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Abstract:  
Cryptographic primitives need random numbers to protect your data. Random numbers are used 
for generating secret keys, nonces, random paddings, initialization vectors (IVs), salts, etc. 
Deterministic pseudorandom number generators are useful, but they still need truly random seeds 
generated by entropy sources in order to produce random numbers. Researchers have shown 
examples of deployed systems that did not have enough randomness in their entropy sources, and 
as a result, crypto keys were compromised. So how do you know how much entropy is in your 
entropy source? 
 
Estimating entropy is a difficult (if not impossible) problem, and we've been working to create 
usable guidance that will give conservative estimates on the amount of entropy in an entropy 
source. We want to share some of the challenges and proposed methods. We will also talk about 
some new directions that we're investigating, and present the results of our estimation methods 
on simulated entropy sources. 
 
Introduction 
 
Random numbers are necessary for cryptography. Every time someone generates a key, 
initialization vector, nonce, random signature parameter, etc., they use a random number 
generator. The strength of those random numbers is important--there have been real-world 
attacks allowed by failures to generate cryptographically strong random numbers [1].  
 
NIST Special Publication (SP) 800-90 (a series consisting of three documents) is all about 
generating random numbers for cryptography. In SP 800-90, this is a two-stage process: first, an 
entropy source provides an impossible-to-guess seed. Then, a deterministic cryptographic 
algorithm (called a DRBG--deterministic random bit generator--in SP 800-90) expands the seed 
into a long sequence of values that may be safely used for keys, IVs, nonces, etc.  
 
The entropy source must be based on some nondeterministic process--for example, many 
practical entropy sources are based on the timing variation from an unstable oscillator. To be 
useful, the entropy source's unpredictability must also be quantified--we need to know how many 



bits need to be drawn from the entropy source to produce a good seed. The unpredictability of 
the outputs of an entropy source is measured in terms of entropy. 
 
There are a number of different measures of entropy; for seeding a DRBG, the relevant measure 
is called min-entropy, which corresponds to the difficulty of guessing the most-likely output of 
the entropy source. If p is the probability of the most likely value for some variable, then its min-
entropy is H =-lg(p).  
 
The 90B Non-iid Estimators 
 
Draft SP 800-90B (one of the SP 800-90 documents, and called 90B from now on) discusses 
procedures for evaluating how much entropy per sample can be obtained from an entropy source 
[2], and includes five entropy estimators1 for non-iid2 data. Each estimator takes a sequence of 
minimally processed samples from the underlying unpredictable process in the entropy source, 
and uses them to compute an entropy estimate. The minimum of these five estimates is used as 
the entropy assessment of a given source.  
 
Issues with the 90B Estimates 
 
There are some issues with the 90B estimates, which justify the search for better ways to 
estimate entropy. 
 
a. Four of the five 90B estimates have to assume that the source is iid in order to compute their 

entropy estimate. Since they are only expected to be used on non-iid sources, this is 
problematic.   

b. The non-iid estimates tend toward underestimates, and some of them will give huge 
underestimates on some kinds of sources. This interacts badly with the strategy of estimating 
the entropy of a source by taking the minimum of all the estimates.  

 
Predictors: An Alternative Approach to Entropy Estimation 
 
A predictor is an algorithm that aims to predict the next sample value, based on previous 
observations. Entropy is a measure of unpredictability, so we can use the accuracy of a predictor 
to estimate the entropy of a source. The more accurate the predictor's predictions, the lower the 
entropy estimate. Estimates are calculated in two ways: 
 
a. Based on the predictor's average performance, using the number of correct predictions 

divided by the number of attempted predictions. 
b. Based on the predictor's best burst of performance, using the longest run of correct 

predictions.  

                                                      
1 These five estimators were contributed to 90B by the National Security Agency (NSA), and are 
discussed in [3] by Hagerty and Draper. 
2 Sources in 90B are split into iid and non-iid sources.  An iid (independent and identically distributed) 
source is a source whose samples are all drawn from the same distribution, and are all independent of 
surrounding samples.  A non-iid source is any source that isn't iid.  In general, it's easy to estimate the 
entropy for iid sources, and harder for non-iid sources.     



 
The final entropy estimate is the minimum of these two values.  
 
Predictors have some major advantages over the 90B estimates. A predictor that is a good fit for 
the behavior of a source will give a relatively accurate estimate; a predictor that is a poor fit will 
give an overestimate. This interacts well with the procedure of taking the minimum of many 
entropy estimates to get a final estimate. Adding many predictors, each tuned for a different kind 
of source, will not degrade the quality of the final entropy estimates we get. More fundamentally, 
the 90B estimates are based on constructing a probability model and estimating the parameters of 
the distribution within the model, and their results are only very loosely related to any practical 
security question. By contrast, predictors attempt to answer the only really relevant question 
about an entropy source: how easy is it to predict the source's outputs?  
 
In this research, we introduce three predictors:  
 
a. The Most Common in Window (MCW) predictor maintains a window of the last w samples 

and predicts the next sample value to be the most common sample value within the window. 
The window size was selected to be 64 for our experiments.  

b. The Multi Markov Model with Counting (MultiMMC) predictor keeps track of multiple 
Markov models simultaneously and uses the highest performer so far to make predictions. 

c. The Lag predictor keeps track of multiple lags simultaneously and uses the highest 
performing lag for the prediction. Lags up to 128 were used for the experiments.  

 
These three predictors cover three relatively simple ways that a source might exhibit some 
predictability. All three predictors have some additional parameters, which were set to apparently 
sensible values for our experiments.  
 
Testing the Estimators with Simulated Sources 
 
Evaluating the accuracy of entropy estimates is challenging, because real-world entropy sources 
do not actually come with known-correct entropy/sample numbers. The best solution we could 
find for this problem was to produce simulations of entropy sources. These simulated sources 
follow known probability distributions, and so have known entropy/sample. Samples are integers 
drawn from sources belonging to one of five distribution families:  
 
a. Uniform -- all values have equal probability. 
b. Near-uniform -- all values but one have equal probability; the remaining value has a higher 

probability than the rest. 
c. Normal -- samples are drawn from a normal distribution and rounded to integer values. 
d. Time-varying normal -- samples are drawn from a normal distribution and rounded to integer 

values, but the mean of the distribution moves along a sine curve to simulate a time-varying 
signal. 

e. Markov models -- samples have a fixed probability distribution based on the previous K 
samples that have been seen.  

 



For each of these simulated sources, datasets of 1 000 000 samples were generated and evaluated 
by both the 90B estimators, and by our predictors. We were able to track the performance of the 
different estimates vs. the correct entropy values. 
 
Results 
 
The results of our experiments were as follows: 
a. The predictors were substantially more accurate than the 90B estimates. The MultiMMC 

predictor was especially accurate. 
b. The 90B estimates gave huge underestimates for many sources. 
c. The 90B estimates generally tend to underestimate our simulated sources, but in some cases 

(particularly Markov model sources) gave some significant overestimates. 
 
Conclusions and Future Work 
 
The non-iid entropy estimates from the current draft of 90B represent a serious attempt to come 
up with practical general-purpose entropy estimates for entropy sources. Both analytically and 
experimentally, however, they have some problems that call their usefulness into question. We 
investigated a completely different mechanism for entropy estimation, based on predictors, and 
experimentally showed that three simple predictors can outperform the 90B estimates on a 
variety of fairly simple simulated entropy sources.  
 
Future research should identify more predictors that could be added, investigate the best 
parameter choices for the predictors presented here, and evaluate both the 90B estimates and the 
predictors against additional simulated sources.  
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