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ABSTRACT

Transition edge sensor microcalorimeters can measure x-ray and gamma-ray energies with
very high energy resolution and high photon-collection efficiency. For this technology to reach
its full potential in future x-ray observatories, each sensor must be able to measure hundreds or
even thousands of photon energies per second. Current “optimal filtering” approaches to achieve
the best possible energy resolution work only for photons well isolated in time, a requirement in
direct conflict with the need for high-rate measurements. We describe a new analysis procedure to
allow fitting for the pulse height of all photons even in the presence of heavy pulse pile-up. In the
limit of isolated pulses, the technique reduces to the standard optimal filtering with long records.
We employ reasonable approximations to the noise covariance function in order to render multi-
pulse fitting computationally viable even for very long data records. The technique is employed
to analyze x-ray emission spectra at 600 eV and 6 keV at rates up to 250 counts per second in
microcalorimeters having exponential signal decay times of approximately 1.2 ms.

1. Motivation and goals

The Transition Edge Sensor (TES) is an excel-
lent calorimetric spectrometer with applications in
physical chemistry, materials analysis, gamma-ray
spectrometry for nuclear forensics, and x-ray as-
tronomy, among many other uses. A variety of
satellites and sounding rockets are under develop-
ment or have been proposed as platforms for TESs
or other cryogenic microcalorimeters (to which our
results also apply). Currently, an array of nearly
4000 TESs is planned as the focal plane for the
X-ray Integral Field Unit (X-IFU) on the recently
selected European x-ray satellite Athena (Ravera
et al. 2014).

Absorption of a single x-ray photon produces a
current pulse lasting for a fraction of a millisec-
ond to a few milliseconds under typical TES op-
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erating conditions. The current state-of-the-art
“optimal filtering” techniques for pulse height es-
timation work well only when pulses are isolated
from all earlier and later pulses over an isolation
period several times longer than this. Such tech-
niques can deal with pulse pile up only by dis-
carding non-isolated pulses. Hence, optimal filter-
ing is a good approach in the limit of low photon
rates. When the product of the exponential de-
cay time of the sensors and the photon count rate
approaches and exceeds 0.05 to 0.10, however, op-
timal filtering forces increasingly difficult compro-
mises between photon throughput and energy res-
olution. Relieving this tension through faster time
constants is difficult; faster pulses generally re-
quire alterations to the sensor designs and—more
critically—additional readout bandwidth. To pre-
serve resolution for sensors with a decay time of
150 microseconds (as the Athena plan specifies),
pileup rejection becomes increasingly wasteful of
photons at a pulse rate per sensor of 100 counts
per second or more.
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Instruments such as the Athena X-IFU have a
wide range of science targets (Barcons et al. 2012).
Some extended targets such as galaxy clusters and
emission from filaments of the Warm Hot Interstel-
lar Medium require high-resolution spectroscopy
across the full field of view of the X-IFU. These
targets are particularly well matched to TES sen-
sors. However, the same instrument must also per-
form spectroscopy on compact objects whose spa-
tial extent at the focal plane is set by the point-
spread-function of the optics, objects such as neu-
tron star binaries and stellar mass black holes.
In these cases, the full x-ray flux of the source
will be incident on one or just a few TESs and
the count rate capabilities of the individual sen-
sors will strongly affect measurement quality. The
X-IFU specifications require at least 80 % of pho-
tons to be measured with the highest resolution
for 1 milli-Crab source intensities. The count rate
from a milli-Crab source will depend on parame-
ters that are still under discussion, such as mirror
area, but this requirement corresponds approxi-
mately to achieving output count rate of 40 counts
per second (cps) per TES at an input count rate of
50 cps. For sources that exceed 1 milli-Crab, the
fraction of lost photons will be even higher than
20 %. One viewing strategy for bright compact ob-
jects is to insert a diffuser that spreads the x-rays
across a larger area of the focal plane. Alterna-
tively, improved signal-processing strategies may
increase photon throughput. We describe here a
pulse-analysis technique that can dramatically ad-
vance the goal of preserving spectral resolution at
high count rates relative to existing methods.

To perform any given observation as quickly
as possible and make efficient use of the highest
photon fluxes, we must be able to estimate pulse
heights in the presence of some modest amount of
pileup with resolution comparable to that achieved
on isolated pulses. Previous x-ray telescopes such
as the ASTRO-E (Boyce et al. 1999) and ASTRO-
H missions (Takahashi et al. 2012) address the
problem by “event grading.” Pulses not isolated
enough to use the best optimal filter use a shorter
“mid-grade” filter; pulses not suited even for the
shorter filter are simply averaged over several suc-
cessive samples near the pulse peak, for “low-
grade” filtering. Even this method, though, is
hampered by having minimum pulse-isolation re-
quirements.

We present here a different approach based on
linear superposition of pulses. Its primary goal is
to break the tight link between photon through-
put and energy resolution that the isolated-photon
requirement imposes. This requirement arises in
the traditional analysis because optimal filtering is
designed to consider only one pulse at a time; our
method relaxes this rule. Our secondary goal is to
create a method simple enough and fast enough
to implement in firmware or hardware, so that it
can be performed on a spacecraft. It should han-
dle pulse pileup in a way that works at low pulse
rates, too, and not rely on different analysis modes
for high and low rates. It is also important that
the method not require substantially more data to
be sent back from space than a traditional method
does, given the limited bandwidth for communica-
tion from space; the method should yield a pulse
height and arrival time, and not more than a few
additional quantities for each x-ray pulse.

We first describe the standard technique of opti-
mal filtering and show how it generalizes naturally
to the estimation of multiple pulse heights simul-
taneously in a long record of sensor data, by a
form of weighted least-squares fitting (Section 2).
A straightforward application of this idea to long
data records would be computationally quite ex-
pensive, the cost scaling quadratically with the
samples per data segment. This high computa-
tional cost was noted by an earlier group that ap-
plied this idea to astronomical microcalorimeter
data from a brief suborbital flight (Crowder et al.
2012). One possible compromise—to make an im-
plicit assumption of white noise—has been used to
create FPGA-based hardware performing simul-
taneous pulse-height fits for very fast silicon drift
diodes (Scoullar et al. 2011). We present a method
to reduce the computational complexity of the fit-
ting procedure even in the presence of non-white
noise by approximating the noise autocorrelation
function as the result of a low-order autoregres-
sive moving average (ARMA) process (Section 3).
This powerful approximation has not previously
been used with x-ray microcalorimeter data.

The technique is then applied to two terres-
trial TES measurements. The data were recorded
by microcalorimeters designed for x-rays up to
10 keV. The first data set (Section 4) employs
an array of forty sensors at energies below 1 keV.
Because the x-ray energy is far below the satu-
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ration energy, the energy-resolving power is mod-
est but the detectors are highly linear. The x-
ray source is the beamline U7a at the Brookhaven
National Laboratory’s National Synchrotron Light
Source (NSLS). This example application is cho-
sen to have both high photon rates and minimal
nonlinearity.

The other data set (Section 5) consists of the
5.9 keV and 6.4 keV fluorescence emission of a
manganese target illuminated by an x-ray tube
source. The emission is measured by a single de-
tector over a range of photon rates from 9 to 100
photons per second. Figure 1 shows 100 ms of ob-
servation from each of the five data rates, giving
a sense of the problem being addressed. The TES
calorimeters are less linear at these energies than
they are below 1 keV, while detector linearity is
an assumption intrinsic to our method. Still, the
multi-pulse fitting method shows impressive per-
formance even at high rates with only the simplest
of corrections for nonlinearity. High-rate astro-
nomical spectroscopy will present problems due to
sensor nonlinearity that are beyond the scope of
this work, though in Section 7 we offer some sug-
gestions on ways to move beyond the technique
featured here.

2. Pulse height estimation from optimal
filtering to multi-pulse fitting

The data used for estimating microcalorimeter
pulse amplitudes consist of the regularly sampled
and digitized values of the time-varying bias cur-
rent through the sensor. The sample rate is typ-
ically 105 to 106 samples per second per TES. In
the Athena X-IFU—an array of 4000 sensors—
1 GB of raw data will be generated in each second
of operation, or nearly 100 TB per day. While
this high data rate demands fast analysis proce-
dures, the extremely high resolving power of the
microcalorimeters also means that one must take
great care not to lose information or to introduce
new systematic errors. Balancing the competing
requirements of computational and statistical effi-
ciency is among the central challenges in analyzing
TES data.

We distinguish here between estimating the am-
plitude of the TES current pulse and the energy of
the absorbed photon, not only because the scale
factor between the two is not known a priori, but
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500 cps

Fig. 1.— Example microcalorimeter signals,
taken from one TES sensor observing 6 keV flu-
orescence x-rays, as described in Section 5. Each
curve shows 100 ms of raw data corresponding to a
different x-ray source intensity, producing the in-
dicated number of counts per second (cps) in the
sensor. The deleterious effects of sensor nonlin-
earity prevent use of the 218 and 500 cps data in
this work, but the data up to 100 cps are analyzed
here.

also because the relationship is generally not a lin-
ear one. Understanding this nonlinear mapping is
an important concern in analyzing TES data, but
it is beyond the scope of the current paper. We
will assume for now that precise and accurate es-
timates of pulse amplitudes are a necessary and
sufficient condition for making similarly good es-
timates of pulse energy and focus on the problem
of amplitude estimation.
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2.1. Optimal filtering of isolated pulses

The standard technique for estimating mi-
crocalorimeter pulse amplitudes begins with the
identification of pulses and their arrival times from
a long stream of regular TES current samples
(“triggering”), and the subsequent selection of a
predetermined number of samples both before and
after the pulse onset (generating a “pulse record”
surrounding the trigger time). The amplitude esti-
mate for each pulse is then a certain weighted sum
of the values in the pulse record. The best set of
weights is the so-called optimal filter (Szymkowiak
et al. 1993; Boyce et al. 1999; Lindeman 2000).
This filter can be derived in various ways—as
a minimum-variance unbiased estimator, or as
a maximum-likelihood estimator—starting from
these assumptions:

1. Pulses always arrive long after any energy
deposited by earlier x-rays has fully dissi-
pated. The sensor has returned to its steady-
state electrical and thermal conditions.

2. Pulses are all identical in shape, regardless
of energy. Only a single scale factor—the
pulse amplitude—varies from one pulse to
another.

3. The pulse shape is known ahead of time,
perhaps by averaging together many pulses
from an initial training portion of the data.

4. Noise is additive and follows a multivariate
Gaussian distribution.

5. The noise is stationary (in particular, it does
not vary as the current in the sensor evolves),
and its autocorrelation function (or equiva-
lently, its power spectral density) is known.

Not one of these assumptions is strictly correct,
yet the procedure yields splendid results in a wide
variety of conditions, at least for time-isolated
pulses. In this paper, we consider violations of
the first condition: cases where some measurable
amount of residual energy remains in a sensor
when a new pulse arrives. This problem is known
as pulse pile-up. Our approach to the problem is
to assume strict sensor linearity, so that the cur-
rent in the sensor is simply the sum of the decay
to equilibrium that would have been seen in the
absence of the new pulse, plus the new pulse as

it would have been measured in isolation. This
assumption, of course, is also incorrect; we will
explore how far we can go with it, nevertheless.

Returning to the standard analysis, let R be
the covariance matrix of the noise. That is, its
elements are expectation values (here, E[·]) of two-
point products for a pulse-free data sequence {di},

Rij = E[didj ]− E[di] E[dj ].

Because the noise is assumed to be stationary, the
symmetric matrix R is Toeplitz, i.e., Rij = r|i−j|
for some sequence rt, the noise autocovariance
function. A symmetric Toeplitz matrix is fully
specified by its first row or column.

Let the assumed pulse shape, called the pulse
model, be the vector1 s and the measured data
be the vector d. We choose the length N of both
vectors in advance (typically by fixing the record
length at data-acquisition and triggering time). In
the simplest case, there is nothing expected in the
data but the pulse of unknown amplitude p plus
zero-mean noise, i.e.

E[d] = ps,

and it can be shown that the best (minimum-
variance, unbiased) estimate of the pulse height
is

p̂ = (sTR−1s)−1sTR−1d ≡ f̂
T

1 d.

Here we have introduced f̂1, the optimal filter for
estimation of a single amplitude. It is a weighting
vector, which lets us estimate p̂ by taking an inner
product with the data vector.

Most cases are not so simple, and one must ac-
count for additional terms in the data other than
noise and the pulse itself. One specific term that
must be included in nearly every analysis is an
additive constant, called the baseline. This con-
stant arises because systems for measuring the
tiny currents through microcalorimeters generally
have unknown (and slowly varying) DC offsets.
Removing the DC term specifically is straight-
forward (Doriese et al. 2009), but we prefer a
more general treatment. We have previously in-
troduced a framework for constrained optimal fil-
tering (Alpert et al. 2013), in which the filter is
the minimum-variance filter chosen not from the

1We treat all vectors as column vectors.
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set of all possible weights, but only from those
that are strictly insensitive to one or more additive
“nuisance terms”. In this picture, we replace the
vector s with a model matrix M whose first col-
umn is s (the pulse shape); other columns contain
all anticipated nuisance terms. One such column
might be a column of ones, if DC-insensitivity is
required; another might be a decaying exponen-
tial chosen to render the filter insensitive to the
tail of an earlier pulse (provided its decay time is
known). In this approach, the best estimate of the
pulse height becomes

p̂ = eT1 (MTR−1M)−1MTR−1d ≡ f̂
T
d. (1)

Here we use the unit vector e1 ≡ [1, 0, 0, . . . ]T to
select only the term that corresponds to the am-
plitude of the pulse shape component s and to
discard all other terms.

It can be shown that each new component in-
troduced into the model increases the variance of
the estimator p̂, but in practice the signal-to-noise
price paid is often quite small, particularly when
the records are long or the nuisance terms are very
different from the pulse shape s.

These results use the noise covariance matrix
R rather than the noise power spectrum. Use of
the Fourier space representation of noise is both
possible and convenient, but it introduces an ad-
ditional wrong assumption of periodicity; in fact,
neither the finite-length pulse nor the noise in a
record are periodic. The signal-to-noise cost for
filtering in the Fourier domain may be small in
some cases (Alpert et al. 2012), but we prefer to
avoid paying unnecessary costs, however small.

2.2. Filtering as fitting for pulse amplitude

A different and productive view of the optimal
filter (Equation 1) is also possible. Suppose, as
before, that we are given the noise model (the ma-
trix R), the pulse shape (s), and a complete set of
components in a model of the pulse records (the
columns of matrix M). If we also knew the com-
ponents’ true amplitudes p, we could compute the
likelihood, the probability under the linear model
that the data would be d. Ignoring normalization
factors, the likelihood is

L ∝ exp
[
−(d−Mp)TR−1(d−Mp)

]
.

For a fixed measurement d and model, the loga-
rithm of L is a quadratic function of the unknown

parameters p. If we maximize the likelihood with
respect to the vector p by setting

d(logL)/dp|p=p̂ = 0,

then we find a closed-form expression for the
maximum-likelihood estimates of the parameters:

p̂ = (MTR−1M)−1MTR−1d, (2)

of which Equation 1 is one component. Note that
the estimate is unbiased:

E[p̂] = p

because E[d] = Mp. This establishes that the
minimum-variance estimator for the pulse height
quoted in the previous section is in fact also the
maximum-likelihood estimate of the pulse height,
provided that one fits simultaneously for the am-
plitudes of all components of the model (including
the baseline level, unwanted pulse tails, and so
forth).

The covariance of our parameter estimates can
also be computed:

Cpp = E[(p̂− p)(p̂− p)T ] = E[p̂p̂T ]− ppT .

The notation is simplified if we designate the sys-
tem design matrix as

A ≡MTR−1M. (3)

Then

Cpp = A−1MTR−1E[ddT ]R−1MA−1 − ppT

= A−1(MTR−1RR−1M)A−1 (4)

= A−1AA−1

= A−1. (5)

This estimate of the parameter covariance will be
useful in what follows.2

2.3. First-order treatment of the variation
in x-ray pulse arrival times

One source of systematic error in pulse-height
analysis is the undesirable dependence of the esti-
mated pulse heights on the exact arrival time of an

2Equation 4 can also be useful in the event that we wish
to perform filtering with an approximate noise covariance
matrix R, but we believe the true covariance to be T. See
Section 3.4.
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x-ray photon. Photons arriving at different times
with respect to the TES current-sampling clock
will appear to have slightly different pulse shapes,
and this effect is often large enough to degrade the
energy resolution if left uncorrected.

A full cancellation of this arrival-time effect
presents a major unsolved challenge to develop-
ers of pulse-processing techniques. Nevertheless,
we find that the effect can be suppressed substan-
tially by a first-order treatment. We assume that
the pulse model s is the result of regularly sam-
pling an unknown, smooth “pulse shape” function
f(t) with a sampling period of ∆:

si = Af(i∆− ta), i = ...,−1, 0, 1, 2, ...

where A is the pulse amplitude, and ta is the un-
known exact arrival time of the photon. We can
treat ta as a parameter of the pulse model; unfor-
tunately, the model is nonlinear in this parameter,
invalidating the analysis of the previous section.
If the function f(t) is expanded in a Taylor se-
ries about ta = 0 and only the linear-order term is
kept, however, then the result is necessarily linear:

si ≈ Af(i∆)−Ataf ′(i∆) +O(At2af
′′).

In this approximation, we can treat A and (Ata)
as the two coefficients of a linear model and solve
for them simultaneously by using the model pulse
and its time derivative as two of the columns of
model matrix M and solving Equation 2. For this
purpose, the time derivative f ′(t) of a pulse is not
known exactly, but it can be approximated by the
first finite difference of the pulse model s.

We find that this first-order treatment of the
variation in photon-arrival times is necessary to
achieve the highest possible resolution in the test
cases described below in Sections 4 and 5.

2.4. Fitting for multiple pulse heights si-
multaneously

Within the assumptions of the linear model, p̂
is the maximum-likelihood estimator for the am-
plitudes of all components in the model simulta-
neously. To this point, we have supposed that the
columns of M consist of one pulse shape and mul-
tiple nuisance terms such as a constant baseline
and possibly the pulse’s time derivative. We need
not restrict the model to contain only one pulse,
though. We can instead analyze a segment of data

known to contain two or more pulses. Equation 2
will handle this case equally well; in such situa-
tions, more than one parameter of p̂ will estimate
a pulse height of interest.

This approach, which we call multi-pulse fitting,
allows much greater flexibility in handling pulses
that are not cleanly separated in time. Rather
than simply rejecting both members of a closely
spaced pair, we can determine the linear combi-
nation of two pulses that best fits the measure-
ments. How close in time two pulses can be with-
out invalidating the estimates is now a decision
that can be made at analysis time instead of at
data-acquisition time. In any event this approach
is much more tolerant of modest pileup.

Figure 2 illustrates the procedure. The exam-
ple data (labeled “Raw” in the figure) depict a
73 ms segment (5700 samples) from an observa-
tion of the fluorescence of NH4NO3 illuminated
by a monochromatic 542 eV x-ray beam. X-ray
photons struck this particular detector at an av-
erage rate of 215 counts per second (the array-
wide rate was over 8000 cps); 15.6 are expected
and 14 are seen during this example. Assum-
ing that the noise covariance and the expected
pulse shape have already been determined dur-
ing a “training pass” through some or all of the
data, the first step in analyzing this record is to
locate the pulse arrival times. For this purpose,
the data are convolved with a filter having weights
[+1,−.8 − .5,−.2,+.1,+.4]. This has the effect
of finding the difference between each data sam-
ple and the extrapolation of the least-squares fit
of a line to the five previous samples. This con-
volution (“Trig”) is checked for large positive ex-
cursions, which define the trigger times. In this
record, 14 photons are found. The matrix M is
constructed with 5700 rows (the record length)
and 29 columns. One column is the constant value
1 (representing the unknown baseline level); 14 are
the standard pulse model, each offset in time by
the appropriate trigger time; and 14 are the finite-
difference approximation to the pulse model’s first
time derivative (used as described in the previous
section to allow for a first-order correction to the
exact pulse arrival time). For convenience, the
standard pulse model is scaled to have exactly unit
height, which ensures that the estimate of the am-
plitude has the same arbitrary units as the raw
data. Given this M and an estimate of the noise

6



Fig. 2.— Multi-pulse fitting requires modeling the raw data (“Raw”, blue) as a linear combination of two
components per pulse (“Cmps”), identical except for different pulse arrival times. One component is the
pulse model p(t), and the other is the first finite time difference of the pulse model (representing dp/dt).
The top curve (“Trig”, purple) represents the raw data convolved with the high-pass kernel used to identify
the onset of new pulses. The 14 pulse times are shown by vertical gray lines. The best-fit model (“Model”,
black) and the data minus model residual times ten (“Diff x10”, green) are also shown.

R, Equation 2 can be solved for the estimated
parameters, yielding 14 pulse-height estimates, 14
arrival-time corrections, and one constant baseline
level. We find that all photons are 525 eV oxygen
fluorescence except for the sixth, which is a 397 eV
nitrogen fluorescence x-ray. The best fit to the
data, given by d̂ ≡Mp̂, is shown (“Model”), fol-
lowed by the data-minus-model difference, scaled
by a factor of 10.

The parameter-uncertainty estimates (Equa-
tion 5) predict for most pulses a 1σ pulse-height
uncertainty of 0.9 eV (or 2.0 eV full-width at half-
maximum, FWHM). When pulses are piled up,
these uncertainties increase, but only slightly.
Pulses 8 and 9 have 2.1 eV predicted FWHM,
while pulses 10 and 11, although separated by
only 0.4 ms, have 2.4 eV. The matrix Cpp also
predicts correlations among the estimates of p̂.
The Pearson correlation coefficient between well

separated pulses is typically +0.01, though closely
spaced pulses can have strong anticorrelations.
Correlations of −0.3 and −0.5 are found between
pulses 8 and 9 and between 10 and 11, respec-
tively. All pulse heights are anti-correlated with
the baseline estimate, with ρ = −0.13 in all cases.

It should be apparent that multi-pulse fitting
requires a different strategy for selecting segments
of data to store for later processing. Instead of im-
plementing a software trigger and recording fixed-
length records appropriate for the duration of a
single pulse, the data-acquisition software needs
to allow for longer records whenever pulses pile up
on one another. For the test cases explored here,
we have taken this approach to its extreme limit
and simply recorded all data samples without in-
terruption. This choice consumes the maximum
possible storage space but has the advantage of
simplicity during data acquisition.

7



When the online system does not separate the
data naturally into distinct records, the offline
analysis system must do so. The approach used
here is to choose a default record length, typically
10 to 50 ms. When a pulse occurs too close to the
end of such a record, the record is shortened (and
the next record lengthened) as needed to ensure
that the pulses in any one record have minimal
coupling with the next record. At extremely high
pulse rates, no gaps of satisfactory size would oc-
cur, and a different solution would be required.

3. Through the noise-whitening bottle-
neck

Important practical difficulties can arise when
Equation 2 is used for multi-pulse fitting. Data
sets can contain very many records per second,
each of length N ∼ 104 or 105. Noise covariance
matrices of size N × N are costly to invert; for
N & 105, it can be impossible even to store R
or R−1. Because of the Toeplitz symmetry, the
Levinson algorithm (Press et al. 2007) can be used
to solve R in O(N2) time with only O(N) storage.
This is a great improvement over general matrix
solutions, which require N times as much of both
time and storage, yet Levinson is too slow for gen-
eral use in applications involving large TES arrays.
So-called “super fast Toeplitz solvers” requiring
only O(N logN) operations have been proposed in
recent years (Chandrasekaran et al. 2008). Unfor-
tunately, they have very high break-even points,
and mid-size problems like the current one are un-
likely to reap the benefits larger problems will from
the reduced asymptotic complexity.

The model matrix M, whose columns are the
components of the data model, is different for ev-
ery segment of data. While two segments might
have the same number of pulses, their pulses will
be at different times; for all practical purposes,
these are entirely different data models. Since each
data segment will have its own M, evaluating the
maximum-likelihood estimates of the parameters
requires computing R−1M, or one solution of R
for each model component for each data segment.

Of course, a standard (Levinson) solution of the
full noise covariance matrix will be practical for
smaller problems. Readers concerned only with
such cases may skip over the remainder of Sec-
tion 3, which discusses approximations to R for

more demanding situations.

3.1. Noise whitening the data and the
model

The expression for the best estimate of the
model parameters, Equation 2, twice uses the in-
verse of the noise- covariance matrix. The true
noise-covariance matrix of any random process is
positive definite.3 It follows that R is invertible,
that its inverse is also positive definite, that both
admit a Cholesky decomposition, and that both
have strictly positive eigenvalues.

It is therefore possible to construct matrix W,
which is a linear noise-whitening operation in the
following sense: the covariance of a whitened data
vector (w ≡Wd) is

Cw = E[WddTWT ]− E[Wd] E[dTWT ]

= WRWT .

If W satisfies
WRWT = I, (6)

or equivalently

R−1 = WTW, (7)

then the whitened data vector w is linear in the
data and has uncorrelated noise of unit variance.

We write the maximum-likelihood fit for the pa-
rameters and the design matrix with tildes indicat-
ing whitened vectors or matrices:

p̂ = A−1M̃T d̃ (8)

A = MTWTWM
def
= M̃TM̃. (9)

The effect of whitening the data and the model
components is to reduce the problem from one
of non-white noise (requiring correlated weights)
to the simpler problem of an unweighted least-
squares fit of a linear model. We stress, however,
that these two equations are completely equivalent
to Equations 2 and 3.

At least three straightforward constructions of
the whitener satisfy Equations 6 and 7:

3An empirical estimate of R is not guaranteed to be positive
definite if the covariances rt are computed from data in
the usual, unbiased way. A different estimator of R can be
employed that is guaranteed to be positive definite, though
it is also biased (Brockwell & Davis 2009). In practice, we
have never found it necessary to use the biased estimator
for the noise covariance.
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1. Let R = PTΣP be the eigen-decomposition
of R, where P−1 = PT and Σ is the diagonal
matrix of eigenvalues. Then We ≡ Σ−1/2P
is a whitener.

2. Let R−1 = UTU be the Cholesky decompo-
sition of R−1, so that U is an upper trian-
gular matrix. Then Wu ≡ U is an upper-
triangular whitener.

3. Let R = LLT be the Cholesky decomposi-
tion of R, so that L is a lower triangular ma-
trix. Then W` ≡ L−1 is a lower-triangular
whitener.

If we order the components of the data vector d as
running from earlier to later times, then this last
W` has the appealing property of being strictly
causal, in that d̃i depends on dj only for j ≤ i.

3.2. ARMA representations of the noise-
covariance function

Instead of pursuing superfast Toeplitz solvers
for this work, we have chosen to make approxi-
mations to the noise-covariance function rt that
defines R. The extreme approximation is sim-
ply to pretend that the noise is strictly white,
and therefore R is diagonal. Though convenient,
this approximation is inappropriate for typical mi-
crocalorimeter data. We have found in practice
that making even an apparently very rough ap-
proximation to rt can yield performance that is
much closer to the ideal than the näıve assump-
tion of white noise does.

Specifically, we approximate rt as the sum
of a small number p of decaying exponentials.
These exponentials can be complex, allowing os-
cillatory as well as decaying behavior in rt. A
simple and very widely studied class of stochas-
tic models yields exactly this form for the noise-
covariance function. In the signal-processing lit-
erature, these models are known as autoregres-
sive moving-average (ARMA) models. The theory
of ARMA models is described at book-length in
Box et al. (1994) and Brockwell & Davis (2009).
Briefly, the outlook is that some “input” process
of independent zero-mean, unit-variance Gaussian
deviates εi is passed through an infinite impulse re-
sponse filter to produce the correlated noise of the
“output” yi. When the filter consists of an order-q

moving average filter and an order-p autoregres-
sive filter, it is called an ARMA(p, q) process:

yi + φ1yi−1 + . . . φpyi−p =

σ2 [εi + θ1εi−1 + . . . θqεi−q]

A random sequence {yi} generated in this way
has a noise-autocovariance function that obeys

rt =

p∑
j=1

ajx
|t|
j , for |t| ≥ q − p+ 1, (10)

where the exponential bases {xj} are the inverse
of the roots of the polynomial 1+φ1z+ . . . φpz

p =
0. Stability of the ARMA process requires that
|xj | < 1. For r to be real, it is also required that
each aj and xj be either real, or a member of a
complex-conjugate pair such that aj+1 = aj and
xj+1 = xj . We have assumed for simplicity that
the roots {1/xj} are distinct. In Equation 10, we
see that if q ≥ p, the sum-of-exponentials form
applies only after one or more exceptional values
for small |t|. In the current work, we have used
q = p throughout, so that r0 is the only exception
to the general form. This choice works well when
a large part of the noise variance is white, that is,
concentrated in the r0 component.

The appeal of approximating the noise as the
result of an ARMA(p, p) process is that its noise-
covariance matrix R can be factored as R = LLT

in O(Np2) time, the result can be stored in O(Np)
memory, and the whitener W` = L−1 can be ap-
plied in O(Np) time. This approximation thus
gives us a way to evaluate the maximum-likelihood
pulse amplitudes (Equation 2) and all other nui-
sance components in a time strictly linear in the
length N of the data record.

It is beyond the scope of this paper to explain,
in general, how to work from an observed noise
covariance and choose the order p of an ARMA
model or its coefficients. The work of De Groen
& De Moor (1987) explains how one can estimate
the exponential bases {xj} of Equation 10, though
little guidance is given on the choice of the model
order p. Once the bases are chosen, estimating
the amplitudes {aj} is straightforward. Moving
from these numbers to a fast solver of the approx-
imate R is the topic of a future manuscript, now
in preparation.

Figure 3 shows ten example ARMA(3,3) noise
models along with the residual difference between
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Fig. 3.— Top ten curves (red): The ARMA(3,3)
approximation to the noise covariance function for
ten (out of 45) microcalorimeter detectors used
in the synchrotron experiment described in Sec-
tion 4.1. Bottom ten curves (blue): The differ-
ence between the noise covariance estimated from
data and the ARMA(3,3) approximations. The
numbers at right give the sum of the absolute de-
viations of each curve from zero, showing that the
residual is smaller but not dramatically smaller
than the noise. Nevertheless, the approximate
noise model allows for excellent R−1 weighting.

measured and modeled noise. Although visible
structure is apparent in the residuals, calculations
in Section 3.4 show that the discrepancies between
measurement and model are small enough to have
only negligible effect on the precision of parameter
estimates.

3.3. Noise as an ARMA(1,1) process

In some situations, it might suffice to approxi-
mate the noise as an ARMA(1,1) process. For such
cases, and to sketch the form of the solution when
p > 1, we show explicitly how to whiten data with
ARMA(1,1) noise. The result summarized here is
completed in Appendix A.

We seek the whitener of type 3, the inverse of
the lower Cholesky factor of R, which is also lower
triangular. First, write the noise-covariance func-
tion as

rt = wδt,0 + aφ|t|. (11)

We require |φ| < 1, and all parameters {w, a, φ}
to be real. The amplitude of the decaying term is
a, and the additional white noise term is w.

Let the matrix Φ be the banded lower-triangular
Toeplitz matrix with 1 on the diagonal and −φ
on the first sub-diagonal, and zeros elsewhere.
The product S ≡ ΦRΦT is a symmetric tridi-
agonal matrix, which can be factored in O(N)
time as S = BBT . We can rewrite this as
R = Φ−1BBTΦ−T . The desired type-3 whitener
is therefore the lower-triangular matrix

W ≡ B−1Φ. (12)

Expressions for elements of S, recursions to com-
pute elements of B, and the solution to apply W
for ARMA(1,1) noise are all given in Appendix A.

We expect that the ARMA(1,1) approximation
(Equation 11) improves on the pure white-noise
approximation enough to be a valuable first step
in many applications. If not, and if computational
costs are not too high, multi-pulse fitting (Equa-
tion 2) with a direct Toeplitz solver for an arbi-
trary Toeplitz R matrix is an alternative to ap-
proximating the noise as an ARMA process.

3.4. Estimating the effect of approximate
noise whitening

In this section, we have proposed a fast noise
whitening where the noise covariance matrix is
only approximated as R. That is, WRWT ≈ I,
but the equality is inexact. What is the effect
of this approximation on the estimates of pulse
heights and other parameters when we compute
them using the approximate optimal filter given in
Equation 2? Returning to Equation 4 for the ex-
pected parameter covariance, we see that R arises
in the middle of that equation as the covariance
of the data vector: E[ddT ]− E[d]E[dT ]. If we be-
lieve the true covariance of the data to be some
matrix T 6= R, then the estimate of parameter
covariances becomes

Cpp = A−1MTR−1TR−1MA−1. (13)

This equation can be used to assess whether any
particular approximation R to the true noise co-
variance T will appreciably degrade the statistical
power of a multi-pulse fit or of a traditional or con-
strained optimal filter. For example, we can use
it to evaluate what value of p is sufficient when
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approximating the noise as an ARMA(p, p) pro-
cess. In the example analyses below, we have used
Equation 13 to determine that an ARMA(3,3)
model suffices for the noise examples shown in Fig-
ure 3.

4. Sub-keV x-ray fluorescence: an exam-
ple application

We have performed measurements at a syn-
chrotron using beam energies less than 1 keV, es-
tablishing the viability of multi-pulse fitting at
very high rates in the close-to-linear regime of the
TES sensors4. The two-peaked nitrogen K-line
emission from NH4NO3 samples allows us to esti-
mate the energy resolution at 390 eV and to com-
pare the performance of multi-pulse fitting against
standard optimal filtering at that energy and a
mean photon rate of 46 cps. Measurements of the
beam scattered from a Nylon target demonstrate
that good energy resolution is achieved even at 260
cps while retaining over 80 % of the photons.

4.1. The NIST spectrometer at the NSLS

We developed a TES array of 60 sensors and
installed it on the soft NIST U7A beamline at
the NSLS, where it was in use from 2011 until
the NSLS permanently ceased operation in late
2014. The U7A beamline source is a bending
magnet with an energy range of 180 to 1200 eV,
which is optimized for operation to study the K
lines of boron, carbon, nitrogen, oxygen, and flu-
orine; and the L lines of elements potassium to
gallium. The NIST spectrometer (Ullom et al.
2014) used three time-division multiplexer chan-
nels (Reintsema et al. 2003) each reading out
twenty TES sensors apiece. The multiplexing elec-
tronics switched between sensors every 640 ns, so
the sampling rate for any given sensor was one
sample per 12.8µs. In the measurements de-
scribed here, taken on June 14, 2012, some 40 to
45 sensors were operating.

The TES detectors used in the measurements
described in this and the next section have pulses
with a characteristic exponential decay time of 1.0
to 1.2 ms. The Athena mission’s X-IFU focal plane
will employ TESs approximately six to eight times

4The specific TES design employed here works up to 10 keV,
so the sensors are quite linear below 1 keV

faster. Therefore, pulse-analysis techniques which
we show to work with the current sensors at 100 to
200 cps per detector might scale to 1000 cps with
each Athena TES.

4.2. Demonstration spectra

Figure 4 shows the x-ray fluorescence spectra
from seven measurements over an energy range
including the K lines of carbon, nitrogen, and
oxygen. A multi-pulse fitting analysis was used
to obtain each spectrum. Two spectra show the
emission from NH4NO3 when the probe beam was
tuned to 423 eV and to 542 eV. In the former case,
the nitrogen emission “line” is split into a two-
peaked complex. Chemical effects cause the split-
ting, which results from the very different bonding
environments of the nitrogen atoms in the ammo-
nium and in the nitrate ions (Vila et al. 2011). The
split nitrogen line offers an excellent opportunity
to assess the energy resolution resulting from dif-
ferent analysis methods.

To achieve the best possible energy resolution,
a few small corrections are required after the ba-
sic multi-pulse fit described in Section 2.4. One
is a small gain-drift correction. The gain of each
TES sensor is found to be anticorrelated with its
steady-state baseline level. Although each gain
varies by only a few parts per thousand, the de-
rived energy resolution improves somewhat when
fitted pulse heights are scaled by a number linear
in the baseline level. The correction has a single
variable parameter per sensor, which is chosen by
minimization of the Shannon entropy of the cor-
rected pulse-height spectrum. Lower entropy cor-
responds to our general sense of “sharper” spec-
tral features, so this heuristic is appropriate in a
spectrum dominated by unresolved or marginally
resolved lines.

A similar one-parameter correction is applied
to remove a small, quadratic dependence of pulse
height on the pulse arrival time. (The arrival time
is found via a first-order linear model for the effect
of time offset, as described in Section 2.3.) Again
the parameter is chosen to minimize the spectral
entropy. Both the gain-drift and the arrival-time
corrections are generally employed in our standard
optimal-filter analysis, and are not unique to the
multi-pulse fitting technique.

The third correction is unique to multi-pulse
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Fig. 4.— X-ray fluorescence spectra, the combined results from 42 sensors at the NSLS, analyzed with MPF.
In the top panel, the target is NH4NO3 and the beam energy is 423 eV; most emission is in the nitrogen
K-line complex (∼ 390 eV). In the middle panel, the target is the same but the beam energy is 542 eV; the
overall x-ray rate is three times higher, and most emission is in the oxygen K line (∼ 525 eV). In the bottom
panel, the target is Nylon, and the beam energy is 573 eV. Five spectra are shown, corresponding to a range
of photon intensities that produce as few as 10 and as many as 280 counts per second per sensor. We use
the small fraction of photons elastically scattered by the target as a way to assess the energy resolution at
each rate.

fitting, but only because this technique permits
analysis of pulses with far more pileup than is
possible in other analysis approaches. We make
a small correction quadratic in the “residual cur-
rent” flowing through the sensor just before the
present pulse arrives. As with the others, this cor-
rection requires only one parameter per sensor, is
not more than a few eV in the most extreme cases,
and is selected by entropy minimization of the cor-
rected spectrum. At low pulse rates, this correc-
tion has no measurable effect on the data quality,
but at the highest rates, it can improve the reso-
lution from 5 or 6 eV to 4 eV.

Multi-pulse fitting is intended as a method to
improve on the either the photon efficiency or the
energy resolution (or both) offered by standard

optimal filtering. Using the NH4NO3 data with
423 eV x-ray beam (Figure 4, top panel), we have
made a direct comparison of MPF and standard
filtering. The per-detector average photon rate in
these data is 46 cps. We compare the MPF results
against the results from a suite of six different opti-
mal filters. Four are of the standard type, in which
the filter is explicitly insensitive only to addition
of a constant level. These filters are 20, 10, 5,
and 2.5 ms long (the shortest is 195 samples long,
given the 12.8µs sample time). The other two fil-
ters are constrained optimal filters (Section 2.1)
of length 5 and 2.5 ms, with the constraint being
that they are insensitive not only to the addition
of a constant, but also to decaying exponentials
with time constants 0.64 and 1.024 ms (50 and 80
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Fig. 5.— The two-peaked nitrogen-K x-ray fluorescence line emitted by a NH4NO3 target illuminated by
423 eV probe beam. The seven spectra correspond to the same 1,038,000 photons analyzed in seven different
ways. The six lower spectra were generated by standard optimal filter analysis, with six different choices of
filter. The top spectrum is the result of multi-pulse fitting of the same data. The legend gives the estimated
energy resolution (FWHM of Gaussian broadening). The MPF analysis achieves energy resolution as good
as the longest standard optimal filter’s, while also making use of more pulses than even the shortest, lowest-
resolution constrained optimal filter. The vertical scale is the same for all spectra—taller spectra have more
usable counts.

samples). These time constants correspond to the
typical sensor’s signal decay at a few ms and at
a few tens of ms after the peak of a pulse. Mul-
tiple decay time constants are not unusual in mi-
crocalorimeter pulses.

Each of the six standard or constrained opti-
mal filters has a corresponding “veto window”—
effectively a dead time imposed offline—inside of
which no other pulse is permitted. Each filter is
therefore applied to a unique subset of the full
1,038,000 pulses observed in this measurement.
For the four standard filters, it was required that
the previous pulse arrive at least 4 ms before the
start of the filtered record, and that the next ar-
rive at least 0.1 ms after the end of the record.
The veto windows are thus 24.1, 14.1, 9.1, and
6.6 ms long. As the constrained filters are de-
signed specifically for insensitivity to the tails of
any prior pulses, their requirement was relaxed so
that the prior pulse could arrive as little as 0.5 ms

before the start of the filter. This yields windows
of length 5.6 and 3.1 ms. At the mean data rate of
46 cps, the expected efficiency of the timing cuts
ranges from 33 % for the longest standard filter to
87 % for the shorter of the constrained filters.

Figure 5 shows spectra generated with the six
optimal filters and with MPF. As described above,
the optimal filters can increase photon efficiency
by employing shorter data records, by building in
insensitivity to the exponential tails of previous
pulses, or both. The increased efficiency always
comes at the price of poorer energy resolution, as
shown by the family of spectra; the more photons
in a spectrum, the less distinct the two nitrogen
fluorescence peaks become. The MPF results, on
the other hand, demonstrate energy resolution as
good as the longest standard filter’s while achiev-
ing 96 % photon throughput, well above that per-
mitted by any optimal filter’s corresponding tim-
ing cuts.
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4.3. Energy resolution at various count
rates with MPF

To understand how the energy resolution
changes with the photon rate, we use the measure-
ments made of fluorescence and scattered x-rays
from the Nylon target with a 573 eV beam (Fig-
ure 4, bottom panel). For this purpose, we study
the width of the peak corresponding to elasti-
cally scattered beam photons. They make up only
some 1 % of the total photons, but their value is
that the natural line width (set by the beam-
line’s monochromator) is approximately 0.6 eV
FWHM, which is too narrow to be resolved with
the TES spectrometer. Therefore, the measured
peak width serves as a direct measurement of the
instrumental resolution.

We varied the intensity of the scattered and
fluorescence x-rays by moving the spectrome-
ter. The detector array was placed approximately
2 cm from the Nylon target to achieve the high-
est intensity and 11 cm for the lowest intensity.
At the higher rates, the sensors in one of the
three multiplexer columns were much closer to
the fluorescence-emission spot on the target, and
the x-ray pulse rate was much higher for these sen-
sors. Consequently, we treat the five spectrometer
positions as measurements at ten distinct data
rates, handling the higher-rate column (18 of the
TESs) separately from the other ∼ 24 sensors.

We estimate the spectrometer resolution by fit-
ting a Gaussian peak (plus a line to represent back-
ground photons), always using data from 568 to
578 eV. The parameters are chosen to maximize
the full Poisson likelihood, in order to reduce the
expected parameter bias (Fowler 2014). Figure 6
shows the results. The resolution is found to de-
grade only a small amount even as the x-ray count
rate is increased from 10 to 262 cps. Pulses are
cut only if the prior pulse falls within 0.55 ms or
the next pulse falls within 0.32 ms. At the highest
rate, 80 % of the pulses survive these cuts, yielding
a 4.2 eV resolution at an input rate of 260 cps per
sensor.

The bright oxygen K line does not have a known
line shape that we can use as a primary tool for es-
timating energy resolution. Nevertheless, we can
use the line to corroborate the resolution found
using the scattered beam. A Kolmogorov-Smirnov
test (Press et al. 2007) shows complete consistency
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Fig. 6.— Estimated energy resolution at 573 eV
based on multi-pulse fitting analysis of the Nylon
target data, as a function of the incident photon
rate (per sensor). The energy resolution reported
is the estimated full-width at half-maximum of
the best-fit Gaussian to the scattered-beam peak.
The fit is performed with photons between 568 eV
and 578 eV; a line is included in the fit to allow
for background photons. Multiplexer Column 3 is
handled separately from the others, because—for
geometric reasons—the photon rates observed in
Column 3 are substantially higher. The resolu-
tion degrades only from 3.0 to 4.2 eV at 262 cps,
even though multi-pulse fitting accepts 80 % of all
photons at that rate.

between the O line shapes for the two lowest-
rate measurements (roughly 10 and 25 cps), so
we combine these and assume them to be the
results of smearing the true shape by some un-
known amount. The higher-rate data are then fit
to find the additional Gaussian smearing required
to make the best agreement. If we assume that
the resolution of the two lowest-rate data sets is
3.0 eV FWHM, as established from the scattered
beam, then the total resolution implied by the oxy-
gen line shape is also consistent with the scattered
beam results at higher photon rates: 3.6 eV at 150
cps and 4.5 eV at 260 cps.

Figure 7 shows the rate of photons passing all
timing and other cuts as a function of the incident
photon rate. Each sensor appears seven times,
once for the MPF analysis and for each of six stan-
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Fig. 7.— The per-sensor rate of usable photons
in the nylon data as a function of the total rate
of photons. Each color and marker shape corre-
sponds to a different analysis. The circles repre-
sent the multi-pulse fitting. There are approxi-
mately 200 circles: one for each of the 40 working
TESs at each of five different fluorescence photon
rates. The other six marker shapes correspond to
a traditional analysis using optimal filters of var-
ious fixed lengths. Each of these analyses has a
corresponding “veto window”: a pulse has to be
cut if another photon arrives during its veto win-
dow. The lines represent the theoretical usable
rate re−rw, where r is the raw photon rate and w
is the duration of the relevant veto window (r and
w are given, not fit). The gray shading (upper
left) indicates the disallowed region, where more
than 100% of pulses would be usable.

dard optimal filter analyses. Although cuts other
than timing are applied, the throughput is largely
governed by timing cuts, and so the measured data
all lie close to the theoretical lines.

In summary, the Nylon fluorescence results
show that δE of approximately 4 eV is possible
at rates exceeding 250 cps, a resolution consistent
with that provided by a traditional filter of length
10 ms. Yet the MPF can achieve this using a vastly
higher fraction of the photons than the traditional
filter can. Furthermore, we have established that
the technique is workable with dozens of separate

detectors and over a very wide range of photon
rates.

5. Multi-pulse fitting in the nonlinear
regime: a second example

To complement the low-energy limit, discussed
in the previous section, we also made measure-
ments at 5900 eV. These data consist of the Kα-
line fluorescence emission of manganese metal. For
this purpose, electrons are accelerated in a stan-
dard commercial x-ray tube source onto a rhodium
target, which emits brehmsstrahlung photons that
illuminate the manganese secondary target. By
varying the electron current, we are able to pro-
duce x-ray count rates on a TES microcalorimeter
up to hundreds of counts per second. We per-
formed the measurement using a single TES in a
non-standard non-multiplexed readout system. In
this system, the single detector’s sample rate was
one sample per 640 ns. Examples of the raw TES
current appear in Figure 1.

Multi-pulse fitting was performed on the man-
ganese fluorescence data in the same manner de-
scribed in the previous section. The same small
corrections detailed in Section 4.2 were applied
here: gain-drift, arrival-time, and a leading-order
nonlinearity correction. The sensor resolution was
assessed via the two-peaked shape of the Mn Kα
line complex, assuming the natural line shape
given by Hölzer et al. (1997) as a sum of seven
Lorentzian profiles.

The measured energy spectrum at 6 keV is not
simply a convolution of the ideal energy spectrum
with a Gaussian, as we could safely assume in the
previous section. Observations indicate that an
exponentially decaying tail towards low energies is
an important component of the energy response.
Such a tail is discussed quantitatively in Bortels
& Collaers (1987), for example. In most Mn Kα
data, we find that approximately 10 % of all pulses
must be attributed to the exponential tail, which
has a typical scale length of 20 to 30 eV. Both the
fraction and the scale length are allowed to vary
when fitting for the instrument response. The re-
maining 90 % of pulses are unaffected by the ex-
ponential tail. The distribution of all pulses—tail
or otherwise—is then convolved with a Gaussian,
and it is the full width at half-maximum of this
Gaussian which we label “the energy resolution.”
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Fig. 8.— The Mn Kα fluorescence-line spectrum,
determined through multi-pulse fitting, at five in-
put photon rates. These spectra correspond to the
strictest of the three time-isolation cuts, as shown
in Table 1. In each section of the figure, the mea-
sured spectrum is shown as a histogram, the best-
fit curve is the smooth gray curve, and the data-
minus-fit residuals are shown (offset for clarity) as
points with error bars extending to ±

√
N to in-

dicate the approximate range of consistency with
the Poisson distribution of counts in each bin.

When the fraction of pulses in the tail exceeds
about 20 %, however, it is not at all clear that
the Gaussian width still represents the quantity of
interest. Whether the low-energy tail represents
physical effects in the detector or systematic ef-
fects of the data analysis is unknown, but we ex-

pect that both causes play important roles. We fit
for the low-energy component in analyzing all Mn
Kα spectra and indicate cases where it appears to
comprise at least 20 % of all pulses.

Figure 8 shows the line shape and the best-fit
energy resolution (Gaussian FWHM) at five dif-
ferent photon rates up to 100 cps, after we per-
formed multi-pulse fitting and imposed a strict
cut primarily against pulses that are too closely
piled up on the tail of the prior pulse. This cut
is chosen to achieve the best possible energy res-
olution, though it passes only 40 % of pulses in
the 50 cps data set. To show that much higher
photon efficiency is possible at only modest cost
in energy resolution, we also apply two other cuts
that are less selective against pulse pile-up. The
upper half of Table 1 states the resolutions and
usable pulse rate for each input rate and for the
three cuts. The data at the highest rate of 100 cps
fit the model with a large fraction of events (40 %
to 50 %) attributed to the low-energy exponential
tail with either of the two less restrictive cuts. For
this reason, we are reluctant to call the width of
the Gaussian component in the 100 cps data its
“energy resolution”.

The usable subset of Mn Kα pulses can be se-
lected either with aggressive cuts to minimize sys-
tematics (and optimize energy resolution) or with
more relaxed cuts to favor the highest possible
pulse efficiency. In the points connected by solid
lines in Figure 9, we show the sort of balance this
allows; the points from left to right show the en-
ergy resolution as cuts vary from stricter to more
permissive. The main variable among the three
choices of cut criteria is how much “leftover en-
ergy” is allowed in the TES when a given pulse
arrives—that is, how much prior signal a pulse
can be piled upon. Pulses suffering the most from
nonlinear detector effects can thus be eliminated.
A similar resolution-efficiency tradeoff is also pos-
sible in standard optimal filtering (points on the
same plot connected by dotted lines). Here, six
different filters are chosen, having the same record
lengths, pre-trigger fractions, and constraints as
described in Section 4.2.

The multi-pulse fitting technique offers both a
higher maximum possible pulse efficiency than op-
timal filtering and superior energy resolution at
any given level of throughput. It accomplishes
this because the assumption of pulse linearity al-
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Input rate (cps) 9 14 27 50 100 cps
MPF pulse rates:

Loose 8.4 14.0 25.2 44.9 78.7 cps
Medium 7.8 12.4 20.4 30.5 36.5 cps
Strict 7.2 10.9 16.3 20.0 14.7 cps

Energy Resolution:
Loose 2.35 2.83 3.61 4.53 4.88 eV
Medium 2.25 2.43 2.94 3.75 4.16 eV
Strict 2.12 2.28 2.61 3.55 3.55 eV

OptFilt pulse rates:
2.5 ms, ⊥ exp 8.0 13.2 23.3 40.1 68.3 cps
5 ms, ⊥ exp 7.9 12.9 22.2 36.6 56.4 cps
2.5 ms 7.7 12.2 20.4 31.6 41.2 cps
5 ms 7.5 11.9 19.3 28.0 32.4 cps
10 ms 7.3 11.3 17.3 23.0 21.9 cps
20 ms 6.8 9.9 13.7 14.9 9.1 cps

Energy Resolution:
2.5 ms, ⊥ exp 3.93 4.07 4.82 6.13 6.41 eV
5 ms, ⊥ exp 3.21 3.36 4.02 5.43 5.56 eV
2.5 ms 2.95 3.18 3.40 4.56 4.52 eV
5 ms 2.82 3.10 3.32 4.50 4.27 eV
10 ms 2.58 2.75 3.20 3.89 4.54 eV
20 ms 2.45 2.59 3.02 3.77 5.00 eV

Table 1: The rates of usable pulses and the energy resolutions (FWHM of the Gaussian component of
the energy spread function) for Mn Kα fluorescence x-rays generated at five rates from 9 to 100 counts
per second on one TES detector. The upper section shows the results from multi-pulse fitting with pulse
selections from least to more restrictive. The lower section shows the results from standard optimal filtering
with six different choices of filter length and constraints. Longer filters have improved energy resolution
but more restrictive requirements concerning pulse pile-up. An energy resolution in italics indicates that
over 20 % of the data falls in the low-energy exponential tail, so the interpretation of the Gaussian width as
“energy resolution” is suspect.
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Fig. 9.— Energy resolution determined at the Mn Kα line complex. Incident photon rates of 9, 14, 27, and
50 counts per second are shown in different colors and with different symbols. The vertical shaded areas show
the incident photon rates, which would indicate 100 % efficiency. The upper curves connected by dashed lines
show the classic optimal filtering analysis; each point corresponds to a different filter and its appropriate
pulse cuts. The lower curves connected by solid lines show the superior results from multi-pulse fitting to the
same data. The three points correspond to different selection cuts from most to least restrictive. The 100
cps data are omitted, because they are not well fit by a purely Gaussian resolution function. (The Gaussian
component of their response is typically between 4 and 5.5 eV FWHM and is also superior for MPF.) To
minimize visual distractions, only a single, representative error bar is shown for each photon rate; it reflects
uncertainty in the fit between measured and modeled spectra.

lows us to relax the pulse-isolation requirements.
Analysis of any given pulse uses more data than
would be possible with standard optimal filtering.
This matters because pulse heights are meaning-
ful only as a height relative to a varying baseline
level. One way to view the excellent performance
of multi-pulse fitting is that one can use the extra
data to make superior estimates of this baseline.

The data at the lowest rates establish that this
sensor is capable of 2.1 eV resolution at 5900 eV.
The resolution degrades as the photon rate is in-
creased. Importantly, the degradation appears
equally in the multi-pulse fitting and in the op-
timally filtered data. It appears to be a nonlinear-
ity effect, inadequately addressed by the simple
leading-order correction. This degradation with
increased rate might seem to be a weakness of
multi-pulse fitting, but we do not believe that it

is intrinsic to the technique. More sophisticated
methods for handling the nonlinear evolution of
pulse shapes and sizes with increasing “residual
sensor energy” are needed, but they are not incom-
patible with the basic concept of fitting the data
records as a sum of modeled components. Even
without them, MPF achieves energy resolutions
of 4 eV at 50 to 100 cps with a slow (τ = 1.2 ms)
TES detector.

6. Prospects and possible extensions

The prospects for the use of multi-pulse fit-
ting in future x-ray satellite missions depend on
controlling both the computational costs of the
method and the systematic errors that arise be-
cause the technique assumes linearity from an in-
herently non-linear sensor technology.
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We have argued that when one approximates
the noise as an ARMA process, the cost of multi-
pulse fitting to a data set of length N scales lin-
early in N , just as with optimal filtering. Though
true, this claim ignores two problems: first, that
the overall scale factor grows rapidly with the
number of pulses being fit at once. If m pulses
are fit in the typical data section, and np param-
eters are fit per pulse,then multi-pulse fitting re-
quires, among other computations, the inversion of
a square matrix of size mnp. This cost can grow
quickly, so multi-pulse fitting should be done on
the shortest reasonable segments of data. Future
work will investigate alternatives for selecting data
segment lengths, in order to control the number
of floating-point operations without compromising
energy resolution.

Another costly feature is that multi-pulse fit-
ting requires computations to be done on all sam-
ples in a long data sequence, instead of creating
fixed-length records from only a fraction of the
data. In the limit of high pulse rates, though,
most data samples are incorporated into the fixed-
length records anyway, and the difference becomes
smaller.5 Furthermore, even with optimal filtering
of short records, one must convolve the complete
raw data stream with some kernel in order to iden-
tify trigger points.

Aside from practical concerns of computational
costs, sensor nonlinearity is the most likely source
of trouble with the fully linear multi-pulse fitting
technique as presented here. How to address non-
linearity in this context—or in the more famil-
iar context of optimal filtering—remains a major
open issue for the entire field of microcalorime-
tery. We are not prepared to settle the question
now, but one approach is to begin by expressing
pulse records as linear combinations of basis vec-
tors. Such a basis might be found empirically,
through Principal Component Analysis of data
vectors, or by imposing an a priori model. Either
way, multi-pulse fitting means precisely the ap-
proximation of pulse records as a linear combina-
tion of specified vectors; it is therefore fully com-
patible with a such a decomposition. Although
a complete nonlinearity-aware analysis may esti-

5Indeed, if records were allowed to overlap, then the optimal
filter technique would need to use substantially more than
100 % of the samples at high rates.

mate pulse energies as some nonlinear function
of the amplitudes in the decomposition, one can
still benefit from the fitting algorithm we have de-
scribed in this work to perform the linear decom-
position in the first place.

One possible approach to accelerate further
computation is to express basis vectors (after
noise-whitening) as the sum of a small number
of decaying (potentially complex) exponentials. If
this can be done for all basis vectors, then inner
products of the form C̃T C̃ can be computed ana-
lytically, in a time independent of the data length
(the height of the C matrix). How amenable
realistic basis sets are to such an expansion is un-
known and is likely to vary considerably over the
range of TES designs, noise environments, and
spectrometer applications.

Another extension to the basic MPF approach
that might be useful in some instances would be
handling of non-stationary noise. In full general-
ity, non-stationary noise would defeat the simpli-
fications that the pure ARMA noise model intro-
duces. Still, it is possible to combine the ARMA
model with certain forms of nonstationarity and
retain the former’s speed advantages. One such
form is the case of a noise-covariance matrix R =
DR0D, where D is a diagonal matrix determined
by the TES current, and R0 is representable as a
stationary ARMA noise process.

7. Conclusions

Multi-pulse fitting is a technique to extend the
virtues of optimal filtering into the regime of high
photon rates. It fits simultaneously for the pulse
heights of multiple piled-up pulses in an extended
period longer than the usual optimal-filter length.
Because pulses are permitted to overlap in time,
the technique softens the usual requirement for
long periods of isolation before and after any single
valid pulse.

Just as optimal filtering does, multi-pulse fit-
ting takes advantage of inverse-noise weighting to
achieve the maximum possible signal-to-noise ra-
tio consistent with the data and the model as-
sumptions. While this weighting is computation-
ally expensive in the general case, we find success
in replacing the full estimated noise-covariance
function with a simplified approximation to it, a
low-order ARMA model.
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The multi-pulse fitting technique has been ap-
plied to measurements from a single TES mi-
crocalorimeter operating at 6 keV and to an array
operating at 400 to 600 eV. In the former case, the
energy resolution remains better than 5 eV at the
Mn Kα line for rates up to 100 cps. At the lower
energy, the resolution of an array of 2.5 eV devices
remains as low as 4.2 eV even up to 262 cps per
sensor, and using a full 80 % of the pulses. The
nitrogen fluorescence line complex of an ammo-
nium nitrate target exhibits 2.5 eV resolution at
46 cps and 96 % pulse efficiency.

We have shown results using a multi-pulse fit-
ting technique on microcalorimeter measurements
in the regime of very high photon-count rates and
sensor linearity. Although nonlinearity and com-
putational costs are not fully solved problems, we
expect that this concept can be usefully adapted to
a wide range of microcalorimeter data sets and be-
lieve it to be a promising step toward an analysis
chain optimized for the demanding requirements
of future x-ray space missions.
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Next NASA X-ray Astronomy Mission”, NASA
NNH11ZDA001N-SAT, and by an ARRA Senior
Research Fellowship from NIST (JF).
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A. Whitening ARMA(1,1) noise

Section 3.3 gives partial results for whitening data when Equation 11 gives the noise covariance function.
That is, it covers the case when the noise is described by an ARMA(1,1) process and its covariance is a
decaying exponential plus a delta function at time 0. The product S ≡ ΦRΦT is a symmetric tridiagonal
matrix with values

S11 = w + a

Sjj = w + a+ φ2(w − a) j ≥ 2

Sj±1,j = −wφ.

The Cholesky factorization S = BBT is straightforward. Label the values on the diagonal of B
{d1, d2, . . . dn} and on the subdiagonal {e1, e2, . . . en−1}. They can be computed from the recursion:

d1 =
√
w + a

ej = −wφ/dj

dj =
√
w + a+ φ2(w − a)− e2j−1

and stored for later use.

Equation 12 shows that whitening the vector v to yield w = Wv requires solving Bw = y = Φv. A
recursion for y and w is

y1 = v1

yj = vj − φvj−1 j ≥ 2

w1 = y1/d1 = v1/d1

wj = (yj − ej−1wj−1)/dj j ≥ 2

= (vj − φvj−1 − ej−1wj−1)/dj .

This gives the whitened data w in terms of the raw data v and the elements of the Cholesky factor of S.

The procedure for whitening (“inverting”) an ARMA(p, q) process is similar, though necessarily more
complicated than the p = q = 1 case given in this Appendix.
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