
CrossTalk March/April 2015 19

TEST AND DIAGNOSTICS

Combinatorial
Coverage as an
Aspect of Test
Quality
D. Richard Kuhn, NIST,

Raghu N. Kacker, NIST,

Yu Lei, University of Texas Arlington

Abstract. There are relatively few good methods for evaluating test set quality,
after ensuring basic requirements-traceability. Structural coverage, mutation testing,
and related methods can be used if source code is available, but these approaches
may entail significant cost in time and resources. This paper introduces an alter­
native measure of test quality that is directly related to fault detection, simple to
compute, and can be applied prior to execution of the system under test. As such, it
provides an inexpensive complement to current approaches for evaluating test quality.

Introduction
How thorough are your tests? This is a vitally important

question for mission critical systems, but very difficult to
answer with confidence, especially if tests were produced by
third-party test developers.

Generally it must be shown that tests track to enumerated
requirements, but this is a coarse grained metric. Structural
coverage criteria such as statement or branch coverage may
also be applied, if source code is available. Mutation testing
– developing multiple versions of the code with mutations, or
seeded faults – may be used to compare the fault detection
capacity of alternative test suites, or evolve a test suite that
produces a sufficiently high score on detecting differences
between mutated versions of the code. Such an approach
naturally is dependent on the mutations chosen.

Figure 1. Cumulative fault distribution

Evaluating test quality is a particularly difficult and imprecise
process for “black box” testing, where no source code is used.
A test goal may be to positively demonstrate a collection of
specified features, often by a single test for each feature or
option. But simply showing that a particular input can dem­
onstrate the feature does little to prove that an application is
adequate for the wide range of inputs likely to be encountered
in real-world use. Alternatively, an operational profile may be
developed which tests the system according to the statisti­
cal distribution of inputs that occur in operational use. This
process can provide reasonable confidence for the system’s
behavior in normal operation, but may miss the rare input con­
figurations that can result in a failure.

A common approach for high assurance is to include tests
designed to exercise the system with rare scenarios, based on
experience or engineering judgment. This approach is clearly
dependent on the skill of testers, and it may leave a large pro­
portion of the possible input space untested. It also provides no
quantitative measure of the proportion of significant input com­
binations that have been tested. Therefore, if test services are
to be contracted out, there is little sound basis for developers to
specify the level of testing required, or for testers to prove that
testing has been adequate for the required assurance level. This
paper describes measurement methods derived from combina­
torial testing that can be used in analyzing the thoroughness of
a test set, based on characteristics of the test set separate from
its coverage of executable code.

Distribution of Faults
Empirical data show that most failures are triggered by a

single parameter value, or interactions between a small number
of parameters, generally two to six [1], a relationship known as
the interaction rule. An example of a single-value fault might be
a buffer overflow that occurs when the length of an input string
exceeds a particular limit. Only a single condition must be true
to trigger the fault: input length > buffer size. A 2-way fault is
more complex, because two particular input values are needed to
trigger the fault. One example is a search/replace function that
only fails if both the search string and the replacement string are
single characters. If one of the strings is longer than one charac­
ter, the code does not fail, thus we refer to this as a 2-way fault.
More generally, a t-way fault involves t such conditions.

Figure 1 shows the cumulative percentage of faults at t = 1 to
6 for various applications [1]. We refer to the distribution of t-way
faults as the fault profile. Figure 1 shows the fault profile for a
variety of fielded products in different application domains, and
results for initial testing of a NASA database system. As shown
in Figure 1, the fault detection rate increases rapidly with interac­
tion strength, up to t=4. With the medical device applications,
for example, 66% of the failures were triggered by only a single
parameter value, 97% by single values or 2-way combinations, and
99% by single values, 2-way, or 3-way combinations. The detection
rate curves for the other applications studied are similar, reaching
100% detection with 4 to 6-way interactions. Studies by other
researchers have been consistent with these results. Thus, the im­
possibility of exhaustive testing of all possible inputs is not a barrier
to high assurance testing. That is, even though we cannot test all

—

20 CrossTalk March/April 2015

TEST AND DIAGNOSTICS

(1)	

(2)

possible combinations of input values, failures involving more than
six variables are extremely unlikely because they have not been
seen in practice, so testing all possible combinations provides very
little benefit beyond testing 4 to 6-way combinations.

Matrices known as covering arrays can be computed to cover
all t-way combinations of variable values, up to a specified level
of t (typically t ≤ 6), making it possible to efficiently test all such
t-way interactions [2]. The effectiveness of any software test­
ing technique depends on whether test settings corresponding
to the actual faults are included in the test sets. When test sets
do not include settings corresponding to actual faults, the faults
will not be detected. Conversely, we can be confident that the
software works correctly for t-way combinations contained in
passing tests.

As with all testing, it is necessary to select a subset of values
for variables with a large number of values, and test effective­
ness is also dependent on the values selected, but testing t-way
combinations has been shown to be highly effective in practice.
This approach is known as combinatorial testing, an extension
of the established field of statistical Design of Experiments
(DoE), endorsed by the Department of Defense Office of Test
and Evaluation in 2009 [3], and used by commercial firms with
demonstrated success.

Coverage Implications of Fault Distribution
The distribution of faults reported above suggests that testing

which covers a high proportion of 4-way to 6-way combinations
can provide strong assurance. If we know that t or fewer vari­
ables are involved in failures, and we can test all t-way combina­
tions, then we can have reasonably high confidence that the
application will function correctly. As shown above, the distribu­
tion of faults varies among applications, but two important facts
are apparent: a consistently high level of fault detection has been
observed for 4-way and higher strength combinations; and no
interaction fault discovered so far, in thousands of failure reports,
has involved more than six variables.

Any test set, whether constructed as a covering array or not,
contains a large number of combinations. Measuring combina­
torial coverage, i.e., the coverage of t-way combinations in a test
set, can therefore provide valuable information about test set
quality. Combinatorial coverage includes a number of advan­
tages for assessing test quality:

•	 Computed independently of other evaluations of test quality.
Combinatorial coverage provides additional information for
decision-makers, and may be used in conjunction with struc­
tural coverage, mutation testing, or other approaches.

• 	 Direct relationship with fault detection. The size of the
input space spanned by the test set, a significant aspect
of fault detection, can be measured by the number of
t-way combinations up to an appropriate level of t. The
proportion of t-way combinations covered measures the
fractional size of the input space that is tested.

• 	 Simple to compute and interpret. Because it is based on
the input space of test values, there is no need to run the
system under test to compute this measure of test set
quality. Freely available tools can be used on any test set

expressed as a matrix where rows are tests and columns
are parameter values.

Measuring Coverage of Fault-triggering
Combinations

Combinatorial testing is based on covering all t-way combina­
tions for some specified level of t, but this form of testing may
not always be practical because of established test practices,
legal or contractual test requirements, or use of legacy test sets.
An alternative to creating a combinatorial test set from scratch
is to investigate the combinatorial coverage properties of an
existing test set, possibly supplementing it with additional tests
to ensure thorough coverage of system variable combinations.
Determining the level of input or configuration state-space cov­
erage can help in understanding the degree of risk that remains
after testing. If a high level of coverage of state-space variable
combinations has been achieved, then presumably the risk is
small, but if coverage is much lower, then the risk may be sub­
stantial. This section describes some measures of combinatorial
coverage that can be helpful in estimating this risk.

Variable-value configuration: For a set of t variables, a vari­
able-value configuration is a set of t valid values, one for each of
the variables, i.e., the variable-value configuration is a particular
setting of the variables.

Example. Given four binary variables a, b, c, and d, for a
selection of three variables a, c, and d the set {a=0, c=1, d=0}
is a variable-value configuration, and the set {a=1, c=1, d=0} is
a different variable-value configuration.

Simple t-way combination coverage: For a given test set of n
variables, simple t-way combination coverage is the proportion
of t-way combinations of n variables for which all valid variable-
value configurations are fully covered.

Example. Table I shows four binary variables, a, b, c, and d,
where each row represents a test. Of the six possible 2-way
variable combinations, ab, ac, ad, bc, bd, cd, only bd and cd have
all four binary values covered, so simple 2-way coverage for the
four tests in Table 1 is 2/6 = 33.3%. There are four 3-way vari­
able combinations, abc, abd, acd, bcd, each with eight possible
configurations: 000, 001, 010, 011, 100, 101, 110, 111. Of
the four combinations, none has all eight configurations covered,
so simple 3-way coverage for this test set is 0%. As shown
later, test sets may provide strong coverage for some measures
even if simple combinatorial coverage is low.

It is also useful to measure the number of t-way combinations
covered out of all possible settings of t variables.

Total variable-value configuration coverage: For a given

a b c d
0 0 0 0
0 1 1 0
1 0 0 1
0 1 1 1

Table 1. Test array with four binary components

—

CrossTalk—March/April 2015 21

TEST AND DIAGNOSTICS

combination of t variables, total variable-value configuration cov­
erage is the proportion of all t-way variable-value configurations
that are covered by at least one test case in a test set. This
measure may also be referred to as total t-way coverage.

The number of t-way combinations in an array of n variables is
C(n,t) = n!/(n-t)!t!, or “n choose t”, the number of combinations of
n things taken t at a time without repetition. If each variable has
v values, then each set of t variables has vt configurations, so the
total number of possible combination settings is vt ×C(n, t). Any
test set covers at least some fraction of this amount. (Note that
there is a natural extension of this formula for the case where
variables do not all have the same number of values.) For the
array in Table I, there are C(4,2) = 6 possible variable combina­
tions and 22×C(4,2) = 24 possible variable-value configurations.
Of these, 19 variable-value configurations are covered and the
only ones missing are ab=11, ac=11, ad=10, bc=01, bc=10, so
the total variable-value configuration coverage is 19/24 = 79%.
But only two, bd and cd, out of six, are covered with all 4 value
pairs. So for simple t-way coverage, we have only 33% (2/6)
coverage, but 79% (19/24) for total variable-value configuration
coverage. Although the example in Table 1 uses variables with
the same number of values, this is not essential for the coverage
measurement, and the same approach can be used to com­
pute coverage for test sets in which parameters have differing
numbers of values.

Figure 2 shows a graph of the 2-way (red/solid) and 3-way
(blue/dashed) coverage data for the tests in Table 1. Cover­
age is given as the Y axis, with the percentage of combinations
reaching a particular coverage level as the X axis. For example,
the 2-way line (red) reaches Y = 1.0 at X = .33, reflecting the
fact that 2/6 of the six combinations have all 4 binary values
of two variables covered. Similarly, Y = .5 at X = .833 because
one out of the six combinations has 2 of the 4 binary values
covered. The area under the curve for 2-way combinations is
approximately 79% of the total area of the graph, reflecting the
total variable-value configuration coverage.

Practical Examples
The methods described in this paper were originally devel­

oped to analyze the input space coverage of tests for space­
craft software [4][5]. A set of 7,489 tests had been developed,
although at that time combinatorial coverage was not the goal.
With such a large test suite, it seemed likely that a huge number
of combinations had been covered, but how many? Did these
tests provide 2-way, 3-way, or even higher degree coverage?

The original test suite had been developed to verify correct
system behavior in normal operation as well as a variety of fault
scenarios, and performance tests were also included. Careful
analysis and engineering judgment were used to prepare the
original tests, but the test suite was not designed according
to criteria such as statement or branch coverage. The system
was relatively large, with the 82 variable configuration 132754262

(three 1-value, 75 binary, two 4-value, and two 6-value). Figure
3 shows combinatorial coverage for this system (red = 2-way,
blue = 3-way, green = 4-way, orange = 5-way). This particular
test set is not a covering array, but pairwise coverage is still

relatively good, because 82% of the 2-way combinations have
100% of possible variable-value configurations covered and
about 98% of the 2-way combinations have at least 75% of
possible variable-value configurations covered.

Figure 4 shows a smaller example based on a US Air Force
test plan [6] with seven parameters in a 243142 (four 2-value,
one 3-value, and two 4-value) configuration, with 2-way through
6-way coverage for 122 tests. Coverage is remarkably high,
with nearly 100% of all 2-way through 4-way combinations

interaction combinations settings coverage
2-way 3321 14761 94.0
3-way 88560 828135 83.1
4-way 1749060 34364130 68.8
5-way 27285336 603068813 53.6

Table 2. Total t-way coverage for Fig. 3 configuration.

Figure 2. Graph of coverage for Table 1 tests

Figure 3. Configuration coverage for spacecraft example.

22 CrossTalk—March/April 2015

TEST AND DIAGNOSTICS

covered. Note that the 2-way and 3-way lines are not visible
because with 100% coverage they appear as vertical lines on
the right side of the chart.

Figure 5 shows how coverage declines with 25% of the tests
removed. Although the smaller test set has less coverage for all
but 2-way combinations, coverage is still relatively high, so a test
manager might consider this comparison in reviewing the cost/
benefit tradeoffs of adding or removing tests.

interaction combinations settings coverage
2-way 21 152 100
3-way 35

Table 3. Coverage for Fig. 4 configuration.

Figure 4. Configuration coverage for USAF test plan.

Figure 5. Configuration coverage, 75% of tests in Fig. 4.

Table 4. Coverage for Fig. 5 configuration.

Computing Combinatorial Coverage
Tools are available to compute the measures discussed in

this article. Several covering array generators can compute total
coverage, and NIST-developed tools that are freely available
can compute a variety of additional measures, and produce the
reports included in examples above. The tools also include em­
bedded constraint solvers, making it possible to produce counts
of covered combinations excluding those that are not possible
physically, or should be excluded because of constraints among
variables. This is an essential feature for real-world use. It is
also possible to generate additional tests to supplement those
analyzed, to bring coverage up to any desired level.

The methods and tools introduced above were developed for
analysis of NASA software tests, and additional NASA usage has
suggested the following areas of utility [7]: 1) as an inline analysis
tool for evaluating developer tests, 2) as a planning tool during test
development to ensure adequate coverage, 3) as an IV&V audit tool
for auditing completed IV&V analysis or multi-project test plans.

Conclusions
Combinatorial coverage provides valuable information for

decision-makers because it measures the proportion of the
input space that is covered relevant to testing. Because only
a small number of variables are involved in failures, testing all
settings of 4-way to 6-way combinations can provide strong
assurance. For example, if we measure the t-way coverage of
tests, and find that all 4-way combinations are covered, 90% of
5-way combinations, and 70% of 6-way combinations are cov­
ered, we can reasonably conclude that very few potential failure-
triggering combinations have been left untested. Conversely, we
can also have confidence that the system has been shown to
work correctly for almost all of the relevant input space. Thus,
combinatorial coverage can provide significant value in evaluat­
ing test quality.

Acknowledgements
We are grateful to Greg Hutto at Eglin AFB for providing

a copy of the 53d Wing tech report on design of experiments
in test plan design.

Disclaimer
Certain products may be identified in this document, but such

identification does not imply recommendation by the U.S. National
Institute of Standards and Technology or other agencies of the
U.S. Government, nor does it imply that the products identified are
necessarily the best available for the purpose.

664 100
4-way 35 1690 98.7
5-way 21 1818 69.7

interaction combinations settings coverage
2-way 21 152 100
3-way 35 664 99.5
4-way 35 1690 90.0
5-way 21 1818 56.7

CrossTalk March/April 2015 23

TEST AND DIAGNOSTICS

ABOUT THE AUTHORS
D. Richard Kuhn is a computer scientist
in the Computer Security Division of NIST.
His current interests are in information
security, empirical studies of software fail­
ure, and software assurance, focusing on
combinatorial testing. He received an MS
in computer science from the University of
Maryland College Park.
Phone: 301-975-3337
E-mail: kuhn@nist.gov

Raghu N. Kacker is a researcher in the
Applied and Computational Mathemat­
ics Division of NIST. His current interests
include software testing and evaluation of
the uncertainty in outputs of computation­
al models and physical measurements. He
has a Ph.D. in statistics and is a Fellow of
the American Statistical Association, and
American Society for Quality.

Phone: 301-975-2109
E-mail: raghu.kacker@nist.gov

REFERENCES

1.	 D.R. Kuhn, D.R. Wallace, A.J. Gallo, Jr., “Software Fault
Interactions and Implications for Software Testing”, IEEE
Trans. on Software Engineering, vol. 30, no. 6, June, 2004.

2.	 NIST Special Publication 800-142, Practical Combinatorial
Testing, Oct. 2010.

3.	 C. McQuery, “Design of Experiments in Test and Evaluation”.
Memo, Office of the Secretary of Defense, May 1, 2009.

4.	 J.R. Maximoff, M.D. Trela, D.R. Kuhn, R. Kacker, “A Method
for Analyzing System State-space Coverage within a t-Wise
Testing Framework”, IEEE International Systems Conference
2010, Apr. 4-11, 2010, San Diego.

5.	 D.R. Kuhn, I. Dominguez, R.N. Kacker and Y. Lei.
“Combinatorial Coverage Measurement Concepts and
Applications”, 2nd Intl Workshop on Combinatorial Testing,
Luxembourg, IWCT2013, IEEE, Mar. 2013.

6.	 G. Hutto, “53d Wing Test Plan Examples”, Tech. Rpt., Eglin
AFB, 2012.

7.	 C. Price, R. Kuhn, R. Forquer, A. Lagoy, R. Kacker,
“Evaluating the t-way Combinatorial Technique for
Determining the Thoroughness of a Test Suite”, N A SA
I V&V Workshop, 2013.

Yu Lei is a professor in Department of
Computer Science and Engineering at the
University of Texas, Arlington. His current
research interests include automated
software analysis and testing, with a
special focus on combinatorial testing,
concurrency testing, and security testing.
He received his PhD from North Carolina
State University.

Phone: 817-272-2341
E-mail: ylei@uta.edu

—

mailto:kuhn@nist.gov
mailto:raghu.kacker@nist.gov
mailto:ylei@uta.edu

