change the declaration of a in the mutant to expand 
its range when needed. 

The example only shows synchronous composition 
of modules. In case of interleaving, introduced by 
the keyword process in SMV, special care must be 
taken to ensure that the processes of original and dupli­
cate machines follow each other in an orderly fashion. 

3.5 Sharing Independent Variables 
Some parts of the model may not depend on the vari­
able affected by a particular mutation. Strictly speak­
ing, for any particular mutation, we need only dupli­
cate the variable whose assignment is being mutated 
and any dependent variables. Dependency analysis can 
stop at output variables. Such dependency can be de­
termined using slicing [16]. If the model has many 
modules, only the module with the mutation and any 
dependent modules need to be duplicated. 

4 Comparison of Approaches 
We performed experiments to compare the three ap­
proaches. First, we apply direct reflection, in-line ex­
pansion and SM duplication to the example in Fig. 1 
and compare them by measuring the tests generated for 
each approach against the other methods. Second, we 
compare their effectiveness for detecting seeded faults 
in an implementation of a small portion of TCAS. 

4.1 Specification-based Coverage 
In Table 1, “Mutants” is the total number of syntacti­
cally valid mutants, including consistent and duplicate 



Method Mutants UIMs UTs 
Direct 91 21 9 
SM Dupl. 28 21 7 
In-line 128 17 10 

Table 1: Number of Mutants and Tests. 

Coverage Metric 
Method Direct SM Dupl. In-line 
Direct 
SM Dupl. 
In-line 

100% 90% 76% 
100% 100% 88% 
100% 100% 100% 

Table 2: Cross-Scoring of Methods. 

mutants. “UIMs” is the number of valid, behaviorally 
unique, inconsistent mutants. In other words, this ex­
cludes all consistent mutants and all but one copy of 
inconsistent mutants which are semantic duplicates of 
other mutants. “UTs” is the number of unique coun­
terexamples or tests after duplicates and prefixes of 
longer counterexamples are removed. 

A method can serve both for generation of tests 
and as a metric for evaluation of existing tests. 
Specification-based mutation coverage metric was in­
troduced in [2]. We evaluate a method M using a 
coverage metric C as follows. We generate mutants 
using method C, but only count unique, inconsistent 
mutants. Let N be the number of these mutants. We 
turn the unique counterexamples generated by M into 
constrained finite state machines (CFSMs) represent­
ing individual execution sequences of the state ma­
chine [1], then use SMV to find which mutants from 
C are inconsistent with (killed by) at least one CFSM. 
Let k be the number of mutants killed. The coverage 
is k/N . A method gets 100% coverage when evalu­
ated against itself as a metric. Table 2 presents cross-
coverage of the three methods. 

SM duplication method performs better than direct 
reflection: it kills 100% of direct reflection mutants, 
while direct reflection kills only 90% of SM duplicati­
on mutants. The following example helps explain why. 

SM duplication method produces this counterexam­
ple to detect the mutant statement (2), Section 3.4: 

d = 0; b = 0; f = 0ff;
 
f = On;
 
b = 10; f = Off;
 

Each execution step appears on a separate line. Vari­
ables not reported are unchanged from the previous 
step. At the last step, a is 1 ∗ 0 + 10 = 10 and 

out is Low in the original state machine, but a is 
1 ∗ 1 + 10 = 11 and out is High in the mutant ma­
chine. 

Direct reflection method produces this counterex­
ample to detect the corresponding mutant, formula (1), 
Section 2.2: 

d = 0; b = 0; f = 0ff;
 
f = On;
 
f = Off;
 

At the last step, the value of the intermediate variable, 
a, is 0, which is inconsistent with the mutant formula. 
However, when a is either 0 or 1, out is Low. Hence 
the test will detect the mutant only if intermediate vari­
ables are visible. 

4.2 Effectiveness in Detecting Faults 
Our goal is to reduce the number of faults in programs. 
Therefore, we evaluate the effectiveness of the meth­
ods for detecting seeded faults in a small but realistic 
program. The subject program is a portion of TCAS 
— aircraft collision avoidance. It is a part of a set of 
programs that comes originally from [11]. 

The program consists of 9 procedures and 135 non-
blank non-comment lines of C code. There are 12 in­
put variables and one output variable. The program 
comes with 39 faulty versions derived by manually 
seeding realistic faults. 26 versions have single muta­
tions, the rest involve either multiple changes or more 
complex changes. 

In Table 3, “Mutants” and “UTs” have the same 
meaning as in Table 1. “Time” is the time (in seconds) 
required to generate the tests on a Pentium2 4 1.7 GHz 
PC with 1 GB of RAM running the Linux OS. “Cov­
erage” is the number of faulty versions detected by the 
method divided by the total number of faulty versions. 
We used NIST’s Test Assistant for Objects (TAO) [4] 
to turn the counterexamples into concrete test cases. 

Table 3 shows that SM duplication and in-line ex­
pansion approaches detect 100% of faulty versions 
while direct reflection detects only 59% of the faults. 
We attribute the magnitude of the difference to a rela­
tively large intermediate state of the program. 

The in-line expansion method produced by far the 
largest number of mutants and test cases of the three 
methods. The SM duplication method generated the 
smallest number of mutants and test cases, yet it is as 
effective as the in-line expansion method in detecting 

2Pentium is a registered trademark of Intel Corporation. 



Method Mutants UTs Time Coverage 
Direct 948 83 3.5 59% 
SM Dupl. 464 52 9 100% 
In-line 3062 139 19 100% 

Table 3: Effectiveness in Detecting Seeded Faults 

seeded faults. The SM duplication method took con­
siderably longer due to the overhead of starting SMV 
for every mutant. 

5	 Conclusion 
We presented two new methods, in-line expansion 
and state machine (SM) duplication, that use a model 
checker to choose tests which ensure fault propagation 
to visible outputs. We compared these methods and 
the previous direct reflection method based on “cross­
scoring”. In-line expansion and SM duplication meth­
ods got better coverage than direct reflection. 

The in-line expansion method is not as useful in 
practice since it quickly increases the size and number 
of logic formulas. The SM duplication method dupli­
cates the state machine thus increasing the size of the 
state space. The running example is tiny and the TCAS 
specification is relatively small, so the limits of scala­
bility have not been addressed. Dependency analysis 
by slicing is one way to improve scalability. 

Our experiments suggest that the SM duplication 
and in-line expansion methods are much more effec­
tive than direct reflection for generating black-box 
tests. To our knowledge, SM duplication is the first 
method that relies on a model checker in order to auto­
matically generate tests that guarantee fault propaga­
tion to the outputs. 
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