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Abstract.  There are relatively few good methods for evaluating test set quality, 
after ensuring basic requirements-traceability.  Structural coverage, mutation testing, 
and related methods can be used if source code is available, but these approaches 
may entail significant cost in time and resources. This paper introduces an alter­
native measure of test quality that is directly related to fault detection, simple to 
compute, and can be applied prior to execution of the system under test.  As such, it 
provides an inexpensive complement to current approaches for evaluating test quality. 

Introduction 
How thorough are your tests? This is a vitally important 

question for mission critical systems, but very difficult to 
answer with confidence, especially if tests were produced by 
third-party test developers. 

Generally it must be shown that tests track to enumerated 
requirements, but this is a coarse grained metric. Structural 
coverage criteria such as statement or branch coverage may 
also be applied, if source code is available. Mutation testing 
– developing multiple versions of the code with mutations, or 
seeded faults – may be used to compare the fault detection 
capacity of alternative test suites, or evolve a test suite that 
produces a sufficiently high score on detecting differences 
between mutated versions of the code. Such an approach 
naturally is dependent on the mutations chosen. 

Figure 1. Cumulative fault distribution 

Evaluating test quality is a particularly difficult and imprecise 
process for “black box” testing, where no source code is used. 
A test goal may be to positively demonstrate a collection of 
specified features, often by a single test for each feature or 
option. But simply showing that a particular input can dem­
onstrate the feature does little to prove that an application is 
adequate for the wide range of inputs likely to be encountered 
in real-world use. Alternatively, an operational profile may be 
developed which tests the system according to the statisti­
cal distribution of inputs that occur in operational use. This 
process can provide reasonable confidence for the system’s 
behavior in normal operation, but may miss the rare input con­
figurations that can result in a failure. 

A common approach for high assurance is to include tests 
designed to exercise the system with rare scenarios, based on 
experience or engineering judgment.  This approach is clearly 
dependent on the skill of testers, and it may leave a large pro­
portion of the possible input space untested. It also provides no 
quantitative measure of the proportion of significant input com­
binations that have been tested. Therefore, if test services are 
to be contracted out, there is little sound basis for developers to 
specify the level of testing required, or for testers to prove that 
testing has been adequate for the required assurance level. This 
paper describes measurement methods derived from combina­
torial testing that can be used in analyzing the thoroughness of 
a test set, based on characteristics of the test set separate from 
its coverage of executable code.  

Distribution of Faults 
Empirical data show that most failures are triggered by a 

single parameter value, or interactions between a small number 
of parameters, generally two to six [1], a relationship known as 
the interaction rule. An example of a single-value fault might be 
a buffer overflow that occurs when the length of an input string 
exceeds a particular limit.  Only a single condition must be true 
to trigger the fault: input length > buffer size.  A 2-way fault is 
more complex, because two particular input values are needed to 
trigger the fault. One example is a search/replace function that 
only fails if both the search string and the replacement string are 
single characters.  If one of the strings is longer than one charac­
ter, the code does not fail, thus we refer to this as a 2-way fault. 
More generally, a t-way fault involves t such conditions. 

Figure 1 shows the cumulative percentage of faults at t = 1 to 
6 for various applications [1]. We refer to the distribution of t-way 
faults as the fault profile. Figure 1 shows the fault profile for a 
variety of fielded products in different application domains, and 
results for initial testing of a NASA database system. As shown 
in Figure 1, the fault detection rate increases rapidly with interac­
tion strength, up to t=4. With the medical device applications, 
for example, 66% of the failures were triggered by only a single 
parameter value, 97% by single values or 2-way combinations, and 
99% by single values, 2-way, or 3-way combinations. The detection 
rate curves for the other applications studied are similar, reaching 
100% detection with 4 to 6-way interactions. Studies by other 
researchers have been consistent with these results. Thus, the im­
possibility of exhaustive testing of all possible inputs is not a barrier 
to high assurance testing. That is, even though we cannot test all

—



20 CrossTalk March/April 2015 

TEST AND DIAGNOSTICS

     

 
 

 
 

 
 

 

 
 

 
 

  

     
 

 

 

  

 

    
    
    

    

 

 

 

(1)	
  
(2)

possible combinations of input values, failures involving more than 
six variables are extremely unlikely because they have not been 
seen in practice, so testing all possible combinations provides very 
little benefit beyond testing 4 to 6-way combinations. 

Matrices known as covering arrays can be computed to cover 
all t-way combinations of variable values, up to a specified level 
of t (typically t ≤ 6), making it possible to efficiently test all such 
t-way interactions [2]. The effectiveness of any software test­
ing technique depends on whether test settings corresponding 
to the actual faults are included in the test sets. When test sets 
do not include settings corresponding to actual faults, the faults 
will not be detected. Conversely, we can be confident that the 
software works correctly for t-way combinations contained in 
passing tests. 

As with all testing, it is necessary to select a subset of values 
for variables with a large number of values, and test effective­
ness is also dependent on the values selected, but testing t-way 
combinations has been shown to be highly effective in practice. 
This approach is known as combinatorial testing, an extension 
of the established field of statistical Design of Experiments 
(DoE), endorsed by the Department of Defense Office of Test 
and Evaluation in 2009 [3], and used by commercial firms with 
demonstrated success. 

Coverage Implications of Fault Distribution 
The distribution of faults reported above suggests that testing 

which covers a high proportion of 4-way to 6-way combinations 
can provide strong assurance. If we know that t or fewer vari­
ables are involved in failures, and we can test all t-way combina­
tions, then we can have reasonably high confidence that the 
application will function correctly.  As shown above, the distribu­
tion of faults varies among applications, but two important facts 
are apparent: a consistently high level of fault detection has been 
observed for 4-way and higher strength combinations; and no 
interaction fault discovered so far, in thousands of failure reports, 
has involved more than six variables. 

Any test set, whether constructed as a covering array or not, 
contains a large number of combinations. Measuring combina­
torial coverage, i.e., the coverage of t-way combinations in a test 
set, can therefore provide valuable information about test set 
quality.  Combinatorial coverage includes a number of advan­
tages for assessing test quality: 

•	 Computed independently of other evaluations of test quality. 
Combinatorial coverage provides additional information for 
decision-makers, and may be used in conjunction with struc­
tural coverage, mutation testing, or other approaches. 

• 	 Direct relationship with fault detection. The size of the 
input space spanned by the test set, a significant aspect 
of fault detection, can be measured by the number of 
t-way combinations up to an appropriate level of t. The 
proportion of t-way combinations covered measures the 
fractional size of the input space that is tested. 

• 	 Simple to compute and interpret. Because it is based on 
the input space of test values, there is no need to run the 
system under test to compute this measure of test set 
quality.  Freely available tools can be used on any test set 

expressed as a matrix where rows are tests and columns 
are parameter values. 

Measuring Coverage of Fault-triggering 
Combinations 

Combinatorial testing is based on covering all t-way combina­
tions for some specified level of t, but this form of testing may 
not always be practical because of established test practices, 
legal or contractual test requirements, or use of legacy test sets. 
An alternative to creating a combinatorial test set from scratch 
is to investigate the combinatorial coverage properties of an 
existing test set, possibly supplementing it with additional tests 
to ensure thorough coverage of system variable combinations. 
Determining the level of input or configuration state-space cov­
erage can help in understanding the degree of risk that remains 
after testing. If a high level of coverage of state-space variable 
combinations has been achieved, then presumably the risk is 
small, but if coverage is much lower, then the risk may be sub­
stantial. This section describes some measures of combinatorial 
coverage that can be helpful in estimating this risk. 

Variable-value configuration:  For a set of t variables, a vari­
able-value configuration is a set of t valid values, one for each of 
the variables, i.e., the variable-value configuration is a particular 
setting of the variables. 

Example. Given four binary variables a, b, c, and d, for a 
selection of three variables a, c, and d the set {a=0, c=1, d=0} 
is a variable-value configuration, and the set {a=1, c=1, d=0} is 
a different variable-value configuration. 

Simple t-way combination coverage: For a given test set of n 
variables, simple t-way combination coverage is the proportion 
of t-way combinations of n variables for which all valid variable-
value configurations are fully covered. 

Example. Table I shows four binary variables, a, b, c, and d, 
where each row represents a test. Of the six possible 2-way 
variable combinations, ab, ac, ad, bc, bd, cd, only bd and cd have 
all four binary values covered, so simple 2-way coverage for the 
four tests in Table 1 is 2/6 = 33.3%.  There are four 3-way vari­
able combinations, abc, abd, acd, bcd, each with eight possible 
configurations: 000, 001, 010, 011, 100, 101, 110, 111. Of 
the four combinations, none has all eight configurations covered, 
so simple 3-way coverage for this test set is 0%. As shown 
later, test sets may provide strong coverage for some measures 
even if simple combinatorial coverage is low. 

It is also useful to measure the number of t-way combinations 
covered out of all possible settings of t variables. 

Total variable-value configuration coverage:  For a given 

a b c d 
0 0 0 0 
0 1 1 0 
1 0 0 1 
0 1 1 1 

Table 1. Test array with four binary components 
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combination of t variables, total variable-value configuration cov­
erage is the proportion of all t-way variable-value configurations 
that are covered by at least one test case in a test set. This 
measure may also be referred to as total t-way coverage. 

The number of t-way combinations in an array of n variables is 
C(n,t) = n!/(n-t)!t!, or “n choose t”, the number of combinations of 
n things taken t at a time without repetition. If each variable has 
v values, then each set of t variables has vt configurations, so the 
total number of possible combination settings is vt ×C(n, t). Any 
test set covers at least some fraction of this amount. (Note that 
there is a natural extension of this formula for the case where 
variables do not all have the same number of values.) For the 
array in Table I, there are C(4,2) = 6 possible variable combina­
tions and 22×C(4,2) = 24 possible variable-value configurations. 
Of these, 19 variable-value configurations are covered and the 
only ones missing are ab=11, ac=11, ad=10, bc=01, bc=10, so 
the total variable-value configuration coverage is 19/24 = 79%. 
But only two, bd and cd, out of six, are covered with all 4 value 
pairs.  So for simple t-way coverage, we have only 33% (2/6) 
coverage, but 79% (19/24) for total variable-value configuration 
coverage. Although the example in Table 1 uses variables with 
the same number of values, this is not essential for the coverage 
measurement, and the same approach can be used to com­
pute coverage for test sets in which parameters have differing 
numbers of values. 

Figure 2 shows a graph of the 2-way (red/solid) and 3-way 
(blue/dashed) coverage data for the tests in Table 1.  Cover­
age is given as the Y axis, with the percentage of combinations 
reaching a particular coverage level as the X axis.  For example, 
the 2-way line (red) reaches Y = 1.0 at X = .33, reflecting the 
fact that 2/6 of the six combinations have all 4 binary values 
of two variables covered. Similarly, Y = .5 at X = .833 because 
one out of the six combinations has 2 of the 4 binary values 
covered. The area under the curve for 2-way combinations is 
approximately 79% of the total area of the graph, reflecting the 
total variable-value configuration coverage. 

Practical Examples 
The methods described in this paper were originally devel­

oped to analyze the input space coverage of tests for space­
craft software [4][5]. A set of 7,489 tests had been developed, 
although at that time combinatorial coverage was not the goal. 
With such a large test suite, it seemed likely that a huge number 
of combinations had been covered, but how many? Did these 
tests provide 2-way, 3-way, or even higher degree coverage?  

The original test suite had been developed to verify correct 
system behavior in normal operation as well as a variety of fault 
scenarios, and performance tests were also included. Careful 
analysis and engineering judgment were used to prepare the 
original tests, but the test suite was not designed according 
to criteria such as statement or branch coverage.  The system 
was relatively large, with the 82 variable configuration 132754262 

(three 1-value, 75 binary, two 4-value, and two 6-value). Figure 
3 shows combinatorial coverage for this system (red = 2-way, 
blue = 3-way, green = 4-way, orange = 5-way).  This particular 
test set is not a covering array, but pairwise coverage is still 

relatively good, because 82% of the 2-way combinations have 
100% of possible variable-value configurations covered and 
about 98% of the 2-way combinations have at least 75% of 
possible variable-value configurations covered. 

Figure 4 shows a smaller example based on a US Air Force 
test plan [6] with seven parameters in a 243142 (four 2-value, 
one 3-value, and two 4-value) configuration, with 2-way through 
6-way coverage for 122 tests. Coverage is remarkably high, 
with nearly 100% of all 2-way through 4-way combinations 

interaction combinations settings coverage 
2-way 3321 14761 94.0 
3-way 88560 828135 83.1 
4-way 1749060 34364130 68.8 
5-way 27285336 603068813 53.6 

Table 2. Total t-way coverage for Fig. 3 configuration. 

Figure 2. Graph of coverage for Table 1 tests 

Figure 3. Configuration coverage for spacecraft example. 
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covered. Note that the 2-way and 3-way lines are not visible 
because with 100% coverage they appear as vertical lines on 
the right side of the chart.  

Figure 5 shows how coverage declines with 25% of the tests 
removed. Although the smaller test set has less coverage for all 
but 2-way combinations, coverage is still relatively high, so a test 
manager might consider this comparison in reviewing the cost/ 
benefit tradeoffs of adding or removing tests. 

interaction combinations settings coverage 
2-way 21 152 100 
3-way 35 

Table 3. Coverage for Fig. 4 configuration. 

Figure 4. Configuration coverage for USAF test plan. 

Figure 5. Configuration coverage, 75% of tests in Fig. 4. 

Table 4. Coverage for Fig. 5 configuration. 

Computing Combinatorial Coverage 
Tools are available to compute the measures discussed in 

this article. Several covering array generators can compute total 
coverage, and NIST-developed tools that are freely available 
can compute a variety of additional measures, and produce the 
reports included in examples above.  The tools also include em­
bedded constraint solvers, making it possible to produce counts 
of covered combinations excluding those that are not possible 
physically, or should be excluded because of constraints among 
variables. This is an essential feature for real-world use.  It is 
also possible to generate additional tests to supplement those 
analyzed, to bring coverage up to any desired level. 

The methods and tools introduced above were developed for 
analysis of NASA software tests, and additional NASA usage has 
suggested the following areas of utility [7]: 1) as an inline analysis 
tool for evaluating developer tests, 2) as a planning tool during test 
development to ensure adequate coverage, 3) as an IV&V audit tool 
for auditing completed IV&V analysis or multi-project test plans. 

Conclusions 
Combinatorial coverage provides valuable information for 

decision-makers because it measures the proportion of the 
input space that is covered relevant to testing. Because only 
a small number of variables are involved in failures, testing all 
settings of 4-way to 6-way combinations can provide strong 
assurance. For example, if we measure the t-way coverage of 
tests, and find that all 4-way combinations are covered, 90% of 
5-way combinations, and 70% of 6-way combinations are cov­
ered, we can reasonably conclude that very few potential failure-
triggering combinations have been left untested. Conversely, we 
can also have confidence that the system has been shown to 
work correctly for almost all of the relevant input space. Thus, 
combinatorial coverage can provide significant value in evaluat­
ing test quality. 
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664 100 
4-way 35 1690 98.7 
5-way 21 1818 69.7 

interaction combinations settings coverage 
2-way 21 152 100 
3-way 35 664 99.5 
4-way 35 1690 90.0 
5-way 21 1818 56.7 
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