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Abstract. Isogenies are the morphisms between elliptic curves, and are ac
cordingly a topic of interest in the sub ject. As such, they have been well-
studied, and have been used in several cryptographic applications. Vélu’s 
formulas show how to explicitly evaluate an isogeny, given a specification of 
the kernel as a list of points. However, Vélu’s formulas only work for ellip
tic curves specified by a Weierstrass equation. This paper presents formulas 
similar to Vélu’s that can be used to evaluate isogenies on Edwards curves 
and Huff curves, which are normal forms of elliptic curves that provide an 
alternative to the traditional Weierstrass form. Our formulas are not simply 
compositions of Vélu’s formulas with mappings to and from Weierstrass form. 
Our alternate derivation yields efficient formulas for isogenies with lower alge
braic complexity than such compositions. In fact, these formulas have lower 
algebraic complexity than Vélu’s formulas on Weierstrass curves. 

1. Introduction 

Isogenies are the structure preserving mappings between elliptic curves. As such, 
isogenies are an important mathematical object, and accordingly are also present in 
many different areas of elliptic curve cryptography. They have been used to analyze 
the complexity of the elliptic curve discrete logarithm [22], are used in the SEA 
point counting algorithm [13],[18],[31] and have been proposed as a mathematical 
primitive in the construction of cryptographic one-way functions such as hashes 
[8] and pseudo-random number generators [9]. Isogenies also play key roles in 
determining the endomorphism ring of an elliptic curve [4],[25], computing modular 
and Hilbert class polynomials [7],[33], and in the construction of new public key 
cryptosystems [21],[28],[32],[34]. 

Traditionally, elliptic curves have been specified by Weierstrass equations. How
ever, this is only one possible model for elliptic curves. There are alternate models, 
such as Edwards and to a lesser extent Huff curves, that have been proposed for 
use in cryptography. These models have different point addition formulas that are 
simpler and have fewer special cases. The simpler formulas yield more efficient 
arithmetic that requires less expensive operations like multiplication and division, 
whereas fewer special cases in the point addition formulas give improved security 
by reducing information leakage through side channels. 

There are several computational problems pertaining to isogenies: 

(1) Given two elliptic curves E1 and E2, find an isogeny between them. 
(2) Given a compact representation of an isogeny, explicitly determine the ker

nel. 
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(3) Given the kernel of an isogeny, determine the rational function form of the 
isogeny (up to isomorphism). 

(4) Given the rational function form of an isogeny, compute the image through 
the isogeny on given input points. 

(5) Given a prime	 l and an elliptic curve E, enumerate all elliptic curves l
isogenous to E. 

This paper primarily focuses on problem 3, and also partially on problem 4. 
From a high level, isogenies of elliptic curves are an algebraic concept indepen

dent of the specific model chosen for the curve. However, for computational aspects 
the model chosen for the curve is important. Vélu [35] gives explicit formulas for 
isogenies between curves specified by Weierstrass equations. This paper presents 
explicit formulas for isogenies in Edwards and Huff form. This is convenient as it 
allows one to evaluate isogenies directly on these alternate models, without con
verting back to Weierstrass form. 

This is interesting from a computational perspective. Vélu’s formulas are based 
on point addition formulas, and as these alternate models have more efficient ad
dition formulas one may ask if the isogeny formulas for these models are also more 
efficient. This is, in fact, the case. The main contribution of this paper is a solution 
to problem 3, as listed above. Specifically, given an elliptic curve in Edwards or 
Huff form, and a finite kernel of an isogeny on this curve, we give explicit formulas 
for the isogeny. These isogeny formulas are not simply compositions of Vélu’s for
mulas with mappings to and from Weierstrass form. This allows for more efficient 
formulas with strictly better algebraic complexity. 

For previous work on the aspects of efficient computation of isogenies on Weier
strass curves see [5], [6], or [10]. For isogenies of Edwards curves, the only paper (to 
our knowledge) in the literature is [1], which counts the number of isogeny classes 
of an Edwards curve over a finite field. 

For solving problem 4, Vélu’s formulas run in time linear in the degree of the 
isogeny (assuming the kernel points are in the base field). In [6], the authors present 
an approach to problem 4 that is logarithmic in the degree of the isogeny. However, 
this approach is exponential in the discriminant of the endomorphism ring of the 
curve and only applies to horizontal isogenies. As such, for some specific curves the 
approach of [6] may be more efficient, but for the general case Vélu’s approach is 
better as it has no reliance on the discriminant and is valid for all isogenies. The 
formulas in this paper are of a Vélu like approach, and as such scale linearly in 
the degree of the isogeny. However, they provide a more efficient solution for the 
evaluation of isognies of elliptic curves (problem 4 above) than known results for 
computing Vélu’s formulas on Weiestrass curves in [5] and [10]. 

This paper is organized as follows. Section 2 reviews basic facts about isoge
nies, including Vélu’s formulas. Section 3 covers Edwards curves and Huff curves. 
Sections 4 and 5, give the analogue of Vélu’s formula for Edwards and Huff curves 
respectively. Section 6 presents a brief look at the computational cost (problem 4) 
of computing the formulas from sections 4 and 5. We also include some timings 
to demonstrate the practicality of our results. Finally, section 7 concludes with 
directions for future study. 
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2. Preliminaries 

2.1. Weierstrass Form. Let K be a perfect field, and K a fixed algebraic closure 
of K. Any elliptic curve over K can be written in Weierstrass form 

2 3 2E : y + a1xy + a3y = x + a2x + a4x + a6, 

with the ai ∈ K. For a curve in Weierstrass form, there is a point at infinity, 
denoted ∞. It is well known that the set of K-rational points (x, y) on E, together 
with the point ∞, form an abelian group. 

2.2. Isogenies. Recall a few basic facts about isogenies. For a more complete 
reference, see [30] or [36]. An isogeny is a nonzero homomorphism (defined over K) 
given by rational maps from the curve E to another elliptic curve. If φ is an isogeny, 
then it must preserve the group identity. Conversely, any nonconstant rational map 
φ from E to another elliptic curve which preserves the group identity must be an 
isogeny (see [30, III.4.8]). This fact is used in the main theorems of sections 4 and 
5 of this paper. Furthermore, the kernel of an isogeny must be finite. If the degree 
of the isogeny, as a rational map, is the same as the cardinality of the kernel, then 
the isogeny is separable. If the kernel of a separable isogeny φ has order l, then φ 
is known as an l-isogeny, and l is the degree of the isogeny. 

Let φ : E → E' denote an isogeny. If the pullback of the invariant differential 
ω' of E' along φ is equal to the invariant differential ω of E, then φ is said to be 
normalized. As the space of differentials is one dimensional, we know φ∗ω' = cφω, 

∗ 
for some cφ ∈ K . If cφ = 1, then φ∗ω' = ω and φ is normalized. 

The kernel of φ does not uniquely determine φ, which can be seen by composing 
φ with an isomorphism ψ : E' → E''. However, a finite subgroup F of an elliptic 
curve does uniquely determine a normalized isogeny with kernel F . 

2.3. Vélu’s formulas. For simplicity, assume the characteristic of K  = 2, 3. Let 
2 3E : y = x + ax + b be an elliptic curve in short Weierstrass form. Let F be a 

subgroup of E of order l, with l odd. In [35], Vélu showed how to explicitly find the 
rational function form of a normalized isogeny φ : E → E' with kernel F . These 
formulas are presented here, for comparison with the new formulas for Edwards 
and Huff curves presented in sections 4 and 5. 

Define φ as follows. For P = (xP , yP )  ∈ F , let ⎛ ⎞   
φ(P ) = ⎝xP + (xP +Q − xQ), yP + (yP +Q − yQ)⎠ . 

Q∈F −{∞} Q∈F −{∞} 

For any point P ∈ F , set φ(P ) = ∞. It is easy to see that φ is invariant under 
translation by elements of F , and that the kernel of φ is F . Furthermore, since 
xP +Q is a rational function of the coordinates of P and Q, so is xφ(P ). See [35] for 
more details, including the explicit rational functions as well as the equation for 
the codomain curve. 

We present the rational functions given by Vélu, for purposes of comparison 
with the isogeny formulas that we derive. To express the rational functions for φ, 
consider points of F excluding the point at ∞. Notice that if a point P = ∞ is in 
F , then necessarily its inverse is also in F . Partition F into two sets F + and F − 

such that F = F + ∪ F −, and P ∈ F + if and only if −P ∈ F − . For each point 
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P ∈ F +, define the following quantities 
x 2 yg = 3xP + a, g = −2yP ,P P 

vP = 2gP 
x , uP = (gy )2 ,P 

v = vP , w = uP + xP vP . 
P ∈F + P ∈F + 

Then the l-isogeny φ : E → E ' is given by   
yvP uP 2uP y y − yP − gP gP 

x 

φ(x, y) → x+ − , y− +vP . 
x − xP (x − xP )2 (x − xP )3 (x − xP )2

P ∈F + P ∈F + 

2The equation for the image curve is E ' : y = x3 + (a − 5v)x + (b − 7w). 
D. Kohel showed how the isogeny φ can be alternatively written in terms of its 

kernel polynomial [25]. The kernel polynomial is defined as  
l−4D(x) = (x − xQ) = x l−1 − σxl−2 + σ2x l−3 − σ3x + . . . . 

Q∈F −{∞} 

Then     '
N(x) N(x)

φ(x, y) = , y
D(x) D(x)

where N(x) is related to D(x) by   ' 
N(x) D ' (x) D ' (x)2 3 = lx − σ − (3x + a) − 2(x + ax + b) . 
D(x) D(x) D(x)

More generally, neither Vélu’s paper nor Kohel’s requires that l be odd, nor E 
be given by a simplified Weierstrass equation, although the equations are simpler 
in this case. 

3. Edwards and Huff curves 

3.1. Edwards curves. In 2007, H. Edwards introduced a new model for elliptic 
curves [12]. After a simple change of variables, these Edwards curves can be written 
in the form 

2 2Ed : x + y 2 = 1 + dx2 y , 

with d = 0, 1. Twisted Edwards curves are a generalization of Edwards curves, 
proposed in [2]. These twisted Edwards curves are given by the equation 

2 2Ea,d : ax + y 2 = 1 + dx2 y , 

where a and d = 1 are distinct, non-zero elements of K . Edwards curves are simply 
twisted Edwards curves with a = 1. The addition law for points on Ea,d is given 
by:   

x1y2 + x2y1 y1y2 − ax1x2
(x1, y1) + (x2, y2) = , . 

1 + dx1x2y1y2 1 − dx1x2y1y2
The identity on Ea,d is the point (0, 1), and the inverse of the point (x, y) is (−x, y). 
Note that the Edwards curve Ed always has a cyclic subgroup of order 4, namely 
{(0, 1), (0, −1), (1, 0), (−1, 0)}. Twisted Edwards curves also have a subgroup of 
order 4, however not neccesarily cyclic of order 4. 
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There is a birational transformation from Ea,d to a curve in Weierstrass form. 
The map 

(1) φ1 : (x, y) → (a − d) 
1 + y 
1 − y 

, (a − d) 
2(1 + y) 
x(1 − y) 

2sends the curve Ea,d to the curve E : y = x3 + 2(a + d)x2 + (a − d)2x. The inverse 
transformation is the map 

2x x − (a − d)
φ−1 : (x, y) → , .1 y x + (a − d) 

3.2. Huff ’s curves. Joye, Tibouchi, and Vergnaud re-introduced the Huff model 
for elliptic curves in [23]. The model was used by Huff in 1948 to solve a certain 
diophantine equation [20]. In [17], Wu and Feng gave an equivalent way to define 
Huff curves: 

Ha,b : x(ay 2 − 1) = y(bx2 − 1), 

with ab(a−b) = 0. We will use this equation for Huff curves. The inverse of a point 
P = (x, y) is −P = (−x, −y), and the identity is (0, 0). There are three points at 
infinity, and in projective coordinates these are (1 : 0 : 0), (0 : 1 : 0), and 
(a : b : 0). These points at infinity are also the three points of order two on the 
curve. The addition formula (for points that are not these points at infinity) is 

(x1 + x2)(1 + ay1y2) (y1 + y2)(1 + bx1x2)
(x1, y1) + (x2, y2) = , . 

(1 + bx1x2)(1 − ay1y2) (1 − bx1x2)(1 + ay1y2) 

There is also a simple birational transformation from a curve in Huff form to a 
curve in Weierstrass form [20]. The map is 

bx − ay b − a 
(x, y) → , 

y − x y − x 

2 2with the equation of the curve in Weierstrass form y = x3 + (a + b)x + abx. The 
inverse transformation is given by 

x + a x + b 
(x, y) → , . 

y y 

4. Isogenies on Edwards curves 

4.1. Isomorphisms. Before describing the results on isogenies, we first examine 
isomorphisms between Edwards curves. For any u = 0 in K, it is easy to see the 

2map Iu : Ea,d → Eu a,u2d given by Iu(x, y) = (x/u, y) is an isomorphism. We also 
consider the map J(x, y) = (x, 1/y), that takes a point on Ea,d to a point on Ed,a. 

However, these maps are not the only isomorphisms of Edwards curves. It suffices 
to consider only Edwards curves, and not the more general twisted Edwards curves, 
because for a suitable choice of u, then Iu maps a twisted Edwards curve to one 
with a = 1 (though this map may only be defined over a quadratic extension of K.) 
Let Ed and E ̂ be isomorphic Edwards curves with φ the birational transformation d 

2from the curve Ed to a Weierstrass curve E : y = x3 + 2(1 + d)x2 + (1 − d)2x and 
similarly let φ̂ be the birational transformation from E ̂ to a Weierstrass curve Ê.d 

ˆThen it follows that E and E are isomorphic (over an extension of K). From [30, 
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III.3.1] it is easy to check that the only isomorphisms between curves of the form 
2 3y = x + Ax2 + Bx have maps of the form 

2 3I ' (x, y) = (u x + r, u y), 

for some u, r with u = 0. 
' If r = 0, then comparing the coefficients of the image of I with those of E ̂ we d 

2 4find that (1 + d)u = 1 + d,̂ and (1 − d)2u = (1 − d̂)2 . Solving these equations 
simultaneously, we find u = ±1, or u2 = 1/d. For u = 1 or −1, then d̂ = d and the 
isomorphism is the identity map or negation map, respectively. If instead u2 = 1/d,√ 

ˆthen d = 1/d. Let d denote a fixed square root of d. Then the isomorphism is √ 
√J ◦ I1/ d : (x, y) → ( dx, 1/y) mapping Ed to E1/d . 

' In the case r = 0, then again comparing the coefficients of the image of I 
with those of E√ˆ we find that we must have r2 + 2(1 + d)r + (1 − d)2 = 0. Thus d 

r = −1 − d ± 2 d, and we are left with the equations 
√ 

42(1 + d̂) = (−(d + 1) ± 6 d)u , 

√ 
2(1 − d̂)2 = 4(2d = (d + 1) d)u . 

Our convention for the symbols ± and = is that in each formula, take all the signs 
on top, or alternatively all the signs on the bottom of each symbol. This system can 
be solved for u and d̂, although the details are more tedious and hence are omitted. 
The solution to this system of equations leads to non-trivial isomorphisms of the 
form 

(δ + r)y + δ − r (δ + r − 1 + d̂)y + δ − r + 1 − d̂
(x, y) → x , ,

−uδ(y + 1) (δ + r + 1 − d̂)y + δ − r − 1 + d̂

where δ = u2(1 − d). 
Isomorphisms of Edwards curves have been discussed in the literature. For ex

ample, [1] includes some explicit Edwards isomorphisms. Also, the question of the 
number of Edwards curve isomorphism classes over finite fields is discussed in [14], 
[15], [16]. 

4.2. 2-isogenies in Edwards Form. As shown in section 3.1 there are birational 
maps from Edwards curves to Weierstrass curves. The most intuitive approach to 
find explicit isogenies for Edwards curves is to combine these maps with Vélu’s 
formula. 

Let φ1 be the transformation from the Edwards curve Ed to a Weierstrass curve 
E given in (1). Let φ2 be an l-isogeny from E to another curve E ' , whose rational 
functions are as given by Vélu’s formula. The Weierstrass equation for E ' (as 
computed from Vélu’s formula) is not likely to be in the form 

2 y = x 3 + 2(1 + d̂)x 2 + (1 − d̂)2 x, 

ˆfor some d, so it is not immediately obvious how to find such a birational trans
formation to map this image curve back to an Edwards curve. However, the bira
tional transformation which does work is described in [3]. Let P = (r2, s2) be a 
point of order 2 on the image curve E ' . Then the change of variables φ3 given by 
(x, y) → (x − r2, y2) maps P to (0, 0), and the new curve has its equation of the 



  

  

  

  

7 ´ ANALOGUES OF V ELU’S FORMULAS FOR ISOGENIES 

2 3 2form y = x + ax + bx. Let Q = (r1, s1) be a point of order 4 on this curve, and 
3 d 2let d̂ = 1 − 4r1/s

2 
1. Thus a = 2 1+ ̂ r1 and b = r1 . The map 

1−d̂  
r1 x x − r1

(2) φ4 : (x, y) → 2 , 
1 − d̂ y x + r1 

maps to the Edwards curve 
2 2 x + y dx2 . 2 = 1 + ˆ y 

Composing the three maps φ1, φ2, φ3, and φ4 gives an explicit l-isogeny ψ from Ed 

to Ed̂. Applying this observation yields simple explicit formulas for 2-isogenies of 
Edwards curves. 

Theorem 1. Let Ed be an Edwards curve, and γ,δ, and i be elements (possibly 
in an extension) of K such that γ2 = 1 − d, δ2 = d, and i2 = −1. Then there are 
2-isogenies from the curve Ed given by the maps ψ1, ψ2, and ψ3 below. 

The first is 
(γ = 1)y2 ± 1 

ψ1(x, y) → (γ = 1)xy, . 
(γ ± 1)y2 = 1   2 

2 2 γ±1The image of ψ1 is the curve Ed̂ : x + y dx2y , with ˆ γ*1 . 2 = 1 + ˆ d =

The second is 
x δy2 = iγ − δ 

ψ2(x, y) → (iγ ± δ) , − . 
y δy2 ± iγ − δ   2 

iγ*δThe image of ψ2 is the curve Ed̂, with d̂ = .iγ±δ

Finally   x 1 − dy2 d = δ δy2 ± 1 
ψ3(x, y) → i(δ = 1) , , 

y 1 − d d ± δ δy2 = 1  2 
δ±1with image curve Ed̂, where d̂ = δ*1 . 

Proof. For l = 2, the kernel of one 2-isogeny is the set {(0, 1), (0, −1)}. For this 
kernel, it suffices to explicitly find the maps φ1, φ2, and φ3 as described above. The 
map φ1 : Ed → E was already given in equation (1). Formulas for 2-isogenies are 
well-known, see Example 4.5 of [30, III] for the 2-isogeny φ2 : E → E ' 

x2 + (1 − d)2 x2 − (1 − d)2 

φ2(x, y) → , y . 
x x2 

The equation for E ' is the curve 
2E ' : y = x 3 + 2(1 + d)x 2 − 4(1 − d)2 x − 8(1 + d)(1 − d)2 . 

The points (±2(1 − d), 0), and (−2(1 + d), 0) each have order 2. The first map is 
the linear transformation (x, y) → (x − 2(1 − d), y) that maps the curve E ' to the 
curve 

E '' 2: y = x 3 − 4(d − 2)x 2 + 16(1 − d)x. 

2 1+d̂ 2As a = −4(d − 2) = r1 and b = 16(1 − d) = r1, it is easy to see that the 
1−d̂   2 

γ±1ˆx-coordinate of a point of order 4 is r1 = ±4γ, and d = γ*1 . Then the map 

φ3 is as given in equation (2) with these values of r1 and d̂. Composing the maps 
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and simplifying the equations leads to the stated formula for ψ1. The algebraic 
details are straightforward and omitted for brevity. The other stated 2-isogenies 
are similarly obtained by using the other two points of order 2, (−2(1 − d), 0) and 
(−2(1 + d), 0). D 

Ahmadi and Granger independently obtained equivalent formulas for 2-isogenies 
[1]. 

The 2-isogenies in Theorem 1 may not be defined over the same field as Ed. 
This is the case when any of the elements −1, d, d − 1, or 1 − d are not a square 
in K. Hence, each of these isogenies is defined over a quadratic extension of K. 
Furthermore, a simple argument based on observing the effect that any 2-isogeny 
must have on the point at the identiy and the points of order 2, as well as preserving 
negation, shows that the rational functions of the coordinate maps of any 2-isogeny 
cannot have lower degree. 

4.3. Edwards curve isogenies. This section presents a formula for isogenies on 
Edwards curves analogous to Vélu’s formulas, stated in section 2. For l larger than 
2, the approach in the last subsection of mapping to and from a Weierstrass curve, 
while theoretically possible, leads to far more complex formulas. The following 
formulas are simpler to express and manipulate and immediately lend themselves to 
a more efficient implementation. As opposed to the previous section, the approach 
in this section is to directly derive the isogeny formulas from the point addition 
formulas. 

To show that the approach of mapping to Weierstrass from Edwards to apply 
Vélu’s formulas leads to more complicated formulas, consider the example of l = 3. 

2The Weierstrass equation for the image of the 3-isogeny is E ' : y = x3 + 2(1 + 
2d)x + a4x + a6, with 

(1 − d) 
a4 = (79dβ2 + 42dβ + β2 − 42β − d − 79),

(1 − β)2 

(1 − d) 
a6 = −8 (44d2β3+27d2β2−12dβ3−d2β−58dβ2−β2−58dβ+27β−12d+44). 

(1 − β)3 

Here (α, β ) is a point of order 3 on the Edwards curve Ed. The point 

5dβ3 − dβ2 − β3 − 3β2 − 4β + 4 dβ3 + 2dβ2 − β3 + 2β2 − 4 
(x4, y4) = , −2 

β2(1 − β) β3 

can be shown to have order 4 on E ' . Accordingly, the Weierstrass curve E ' can 
be mapped to the Edwards curve Ed̂, with d̂ = 1 − 4x3 

4/y4 
2 . By attempting to 

compose the birational transformations to and from the Weierstrass form with 
Velu’s formulas, it quickly becomes apparent that the formulas become unwieldy 
and this approach is not amenable to formulating simple explicit formula. For larger 
values of l, the situation grows even more complex. In contrast, the results presented 
below are much simpler. They also show a striking similarity in appearance to 
Vélu’s formulas. 

Let F be the kernel of the desired isogeny. The motivating idea is that we 
are seeking to find rational functions which are invariant under translation by the 
points in F , and map the point (0, 1) to itself. 
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Theorem 2. Suppose F is a subgroup of the Edwards curve Ed with odd order 
l = 2s + 1, and points 

F = {(0, 1), (±α1, β1), . . . , (±αs, βs)}. 
Define ⎛ ⎞ 

xP +Q yP +Q
ψ(P ) = ⎝ , ⎠ . 

yQ yQ
Q∈F Q∈F 

Then ψ is an l-isogeny, with kernel F , from the curve Ed to the curve E ̂ where d s
d̂ = B8dl and B = βi. The coordinate maps are given by: i=1 

s s 
β2 2 − α2 2 β2 2 − α2 2x i x i y y i y i x(3) ψ(x, y) = , . 

B2 1 − d2α2βi 
2x2y2 B2 1 − d2α2βi 

2x2y2 
i=1 i=1i i 

Proof. It is easy to see that ψ(0, 1) = (0, 1), and that ψ is invariant under translation 
by elements of F . So then F ⊆ ker(ψ). Conversely, if P ∈ ker(ψ), then xP +Q = 0 
for some Q ∈ F . This implies that P = ±Q ∈ F , so that F = ker(ψ). Furthermore, 
it is straightforward to derive the coordinate maps given by equation (3) from the 
Edwards curve addition law. 

It remains to derive the formula for d̂ on the image curve: 

X2 + Y 2 = 1 + ˆ ,dX2Y 2 

where X(P ) and Y (P ) are the coordinate maps of φ. To accomplish this, consider 
the function 

G(x, y) = X(x, y)2 + Y (x, y)2 − 1 − ˆ ,dX(x, y)2Y (x, y)2 

and solve for the value of d̂ that makes G identically zero. 
It is easy to see that the coordinate maps X and Y preserve the points (0, 1) and 

(0, −1). Furthermore, these two points are the only points on the domain curve 
with the x-coordinate equal to 0. Likewise, the only points on the codomain curve 
with X = 0 are (0, ±1). Hence G(x, y) has two zeros when x = 0, specifically 
y = ±1. We can explicitly calculate the partial derivatives of the codomain curve 
with respect to x and y at the points (0, 1) and (0, −1). This shows that neither of 
these points are singular, and hence G has only simple zeros at these points. Thus, 
the zeros of G(x, y) are also simple at the points (0, 1) and (0, −1). 

Now, we explicitly examine the zeros of G(x, y) at x = 0 by looking at this 
2function as a power series about x = 0. Note that y can be written as a rational 

function in terms of x, and the square of the coordinate maps contain only even 
powers of y. Hence the square of these maps can be written entirely in terms of 
x. Specifically, from the Edwards curve equation we have y2 = (1 − x2)/(1 − dx2). 
Expanding as power series gives 

s 
x 

X(x, y) = 
B2 

(−αi 
2 + O(x 2)), 

i=1 

s 
y 2Y (x, y) = 
B2 

(βi 
2 + (dβi 

4 − 1)x + O(x 4)). 
i=1 s

Then with A = i=1 αi, 

A4 
2X(x)2 = 

B4 
x + O(x 4), 
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s21 − x 1 2Y (x)2 = (1 + (dβ4 − 1)x + O(x 4))2 ,i1 − dx2 βi 
2 

i=1 

s 
2 2Y (x)2 = (1 + (d − 1)x + O(x 4)) (1 + 

β

2 
2 (dβ

4 − 1)x + O(x 4)),i 
i=1 i 

s 
1 2Y (x)2 = 1 + d − 1 + 2 (dβi 

2 − 
β2 ) x + O(x 4). 

i=1 i 

Substituting these into the equation of the image of ψ yields 

G(x, y) = X(x)2 + Y (x)2 − 1 − ˆ ,dX(x)2Y (x)2 

s
A4 1 A4 

2 = x 2 + (d − 1 + 2 (dβ2 − ))x 2 − d̂ x + O(x 4),
B4 i β2 B4 

i=1 i 

s
A4 A4 1 2 = 
B4 

− d̂
B4 

+ d − 1 + 2 (dβi 
2 − 

β2 ) x + O(x 4). 
i=1 i 

Suppose that the coefficient of x2 in the above expansion is zero. Then G has a 
zero of order greater than 2 at x = 0. However, as argued above G has a zero of 

2order 2 at x = 0. So G must be identically zero. Setting the coefficient of x to 
zero and solving this for d̂ yields 

s 
B4 1

d̂ = 1 + 
A4 

d − 1 + 2 (dβi 
2 − 

β2 ) . 
i=1 i 

Thus with this choice for d̂, the function G is identically zero, thus the codomain of 
this map is another Edwards curve. Hence, the transformation in (3) is a rational 
map from an Edwards curve to another that preserves the identity point. Thus by 
theorem [30, III.4.8] it is an isogeny. 

Looking at the image of a specific point on the domain curve further simplifies 
ˆthe formula for d, the coefficient of the codomain curve. Particularly, choose the a d 

1 ipoint P = , , where i2 = −1 and λ4 = d. This point may not be defined over λ λ 
K, but rather over an extension of K. 

First, evaluate the value on the inside of the product on the x-coordinate map 
at the point P : 

1 α2 + β2 
i i . 

λ2 1 + dα2 
i βi 

2 

2 2 2As (αi, βi) is a point on the domain curve x + y = 1 + dx2y this simplifies to 
1 1 
λ2 . Hence, the X-coordinate of the image point is 

B2λl . A similar calculation for 
(−1)si 1 (−1)sithe Y -coordinate shows that Y (P ) is . Then is on the curve 
B2 λl B2λl , B2λl 

X2 + Y 2 = 1 + ˆ d = B8dl . DdX2Y 2, thus ˆ

Note that the formula for isogenies given in Theorem 1 also works for twisted 
Edwards curves Ea,d. This is easiest to see by observing that the map (x, y) →√ 
(x/ a, y) maps Ea,d to E1,d/a. Then we can apply Theorem 2, which maps to the 
curve E1,B8(d/a)l . Mapping back to the twisted Edwards form by sending (X, Y ) →√ 
( alX, Y ) gives an isogeny from Ea,d to Eal ,B8dl This argument establishes the 
following corollary. 
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Corollary 1. Suppose F is a subgroup of the twisted Edwards curve Ea,d with odd 
order l = 2s + 1, and points 

F = {(0, 1), (±α1, β1), . . . , (±αs, βs)}. 

Define ⎛ ⎞ 
xP +Q yP +Q

ψ(P ) = ⎝ , ⎠ . 
yQ yQ

Q∈F Q∈F 

Then ψ is an l-isogeny, with kernel F , from the curve Ea,d to the curve E ˆ where ˆ da, 
s 

â = al , d̂ = B8dl and B = βi.i=1 

Now, using Corollary 1 it is possible to give the formula for the unique normalized 
isogeny of twisted Edwards curves, given the kernel. This is comparable with Vélu’s 
formulas, which are normalized and hence unique. 

Theorem 3. Suppose F is a subgroup of the twisted Edwards curve Ea,d with odd 
order l = 2s + 1, and points 

F = {(0, 1), (±α1, β1), . . . , (±αs, βs)}. 

Define ⎛ ⎞ 
xP +Q yP +Q

Ψ(P ) = ⎝xP , yP ⎠ . 
xQ yQ

Q∈F −(0,1) Q∈F −(0,1) 

Then Ψ is a normalized l-isogeny, with kernel F , from the curve Ea,d to the curve 
s s

E ˆ where â = A4/B4al and d̂ = A4B4dl, with A = αi, B = βi. Theˆ d i=1a, i=1 
coordinate maps are given by: 

s s2 2x βi 
2x2 − αi 

2y y βi 
2y2 − αi 

2x
(4) Ψ(x, y) = (−1)s , . 

A2 1 − d2α2βi 
2x2y2 B2 1 − d2α2βi 

2x2y2 
i=1 i=1i i 

Proof. Let Ψ be the composition of the isogeny ψ from Corollary 1 and the isomor

phism φ(x, y) → ((−1)s B2 
From A2 x, y). Thus Ψ is also an isogeny with kernel F . 

A4 l d = A4B4dlsection 2.2, we know that the image is E ˆ with â = B4 a and ˆ . Thus ˆ da, 
it only remains to check that Ψ is normalized. 

2 2 2The twisted Edwards curve equation is ax + y = 1 + dx2y . The invariant 
differential can thus be written: 

∂ x 
ω = . 

2y(1 − dx2) 

As seen in Section 2.2, for Ψ to be normalized, the pullback of the invariant differ
ential must be equal to the invariant differential on the domain curve E d̂. Thatâ, 

is, if Ψ(x, y) = (Ψx(x, y), Ψy(x, y)), then 

∂Ψx c∂ x 
= , 

2Ψy(1 − d̂Ψ2 ) 2y(1 − dx2)
x 

for some constant c. It remains to show that c = 1. As ∂Ψx = Ψ ' ∂ x, this simplifies x 
to 

Ψy (1 − dx2) 
c = Ψ ' .x y 1 − d̂Ψ2 

x 
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Expanding the coordinate map Ψy as a power series (as done in Theorem 2), gives 
that the left hand side is 

s
Ψy a d

2 c = c 1 + (dβ2 − 1/βi 
2)x + O(x 4)i y 

i=1 

s 
2 = c 1 + (dβ2 − 1/βi 

2) x + O(x 4) .i 
i=1 

For the right hand side, note 
s 

x 
Ψx = (−1)s 

A2 
(−α2 

i + O(x 2)) 
i=1 

= x + O(x 3). 

Consequently, 
1 − dx2 

= (1 − dx2)(1 + d̂Ψ2 + O(Ψ4 ))x x 
1 − d̂Ψ2 

x 

= (1 − dx2)(1 + ˆ + O(x 4))dx2 

= 1 + O(x 2). 

So the complete right hand side is 

1 − dx2 

Ψ ' = (1 + O(x 2))(1 + O(x 2))x 
1 − d̂Ψ2 

x 

= 1 + O(x 2). 

Equating the constant coefficients of the two equal power series gives c = 1. Thus 
Ψ is normalized. 

D 

4.4. Uniform Variable Formulas For Edwards Isogenies. This section presents 
formulas for isogenies on Edwards curves that are written (almost) entirely in terms 
of one variable. Let l = 2s + 1 be the degree of the isogeny. We can assume the 
isogeny ψ satisfies ψ(1, 0) = (1, 0). If not, simply compose φ with the negation 
map. 

Theorem 4. Let Ed be an Edwards curve with subgroup F = {(0, 1), (±αi, βi) : 
i = 1 . . . s}. Then the map 

s s2 − β2 2 − α2 
i=1 y i i=1 y iψ(x, y) → x , y 
f(y) g(y) 

is an isogeny with kernel F . The polynomials f(y) and g(y) are the unique even 
polynomials of degree 2s satisfying: 

s s 

f(0) = (−1)s β2 f(αj ) = βj (α2 
j − βi 

2),i 
i=1 i=1

(5) 
s s 

g(1) = (1 − αi 
2), g(βj ) = βj (βj 

2 − α2 
i ). 

i=1 i=1 

This isogeny is the same as the isogeny given by Theorem 2. The image is the 
curve EB8dl . 
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Proof. Let ψ : Ed → E ̂ be the isogeny described above. We may write ψ(x, y) = d 
(X(x, y), Y (x, y)), so then both X and Y are rational functions of x and y. Hitt, 
Moloney, and McGuire have shown (see [19],[24]) that over Ed, the coordinate 
maps can be uniquely expressed as X = p(y) + xq(y) and Y = r(y) + xs(y), for 
some rational functions p(y), q(y), r(y), and s(y). We first show that p(y) = 0 and 
s(y) = 0. 

As ψ is a homomorphism, then it follows that for any (x, y) on Ed 

ψ(−x, y) = p(y) − xq(y), r(y) − xs(y) 

= ψ − (x, y) 

= −ψ(x, y) 

= − p(y) − xq(y), r(y) + xs(y) . 

So p(y) − xq(y) = −p(y) − xq(y), and also r(y) − xs(y) = r(y) + xs(y), and hence 
p(y) = 0 and s(y) = 0. 

Next, (±αi, βi) is in the kernel of ψ, so 

(0, 1) = ψ(±αi, βi) = (±αiq(βi), r(βi)). 

The only other point on E ̂ with x-coordinate 0 is (0, −1). Since (±αi, βi) + d 
(0, −1) = (=αi, −βi), so ψ(=αi, −βi) = ψ(0, −1) = (0, −1). In summary, the only 
points mapping to (0, 1) are the points (0, 1) and (±αi, βi), and the only points 
mapping to (0, −1) are (0, −1) and (±αi, −βi). This implies 

s 
(y2 − βi 

2)i=1q(y) = ,
f(y) 

for some polynomial f(y). 
Similarly, using the identities(x, y) + (1, 0) = (y, −x), and (x, y) + (−1, 0) = 

(−y, x), gives that ψ(±βi, αi) = (±1, 0) and ψ(±βi, −αi) = (=1, 0). Trivially 
ψ(±1, 0) = (1, 0). Thus 

s 
(y2 − α2)i=1 i r(y) = y , 
g(y) 

for some polynomial g(y). 
Evaluating at the points in the kernel, gives the equations in (5). If f and g are 

of degree 2s, then they are uniquely determined and can be found by the Lagrange 
polynomial interpolation formula. It is easy to see that f and g are even. Write 
ψ(x, y) = (X, Y ), so then ψ(x, −y) = (X, −Y ). Comparing both sides of this 
equation shows f(−y) = f(y) and g(−y) = g(y) for all y, so both f and g are even 
functions. 

The final point to check is that f and g cannot have degree more than 2s. 
Suppose that the degree of g were more than 2s. Then there would exist some 
ỹ ∈ (K), ỹ = 1, βi such that 

s 

g( ̃y) − ỹ ( ̃y 2 − αi 
2) = 0. 

j=1 

Equivalently, the y-coordinate of ψ(x, ỹ) is equal to 1. Then let x̃ be a square root 
21−ỹof in K. It follows that ( ̃x, ỹ) is a point on Ed, and that since ỹ = 1, βi21−dŷ

then x̃ = 0, αi. Thus ψ( ̃x, ỹ) = (γ , 1) on E ̂ , for some γ. But the only point on an d 
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Edwards curve with y-coordinate 1 is (0, 1). This is a contradiction, given that all 
points in the kernel were already determined. So the degree of g is 2s. Likewise, 
the same argument applied to f and the points {(1, 0), (−βi, −αi)} being the only 
points which map to (1, 0) show the degree of f is 2s, and finishes the proof. D 

4.5. Edwards Isogenies From Kernel Polynomials. In the previous sections, 
the kernel of an isogeny was assumed to be expressed as a list of points in the kernel. 
However, this is merely one way of expressing the kernel. An alternate method is 
by a kernel polynomial. That is, the unique uniform monic polynomial of lowest 
degree with roots only at x-coordinates of the nonidentity points of the kernel. This 
approach was originally used for computing the rational maps of isogenies by D. 
Kohel in his thesis, where he showed how the kernel polynomial of an isogeny can 
also be used to explicitly write down an isogeny [25] for Weierstrass curves. This 
was summarized in the section 2.3. 

We present a similar approach to determine the rational maps of an isogeny from 
kernel polynomials for Edwards curves. For Weierstrass form, kernel polynomials 
are usually expressed in terms of the x coordinates, but the symmetry of coordi
nates in Edwards form admits a similar polynomial uniform in the y coordinate, 
associated with the kernel polynomial. Suppose we have the kernel of an odd de
gree isogeny is {(0, 1), (±α1, β1), . . . , (±αs, βs)} with order f = 2s + 1, then the 
x-coordinate kernel polynomial is 

s 

g(x) = (x 2 − αi 
2), 

i=1 

which has as roots {±α1, ..., ±αs}. Alternatively the y-coordinate associated poly
nomial is 

s 
2 − β2h(y) = (y i ). 

i=1 

Note that this polynomial, while similar to the kernel polynomial, does not only 
have roots at the y coordinates of non-identity points of the kernel. It also has roots 
corresponding to the points (x, −y) = −(x, y) + (0, −1) where (x, y) is a non identity 
point of the kernel. Also, it is not unique; {(0, 1), (±α1, −β1), . . . , (±αs, −βs)} is 
another valid kernel that has the same corresponding h(y) polynomial. 

Applying Theorem 2, the isogeny ψ(x, y) = (X, Y ) can be written 
s s 

x x2 − α2 x y2 − β2 

X = i or X = i ,
B2 1 − dαi 

2x2 B2 dβi 
2y2 − 1 

i=1 i=1 

s s 
y x2 − β2 y y2 − α2 

i iY = or Y = . 
B2 dβi 

2x2 − 1 B2 1 − dαi 
2y2 

i=1 i=1 

Note that it is possible to compute X solely in terms of x (and not y), and likewise 
it is possible to solely express Y in terms of y (and not x). Writing these in terms 
of the kernel polynomials, gives 

√ 
g(1/ d)xg(x) xh(y)

X = √ = √ , 
g(1)x2sg(1/ dx) h(0)(dy2)sh(1/ dy) 

√ 
yh(x) g(1/ d)yg(y)

Y = √ = √ . 
h(0)(dx2)sh(1/ dx) g(1)y2sg(1/ dy) 
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sˆ d2s+1 β8The codomain of this isogeny is the curve E ̂ where d = = d, i=1 i 

d2s+1h(0)4 = dg(1)2/g(1/ d)2 . 
√ 

5. Isogenies on Huff curves 

5.1. Isomorphisms. Let Ha,b be the Huff curve x(ay2 − 1) = y(bx2 − 1), with 
ab(a − b) = 0. Suppose Ψ is an isomorphism (over K) from Ha,b to some other 
Huff curve H b̂. Let φ be the birational transformation from the curve Ha,b to a â,

2 2Weierstrass curve E : y = x3 + (a + b)x + abx and similarly let φ̂ be the birational 
transformation from Hˆ b̂ to the Weierstrass curve Ê. Then it follows that E and a,

Ê are isomorphic over K. The only isomorphisms between curves of the form 
2 3y = x + Ax2 + Bx have as a map 

2 3I ' (x, y) = (u x + r, u y), 

for some u, r ∈ K, with u = 0. When r = 0, composing the maps I ' ◦ φ gives a map 
2 2 2 2from Ha,b to y = x3 + (a + b)u x + abu4x. It follows that â = u a and b̂ = u2b. 

An easy calculation shows 

' (φ̂−1 ◦ I ◦ φ)(x, y) = Iu(x, y) = 
x 
, 
y 
. 

u u 

When r = 0, it is easy to check that r = −a or r = −b. When r = −a, 
2 2 2 4the codomain curve is y = x3 + (b − 2a)u x + a(a − b)u x, which shows that 

2 2â = −au and b̂ = (b − a)u . The composition of these maps is the isomorphism 
bx−ay y 

2 2 .(x, y) → from Ha,b to H−au By symmetry, when r = −b then u(b−a) , u ,(b−a)u

x bx−aythe composition map is Ha,b to H(a−b)u2 ,−bu2 given by (x, y) → , . u u(b−a)
 

There is also the isomorphism (x, y) → (y, x) which sends Ha,b to Hb,a.
 

5.2. Huff isogenies. This section presents explicit formulas for isogenies of Huff 
curves that are similar to Vélu’s as presented in Section 2. The derivation of 
these formulae proceeds in a similar fashion to the derivation in the Edwards case. 
While the high level ideas of the proof are the same as the Edwards case, there 
are key differences in the details of the Huff case. These differences include the 
necessity of looking at the effects of the isogeny on pro jective points and a dif
ferent re-parameterization of the curve (the Edwards case expands the functions 
about the x-coordinate of the domain curve, whereas this proof uses a different 
re-parameterization.) Furthermore, in the Edwards case, the proof procedes by 
plugging the coordinate maps into the codomain curve equation and counting ze
ros. However, here the proof procedes similarly but by counting zeros and poles 
of the resulting functions. These differences defy a unification of the two proofs, 
though the proofs and ideas are similar. Let F be the desired kernel of an isogeny. 
Denote the points in F by F = {(0, 0), (αi, βi), (−αi, −βi) : i = 1 . . . s}. Let 

s s
A = αi and B = βi.i=1 i=1 

Theorem 5. Define ⎛ ⎞ 
xP +Q yP +Q

ψ(P ) = ⎝xP , yP ⎠ . 
xQ yQ

Q∈F −(0,0) Q∈F −(0,0) 
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Then ψ is an l-isogeny with kernel F from the curve Ha,b to the curve H ˆ, where ˆ ba,

â = alB4 and b̂ = blA4 . Using the addition law, we can write 
s s2 2x α2 − x y β2 − yi i(6) ψ(x, y) = , . 

A2 1 − b2αi 
2x2 B2 1 − a2βi 

2y2 
i=1 i=1 

The equation (6) is valid for points which are not points at infinity. The points at 
infinity are mapped to the points at infinity on the codmain curve. 

Proof. First it is straightforward to see that ψ maps F and only F to (0, 0). It 
remains to show that the image of ψ is the Huff curve H b̂. As was done in the â,

Edwards case, this is accomplished by counting the zeros of the rational coordinate 
maps by evaluating them as power series. Due to the similarilities, we omit much 
of the details in the calculations. 

First we parameterize the Huff curve Ha,b by t = ay − bx, which has a simple 
zero at the identity point (0, 0) as well as (a : b : 0) and simple poles at 
(1 : 0 : 0) and (0 : 1 : 0). Now consider the function x over the Huff curve. 
Thus reparameterizing the coordinates by t gives: 

1 a 5)3 x = t − t + O(t
a − b (b − a)3 

and 
1 b 5), 3 y = t − t + O(t

a − b (b − a)3 

where both x and y have simple zeros at (0, 0). 
For the points at infinity, affine coordinates are not sufficient, so the formulas 

must be evaluted in pro jective coordinates. Doing so shows x has simple poles at 
(1 : 0 : 0) and (a : b : 0), as well as a simple zero at (0 : 1 : 0). In addition, y 
has simple poles at (0 : 1 : 0) and (a : b : 0) and a simple zero at (1 : 0 : 0). 
These are the only zeroes and poles of x and y. 

Write the map in (6) as ψ(x, y) = (X, Y ). A straightforward calculation leads to 
s 2β41 1 1 − a i 3X = t − −a + t + O(t5) , 

a − b (a − b)2 β2 
ii=1 

and similarly, 
s

1 1 1 − b2α4 
i 3Y = t − −b + t + O(t5) . 

a − b (a − b)2 α2 
ii=1 

Define 

Gc,d = X(cY 2 − 1) − Y (dX2 − 1) = (Y − X) + X Y (cY − dX). 

A computation shows 
s 2β41 1 − a 1 − b2α4 

i i 3(7) Gc,d = b − a + c − d + − t + O(t5). 
(a − b)3 β2 α2 

i ii=1 

The only possible poles of Gc,d are at the poles of X and Y . We leave it to the reader 
to verify that the poles of X are at (1 : 0 : 0), (a : b : 0), ±(1/bαi, −βi), and 
±(−1/bαi, −1/aβi), all of which are simple. Also, the poles of Y are all simple, and 
are located at (0 : 1 : 0), (a : b : 0), ±(−αi, 1/aβi), and ±((−1/bαi, −1/aβi)). 
At (1 : 0 : 0), X has a simple pole, while Y has a simple zero, so Gc,d will have 
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at most a simple pole there. The same is true for (0 : 1 : 0). At (a : b : 0), 
there will be at most a triple pole for Gc,d. Now, at the points ±(1/bαi, −βi) there 
is at most a simple pole, and similarly at ±(−αi, 1/aβi). Finally, note that Gc,d 

has at most a triple pole at the points ±(−1/bαi, −1/aβi). So the total number of 
poles (counting multiplicity) is is at most 10s + 5 = 5l. 

Equation (7) shows that the coefficient of t3 in Gc,d is linear in c and d. A 
more detailed analysis also shows the coefficient of t5 is linear in c and d as well. 
Thus, it is possible to solve this system of equations to make these coefficients zero. 
With these values of c and d, then Gc,d has a zero of order at least 7 at (0, 0), 
as well as at the points ±(αi, βi). Counting multiplicities, we obtain that there 
are at least 7 + 14s = 7l zeroes. This is more than the number of possible poles, 
which is a contradiction, unless Gc,d is constant. We easily see Gc,d(0, 0) = 0, and 
hence Gc,d is identically zero. This shows the image of ψ is a Huff curve. Thus 
there is a rational map which sends Ha,b to another Huff curve and maps (0, 0) to 
(0, 0). This is necessarily an isogeny [30, III.4.8]. However, while this proof shows 
that it is possible to find the codomain of this isogeny, we do not present explicit 
expressions for c and d. This is because there is a significantly easier way to derive 
this codomain formula, presented as follows. 

Using pro jective coordinates, we find the point (a : b : 0) maps to the 
projective point (alB4(−ab)2s : blA4(−ab)2s : 0), which is equivalent to the point 

lB4 blA4Q = (a : : 0). a d 
As Q is a point on the curve H ˆ : X ˆ = Y b̂X2 − Z2aY 2 − Z2 , then we ˆ ba,

must have that 
ˆâ b 

= . 
alB4 blA4 

lB4 b = blA4Thus there exists a constant c such that â = a c and ˆ c. 
Next observe the image of the point P = (γ , δ) under this isogeny, where γ2 = 1/ba d 

and δ2 = 1/a. Calculating, we find ψ(P ) = (−1)sγl/A2 , (−1)sδl/B2 . Plugging 
lB4the coordinates of ψ(P ) into the equation for H ˆ and substituting in â = a c,ˆ ba,

b̂ = blA4c leads to 
γl δl 

(c − 1) = (c − 1). 
A2 B2 

If c = 1 then γlA2 = δlB2 . However, if this were the case, then the image of the 
point P = (γ , δ) is a singular point on the codomain. This is not the case as can be 
seen by mapping this point to the Weierstrass model, performing the isogeny and 
mapping back to the Huff model. Thus c = 1 so that â = alB4 and b̂ = blA4 . D 

Theorem 6. The Huff isogeny given by Theorem 5 is normalized. 

Proof. This is a similar approach to the one used to derive the formulas for Edwards 
curves. First observe the effect of the isogeny on the invariant differential of the 
Huff curve: 

φ ' xdx 

2âφxφy − ̂bφ2 
x + 1 

= 
cdx 

2axy − bx2 + 1 
, 

or 

(8) φ ' x(2axy − bx2 + 1) = c(2âφxφy − ̂bφ2 
x + 1). 
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The expansions of x, y, φx, and φy in powers of t are given in the proof of Theorem 
5 above. Substituting these into equation (8), and comparing the constant term on 
both the left and right sides leads to c = 1, as desired. D 

5.3. Huff isogenies from kernel polynomials. As for Edwards curves, it is 
useful to have formulas for Huff isogenies where the kernel is specified by the kernel 
polynomial. We note that for both the Edwards and Huff cases, the derivation of 
isogeny formulas from the kernel polynomial is quite straightforward, in contrast 
to the Weierstrass case where it is not obvious. Denote the points in the kernel by 
{(0, 0), (αi, βi), (−αi, −βi) : i = 1 . . . s}. The kernel polynomials are 

s 

g(x) = (x 2 − αi 
2) 

i=1 

s 

h(y) = (y i ), 
2 − β2 

i=1 

Then by Theorem 5, 

xg(x) yh(y)
ψ(x, y) = , . 

g(0)(bx)2sg( 1 ) h(0)(ay)2sh( 1 )bx ay 

The codomain curve is Hˆ b̂, where â = alh(0)2 and b̂ = blg(0)2 . Note again that a,

this can be efficiently computed given an efficient algorithm for computing g and 
h. 

5.4. Huff 2-isogenies. The Huff curve isogenies presented in the previous subsec
tions only work for odd degree isogenies. So, for completeness this section presents 
formulas for 2-isogenies on Huff curves. 

Theorem 7. Let η ∈ K be such that η2 = ab. There is a 2-isogeny from the Huff 
curve Ha,b to the Huff curve H−(a+2η+b),−(a−2η+b) given by 

(bx − ay) ((bx − ay) + η(x − y))2 

(x, y) → ,
(b − a)2 bx2 − ay2 

(bx − ay) ((bx − ay) − η(x − y))2 

. 
(b − a)2 bx2 − ay2 

Proof. This proof is similar to the method used for 2-isogenies for Edwards curves. 
It consists of composing the maps to and from Huff curves to Weierstrass curves 
(given in Section 3), along with a known 2-isogeny between the relevant Weierstass 
curves. As the maps to and from Huff curves were already given, we only include 
the equations for the 2-isogeny. In this regard, the map 

x2 + (a + b)x + ab x2 − ab 
φ2(x, y) = , y , 

x x2 

2 2 2is a 2-isogeny from y = x3 + (a + b)x + abx to y = x3 − 2(a + b)x2 + (a − b)2x. 
For brevity the algebraic details are omitted. D 
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6. Computation 

As isogenies are a useful tool in computational mathematics and cryptography, 
there has been much interest and work in the literature on the various computa
tional aspects of isogenies, especially efficiency, see [5], [6], [10], or [29] for example. 
However, until now the assessment of efficiency of the evaluation of isogenies has 
only used Weierstrass curves. With the Edwards and Huff isogeny formulas pre
sented in this paper, we now have an alternative to this previous work. This section 
briefly examines the computational cost, in terms of algebraic complexity, of eval
uating the formulas for Edwards and Huff isogenies on input points, and compares 
it to known results for Weierstrass isogenies. This initial assessment shows that 
for both Edwards curves and Huff curves the isogeny formulas have strictly less 
multiplication operations than Vélu’s formulas for Weierstrass curves. Both the 
Edwards and Huff curve formulas require approximately half the operations that 
the Weierstrass curves do. This is not intended to be an in depth analysis of the 
complexity of these formulas, but rather a quick analysis to show that the formu
las presented in this paper do, in fact, have better finite size scaling than Vélu’s 
formulas, without further optimization. 

First for the case of Edwards curves, the isogeny with kernel {±αi, βi} ∪ {(0, 1)}
has coordinate maps 

s s2 − α2 2 2 − α2 2x /βi 
2y y /βi 

2xi iψ(x, y) = x , y . 
1 − d2α2βi 

2x2y2 1 − d2α2βi 
2x2y2 

i ii=1 i=1 

Let M and S denote the cost of a multiplication and squaring in K respectively. Let 
C denote multiplication by a constant in K. If constants are carefully chosen, the 
cost of the multiplications denoted by C can be significantly less than those in M , 
however, in the general case, C and M should be regarded as equal. It is standard 
to ignore additions and subtraction, as the cost of these operations is much less than 

2 2squaring and multiplication. First computing x2 and y2, gives dx2y = x + y2 − 1, 
2 − α2 2 2 − α2 2at a cost of 2S. For each i, one must compute x /βi 

2y , y /βi 
2x ,i i 

s
and 1 − dα2 

i βi 
2(dx2y2). This requires (3s)C. Computing x (x2 − αi 

2/βi 
2y2),i=1 

s s2 − α2 2y (y /βi 
2x2), and (1 − d2α2/βi 

2x y2) costs (2 + 3(s − 1))M . In affine i=1 i i=1 i 
s 2coordinates, the formulas require inversions of (1 − d2α2/βi 

2x y2) and 2 more i=1 i 
multiplications M . Thus, the total affine cost is (3s + 1)M + 2S + 3sC + I, where 
I is the cost of an inversion. 

Projective coordinates are used to avoid inversions, which are costly. The isogeny 
is 

s s s 
2ψ(x, y, z) = xz (x 2 −α2 

i /βi 
2 y 2) : yz (y 2 −α2 

i /βi 
2 x 2) : (z 4 −d2α2 

i /βi 
2 x y 2) . 

i=1 i=1 i=1 

However, there are trade-offs as it is also necessary to compute z4, and xz and yz 
at a cost of 2M + 2S. The total cost in the projective case is (3s + 3)M + 4S + 3sC. 

We do not claim these formulas are optimal. They only provide an upper bound 
for the cost to evaluate an Edwards isogeny. For specific values of s, it is possible 
to do better. For example, using pro jective coordinates we have found a way to 
compute an Edwards 3-isogeny in 5M + 4S + 3C, and a 5-isogeny in 6M + 6S + 5C. 
For comparison, an optimized 3-isogeny is given in [11] which costs 3M + 3S + 1C, 
and an optimized 5-isogeny is given in [27] which costs 8M + 5S + 7C. Both of 
these optimized formulas were given for Weierstrass curves. It is more complicated 
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Figure 1. Isogeny computation time by model. 

to determine the exact cost of evaluating a general (2s + 1)-isogeny on an input 
point for Weierstrass curves. From [26], it can be seen that the cost is bounded 
above by (3 + o(1))(2s + 1)M + S + (3 + o(1))(2s + 1)C + I. So using these formulas 
it appears that evaluating isogenies is more efficient on Edwards curves than on 
Weierstrass curves, by approximately a factor of two. 

For Huff curves, The formula derived for an isogeny with kernel {±αi, βi} ∪ 
{(0, 1)} is 

s s 
x2 − α2 y2 − β2 

i iψ(x, y) = x , y . 
α2(1 − b2αi 

2x2) β2(1 − a2βi 
2y2)i ii=1 i=1 

A similar analysis shows that it is possible to evaluate ψ with (4s − 2)M + 2S + 
(2s)C + 2I in the affine case, and (4s + 3)M + 3S + (4s)C in the pro jective case. 
In this naive analysis, Huff isogenies are not as efficient as the Edwards isogeny, 
and this has to do with the denominators. In the Edwards case, the same denom
inator is used for both the x and y-coordinates, while for Huff isogenies, different 
denominators must be calculated. However, when one equates multiplications with 
constant multiplications, the Huff curves also require approximately half as many 
expensive algebraic operations (although the analysis may be more complicated if 
the two operations have drastically different timings). 

Figure 1 shows the performance of Sage implementations of isogeny computation 
for curves represented in in Edwards, Huff and Weierstrass form. The implementa
tions were written in Sage, and are straightforward implementations of the formulas 
presented herein for Edwards and Huff curves and match the exact algebraic com
plexity analysis presented above. The Weierstrass implementation that is being 
used for comparison is the implementation of isogenies included in Sage (imple
mented in the EllipticCurveIsogeny class). To perform these measurements, it was 
necessary to generate Elliptic curves to test the formulas with. These experiments 
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represent 511 curves defined over a 256 bit prime order field, one with a subgroup 
for each odd order starting at 3 and ending at 1023. Note that the prime moduli 
are different for each curve. However none of the formulas are dependant on spe
cial forms for the moduli and the performance of the underlying field arithmetic 
is the same across fields. The curves were selected such that each curve admits a 
representation in Weierstrass, Edwards and Huff forms over the given prime mod
ulus. To perform the timing, each odd order subgroup was used as a kernel for an 
isogeny and evaluated with the formulas for the respective models. As such, the 
timings compare the same isogeny calcuation, varying only the representation of the 
curve and corresponding isogeny formulae. The computation time was calculated 
by using the timing functionality built in to Sage and provided by the sage timeit 
class. These performance experiments confirm the algebraic complexity analyses 
of the isogeny formulas presented here; specifically, these experiments show that 
straightforward implementations of isogenies on curves in Edwards and Huff form 
are considerably faster than Vélu’s formula’s on curves in Weierstrass form. 

7. Conclusion 

This paper presents isogeny formulas for Edwards and Huff curves, similar to 
Vélu’s formulas for Weierstrass curves. It is interesting to note that these formulas 
are “multiplicative”, compared to the “additive” form of Vélu’s formulas. Further
more, because the addition law on these alternate forms of curves is simpler than 
Weierstrass form, these new isogeny formulas also yield rational maps that are sim
pler to express than Vélu’s formulas. In addition to being simpler to express, these 
isogeny formulas also yield strictly better algebraic complexity in the general case, 
indicating that they will improve the performance of evaluating isogenies. 

These new isogeny formulas have potential uses in many applications. As there 
are many uses for isogenies of Weierstrass curves in the literature, it is likely that 
the faster evaluation of Edwards (or Huff ) isogenies could improve performance of 
these results by switching models. This is similar to how the Edwards addition law 
can speed up point multiplication on elliptic curves. Such possibilities include the 
SEA algorithm [31], pairings [6], the Doche-Icart-Kohel technique [11], or in public 
key cryptosystems [21]. 

This paper leaves many directions for future work. The preliminary operation 
counts show the isogeny formulas are efficient. However, this analysis is incomplete 
and it remains to do a deep optimization of the computations in section 6. Another 
similar research topic is derivations of similar isogeny formulas for other models of 
curves, such as Hessian curves, Jacobi quartics or Jacobi intersections. Yet another 
interesting direction would be to address some of the other computational problems 
associated with isogenies (mentioned in the introduction), in particular the problem 
of computing an isogeny of known degrees from the domain and codomain. 
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