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Abstract 

Testing has a vital support role in the software engineer
ing process, but developing tests often takes significant re
sources. A formal specification is a repository of knowl
edge about a system, and a recent method uses such speci
fications to automatically generate complete test suites via 
mutation analysis. 

We define an extensive set of mutation operators for use 
with this method. We report the results of our theoretical 
and experimental investigation of the relationships between 
the classes of faults detected by the various operators. Fi
nally, we recommend sets of mutation operators which yield 
good test coverage at a reduced cost compared to using all 
proposed operators. 

1 Introduction 

A formal specification is a repository of knowledge 
about a system. In particular, a specification provides 
valuable information for testing programs. For instance, 
specification-based testing may detect a missing path er
ror [12], that is, a situation when an implementation ne
glects an aspect of a problem, and a section of code is alto
gether absent. Since there is no evidence in the code itself 
for the omission, such errors are very hard to find by analyz
ing the code alone. Further, code-based testing is not pos
sible for some systems because testers do not have access 
to the source code. Additionally, generating tests from a 
specification can proceed independently of program devel
opment, and the created tests apply to all implementations 
of the specification, e.g., ports. 

Ammann and Black described a novel method using a 
combination of model checking and mutation analysis to 
automatically produce tests from formal specifications [2] 
and measure test coverage [1]. The test cases considered 
in the method constitute a complete test suite, that is, all 
test cases include both inputs and expected results. Model 

checking is a formal technique for verifying that tempo
ral logic expressions are consistent with all executions of 
a state machine. Mutation analysis [9] uses mutation op
erators to introduce small changes, or mutations, into the 
specification, producing mutant specifications. Better test 
sets are those which reveal more mutants. 

Ammann and Black defined a few mutation operators 
for formal specifications, but did not consider their relative 
merits. In this paper, we describe a larger set of mutation 
operators, including some new ones. We compare, both 
theoretically and empirically, the effectiveness of the op
erators and the number of mutations they produce. For the 
theoretical comparison, we extend Kuhn’s analysis of fault 
classes [14] and tie it to mutation operators. 

1.1 Software Testing and Model Checking 

Model checking is a formal verification technique based 
on state exploration. A model checking specification con
sists of two parts. One part is a state machine defined in 
terms of variables, initial values for the variables, environ
mental assumptions, and a description of the conditions un
der which variables may change value. The other part is 
temporal logic expressions over states and execution paths. 
Conceptually, a model checker visits all reachable states and 
verifies that the temporal logic expressions are satisfied over 
all paths. When an expression is not satisfied, the model 
checker generates a counterexample in the form of a trace 
or sequence of states, if possible. 

Although model checking began as a method for veri
fying hardware designs, there is growing evidence that it 
can be applied to specifications for large software systems, 
such as TCAS II [7]. In addition to verifying properties of 
software, model checking is being applied to test generation 
and test coverage evaluation [2, 6, 10, 11]. 

In both uses, one begins with selection of a test crite
rion [12], that is, a decision about what properties of a 
specification must be exercised to constitute a thorough test. 
Some specification-based test criteria are conjunctive com
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plementary closure partitions [6], branch coverage [11], and 
mutation adequacy [1]. 

The chosen test criterion is applied to the specification to 
derive test requirements, i.e., a set of individual properties 
to be tested. To use a model checker, these requirements are 
represented as temporal logic formulas. To evaluate cover
age of a test set, each test is turned into an execution se
quence, and the model checker determines which require
ments are satisfied by the execution. See [1] for details. 

To generate tests, the test criterion is applied to ulti
mately yield negative requirements, that is, requirements 
which are considered satisfied if they are inconsistent with 
the state machine. When the model checker finds a require
ment to be inconsistent, it produces a counterexample if 
possible. The counterexamples contain both stimulus and 
expected values, so they may be automatically converted to 
complete test cases. 

Specification-Based Mutation Adequacy 

Mutation adequacy is a test criterion which naturally yields 
negative requirements. First, a set of temporal logic expres
sions restating, or reflecting, the state machine’s transition 
relation is derived mechanically [1]. This set, together with 
pre-existing expressions, if any, is consistent with the state 
machine and comprises the part of the specification to be 
mutated. 

A mutant specification is produced by applying a single 
mutation operator once to the temporal logic portion of the 
specification. Applying operators repeatedly yields a set of 
mutants. The mutants represent negative requirements, so 
they can be used for both test generation and evaluation. 

The SMV Model Checker 

We chose a popular model checker, SMV [15]. It uses Com
putation Tree Logic (CTL) [8], which is a branching-time 
temporal logic extending propositional logic with temporal 
operators. 

Here is a short SMV example. “Request” is an input vari
able, and “state” is a scalar with possible values “ready” and 
“busy.” The initial value of state is “ready.” The next state 
is “busy” if the state is “ready” and there is a request. Oth
erwise the next state is “ready” or “busy” nondeterministi
cally. The SPEC clause is a CTL formula which states that 
whenever there is a request, state will eventually become 
“busy.” 

MODULE main
 
VAR
 

request : boolean;
 
state : {ready, busy};
 

ASSIGN
 
init(state) := ready;
 

next(state) := case
 
state = ready & request : busy;
 
1 : {ready, busy};
 

esac;
 
SPEC AG (request -> AF state = busy)
 

The choice of model checker forces the specification to 
be in the language which the model checker accepts. Some 
might object that SMV’s state machine description is at too 
low a level for practitioners to use, and we agree. A practi
cal system must extract state machines from higher level de
scriptions such as SCR specifications [3], MATLAB state-
flows [4], or UML state diagrams. 

1.2 Hierarchy of Fault Classes 

Mutation operators are related to the set of fault classes 
which Kuhn analyzed [14]. The set includes:

 Variable Reference Fault (VRF) - replace a Boolean 
variable x by another variable y , x- # y .

 Variable Negation Fault (VNF) - replace a Boolean 
variable x by x x .

 Expression Negation Fault (ENF) - replace a Boolean 
expression p by p x .

 Missing Condition Fault (MCF) - a failure to check 
preconditions. 

Earlier Kuhn developed a technique [13] based on pred
icate difference for analyzing effects of changes in formal 
specifications. Applying this technique, he derived a hier
archy of fault classes used in specification-based software 
testing. 

The detection conditions for a predicate P are the con
ditions under which a change to P affects the value of the 
predicate P . A test detects an error if and only if a faulty 
predicate Pt1 evaluates to a different value than the correct 
predicate P , e.g., P EpPt1 . 

Let PPS be a predicate P with all free occurrences of vari
able x replaced by expression e . Let F be a fault in which x 
is replaced by e . The fault F is detected under the condition 
P EpP S . 

If S is a specification in disjunctive normal form (DNF), 
the conditions for detecting VRF, VNF, and ENF are:

 Sv vRSF # S EBS S , where x and y are distinct variables 
in S , and y is substituted for x .

 S  vN F # S EpS S Si , where x is a variable in S .

 SS EN F # S EBS  i , where X is an expression in S . 
The relationships between detection conditions are: 



 

 

 

 

 

 

 

 

 

 

If the variable replaced in SE ERSF is the same variable 
negated in Sv EN F , then Sv vRSF R Sv vN F . 

If all expressions containing the variable negated in
S  vN F are negated in S  vN F , then S  vN F R S  vN F . 

Kuhn concludes that any test that detects a VRF for a 
variable in a predicate also detects a VNF for the same vari
able, and any test that detects a VNF for a variable also 
detects an ENF for the expression in which the variable oc
curs. 

We use Kuhn’s approaches and theoretical conclusions to 
analyze mutation operators. Section 2 defines mutation op
erators for specifications together with their respective fault 
classes. Section 3 investigates the relationships between de
tection conditions for several fault classes analytically and 
compares the effectiveness of the mutation operators exper
imentally. We present our conclusions about the relative 
merit of mutation operators in Section 4. 

2 Specification Mutation Operators 

We use the following overall guiding principles [17] to 
formulate and implement our mutation operators: 

1. Mutation categories should model potential faults. 

2. Only simple, first order mutants should be generated. 

3. Only syntactically correct mutants should be gener
ated. 

4. The user should have control over the selection of 
which mutation categories to apply at any one time. 

The first principle means it is important to recognize dif
ferent types of faults. While presenting mutation operators, 
we state which specification fault classes are modeled by 
the operators. In fact, each mutation operator is designed to 
uncover faults belonging to the corresponding fault class. 

Since we are interested in relating our work to the theo
retical results obtained in [14], we define the mutation oper
ators so that their respective fault classes closely correspond 
to those definitions. For example, consider the following 
fault. The constant ce is replaced with constant ce in the ex
pression x # c  , where x is a variable. If Boolean variables p  and p  represent x # c  and x # c  , respectively, then 
this is a variable reference fault (VRF). To account for this 
and similar cases, we need the definitions below. 

2.1 Definitions 

We define, similarly to [16], a simple expression as one 
of the following, possibly negated: 

A Boolean variable. 

An expression t o k e # t o k en 2 , where t o k en le anden l e

t o k e
en 2 are either a variable of type scalar or a conava sstant, e.g., set p t e # y , where set p t e is a variable 
and v, s y is a constant from the domain of set p t e . 

pA simple relational expression: t o k een l o p ere t oor
t o k e e een 2 , where t o k en l and t o k en 2 are either a vari
able of type integer or a constant, o p ere p t oor is one of abteebt # t # te , or 2 . 

A compound expression consists of at least one binary 
Boolean operator (including conjunction, disjunction) con
necting two or more expressions, and possibly negation op
erators and parentheses. 

We consider two kinds of operands in CTL: state vari
ables and symbolic constants. State variables may be of 
Boolean, scalar or integer type. Value of a scalar variable 
is drawn from a finite set of constants. An integer variable 
takes value from a range. An SMV specification may also 
contain symbolic constants defined by the user to represent 
integers. 

We define  UT o  v vR to be the set of unique traces gener
ated by mutation operator 0 P .bEe 

Additionally, the following notation is used throughout 
the paper:

  and 1 represent disjunction and conjunction respec
tively in the formulas. However, when presenting 
SMV specifications we use instead I and & , since they 
are a part of SMV syntax. 

R represents implication, E represents exclusive or. 

1 and 0 are used to denote “true” and “false,” respec
tively. 

2.2 Categories of Mutation Operators 

Each fault class has a corresponding mutation operator. 
Applying a mutation operator gives rise to a fault in that 
class. For example, instances of the missing condition fault 
(MCF) class can be generated by a missing condition oper
ator (MCO). Note that the abbreviation of the mutation op
erator ends in O, and the abbreviation of the corresponding 
fault class ends in F. Below we define mutation operators 
for common fault classes. 

Although mutation operators are independent of any par
ticular specification notation, here we present them for CTL 
specifications. Illustrative mutants for each operator are 
shown in Table 1. 

Operand Replacement Operator (ORO). 



 

 

 

 

 

 
 

 

 

  
  

 
 

 

 

 
 

Replace an operand, that is, a variable or constant, by 
another syntactically legal operand. 

Do not replace the operand if it results in a constant ( c lp po p eer t oor ce2 ) or reflexive ( x o p ere t oor x ) expression, 
since an equivalent mutant is produced by applying the 
Stuck-At operator described below. Do not replace a 
number with another number, since this may result in 
too many mutants. 

Simple Expression Negation Operator (SNO). 

Replace a simple expression by its negation. 

Expression Negation Operator (ENO). 

Replace an expression by its negation. Temporal ex
pressions, such as AG and EF, are not negated since 
SMV does not produce counterexamples from such 
mutants. 

Logical Operator Replacement (LRO). 
t t RReplace a logical operator ( & I ) by another logical 

operator. 

Relational Operator Replacement (RRO). 
abteebte bt t # t #Replace a relational operator ( 2 ) by 

any other relational operator, except its opposite. For 
example, do not replace a with its opposite, 2 , be
cause that is the same as negating the expression. Only # #replace or when applied to an integer expressions. 

Missing Condition Operator (MCO). 

Delete conditions (only simple expressions) from con
junctions, disjunctions, and implications. 

Stuck-At Operator (STO). 

This consists of two operators: stuck-at-0, replace a 
simple expression with 0, and stuck-at-1, replace a 
simple expression with 1. 

Associative Shift Operator (ASO). 

Change the association between variables, e.g., replace wx R y  a& y & y o with x w 
R 
R y 2) & y  e& y o . We do not 

replace the formula with x y & y 2) & y o . This re
duces the number of mutants generated by ASO. 

Table 1 contains mutants generated from three formulas: 
the CTL formula presented in Section 1.1, the formula “AG R(x & y z)” (by ASO), and the formula “AG (WaterPres a 100)” (by RRO).
 

If the number of atoms (variables and constants) in a
 
specification is  and the number of value references is , 
ORO results in 0 w  n* e) mutants, whereas SNO, LRO, 
MCO, STO, ASO and RRO result in 0 w e) mutants. 

Operator Example Mutants RORO AG (request AF state = ready) RSNO AG (!request AF state = busy) 
AG (request R AF (!state = busy)) RENO AG (!(request AF state = busy)) 

LRO AG (request & AF state = busy) 
AG (request I AF state = busy) 

MCO AG AF state = busy RSTA AG (0 AF state = busy) 
AG (1 R AF state = busy) 
AG (request R AF 0) 
AG (request R AF 1) RASO AG (x & (y z))a #RRO AG (WaterPres 100) 
AG (WaterPres 100) 
AG (WaterPres # 100) 
AG (WaterPres ! # 100) 

Table 1. Mutation Operators and their Illustra
tive Mutants. 

2.3 Correspondence to Kuhn’s Fault Classes 

Our mutation operators generally do not correspond ex
actly to Kuhn’s fault classes [14]. Consider a fault when aexpression x c is replaced with x c , where x is a 
variable and c is a constant. If we have boolean variables arepresent x c and x c , this is a variable reference fault 
(VRF). 

If we combine ORO and RRO into a single operator, 
ORO + , this new operator generates a class of faults closely 
matching VRF. We call its corresponding fault class ORF + . 

For analysis, we define a mutation operator which gener
ates a class of faults identical to VRF. This Simple Expres
sion Replacement Operator (SRO) replaces a simple expres
sion by every other syntactically valid simple expression of 
atoms in the model. 

SRO sometimes generates higher order mutants, so by 
Woodward’s principle [17], it should not be used for test 
generation. Additionally, the operator produces a very large 
number of mutants. Not surprisingly, SRO generates a set of 
mutants which includes those of ORO + , thus  UT o  oER s+ C
UTuT R o . 

3 Comparison of Mutation Operators 

In this section we analyze the relationships between sev
eral fault classes for restricted form of specifications, and 
we study the mutation operators experimentally. 



   
      

  
  

 

 
 

   
 

  

 

       
  

                  
  

          
         
     

   

     

  
 

  
    

  

 
   

  
 

  

 
   

 
 

   
   

 
   

   
   

  

 
3.1 Theoretical Comparison of Fault Classes 

Analysis of Faults in Formulas 

For analysis, we only consider specifications with formup p ayplas in disjunctive normal form (DNF), i.e.,   v v   vbb no o o  a a  a l , where ) p t v. t   t a2 are sim
ple expressions. Here and in the theorem proof below, 1p p   p yis sometimes omitted, e.g., is a shorthand for p 1 p 1   1 p y . 

Let x be a simple expression in a formula S , and X be a 
possibly compound expression in S . Here are the detection 
conditions for several fault classes: 

#S T N F S EBS Si .S

#
S  vN F S EBS i . 

SuTsr F # uTsr S 1 S S sr S # S E S , S #S uTsr , where T S S uTsr
S EpS S . 

#S S E S S , where y is a simple expression in S ,uT RSF
#
y x . 

The definitions of S T N F and S T RSF are identical to the 
definitions of S  EN F and S  vRSF in Section 1.2 except that 
“simple expression” is substituted for “variable”. Simple 
expression was defined to closely correspond to the Boolean 
variable in [14]. The definition of S  vN F comes from Sec-Rtion 1.2. So under conditions in that section, S T N FRSS vN F and SuT RSF SuT N F . 

ORF and ORF + are not defined for expressions; there
fore, we cannot strictly analyze their relationship to S T N F . 
However, since ORF and, especially, ORF + , are defined to 
closely match VRF, we believe that ORO + detects SNF. 

Theorem If the simple expression replaced by O or l in
SuTsr F is the same simple expression negated in S T N F ,Rthen S sr F S .T uT N F 

Proof. RAs in [14], the theorem follows if d S S d sg : andSg : S iR g :g : id S d S g : .g :
The detection conditions for arbitrary stuck-at-0 and 

simple expression negation faults are d S g :S # S EpS S g : and
i id S g : # S EpS g : .g : g : # w x v vx  o o o x v b o o o w aFor simplicity, let B ) 1 1 xa Fo o oe a lx x )  
d S S g : # 

w p p   p y v v   v b Vo o o Va a   a l ) Ew v v v b ao o o Ia a a l # w p p p y #w O     )   EEO ) 1IB
p p   p y
 ) 11B . 
d S g :i # w p p   )yp v v   bbv Vo o o Va a   a l ) Ew p x p g :  ayp v v   vbb .o o o ·a a   a l ) #w p p pay p p  pay 1B # w p pay  E x  ) 1   ) 11B .p RSince p p   ay p   pay , then d S S g : R d S gig : : . 

Similarly, for a stuck-at-1 fault, since d S g : # S E S g : # p Rw p x p   )y ) 1nB , then d S g : d S g :i .R g :
Therefore, S srT F S T N F . Q.E.D.
 
Now consider MCF and STF. Dropping a simple expres#sion x from a conjunction is the same as setting x l , 

which is a stuck-at-1 fault. Dropping x from a disjunction #is the same as setting x O , a stuck-at-0 fault. Therefore, RSuTsr F SSM  EF . 

Test Generation from Actual Specifications 

Actual specifications are generally not in DNF. The mutants 
of a DNF representation are different from the mutants of 
the original. One part of our current research is to determine 
what effect, if any, this difference has on resulting tests. 

To illustrate the difference, let S be a specification and S 1 
be the DNF representation of S . Some first order mutants of 
S cannot be generated from S 1 since they are higher order 
mutants of S 1 , and some first order mutants which would be 
generated from S 1 are actually higher order mutants of the 
original S . 

# R #For example, if S x y , then S 1 x y x x y x x y x . 
Setting the first appearance of x to 0 in S 1 results in x x y#x x y x x x , which is not a first order mutant of the original 
formula and is an unlikely error. 

Consequently, we apply mutation operators to the unal
tered specification, and the theoretical results do not strictly 
apply. 

Suppose OP1 and OP2 are mutation operators and F1 
and F2 are their respective fault classes. Suppose also thatRS F S F . This suggests that OP1 detects F2, that is,
UT o C T o . However, the implication may be triv

ially true because S F is universally false or S F is univer
sally true. Consider the case where OP1 generates a consis
tent mutant, e.g. , if the specification is SPEC AG (x I y),#then S x w y , and w# #d S S x y ) E l y ) x x 1 y x .


# #
d S Si w x y ) E w x x y ) y x .S RTherefore, d S S d S Si . However, the mutant generated S
by setting x to 1 is always true and does not result in a test 
case. 

Similarly, OP1 may not generate a mutant. Suppose 
an SMV specification contains only one variable, x , of 
type Boolean, and one clause SPEC AG (x). SRO does 
not generate any mutants, whereas SNO generates a mu
tant with x x . This mutant is likely to produce a test case. REven though S T RSF uTS N F , since  UT T R o is empty,
UT T N o C T T R o , and SRO does not detect SNF in this 

case. 
Since the same test case is usually derived from a num

ber of mutant specifications, we hypothesize that the issues 
mentioned in this section do not significantly affect the re
sults for SMV specifications of considerable size. However, 



 

 

 

SPEC 
clauses 

Boo-
leans 

Sca
lars 

Inte
gers 

Total 
vars 

Cruise 
Control 14 8 3 0 11 
Safety 

Injection 22 1 3 1 5 
CPU 
Stack 21 1 3 0 4 

U - I Unique 
Mutants Mutants Traces 

Cruise Control 879 116 24 
Safety Injection 730 86 21 
CPU Stack 924 81 9 

Table 2. Number of CTL Formulas and Vari
ables in Sample Specifications. 

it is important to experimentally support these theoretical 
results. 

3.2	 Empirical Comparison of Mutation Opera
tors 

To empirically confirm these results, we developed an 
extensible tool for generating mutations of SMV specifica
tions, using the SMV parser. It allows us to selectively ap
ply mutation operators. Resulting individual mutations may 
be left in individual SMV files or combined into a single file 
for faster model checking. The source code and documen
tation are available from the authors. 

We ran experiments on three SMV specifications to com
pare the mutation operators in terms of the number of test 
cases produced and the specification coverage. Table 2 
shows the number of CTL formulas and the number of vari
ables in each of the specifications. Here are some additional 
details: 

Cruise Control [3] 

Two of the scalar variables have the same domain:T 
Activate, Deactivate, Resume } . The third has a do

main of cardinality 5. 

Safety Injection [5] T 
Two scalar variables have the domain: On, Off } . The 
third has a domain of cardinality 3. The integer vari
able takes values between 0 and 200, but it is only com
pared with 2 different symbolic constants. 

CPU Stack 

The scalars have domains with cardinality 3, 4, and 6, 
respectively. 

Empirical Evaluation of Mutation Operators 

Table 3 gives the total number of mutants, the number of se
mantically unique, inconsistent (U-I) mutants, and the num
ber of unique test cases or traces generated by applying the 
mutation operators to the sample specifications. 

Table 3. Number of Mutants and Traces for 
Specifications. 

Operator Mutants CEs UTs Coverage 
ORO + 405 152 24 100% 
ORO 405 152 24 100% 
SNO 72 47 21 96.6% 
ENO 130 105 21 96.6% 
LRO 116 87 14 87.9% 
RRO - - -
MCO 72 40 18 93.1% 
STO 144 47 21 96.6% 
ASO 12 8 4 62.9% 

Table 4. Cruise control example results. 

Operator Mutants CEs UTs Coverage 
ORO + 202 99 21 100% 
ORO 130 63 17 94.2% 
SNO 83 51 15 90.7% 
ENO 144 104 15 90.7% 
LRO 122 82 10 83.7% 
RRO 72 36 10 50.0% 
MCO 79 50 13 87.2% 
STO 166 51 15 90.7% 
ASO 17 17 5 47.7% 

Table 5. Safety injection example results. 

Operator Mutants CEs UTs Coverage 
ORO + 279 135 9 100% 
ORO 279 135 9 100% 
SNO 75 52 7 97.5% 
ENO 129 100 7 97.5% 
LRO 129 46 5 90.1% 
RRO - - -
MCO 109 38 7 97.5% 
STO 256 52 7 97.5% 
ASO 22 20 4 85.2% 

Table 6. CPU Stack example results. 



 

 

 

 

We present details in Tables 4, 5, and 6. As in Table 3, 
“Mutants” is the total number of mutants generated by each 
operator, including consistent and duplicate mutants. Since 
SNO mutants are a subset of ENO mutants, we do not in
clude SNO mutants in the number of mutants in Table 3. 
Next we give the number of counterexamples, “CEs,” found 
in the SMV runs. “UTs” is the number of unique traces after 
duplicate traces and prefixes are removed. 

We use the specification-based coverage metric intro
duced in [1]. We exclude all consistent mutants. We also 
exclude all but one copy of inconsistent mutants which are 
semantic duplicates of other mutants, e.g., those which ale 
ways evaluate to the same result. Let be the number of 
U-I mutants generated by all operators for a given exam
ple. We turn the unique traces from each operator into con
strained finite state machines, then SMV finds which mu
tants are killed. Let k be the number of mutants killed. The y 
coverage is N . 

Results for RRO appear only for Safety Injection, since 
it is the only example with relational operators. 

Discussion 

ORO + generates the largest number of mutants, but pro
vides the same set of test cases as all the operators com
bined. Consequently, it has 100% coverage. 

SNO, ENO, and STO each provide second best coverage. 
SNO, however, generates significantly fewer mutants. 

MCO provides slightly less coverage while generating a 
small number of mutants. As mentioned in [14], a common 
implementation error is the failure to validate input data or 
check preconditions. This is an MCF. Since MCO is de
signed to detect MCF, its good performance should not be 
surprising. 

LRO generates a large number of mutants and provides 
good coverage for each example. ASO has low coverage, 
but generates very few mutants. 

In these examples, we found the following relationships 
between the sets of unique traces:

 UTuT N o C  UT ovR o
 UT	 M o C  UT Tsr o
 UT	 T N o C  UT Tsr o
 UT	  vN o C  UT T N o 

These results agree with the analysis in Section 3.1. In 
particular, they support the idea that ORO is sufficient to 
detect faults in ORF, SNF, and ENF. This suggests that SNO 
and ENO are not needed if ORO is used. 

4	 Conclusions 

It is widely accepted that testing is a crucial, but some
times overlooked, part of software engineering. Develop
ing adequate test sets is often a labor-intensive and tedious 
task. A recent method, combining mutation analysis and 
model checkers, automatically generates complete test sets 
from formal specifications. In this paper, we report that we 
refined or invented several useful specification mutation op
erators for this method and we compared these and other 
operators. 

We found that a combination of Operand Replacement 
and Relational Operator Replacement mutation operators, 
ORO + , has the most coverage of all the operators we con
sidered, but generates a large number of mutants. The Sim
ple Expression Negation Operator, SNO, has good cover
age, and generates a small number of mutants. The Missing 
Condition Operator (MCO) has similar coverage to and gen
erates about the same number of mutants as SNO. However, 
MCO may be preferred since it models missing predicates, 
a common programming fault. The other mutation opera
tors had poorer coverage or generated more mutants than 
these three operators. 

The theoretical analysis and experimental data are con
sistent with each other, supporting our claim that these mu
tation operators are practical for automatically generating 
complete test sets from specifications. 
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