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Abstract. Historically, multivariate public key cryptography has been less 
than successful at offering encryption schemes which are both secure and ef­
ficient. At PQCRYPTO ’13 in Limoges, Tao, Diene, Tang, and Ding introduced 
a promising new multivariate encryption algorithm based on a fundamentally 
new idea: hiding the structure of a large matrix algebra over a finite field. 
We present an attack based on subspace differential invariants inherent to this 
methodology. The attack is a structural key recovery attack which is asymp­
totically optimal among all known attacks (including algebraic attacks) on the 
original scheme and its generalizations. 
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1 Introduction 

In the mid 1990s, Peter Shor developed efficient algorithms for factoring and computing 
discrete logarithms with quantum computers [1]. Since that time, the state-of-the-art 
of quantum computing has changed significantly, indicating that large scale quantum 
computing may become an eventual reality. In the years since Shor’s discovery, there has 
emerged a rapidly growing community dedicated to the task of constructing algorithms 
resistant to cryptanalysis with quantum computers. 

Multivariate Public Key Cryptography(MPKC) is one among a few serious candi­
dates to have risen to prominence as post-quantum options. The appeal of MPKC is due 
to several factors. The fundamental problem of solving a system of quadratic equations 
is known to be NP-hard, and so in the worst case, solving a system of generic quadratic 
equations is unfeasible for a classical computer; neither is there any indication that the 
task is easier in the quantum computing paradigm. Furthermore, experience indicates 
that this problem is hard even in the average case; thus multivariate cryptosystems at 
least have a chance of being difficult to break. Secondly, multivariate cryptosystems 
are often very efficient, see [2–4]. Finally, such cryptosystems can be very amenable to 
the user demands, with multiple parameters hidden within the system which can be 
altered by the user to achieve different performance goals. 

Though MPKC has a turbulent history with many schemes failing against only a 
few attack techniques, there are still some entirely usable and trustworthy quantum-
resistant multivariate signature schemes. Specifically, UOV [5], HFE- [6], and HFEv­
[7] are noteworthy in this regard. Moreover, some of these schemes have optimizations 
which have strong theoretical support or have stood unbroken in the literature for some 
time. Specifically, UOV has a cyclic variant [8] which reduces the key size dramatically, 

mailto:daniel.smith@nist.gov
mailto:ray.perlner@nist.gov
mailto:dustin.moody@nist.gov


2 D Moody, R Perlner, & D Smith-Tone 

and QUARTZ, an HFEv- scheme, has had its parameters tweaked [9] due to greater 
confidence in the complexity of algebraically solving the underlying system of equations 
[10]. 

Where MPKC has failed more directly has been encryption. There is a striking lack 
of reliable multivariate encryption schemes in the literature. Many attempts, see [11, 
12] for example, have been shown to be weak based on rank or differential weaknesses. 
The most recent and promising attempt, by Tao et al., see [13], uses a fundamentally 
new structure for the derivation of an encryption system. Specifically, the scheme masks 
matrix multiplication to generate a system of structured quadratic equations. 

In this article, we present a structural attack which is the asymptotically optimal 
s+4attack on this matrix encryption scheme, having a complexity on the order of q , 

where s is the dimension of the matrices in the scheme. This technique uses a differential 
invariant property of the core map to perform a key recovery attack. We reevaluate 
some of the security analysis from the original ABC specification and conclude that 
this attack is asymptotically optimal among structural attacks. In fact, the attack uses 
a property which uniquely distinguishes the isomorphism class of the core map from 
that of a random collection of formulae. This attack asymptotically defeats algebraic 
attacks as well, though falling short of the benchmark established by generic algebraic 
attacks for the original parameters. This result supports the security claims of the 
designers (modulo decryption failure). 

The paper is organized as follows. In the next section, we present the structure 
of the original ABC encryption scheme. The following section reviews some of the 
previous cryptanalyses of the scheme, and clarifies some of the previous attacks. In the 
subsequent section, we recall differential invariants. The differential invariant structure 
of the ABC scheme is then presented and the effect of this structure on minrank 
calculations is derived. In the following section, the complexity of the full attack is 
calculated and compared to the complexity of other valid structural attacks. Finally, 
we review these results and discuss the implications for the practical security of the 
ABC scheme. 

2 The ABC Matrix Encryption Scheme 

In [13], Tao et al. introduce the ABC Matrix encryption scheme. For the simplicity of 
the exposition, we will analyze the original scheme noting that all results carry over 
exactly as stated to the updated version, see [14]. 

The scheme depends on an initial parameter s ∈ N. The public key consists of 
2n = s2, variables taking values in a fixed finite field k = Fq, and m = 2s equations. 

The system utilizes the butterfly construction, creating a private collection of formulae 
Q, and deriving a public key P by composing two invertible linear transformations 
U ∈ GLn(k) and T ∈ GLm(k), so that P = T ◦ Q ◦ U . What makes the system unique 
is the derivation of the map Q. For ease of analysis later, we will denote plaintext by x̄ = 
(x1, . . . , xn) ∈ kn, ciphertext by ȳ = (y1, . . . , ym) ∈ km, and the input and output of Q 
by ū = (u1, . . . , un) = U(x1, . . . , xn) ∈ kn and v̄ = (v1, . . . , vm) = T −1(y1, . . . , ym) ∈ 
km, respectively. The construction begins by defining three s × s matrices A, B, and 
C. Specifically, we have: ⎤⎡⎤⎡ 

u1 u2 · · · us b1 b2 · · · bs 

A = 
⎢⎢⎢⎣ 

us+1 us+2 · · · u2s 
. . .. . . . . 

⎥⎥⎥⎦ , B = 
⎢⎢⎢⎣ 

bs+1 bs+2 · · · b2s 
. . .. . . . . 

⎥⎥⎥⎦ , . . . . . . . . 
us2−s+1 us2−s+2 · · · us2 bs2−s+1 bs2−s+2 · · · bs2 
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and ⎤⎡ 

C = 
⎢⎢⎢⎣ 

c1 c2 · · · cs 

cs+1 cs+2 · · · c2s 
. . . . . . . . . . . . 

· · · 2cs2−s+1 cs2−s+2 cs

⎥⎥⎥⎦ 
. 

Here the bi and ci are linear combinations of the ui chosen independently and uniformly 
at random from the collection of all possible k-linear combinations of the ui. 

Next, the s × s matrices E1 = AB and E2 = AC are constructed. Since all of 
A, B, and C are linear in ui, E1 and E2 are quadratic in the ui. Finally, setting 
Q(l−1)s2 +(i−1)s+j to be the (i, j )th element of El, we have the private key T , Q, U and 
the public key P = T ◦ Q ◦ U . 

Encryption with this system is standard: given a plaintext (x1, . . . , xn), compute 
(y1, . . . , ym) = P (x1, . . . , xn). Decryption is somewhat more complicated. 

To decrypt, one inverts each of the private maps in turn: apply T −1, invert Q, and 
apply U−1. To “invert” Q, one assumes that A is invertible, and forms a matrix ⎤⎡ 

A−1 = 
⎢⎢⎢⎣ 

w1 w2 · · · ws 

ws+1 ws+2 · · · w2s 
. . . . . . . . . . . . 

· · · 2ws2−s+1 ws2−s+2 ws

⎥⎥⎥⎦ , 
where the wi are indeterminants. Then using the relations A−1E1 = B and A−1E2 = C, 
we have m = 2s2 linear equations in 2n = 2s2 unknowns wi and ui. (We note here that 
it would be more correct to say A−1( ̄u)E1( ̄u) = B( ̄u) and A−1( ̄u)E2( ̄u) = C( ̄u), since 
the values of these matrices depend on ū.) Using, for example, Gaussian elimination 
one can eliminate all of the variables wi and most of the ui. The resulting relations 
can be substituted back into E1( ̄u) and E2( ̄u) to obtain a large system of equations in 
very few variables which can be solved efficiently in a variety of ways. 

In [14], the scheme is revised, replacing the square matrices A, B, and C with 
matrices of dimension s × r, r × u, and r × v, respectively, where r < s. In addition, 
the matrix A consists of random linear forms just as B and C in the improved scheme. 
The public key is constructed in the exact same way, and encryption is performed 
by evaluating the public polynomials at the plaintext. Decryption is analogous to the 
original scheme, except now, since A is s × r, only a left inverse of A on kr is needed, 
so the matrix W , a left inverse, is r × s such that W A = Ir, the r × r identity matrix. 
Such a W plays the role of A−1 in the decryption, and decryption proceeds as above. 

3 Security Claims, Revisions, and Corrections 

3.1 Decryption Failure 

In [13], it was claimed in error that the probability of decryption failure in the ABC 
scheme is very small, depending specifically on the probability that dim(ker(A)) ≤ 2. 
This mistake was corrected in [14], revealing that the probability is approximately 
q−1, where |k| = q. Also in [14], the scheme was generalized so that decryption can 
be accomplished as long as A (reparametrized as an s × r matrix) merely has a left 

r−s−1inverse as a function on kr, which occurs with high probability, roughly 1 − q
when s > r. 
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3.2 HOLEs Attack 

In [13], HOLEs attack analysis against the scheme was presented. Consider the equation 

BE−1E2 = C. (1)1 

sFor B, C, E1, E2 ∈ Ms(k), we can consider the characteristic polynomial f(x) = x + 
s−1as−1x + · · · + a1x + a0 of E1, and then we have that E1(−Es−1 − as−1E

s−2 + · · · −1 1 
a1I) = det(E1)I by the Cayley-Hamilton theorem. In fact, the set of all polynomials 
evaluating to this scalar matrix at E1 is a0+(mink(E1)), where mink(E1) is the minimal 
polynomial of E1. Let xg(x) ∈ a0 +(mink(E1)) be a polynomial of smallest degree with 
constant coefficient zero. Since det(E1)I is a scalar matrix, it is in the center of GLs(k), 
and so multiplying equation (1) on the left by −E1g(E1) = det(E1)I, we obtain 

Bg(E1)E2 = det(E1)C. (2) 

In this equation, g clearly depends on E1, which for the purposes of the HOLEs at­
tack is a function of ȳ. Thus to create a similar relation for plaintext/ciphertext pairs re­
quires us to consider B(x̄), C(x̄) ∈ Ms(k[x1, . . . , xn]) & E1(ȳ), E2(ȳ) ∈ Ms(k[y1, . . . , ym]), 
where k[·, . . . , ·] is a polynomial ring in the indeterminants x1, . . . , xn and y1, . . . , ym, 
respectively. Then by the invertibility of T we have that the minimal polynomial of 
E1(ȳ) is equal to the characteristic polynomial. Thus there is a polynomial g(z) ∈ 
k(y1 . . . , ym)[z] of degree s − 1 (specifically (− mink(y1,...,ym)(E1(ȳ)) + det(E1(ȳ)))/z) 
such that zg(z) = det(E1(ȳ)). Clearly, if E1(ȳ) is singular then equation (1) is invalid; 
however, equation (2) still holds since 

Bg(E1)E2 = Bg(AB)AC = BAg(BA)C = 0, 

with the last equality due to the fact that the characteristic polynomials of AB and 
BA are identical. We may then obtain the relation (2). Notice that if U and T are 
linear as in the original description of the scheme then this equation is homogeneous 
of degree s + 1, specifically: 

n mm m 
αi,j1,...,js xiyj1 · · · yjs = 0. (3) 

i=1 j1,...,js=1 

Even in this more manageable situation, the complexit of finding a nontrivialyy m y m 
m 2 2s 2 

solution is immense. First, the adversary must generate O(n ) = O(s ) plain­s sy m y m 
2 2s 2 

2 2s 2 

text/ciphertext pairs, and then solve a system of roughly s equations in ss sy m 
2 2s 2 

variables. The complexity of this operation is roughly (s )ω where ω = 2.3766 op­s 
erations. In the more realistic scenario of having a nonhomogeneous system, the analysisy m 

2 2s +sin [13] indicates that the complexity of the HOLEs attack is O((s
s 

+ 2s2 + 1)ω).s 

Remark 1 It is important to note that the HOLEs attack fails in the generalization 
[14] because the matrices are no longer square. 

3.3 Rank Attacks 

Rank attacks use linear maps associated with the public key to detect abnormal be­
havior. In the context of the ABC scheme, we may look at the associated quadratic 
forms of the public and private keys, or more or less equivalently, at the differentials 
of these maps. The MinRank attack searches for maps of low rank when viewed as 
matrices. We will discuss the MinRank attack in greater detail as well as a variant of 
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the high rank attack not considered in [13] in Sections 5 and 6. The dual rank attack 
searches for a small subspace of the plaintext space which is in the kernel of a large 
subspace of the span of the maps. 

In [13], it was stated that the task of finding a subspace of dimension n − 2s of 
the associated quadratic forms which share a common nonzero element in their kernels 

6is of complexity O(n q2s). This claim is overcautious. Given an element Q0 in the 
first row of either E1( ̄u) or E2( ̄u), the formula is derived from the product of the first 
row of A( ̄u) and some column of B( ̄u) or C( ̄u) respectively. Since these columns are 
independent of one another and follow the uniform distribution on the set of all column 
vectors (the joint distribution is inherited from the i.i.d. entries of B and C), Q0 has 
rank 2s with near certainty. Since Q0 has a matrix representation in the block form: ⎤⎡ ⎥⎥⎥⎦

R2 · · · Rs 

Rs+1 

R1 ⎢⎢⎢⎣Q0 = . . . 0 
R2s−1 

, 

 where each Ri is an s×s matrix, any element z̄ in the kernel of Q0 has an s-dimensional 
2 

s−1 q s −qj 

leading block of zeros with probability which is extremely close to one. 2j=0 qs

The first s rows of Q0 put a further s constraints on z̄. Given that the condition of 
being in the kernel of s such maps of the same structure results in an expected solution 
space of dimension 0, it is clear that there is no nontrivial element in the kernel of 
any large subspace of the span of the associated matrices. Thus the dual rank attack 
is nonexistent for the ABC scheme. 

3.4 Algebraic Attacks 

Based on an analysis of the degree of regularity for the ABC scheme the designers com­
puted a degree of regularity dreg = 9, and given the formula from [15] they estimated 
the complexity of the algebraic attack to be approximately  2.3766   2.3766 

n + dreg 73 ≈ 286 .=
dreg 9

4 Subspace Differential Invariants 

Let f : kn → km be an arbitrary fixed function on kn . Consider the differential 
Df (a, x) = f(a + x) − f(a) − f(x) + f(0). We can express the differential as an n-tuple 
of differential coordinate forms in the following way: [Df (a, x)]i = aT Dfix, where Dfi 
is a symmetric matrix representation of the action on the ith coordinate of the bilinear 
differential. 

In [16], the following definition of a differential invariant was provided: 

Definition 1 A differential invariant of a map f : kn → km is a subspace V ⊆ kn 

with the property that there exists a W ⊆ kn of dimension at most dim(V ) for which 
simultaneously AV ⊆ W for all A ∈ S pani(Dfi). 

The motivation for the definition is to capture the behaviour of a nonlinear function 
which acts linearly on a subspace. 

We note that any simultaneous invariant of all S pani(Dfi) satisfies the above defi­
nition, as well as invariants in the balanced oil and vinegar primitive, which are found 
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in the product of an element and the inverse of another element in S pani(Dfi). A 
differential invariant is thus a more general construct than a simultaneous invariant 
among all differential coordinate forms. 

A natural generalization of the notion of a differential invariant is a subspace dif­
ferential invariant. 

Definition 2 A subspace differential invariant of a map f : kn → km with respect to a 
subspace X ⊆ km is a subspace V ⊆ kn 

dimension at most dim(V ) such that simultaneously AV ⊆ W for all A =
 with the property that there exists a W ⊆ kn of 

m 
i=1 xiDfi 

where (x1, . . . , xm) ∈ X, i.e. A ∈ SpanX (Dfi). 

While the motivation for the differential invariant is to detect the linear action of a 
function on a subspace, the motivation for the subspace differential invariant is to detect 
the linear action of a subspace of the span of the public polynomials on a subspace of 
the plaintext space. 

5 The Differential Invariant Structure of the ABC scheme 

5.1 Prototypical Band-Spaces 

Each component of the central Q( ̄u) = E1( ̄u)||E2( ̄u) map may be written as: 

ms
Q(i−1)s+j = u(i−1)s+lb(l−1)s+j , (4) 

l=1 

for the E1 equations, and likewise, for the E2 equations: 

ms
Qs2+(i−1)s+j = u(i−1)s+lc(l−1)s+j (5) 

l=1 

where i and j run from 1 to s. 
2Note that these 2s component equations may be grouped into s sets, indexed by 

i, of 2s equations. In particular note that the only quadratic monomials contained 
in Q(i−1)s+j and Qs2+(i−1)s+j are those involving at least one factor of the variables 
u(i−1)s+1, . . . , u(i−1)s+s. Moreover, since the coefficients of the linear polynomials br(u) 
and cr(u) are uniformly random and independent, the nonzero coefficents are uniformly 
random and independent within each set of 2s equations. 

Definition 3 The ith band-space of maps Bi is the 2s-dimensional space of quadratic 
forms given by 

Bi = S pan{Q(i−1)s+1, Q(i−1)s+2, . . . , Qis, Qs2 +(i−1)s+1, Qs2+(i−1)s+2, . . . , Qs2+is}. 

In particular, the ith band-space is the span of the maps in the private key derived from 
the product of the ith row of A with the columns of B and C. 

Any map Q0 in the ith band-space has a differential in block form: ⎤⎡ 

DQ0 = 

⎢⎢⎢⎢⎣ 

0 0R1 

RT R2 R31 

RT0 03 

⎥⎥⎥⎥⎦ 
(6) 
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having a band of nonzero values restricted to the ith s-dimensional block column and 
ith S-dimensional block row, hence the name. Notice that any vector ū of the form: 

(u1, . . . , u(i−1)s, 0, . . . , 0, uis+1, . . . , us2 )T 

is mapped to a vector v̄ of the form: 

(0, . . . , 0, v(i−1)s+1, . . . , vis−1, 0, . . . , 0)
T 

by the differential of any map in Bi. Therefore, the space of all such ū is a subspace 
differential invariant of Q with respect to Bi. 

5.2 Generalized Band-Spaces 

A critical observation is that the band-spaces associated with the rows of A are not 
the only band-spaces corresponding to a subspace differential invariant. 

s
Definition 4 Fix an arbitrary vector v in the rowspace of A, i.e. v = d=1 λdAd 

where Ad is the dth row of A. The 2s-dimensional space of quadratic forms Bv given by 
the span of the columns of vB and vC is called the generalized band-space generated 
by v. 

Theorem 1 There is a subspace V ⊆ kn which is a subspace differential invariant 
with respect to Bv for all v in the rowspace of A. Moreover, rank(DQ) ≤ 2s for all 
Q ∈ Bv. 

Proof. We prove the result for v = λ1A1 + λ2A2, an arbitrary linear combination of 
the first two rows of A. The general result follows from an analogous argument. 

Any quadratic form in Bv is a linear combination of the columns of vB and vC , 
s s s

Q0 = γlvBl + δlvCl. This quantity can be rewritten as Q0 = v( γlBl +l=1 l=1 l=1 
s 

δlCl). Since each of the entries of B and C are independent and random lin­l=1 
ear combinations in the coefficients of ū, each entry of the linear combination of 
the column vectors is itself a fixed but arbitrary such linear combination. Express­

2 s
ing the ith entry in this column vector as ζi,j uj , and using the fact that v = j=1 
[λ1u1 + λ2us+1, λ1u2 + λ2us+2, . . . , λ1us + λ2u2s] we obtain: 

mms s

Q0 = v( γlBl + δlCl) 
l=1 l=1 

2 mms s 

= (λ1ui + λ2us+i) ζi,j uj (7) 
i=1 j=1 

2 mms s 

= (λ1ζi,j uiuj + λ2ζi,j us+iuj ). 
i=1 j=1 

Let M be the s2 × s2 matrix obtained from this sum by setting the (i, j )th entry equal 
to the coefficient of uiuj , the (s + i, j)th entry equal to the coefficient of us+iuj , and 
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all other entries zero: ⎤⎡ 
2λ1ζ1,1 λ1ζ1,2 . . . λ1ζ1,s

M = 

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

. . .. . . . . .. . . 
λ1ζs,1 λ1ζs,2 . . . λ1ζs,s2 

λ2ζ1,1 λ2ζ1,2 . . . λ2ζ1,s2 

. . .. . . . . .. . . 
λ2ζs,1 λ2ζs,2 . . . λ2ζs,s2 

0 0 . . . 0 
. . . 

. . . 
. . . 

. . . 
0 0 . . . 0 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

Notice that the differential of Q0 is exactly the sum of M and MT : DQ0 = M + MT . 
Since M has rank at most s, MT has rank at most s. Thus by the subadditivity of 
rank, the rank of DQ0 is at most 2s. By the randomness of the coefficients of B and 

s−sC the rank of DQ0 is 2s with overwhelming probability (roughly q
2−1). 

Consider performing column operations on MT . In particular, consider operations 
such as subtracting λ2λ

−1 times column 1 from column s + 1. It is clear that these 1 
operations can be used to eliminate the entries in columns s + 1 through 2s of M T . Let 
R be the matrix representing these column operations. Then MT R only has nonzero 
entries in the first s columns. Similarly, RT M only has nonzero entries in the first s 
rows. 

Finally, consider the action RT DQ0R. By distributivity we have RT DQ0R = 
RT M R + RT MT R, and by associativity, we have (RT M)R + RT (MT R). In the first 
summand column operations are performed on a matrix with nonzero entries in only 
the first s rows, resulting in a matrix with entries in only the top s rows. The second 
summand is the transpose of the first. Therefore, we see that RT DQ0R has the form: ⎤⎡ 

D1 D2 

RT DQ0R = 
⎢⎢⎣DT 02 

⎥⎥⎦ , 
where D1 is s×s and D2 is s×s2 −s. Thus RT DQ0R maps the subspace V ' consisting of 
column vectors with the first s entries zero to its orthogonal complement. Consequently 
DQ0 maps RV ' to an s dimensional space. Further, notice that the row and column 
operations depend only on v, and not on the fixed but arbitrary Q0 ∈ Bv . Therefore 
DQ maps RV ' to an s dimensional space for all Q ∈ Bv. Thus RV ' is a subspace 
differential invariant with respect to Bv . 

Remark 2 We note that a subspace differential invariant V with respect to a gener­
alized band-space Bv is special in that V , of dimension s2 − s, is mapped to a subspace 
W of dimension s by any differential of a band-space map. Thus, given two such sub-
space differential invariants, V and V ' with respect to Bv and Bv! , we can find another 
subspace differential invariant V ∩ V ' with respect to S pan(Bv , Bv! ). In this manner we 
can generate subspace differential invariants with respect to spaces containing differen­
tials of even full rank. In particular, if one manages to find a linear combination of the 
public differentials which is of rank s2 − 2s, the kernel reveals some information about 
the structure of the scheme. Given the invariant structure of the ABC scheme, this 
task amounts to finding a linear combination that avoids any equation derived from a 
s+2 dimensional subspace of the rowspace of A. 

This technique forms the foundation of a high rank version of a differential invariant 
attack. The complexity of recovering such a map is on the order of q3s/2, and more 

2 
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information is still needed to constitute a ful l attack; therefore, we conclude that the 
ABC scheme is safe from the high rank side. 

6	 The Effect of Invariant Structure on the Complexity of 
MinRank 

The Minrank attack searches for a low rank linear combination of m n × n bilinear 
2 2forms over k = Fq, B1, . . . , Bm. In the case of Ding’s ABC scheme, m = 2s , n = s , 

and the Bi maps are the public differentials DPi. The attack proceeds by randomly 
choosing I m l vectors, xk, settingn   

mm 
t̄iDPi xk = 0 (8) 

i=1 

and solving for the t̄i. The attack succeeds when all of the xk are in the kernel of the 
target map. Simple rank analysis suggests that the probability of success per iteration 

−rr m 
nis q l where r is the rank of the target map. In the case of the ABC scheme, the 

target maps are those within a band space, which typically have rank 2s. Therefore, if 
we consider the rank of the target maps alone, we should expect a complexity on the 
order of q4s. A more careful rank analysis reveals that the kernels of the band-space 
maps are interlinked in the sense given in [17]. Computing via a crawling process as 
described in [17], we see that the best estimate from a rank perspective has expected 

2scomplexity roughly q2s, since there are roughly sq such kernels. However, the actual 
complexity of this process is on the order of qs, due to the subspace differential invariant 
structure, as will be demonstrated in this section. To emphasize the advantage the 
differential invariant structure provides, we note that the recovery of maps of rank 

r/2r = 2s is accomplished with this attack in time roughly q . 
This demonstation proceeds by defining the “band kernel”, an s2 − s dimensional 

subspace of ks 2 
, corresponding to each generalized band-space, Bv. We then show that 

with probability q−1, if x1 and x2 fall within band kernel j, then they are both in the 
kernel of some band-space differential m 

DQ = τiDQi, 
Qi∈Aj 

where the Qi in the sum form a basis Av of the band-space generated by v, Bv. 

2Definition 5 Let u1 . . . us be the components of Ux̄ and fix an arbitrary vector v in 
s

the rowspace of A, i.e. v = λdAd where Ad is the dth row of A. An s2 dimensionald=1 
s 

vector, x̄ is in the band kernel generated by v iff λduds+k = 0 for k = 1 . . . s.d=1 

Theorem 2 If x1 and x2 fall within band kernel generated by v, then they are both 
in the kernel of some generalized band-space differential DQ = τiDQi withQi∈Bv 

probability approximately q−1 . 

Proof. A DQ meeting the above condition exists iff there is a nontrivial solution to 
the following system of equations m 

τiDQix1 
T = 0, 

Qi∈Bv m 
τiDQix2 

T = 0. 
(9) 

Qi∈Bv 
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Expressed in a basis where the first s basis vectors are chosen to be outside the 
band kernel, and the remaining s2 − s basis vectors are chosen from within the band 
kernel, the band-space differentials take the form: ⎤⎡ 

Si Ri ⎥⎥⎦⎢⎢⎣DQi = (10)
RT 0i 

where Ri is a random s × s2 − s matrix and Si is a random symmetric s × s matrix. 
Likewise x1 and x2 take the form (0| xk ). Thus removing the redundant degrees of 
freedom we have the system of 2s equations in 2s variables: 

2s

τiRix1 
T = 0 

i=1 
(11)

2s

m 

m 
τiRix2 

T = 0 
i=1 

This has a nontrivial solution precisely when the following matrix is singular: ⎤⎡ ⎢⎢⎢⎢⎢⎢⎣ 

| | |
T T TR1x1 R2x1 . . . R2sx1 

| | |
| | |

T T TR1x2 R2x2 . . . R2sx2 

| | | 

⎥⎥⎥⎥⎥⎥⎦ 

(12) 

As the Ri are random and independent, this is simply a random matrix over k = Fq , 
which is singular with probability approximately q−1, for practical parameters. 

The band space differentials DQi for the private maps Qi ∈ Bv generate a subspace 
of the space generated by public differentials DPi, the solutions τiDQi ofQi∈Bv 

2s
equation (9) form a subspace of the solutions 

2 

t̄iDPi of equation (8). The condition i=1 
on x1 for membership in the band kernel of Bv for some v is that the matrix A, formed 
as in equation (13) from the components u1 . . . us2 of U x1, is singular. ⎤⎡ 

A = 
⎢⎢⎢⎣ 

u1 u2 · · · us 

us+1 us+2 · · · u2s 
. . .. . . . . .. . . 

· · · 2us2−s+1 us2−s+2 us

⎥⎥⎥⎦ (13) 

This occurs with probability approximately q−1. Given x1 is in some band kernel, 
x2 has a probability of q−s of being chosen within the same band kernel. Given that 
x1 and x2 are in the same band kernel, the probability that they are in the kernel of 
the same band-space map is q−1. Thus, a generalized band space map may be found 

−(s+2)among the solutions of equation (8) with probability q . 
2 2Equation (8) is a system of 2s equations in 2s variables, one might expect it to 

generally have a 0-dimensional space of solutions. There are, however, linear depen­
dencies among the equations, due to the fact that the DQi are symmetric matrices. 

TIn odd characteristic, the only linear dependency is x1DQix2 
T − x2DQix1 = 0, thus 

we should expect a 1-dimensional space of solutions. However, in even characteristic 
T Tthere are two more linear dependencies: x1DQix1 = 0 and x2DQix2 = 0. Thus, in 
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even characteristic, we expect a 3-dimensional solution space for equation (8). Finding 
the expected 1-dimensional space of band-space solutions in this 3-dimensional space 

2 2)3costs q + q + 1 rank operations, which in turn cost (s field operations. Thus the 
s+4total cost of finding a band-space map using MinRank is approximately q s6 for even 

s+2characteristic and q s6 for odd characteristic. 
We ran a series of experiments to determine the number of trials required for 

randomly selected x1 and x2 to lie in the kernel of a differential of rank 2s. The 
experiments were performed using toy examples of the scheme with q = 3, 5 and 
s = 4, 5, 6, 7, 8. In each of these cases the data support the theoretical complexity 
of O(qs+2). 

7 Complexity of Invariant Attack 

While the detection of a low rank map in the space generated by the public differentials 
already constitutes a distinguisher from a random system of equations, it still falls 
short of a full key extraction. However, once two low rank differentials, DQ1 and 
DQ2, from the same generalized band space are found, the attacker can use similar 
methods to those used to attack balanced oil and vinegar. Recall that oil and vinegar 

M−1can be broken by computing a product matrix M = and searching for large 1 M2 

invariant subspaces. One complication arises, however which is that neither DQ1 nor 
DQ2 will be invertible, only having rank 2s. This can be overcome by simply restricting 
DQ1 and DQ2 to act on random 2s dimensional subspace, W , of kn. As long as the 
restrictions DQ1(W ), DQ2(W ) are full rank in W , then DQ1(W )−1DQ2(W ) will have 
an s dimensional invariant subspace, whose generators are also generators of the band 
kernel associated with DQ1 and DQ2. 

Note that once we’ve found DQ1 in Bv, finding DQ2 is approximately q times 
less costly. Since DQ1 is known to contain in its kernel two vectors x1 and x2 from 
the band kernel generated by v, we simply need to find a rank 2s map, DQ2, in the 
space of public differentials, whose kernel contains x1 and another vector x3. With 
overwhelming probability the only way this will occur is if x3 is in the band kernel 
generated by v and DQ2 is in Bv. 

Given bases for s independent band kernels generated by v1, . . . , vs we can recon­
struct a private key of the same structure as that of the original ABC scheme, which 
has the same public differentials as the instance we are attacking. To see this, first 

' note that there exists a U for which the generalized band spaces Bv1 . . . Bvs take the 
form of ordinary band spaces (i.e. for which (U '−1)T DQU '−1 takes the form given in 

' ' equation (6) when DQ is in Bvi .) U is simply given by U = V U , where V obeys ⎤⎡ 

A(V u) = 
⎢⎢⎢⎣ 

v1(u) 
v2(u) 

. . .
 
vs(u)
 

⎥⎥⎥⎦ 
. 

' ' Moreover there exists a B ' C and T corresponding to U ' , that will give the same 
public key as U , B, C and T . These are given by: 

B ' (V u) = B(u) i.e. B ' (u ' ) = B(V −1 u ' ) 

C ' (V u) = C(u) i.e. C ' (u ' ) = C(V −1 u ' ) 

' ' ' ' T ' (e1, e 2) = T (V −1 e1, V −1 e2). 
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Thus, there exists an ABC private key, whose prototypical band spaces are equal 
to the generalized band spaces found by our attack. The task then remains to find 

' it, or something equivalent. First note that the elements of row j of A(U x), which 
¯ ' we will denote as Aj (U x), are are in the band kernel generated by vi for all i  = j. 

The intersection of the band kernels generated by v1, . . . , vj−1, vj+1, . . . , vs is readily 
computable, given what we already have, and it has dimension s, and is therefore 

¯ ' identical to the space generated by the elements of Aj (U x). 
'' This allows us to compute a map U which mostly mimics the action of U ' . Specif­

'' ' ically U only differs from U by mixing the elements within the rows of the matrix A. 
¯ '' ¯ ' i.e. Aj (U x) = Ωj Aj (U x), where Ωj is a nonsingular linear operator on s variables. 

'' '' U may also be extended into a full private key, U '' , B '' , C '' , T for the target public 
'' key. The choice of B '' and C is straightforward: 

B '' (u ' U ''−1 '' ) '' ) = B ' (U u 

C '' (u ' U ''−1 '' ) '' ) = C ' (U u 

All that remains is the choice of T '' . To demonstrate that a choice is possible note 
that 

¯ '' x)B '' (U '' ¯ ' x)]B '' (U '' ' x)B '' (U '' ' Aj (U x) = [Ωj Aj (U x) = Ωj [Āj (U x)] = Ωj (Āj (U x)B ' (U 

And similarly: 

'' '' (U '' ' ' Āj (U x)C x) = Ωj (Āj (U x)C ' (U x)). 

' ' ' ' ' Thus, the components of E ' (U x) = (A(U x)B ' (U x), A(U x)C ' (U x)) are linearly 
'' '' x)B '' (U '' '' '' (U '' related to the components of E '' (U x) = (A(U x), A(U x)C x)) by the 

'' '' E '' (U '' invertible maps Ωj . There therefore exists an invertible T such that T x) = 
' T ' E ' (U x) = T E (U x). 

'' All that remains is to solve for T , B '' , and C '' , given our U '' . This can be done 
'' and T ''−1by solving linear equations in the coefficients of B '' , C : m 

T ''−1(U ''−1)T Dyl(x)U
''−1Dk(A(x)B '' (x), A(x)C '' (x)) = kl 

l 

where the yl are the components of the public map T E (U x). 
The primary cost of the attack involves finding the s independent band kernels. 

s+4 7Thus, the cost of a full private key extraction is q s for even characteristic and 
s+2q s7 for odd characteristic. 

Remark 3 The full key recovery attack for the improved ABC scheme of [14] (using 
r+4 3an s × r A and n variables) requires sq n operations for even characteristic and 

r+2sq n3 operations for odd characteristic. 

8 Conclusion 

The ABC scheme offers a promising new idea for the development of multivariate en­
cryption schemes. Although the original presentation of the scheme contained errors— 
most significantly in the estimated probability of decryption failure— the scheme is 
easily generalized to nonsquare matrices and these anomalies are inconsequential in 
this context. In particular, the HOLEs attack is nonexistent when A, B, and C are 
replaced with rectangular matrices. 

' x)) 
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The attack outlined in this article exploits the subspace differential invariant struc­
ture inherent to the ABC methodology. The attack method works both for the original 
scheme and when applied to the updated scheme. With the original parameters, the 
attack is asymptotically the most efficient structural attack, with bit complexity scal­
ing linearly with s, the square root of the number of variables. In the improved scheme, 
the attack scales in bit complexity in proportion to the parameter r which is less than 
the square root of the number of variables. This analysis is tighter than any relevant 
rank analysis in the literature, with the most appropriate technique in [17] scaling in 
bit complexity linearly with 2s. In comparison, even the bit complexity of algebraic 
attacks scale superlinearly in s, though the break-even point for the two attacks is 
slightly beyond the 120-bit security threshold. Taking both time and memory into 
consideration, however, the differential invariant attack may be the more practical. 

A remarkable fact about the attack outlined in this article is that it exploits char­
acteristics which uniquely distinguish the public polynomials in the ABC scheme or its 
improvement from random formulae, namely, the existence of the s subspace differen­
tial invariants. The existence of the differential invariants relative to the band spaces 
is equivalent to the property of being isomorphic to a product of matrices of linear 
forms as in the central map of the ABC scheme; indeed, the attack produces such 
an isomorphism. In this sense, it is hard to imagine any key recovery attack on such 
a scheme designed for 80-bit security which is significantly more efficient in terms of 
time than the algebraic attack, directly solving the system via Gröbner Bases, or an 
XL variant such as the Mutant XL algorithms, see [18–20]. 

On the other hand, it is worthwhile mentioning Gröbner basis techniques for solving 
MinRank problems using minors modeling as in [21], and perhaps most notably exem­
plified in [22]. Assuming no additional structure in the MinRank instances arising from 
the cryptanalysis of the ABC scheme generic, the degree of regularity of the resulting 
MinRank polynomial systems is 2s + 1 for small values of s, and so the complexity 
of this approach is immense. The actual MinRank instances arising from the ABC 
scheme, however, hold some of the structure of the central map and so there is some 
hope for improvement in this area, though this remains an open problem. 

While it is clear that the decryption failure issue of the ABC scheme can be fixed by 
inflating the field size and/or by making the core matrices rectangular, the scalability 
of the scheme is an issue. The public key size of the original scheme scales with the 
sixth power of s. If we take into consideration security requirements beyond 80 bits, the 
ABC scheme becomes problematic; increasing s by one more than doubles the key size. 
While the evidence seems to suggest that the enhanced ABC scheme, despite having 
such a distinct differential structure, may ironically be secure, the task of turning the 
scheme into a more finely tuneable technology is still an open question. 
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of semi-regular overdetermined algebraic equations. In: Proceedings of the International 
Conference on Polynomial System Solving (2004) 

16.	 Perlner, R.A., Smith-Tone, D.: A classification of differential invariants for multivariate 
post-quantum cryptosystems. In: [23], pp. 165–173 

17.	 Yang, B.-Y., Chen, J.-M.: Building secure tame-like multivariate public-key cryptosys­
tems: The new TTS. In: Boyd, C., Gonzlez Nieto, J.M. (eds.) ACISP 2005. LNCS, vol. 
3574, pp. 518–531. Springer, Heidelberg (2005) 

18.	 Ding, J., Buchmann, J., Mohamed, M., Mohamed, W., Weinmann, R.: Mutant XL. In: 
SCC 2008, LMIB, pp. 16–22 (2008) 

19.	 Mohamed, M.S.E., Mohamed, W.S.A.E., Ding, J., Buchmann, J.: MXL2: Solving polyno­
mial equations over GF(2) using an improved mutant strategy. In: Buchmann, J., Ding, 
J. (eds.) PQCrypto 2008. LNCS, vol. 5299, pp. 203–215. Springer, Heidelberg (2008) 

20.	 Mohamed, M.S.E., Cabarcas, D., Ding, J., Buchmann, J., Bulygin, S.: MXL3: An efficient 
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