

1

Combinatorial Testing: Theory and Practice

D. Richard Kuhn1, Renee Bryce2, Feng Duan3, Laleh Sh. Ghandehari3, Yu Lei3, Raghu N.
Kacker1

National Institute of Standards and Technology, University of North Texas, University of
Texas at Arlington

kuhn@nist.gov, ylei@uta.edu, renee.bryce@uta.edu, feng.duan@mavs.uta.edu,
raghu.kacker@nist.gov

Abstract. Combinatorial testing has rapidly gained favor among software testers in the
past decade as improved algorithms have become available, and practical success has
been demonstrated. This article reviews the theory and application of this method,
focusing particularly on research since 2010, with a brief background providing the
rationale and development of combinatorial methods for software testing. Significant
advances have occurred in algorithm performance, and the critical area of constraint
representation and processing. In addition to these foundational topics, we take a look at
advances in specialized areas including test suite prioritization, sequence testing, fault
localization, the relationship between combinatorial testing and structural coverage, and
approaches to very large testing problems.

Keywords: algorithms, combinatorial testing, constraints, covering array, fault
localization, interaction testing, sequence testing, software faults, software testing, test
suite prioritization

1 Introduction

An interesting phenomenon often occurs with large software systems. After successful
use for a long period of time, the software is installed in a new location, with a different
user base, and a new set of bugs appear. Typically the reason is not surprising – the
change in usage has resulted in a different set of inputs, and some of these input
combinations trigger failures that have escaped previous testing and extensive use. Such
failures are known as interaction failures, because they are only exposed when two or
more input values interact to cause the program to reach an incorrect result.

For example, a pump may be observed to fail only when pressure is below a particular
level and volume exceeds a certain amount, a 2-way interaction between pressure and
volume. Figure 1 illustrates how such a 2-way interaction may happen in code. Note that
the failure will only be triggered when both pressure < 10 and volume > 300 are true.
Either one of the conditions, without the other, will not be a problem.

< Figure 1. 2-way interaction failure triggered only when two conditions are true>

2

1.1 Empirical Data on Failures

The example above focuses on a 2-way interaction failure. Pairwise testing, using tests
that cover all 2-way combinations of parameter values, has long been accepted as a way
of detecting such interaction failures [1][2][3][4]. However, higher order t-way
interactions may also cause failures. For instance, consider a failure that is triggered by
unusual combinations of three or four sensor values. For thorough checking, it may be
necessary to test 3-way and 4-way combinations of values. The question arises as to
whether testing all 4-way combinations is enough to detect all errors. What is the
distribution of interaction failures beyond 2-way in real systems? Surprisingly, this
question had not been studied when NIST began investigating interaction failures in 1999
[5]. Results of this and subsequent studies showed that across a variety of domains, all
failures were triggered by a maximum of 4-way to 6-way interactions [6, 7, 8]. As shown
in Figure 2, the detection rate increases rapidly with interaction strength (the interaction
level t in t-way combinations is often referred to as strength). With the NASA
application, for example, 67% of the failures were triggered by only a single parameter
value, 93% by 2-way combinations, and 98% by 3-way combinations. The detection rate
curves for the other applications studied are similar, reaching 100% detection with 4 to 6-
way interactions. Studies by other researchers [8, 9, 10] have been consistent with these
results.

< Figure 2. Cumulative fault distribution >

The empirical data show that most failures are triggered by a single parameter value, or
interactions between a small number of parameters, generally two to six, a relationship
known as the interaction rule. An example of a single-value fault might be a buffer
overflow that occurs when the length of an input string exceeds a particular limit. Only a
single condition must be true to trigger the fault: input length > buffer size. A 2-way fault
is more complex, because two particular input values are needed to trigger the fault, as in
the example above. More generally, a t-way fault involves t such conditions. We refer to
the distribution of t-way faults as the fault profile.

A question naturally arises as to why the fault profiles of different applications are
somewhat similar. While there is no definitive answer as yet, one clue can be seen in
Figure 3. Fig. 3.1 (left) shows the distribution of conditions in branching statements (e.g.,
if, while) in four large avionics software modules [11]. Nearly all are single conditions or
2-way, with a rapidly declining proportion involving 3-way or more complex sets of
conditions. This curve is superimposed on the fault profiles presented above in Fig. 3.2.
Note that it closely matches the profile for the NASA database application. The data for
this application were from initial testing results, while the other curves are for fielded
products. Thus the distribution of faults in this initial testing is quite close to the
distribution of conditions documented in the FAA report. (It is not clear why the
distribution of faults for the medical device software is as shown, as no information was
available on the level of testing or usage for these products.) The fault profiles may

3

reflect the profile of t-way conditions in their application software, but as faults are
discovered and removed, the more complex 3-way, 4-way and beyond, faults comprise a
larger proportion of the total. Testing and extensive usage thus tend to push the curves
down and to the right.

< Fig 3.1 and 3.2 side by side; about ¼ page >
<Figure 3.1. Distribution of conditions in branching statements>

<Figure 3.2. Fault distribution of different application domains>

1.2 Implications for Testing

The fault profiles reported above suggests that testing which covers a high proportion of
4-way to 6-way combinations can provide strong assurance. If we know that t or fewer
variables are involved in failures, and we can test all t-way combinations, then we can
have reasonably high confidence that the application will function correctly. As shown
above, the distribution of faults varies among applications, but two important facts are
apparent: a consistently high level of fault detection has been observed for 4-way and
higher strength combinations; and no interaction fault discovered so far, in thousands of
failure reports, has involved more than six variables. Thus, the impossibility of
exhaustive testing of all possible inputs is not a barrier to high assurance testing. That is,
even though we cannot test all possible combinations of input values, failures involving
more than six variables are extremely unlikely because they have not been seen in
practice, so testing all possible combinations would provide little or no benefit beyond
testing 4 to 6-way combinations.

As with all testing, it is necessary to select a subset of values for variables with a large
number of values, and test effectiveness is also dependent on the values selected, but
testing t-way combinations has been shown to be highly effective in practice. This
approach is known as combinatorial testing, an extension of the established field of
statistical Design of Experiments (DoE). Matrices known as covering arrays cover all t-
way combinations of variable values, up to a specified level of t (typically t ≤ 6), making
it possible to efficiently test all such t-way interactions.

Consider the example in Table 1 that shows four configurations to consider when testing
a web application. The tester wants to test their web app on three types of devices (called
parameters), three web browsers, three PHP versions, and three network connections.
Each parameter has 3 options (called values). To exhaustively test every combination
requires 3*3*3*3 = 81 possible combinations.

Device Web Browser PHP version Network

Connection
PC Safari 5.6.6 WiFi
Tablet Firefox 5.5.22 3G
Smart Phone Chrome 5.6.5 4G

4

Table 1 - Sample input for a combinatorial test suite that has 4 parameters that have 3
possible values each

We use the ACTS tool described in Section 3.3 to generate a 2-way Combinatorial Test
Suite. This requires only 9 test cases (configurations) in order to test all pairs of
parameter-value combinations as shown in Table 2. A pair is a combination of values for
two different parameters. For instance, Test Case 1 covers six pairs: (PC, Safari), (PC,
PHP version 5.5.22), (PC, 3G), (Safari, PHP version 5.5.22), (Safari, 3G), (PHP version
5.5.22, 3G).

Test No. Device Web Browser PHP Version Network Connection

1 PC Safari 5.5.22 3G

2 PC Firefox 5.6.5 4G

3 PC Chrome 5.6.6 WiFi

4 Tablet Safari 5.6.5 WiFi

5 Tablet Firefox 5.6.6 3G

6 Tablet Chrome 5.5.22 4G

7 Smart Phone Safari 5.6.6 4G

8 Smart Phone Firefox 5.5.22 WiFi

9 Smart Phone Chrome 5.6.5 3G

Table 2 - Sample Combinatorial Test Suite for the input 34 from Table 1

The effectiveness of any software testing technique depends on whether test settings
corresponding to the actual faults are included in the test sets. When test sets do not
include settings corresponding to actual faults, the faults may not be detected.
Conversely, we can be confident that the software works correctly for t-way
combinations contained in passing tests. When the tests are derived from t-way covering
arrays, we know that 100% of the t-way combinations have been tested.

2 Covering Arrays

Combinatorial testing (CT) is an adaptation of the ‘design of experiment (DoE)’ methods
to test software and systems. CT and DoE are dynamic testing and learning methods in
the sense that a system of interest is exercised (run) for a set of different test cases and the
behavior or response of the system for those test cases is investigated. Historically, CT
evolved from attempts to improve performance of software based systems starting in the
1980s [12]. DoE refers to a methodology for conducting controlled experiments in which
a system is exercised (worked in action) in a purposeful (designed) manner for chosen
test settings of various input variables called factors. In DoE, many factors each having
multiple test settings are investigated at the same time and the DoE plans satisfy relevant
combinatorial properties. The corresponding values of one or more output variables
(called responses) are measured. A statistical model (at least one) for the system response
is associated with each DoE test plan. The DoE test plan and the responses values are

5

used to estimate the unknown parameters of the model. The estimated model so obtained
represents statistical information for improving the performance of a class of similar
systems [13], [14], [15], [16], and [17].

2.1 History of DoE

Conventional DoE methods were developed starting in the 1920s by British geneticist
Ronald Fisher and his contemporaries and their followers, to improve agricultural
production [18], [19]. Later DoE were adapted for experiments with animals, medical
research, and then to improve manufacturing processes, all subject to unavoidable
variation. DoE continues to be a gold standard for research in life sciences, medical
technologies, and drug discovery. Recently the US Office of the Secretary of Defense
promulgated more effective use of DoE in Defense Operational Test and Evaluation
(DOTE) [20]. The objective in conventional DoE is to improve the mean response over
replications. A Japanese engineer, Genichi Taguchi, promulgated (starting in the late
1960s Japan and 1980s USA) a variation of DoE methods for industrial experiments
whose objective is to determine test settings at which the variation due to uncontrolled
factors was least [21], [22], [23], [24], and [25]. Taguchi promoted use of mathematical
objects called orthogonal arrays (OAs) as templates for industrial experiments.
Orthogonal arrays (OAs) were largely mathematical curiosities before Taguchi stated
using them for industrial experiments to develop robust products and processes.

The concept of OAs was formally defined by C. R. Rao [26] as generalization of Latin
squares [27]. The matrix shown in table 3 is an orthogonal array (OA) referred to as
OA(8, 24×41, 2). The first parameter (which is 8) indicates the number of rows and the
second parameter (which is 24×41) indicates that there are five columns of which four
have 2 distinct elements each, denoted here by {0, 1}, and one column has 4 distinct
elements, denoted here by {0, 1, 2, 3}. The third parameter (which is 2) indicates that this
OA has strength 2, which means that every set of two columns contains all possible pairs
of elements exactly the same number of times. Thus every pair of the first four columns
contains the four possible pairs of elements {00, 01, 10, 11} exactly twice, and every pair
of columns involving the fifth column contains the eight possible pairs of elements {00,
01, 02, 03, 10, 11, 12, 13} exactly once. In an OA of strength t, every set of t columns
contains all possible t-tuples of elements exactly the same number of times.

<Insert table 3 about here>

A fixed-value orthogonal array denoted by OA(N, vk, t) is an N х k matrix of elements
from a set of v symbols {0, 1, …, (v – 1)} such that every set of t-columns contains each
possible t-tuple of elements the same number of times. The positive integer t is the
strength of the orthogonal array. In the context of an OA, elements such as 0, 1, 2, …, (v
– 1) used in table 3 are symbols rather than numbers. The combinatorial property of an
orthogonal array is not affected by the symbols that are used for the elements. Every set
of three columns of a fixed value orthogonal array of strength 2 represents a Latin square
(one column representing the rows, one column representing the columns and the third
column representing the symbols). A mixed-value orthogonal array is an extension of

6

fixed-value OA where k = k1 + k2 +… + kn; k1 columns have v1 distinct elements, k2
columns have v2 distinct elements, …, and kn columns have vn distinct elements, where
v1, v2, …, vk are different. Mathematics of OAs and extensive references can be found in
[28]. Neil Sloane maintains an electronic library of known OAs [29].

Consider an industrial DoE which has five factors A, B, C, D, and E and one response Y.
Suppose A, B, C, and D have two test values each, denoted by {A0, A1}, {B 0, B1}, {C 0,
C1} and {D0, D1}, respectively, and the factor E has four test values, denoted by {E0, E1,
E2, E3}. The combinatorial test structure of this DoE is the exponential expression 24×41

which indicates that there are five factors of which four have two test settings each and
one has four test settings. The number of possible test cases is 24×41 = 64. The OA(8,
24×41, 2) can be used to set up an experiment to evaluate the change in response when the
test value of each factor is changed. The factors A, B, C, D, and E are associated with the
columns of OA(8, 24×41, 2) and the test values are associated with the entries of the
columns. Then the rows of OA(8, 24×41, 2) specify 8 of the 64 possible test cases shown
in table 4.

<Insert table 4 about here>

The last column of table 4 displays the values y1, y2, …, y8, of the response Y for the
eight test cases. The combinatorial properties of an OA enable estimation of the
parameters of a statistical model associated with a DoE plan based on the OA. The
estimated parameters and the estimated statistical model identify test settings of the five
factors at which the system may have improved performance.

2.2 From DoE to Covering Arrays

Along with the advent of computers and telecommunication systems in the 1980s,
independent verification and validation of software and hardware-software systems
became important. Genichi Taguchi inspired the use of OAs for testing software systems.
Software engineers in various companies (especially Fujitsu in Japan and the descendent
organizations of the AT&T Bell System in the US) started to investigate use of DoE
methods for testing software and hardware-software systems. The earliest papers include
the following: [30], [31], [1], [2], [3]. The limitations of OAs for independent verification
and validation of software based systems became clear soon after they were used. (i)
Often, an OA matching the required combinatorial test structure does not exist; for
example, a non-trivial OA of strength 2 matching the test structure 24×31 (four factors
with two distinct settings and one with three settings) is mathematically impossible. (ii)
Frequently, OA based test suites included invalid test cases which are impossible (or
meaningless) to execute; for example, in testing jointly various operating systems and
browsers Linux cannot be combined with Microsoft Internet Explorer. (iii) Available OA
tables were limited to at most strength three, while for testing software systems, test
suites of strength larger than three may be required. (iv) In testing software systems,
hundreds of factors may be involved, but available OA tables were much smaller. Keizo
Tatsumi [2] [3] and Dalal and Mallows [4] provided the insight that in testing software,
combinatorial balancing property of OAs (that each t-tuple should appear the same

7

number of times) was not required (because parameters of statistical model were not
being estimated). In testing software systems, space filling was needed; that is, each t-
tuple of interest of the test settings must be covered at least once. Therefore mathematical
objects called covering arrays (CAs) are better suited than OAs as templates for
generating test suites for software testing.

The concept of Covering Arrays (CAs) was formally defined by AT&T mathematician
Neil Sloane [32]. Additional developments on CAs can be found in the following recent
papers: [33], and [34]. A fixed-value covering array denoted by CA(N, vk, t) is an N х k
matrix of elements from a set of v symbols {0, 1, …, (v – 1)} such that every set of t-
columns contains each possible t-tuple of elements at least once. The positive integer t is
the strength of the covering array. A fixed value covering array may also be denoted by
CA(N, k, v, t). A mixed-value covering array is an extension of fixed value CA where k =
k1 + k2 +… + kn; k1 columns have v1 distinct elements, k2 columns have v2 distinct
elements, …, and kn columns have vn distinct elements. The six rows of rows of table 5
form a covering array CA(6, 24×31, 2). In these six rows each set of two columns contains
each possible pair of symbols at least once. The combinatorial property of covering
arrays is more relaxed (less stringent) than that of orthogonal arrays: a CA need not be
balanced in the sense that not all t-tuples need to appear the same number of times. All
OAs are CAs but not all CAs are OAs. (An orthogonal array of index one in which every
t-tuple appears exactly once is the best possible covering array.) Thus the concept of
covering arrays is a generalization of OAs. Covering arrays have a number of advantages
over OAs for testing software systems. (i) CAs can be constructed for any combinatorial
test structure of unequal numbers of test settings. (ii) If for a combinatorial test structure
an OA exists then a CA of the same or less number of test cases can be obtained. (iii)
CAs can be constructed for any required strength (t-way) testing, while OAs are generally
limited to strength 2 and 3. (iv) In generating test suites based on CAs invalid
combinations can be deliberately excluded. (v) CA for very large number of factors can
be constructed.

For a given number of factors k, the size of a combinatorial t-way test suite based on a
CA (number of rows of covering array) increases exponentially with the number of test
settings v of each factor. Therefore in combinatorial testing it is advisable to limit the
number of distinct discrete test settings of each factor to less than ten; preferred values
are 2 to 4. The discrete test settings are generally determined by equivalence partitioning
and boundary value analysis of the domain of possible values for each factor.

The size of combinatorial t-way test suite also increases rapidly as t increases. For
example consider the combinatorial test structure example 334452 from [35]. The number
of possible test cases is 334452 = 172 800. Exhaustive testing may not be practical. The
sizes (number of test cases) of t-way test suites (determined using ACTS/IPOG) for t = 2,
3, 4, 5, and 6 are respectively 29, 137, 625, 2532, and 9168. This highlights the important
question of how the strength t should be set? A reasonable choice of the strength t
requires experience with the type of SUT being tested. The available knowledge about
the SUT and the nature of possible faults to be detected is used in the specification of test
factors, test setting, and the strength t. In one testing experiment involving 128 binary

8

factors (each having two distinct test settings) CAs of strength t for t = 2, ,…, 10 were
needed. The sizes of required covering arrays determined by Jose Torres-Jimenez [36]
are respectively, N = 11, 37, 112, 252, 1231, 2462, 17544, 90300, and 316940. When the
available knowledge about the SUT is severely limited, the choice of t is difficult. The
choice of t requires a tradeoff between the cost of testing (determined by the size of test
suite) and the potential benefits of higher strength testing.

Tables

Table 3: Orthogonal array OA(8, 24×41, 2)

 1 2 3 4 5
1 0 0 0 0 0
2 1 1 1 1 0
3 0 0 1 1 1
4 1 1 0 0 1
5 0 1 0 1 2
6 1 0 1 0 2
7 0 1 1 0 3
8 1 0 0 1 3

Table 4: DoE plan based on OA(8, 24×41, 2)

Test
cases

A

B

C

D

E

Response

1 A0 B0 C0 D0 E0 y1

2 A1 B1 C1 D1 E0 y2

3 A0 B0 C1 D1 E1 y3
4 A1 B1 C0 D0 E1 y4
5 A0 B1 C0 D1 E2 y5
6 A1 B0 C1 D0 E2 y6
7 A0 B1 C1 D0 E3 y7
8 A1 B0 C0 D1 E3 y8

9

Table 5: Covering array CA(6, 24×31, 2)

2.3 Combinatorial Coverage

A recent Cambridge University technical report estimates the global cost of debugging
software has risen to $312 billion annually. The authors suggest that software developers
spend approximately 50% of their programming time on average finding and fixing bugs
[117]. While there are many types of defects that contribute to project costs and many
ways to test for different types of defects, one type of defect that we examine in this
chapter is that of interaction faults. Tests based on covering arrays can be highly effective
as they systematically cover t-way combinations of values. Covering arrays include these
combinations in a very compact form, but as long as all of the combinations are covered,
it does not matter whether they come from covering arrays or a less efficient test set,
possibly generated randomly. Test quality is obviously of central importance for
software assurance, but there are few good measures available. A very basic, minimal
foundation is that every requirement has been addressed by at least one test. If source
code is available, then coverage measures such as statement or branch coverage may also
be useful. Mutation testing is also a popular approach to evaluating test set adequacy.
Combinatorial methods offer an additional tool for measuring test set quality.

Any test with n variables contains C(n,t) t-way combinations, and any collection of tests
will contain a set of combinations, though many are duplicated. If the test set is large
enough, it may provide full t-way coverage, even if not originally constructed as a
covering array. Combinatorial coverage, i.e., the coverage of t-way combinations in a
test set, is thus a useful measure of test set quality [37][38]. Note that such a coverage
measure is independent of other measures of test quality, such as the code coverage
induced by a particular set of tests. It is also directly related to fault detection.
Combinatorial coverage is a measure of the input space that is tested.

The level of input space coverage also provides some measure of the degree of risk that
remains after testing. Combinatorial coverage provides a direct measure of the proportion
of input combinations for which the system has been shown to work correctly, which can
be used in gauging the residual risk after testing.

 1 2 3 4 5
1 0 0 0 0 0
2 1 1 1 1 0
3 0 0 1 1 1
4 1 1 0 0 1
5 0 1 0 1 2
6 1 0 1 0 2

10

2.3.1 Measures of Combinatorial Coverage

Combinatorial coverage measures include the following (definitions and examples from
[35]):

Variable-value configuration: For a set of t variables, a variable-value configuration is a
set of t valid values, one for each of the variables, i.e., the variable-value configuration is
a particular setting of the variables.

Example. Given four binary variables a, b, c, and d, for a selection of three variables a, c,
and d the set {a=0, c=1, d=0} is a variable-value configuration, and the set { a=1, c=1,
d=0} is a different variable-value configuration.

Simple t-way combination coverage: For a given test set for n variables, simple t-way
combination coverage is the proportion of t-way combinations of n variables for which
all valid variable-values configurations are fully covered.

Example. Table 6 shows four binary variables, a, b, c, and d, where each row represents a
test. Of the six possible 2-way variable combinations, ab, ac, ad, bc, bd, cd, only bd and
cd have all four binary values covered, so simple 2-way coverage for the four tests in
Table 6 is 2/6 = 33.3%. There are four 3-way variable combinations, abc, abd, acd, bcd,
each with eight possible configurations: 000, 001, 010, 011, 100, 101, 110, 111. Of the
four combinations, none has all eight configurations covered, so simple 3-way coverage
for this test set is 0%. As shown later, test sets may provide strong coverage for some
measures even if simple combinatorial coverage is low.

a b c d
0 0 0 0
0 1 1 0
1 0 0 1
0 1 1 1
Table 6. Test array with four binary components

It is also useful to measure the number of t-way combinations covered out of all possible
settings of t variables.

Total variable-value configuration coverage: For a given combination of t variables,
total variable-value configuration coverage is the proportion of all t-way variable-value
configurations that are covered by at least one test case in a test set. This measure may
also be referred to as total t-way coverage.

An example helps to clarify these definitions. For the array in Table 6, there are C(4,2) =
6 possible variable combinations and 22×C(4,2) = 24 possible variable-value
configurations. Of these, 19 variable-value configurations are covered and the only ones
missing are ab=11, ac=11, ad=10, bc=01, bc=10, so the total variable-value configuration
coverage is 19/24 = 79%. But only two, bd and cd, out of six, are covered with all 4 value

11

pairs. So for simple t-way coverage, we have only 33% (2/6) coverage, but 79% (19/24)
for total variable-value configuration coverage. Although the example in Table 6 uses
variables with the same number of values, this is not essential for the measurement, and
the same approach can be used to compute coverage for test sets in which parameters
have differing numbers of values.

< Fig 4 about ¼ page >
< Figure 4. Graph of coverage for Table I tests >

 Figure 4 shows a graph of the 2-way (red/solid) and 3-way (blue/dashed) coverage
data for the tests in Table 6. Coverage is given as the Y axis, with the percentage of
combinations reaching a particular coverage level as the X axis. For example, the 2-way
line (red) reaches Y = 1.0 at X = .33, reflecting the fact that 2/6 of the six combinations
have all 4 binary values of two variables covered. Similarly, Y = .5 at X = .833 because
one out of the six combinations has 2 of the 4 binary values covered. The area under the
curve for 2-way combinations is approximately 79% of the total area of the graph,
reflecting the total variable-value configuration coverage, designated St. Two additional
quantities are also useful. Φt = the proportion of full t-way coverage; in the example
above, Φ2 = .33. Mt = minimum coverage for level t; in the example, M2 = .50. It is easy
to show that St ≥ Φt + Mt - ΦtM t [38].

In addition to analyzing the combination coverage of individual test suites, lower bounds
for coverage have been established for a number of test criteria, including base choice
[39] and MCDC [11]. For example, simple all-values testing provides

St ≥ Μt =
1

1
−tv

.

With base-choice testing [39] every parameter value must be covered at least once and in
a test where other values are held constant. This process works by specifying one or more
values for each parameter as base choices, which may be arbitrary, or “special interest”
values, such as values more frequently used. Where parameters p1 .. pn have vi values
each, the number of tests required is at least 1 + Σ i=1,n (vi -1), or 1+n(v-1) if all n
parameters have the same number of values v. An example is shown below in Table 7,
with four binary parameters.

TABLE 7. BASE CHOICE TESTS FOR 24
 CONFIGURATION

 a b c d
base: 0 0 0 0
test 2 1 0 0 0
test 3 0 1 0 0
test 4 0 0 1 0
test 5 0 0 0 1

It can be shown that the minimum combination coverage for base choice is Μt =

tv

vt)1(1 −+ , and consequently also St ≥
tv

vt)1(1 −+ . A variety of results for other strategies

are given in [38].

12

2.3.2 Using Combinatorial Coverage

Figure 5 illustrates the application of combinatorial coverage analysis to a set of 7,489
tests developed for spacecraft software [40], using conventional test design methods (not
designed as a covering array) to verify normal operation and a variety of fault scenarios.
The system includes 82 variables, with the configuration shown in Table 8 of 132754262
(three 1-value, 75 binary, two 4-value, and two 6-value). Figure 5 shows combinatorial
coverage for this system (red = 2-way, blue = 3-way, green = 4-way, orange = 5-way).
Pairwise coverage is with 82% of the 2-way combinations covering 100% of possible
variable-value configurations covered and about 98% of the 2-way combinations have at
least 75% of possible variable-value configurations covered (long horizontal portion of
red line).

< Figure 5. Configuration coverage for spacecraft example. >

interaction combinations settings coverage
2-way 3321 14761 94.0
3-way 88560 828135 83.1
4-way 1749060 34364130 68.8
5-way 27285336 603068813 53.6
Table 8. Total t-way coverage for Fig. 3 configuration.

3 Algorithms for Combinatorial Testing

As mentioned in previous sections, Combinatorial Testing for the purpose of software
testing stems from a rich history of Design of Experiments, including designs such as
Orthogonal Arrays [41]. This previous work has had a strong influence on algorithms to
generate combinatorial test suites. In this section, we discuss challenges to generating
combinatorial test suites, categories of algorithms that have been popular in literature,
and automated tools for this purpose.

Numerous algorithms exist to generate covering arrays or mixed-level covering arrays to
represent combinatorial test suites. This is an NP-hard problem, meaning no efficient
exact method exists. Further complications arise when constraints are required in many
practical applications. That is, events may need to run in a particular sequence or that one
event may disable the option to run other events. Testers may have test cases that they
have already run, called seeds, and want credit for the combinations covered in those test
cases rather than generating new tests to cover those interactions again. For some inputs,
the best reported test suites or sizes are available [42,43, 44] while others, particularly
those of mixed-level covering arrays or inputs with seeds or constraints are not collected
and shared. In this section, we briefly review different types of algorithms that generate
combinatorial test suites.

13

3.1 Categories of Algorithms
Four categories of algorithms have been popular for the purpose of generating
combinatorial test suites. These include:
• Algebraic techniques,
• Greedy algorithms,
• Heuristic search,
• Constraint Satisfaction Problem algorithms

Software testers need to choose the technique that best applies to their domain. For
instance, if a tester has 7 parameters that have 5 options each, an algebraic technique will
give the best-known solution [43]. On the other hand, if a system has a varying number of
options for each parameter and constraints among parameters, algebraic techniques are
often less effective in terms of producing a smaller test suite. Constraint Satisfaction
Problem algorithms have also been used, but mainly on small inputs [43]. Table 9
summarizes tradeoffs among these algorithm classes.

 Algebraic Greedy Heuristic Search

Size of test
suites

Accurate on special
cases; but not as
general as needed

Reasonably
accurate

Most accurate (if
given enough time)

Time to
generate tests

Yes Yes Often time
consuming (for
good results)

Seeding/
Constraints

Difficult to
accommodate
seeds/constraints

Yes Yes

Table 9. Covering array algorithm characteristics

If a system has parameters with different numbers of options, this requires a mixed-level
covering array for the solution. Greedy algorithms and heuristic search are often the best
algorithms for the scenario of mixed-level inputs. For instance, consider the input
415317229. The greedy DDA produces a test suite of size 35, the greedy IPO reports a test
suite of size 36, and the AETG algorithm reports a test suite of size 41 [47]. Of course,
there is still variation in the results among these three greedy algorithms in which each
outperforms the others on different inputs.

On the other hand, the best known result for input 513822 is 15 test cases as achieved by a
heuristic search technique, simulated annealing [46]. Testers must consider the trade-off
in time when selecting a greedy or heuristic search algorithm. Heuristic search algorithms
may take much longer to find a “good” solution. This issue of time to generate test suites
becomes more exaggerated as the t-way strength of coverage for a test suite increases.
For instance, Table10 shows five sample inputs and the sizes and time to generate 2-way
combinatorial test suites. Please refer to [47] for the exact details of these algorithms. The

14

deviation in the amount of time to generate the test suites grows dramatically as the size
of the input increases.

Table 10. Example size and runtime for covering array generation

Constraints between parameters/options are common in software systems. Addressing
constraints is a challenging issue. We give a brief overview here, but refer the reader to
Section 5 for a more detailed discussion. Consider Figure 6 below that shows four
scenarios for constraints using the input 3123:

1. Original scenario without constraints: This scenario has no constraints. There
are 30 pairs to cover and this may be done in as few as 6 test cases.

2. Scenario with constraints that results in a smaller test suite: This scenario has
3 constraints, including that f0:0 may not be combined with f1:3, f2:5, or f3:7.
These constraints leave 27 pairs left to cover. In this case, we are able to cover all
of the pairs while respecting the constraints in as few as 5 test cases.

3. Scenario with constraints that results in a larger test suite: This scenario also
has 3 constraints: f0:0 may not be combined with f1:3; f1:3 may not be combined
with f2:5; and f2:5 may not be combined with f3:7. Due to these constraints, the
fewest number of test cases to cover all pairs with respect to the constraints is 7
test cases.

4. No feasible solution: The final scenario shows that the tester specified constraints
in which it is not possible to construct a solution. If we must select an option for
each parameter in order to generate a test case, you will notice that the constraints
prohibit us from assigning a value to each parameter and covering all pairs. For
instance, you will notice that f0:0 may not be combined with f1:3, so we would
have to select f0:0 and f1:4 for the first two values of this test case. However, we
are unable to select a value that respects the constraints for f2 since f2:5 may not
be combined with f1:3 and f2:6 may not be combined with f1:4. This same
scenario repeats if we include f0:1 and f1:3 in a test case.

< Figure 6. Different scenarios with constraints >

Greedy algorithms and heuristic search algorithms may address constraints. On the other
hand, algebraic techniques may have difficulty addressing constraints. Section 5
discusses constraints in more depth.

3.2 Algorithms for Higher Strength Combinatorial Test Suites

15

Algorithms for higher strength combinatorial tests face the challenge that the number of
t-tuples to cover increases exponentially as t increases. For instance, Table 11 below
shows four sample inputs and the number of t-tuples to cover for t=2..k. For instance, the
input 313 has 702 2-tuples, 7,722 3-tuples,47,915 4-tuples and goes up to 1,594,323 13-
tuples! This poses challenges for algorithms, particularly in terms of time to generate test
suites and the amount of memory used for computations.

Table 11. Higher strength covering array examples

The categories of algorithms to generate test suites for higher strength combinatorial test
suites include the same as those mentioned previously in this section: algebraic
techniques, greedy algorithms, heuristic search algorithms, and CSP algorithms. While
the trade-offs of these algorithms are the same as those mentioned earlier in this section
for t=2, the amount of time and memory usage for higher strength coverage often require
special consideration. For instance, Table 12 shows the size of the test suites and
execution time for t=2 through t=6 coverage of the input 510 using the IPOG algorithm
[48]. The result for t=2 strength coverage results in a test suite of size 48 in .11 seconds
while the algorithm produces 50,920 test cases for t=6 in 791.35 seconds.

Table 12. IPOG test size and runtime

The major challenges faced by algorithms to generate combinatorial test suites include
the time to generate test suites, the size of the test suites, and ability to address seeding
and constraints. Numerous algorithms exist to generate combinatorial test suites, with
popular categories of algorithms including algebraic, greedy heuristic, and heuristic
search algorithms. Testers must consider their particular domain and testing environment
when selecting an algorithm to generate covering arrays. Further, testers may seek
guidance by visiting website that maintain the best known reported solutions or sizes for
many inputs [42, 43, 44].

16

3.3 Example Tools

A variety of tools can be found on the web site pairwise.org, including both commercial
and open source. Two of the most widely used covering array generators are Microsoft
PICT [106][48] and NIST ACTS [45]. In this section we review ACTS. Tools may vary
in features [50][51][52][53][54], and test environments are beginning to make it possible
to integrate tools in ways that testers find most useful. One of the most well-developed
such frameworks is CITlab [55], which is integrated with the Eclipse editor and provides
a means of defining domain-specific languages and connecting other Eclipse plugins.

ACTS is a freely distributed set of research tools for software testing downloadable from
a NIST web site [45]. The IPOG algorithm in ACTS generates combinatorial t-way test
suites for arbitrary combinatorial test structures and any strength t with support of
constraints (to exclude invalid combinations). CCM (for Combinatorial Coverage
Measurement) is a research tool in ACTS for determining combinatorial coverage of a
test suite which may not have been developed from a combinatorial viewpoint.

(1) IPOG excludes those combinations of the test settings which are invalid according to
the user specified constraints. (2) IPOG tool supports two test generation modes: scratch
and extend. The former builds a test suite from the scratch, whereas the latter allows a
test suite to be built by extending a previously constructed test suite which can save
earlier effort in the testing process. (3) IPOG tool supports construction of variable-
strength test suites. For example, of the 10 test factors all could be covered with strength
2 and a particular subset of 4 out of 10 factors (which are known to be inter-related)
could be covered with higher strength 4. (4) IPOG tool verifies whether the test suite
supplied by a user covers all t-way combinations. (5) IPOG tool allows the user to specify
expected output for each test case in terms of the number of output parameters and their
values. (6) IPOG tool supports three interfaces: a Graphical User Interface (GUI), a
Command Line Interface (CLI), and an Application Programming Interface (API). The
GUI interface allows a user to perform most operations through menu selections and
button clicks. The CLI interface can be more efficient when the user knows the exact
options that are needed for specific tasks. The CLI interface is also very useful for
scripting. The API interface is designed to facilitate integration of ACTS with other tools
(see Fig. 7 below).

< Fig 7 about ¼ page >
< Figure 7. ACTS/IPOG user interface >

ACTS/CCM

CCM [38] measures the combinatorial coverage of a test set, including the measures
discussed in Sect. 2.3. It accepts a comma-separated values (CSV) format file where each
row represents a test and each column represents a parameter. CSV files can be exported
from any spreadsheet program. Constraints can be specified at the beginning of the file,
in the same syntax used for ACTS/IPOG; each line will be considered a separate
constraint. The invalid combinations will be shown if there are constraints specified. If

17

any coverage measurement has been specified the invalid combinations will be generated.
For continuous-valued parameters, a user can specify equivalence classes by indicating
the number of value classes and boundaries between the classes. Boundaries may include
decimal values. Where the boundary between two classes c1 and c2 is x, the system places
input values < x into c1 and values ≥ x in c2. CCM outputs a graphic display of coverage,
as shown in Sect. 2.3, and complete statistics on tests, number of t-way combinations and
combination settings needed for full coverage; number of t-way combination settings
covered, and invalid combinations as determined by constraints. CCM was developed by
NIST and the Centro Nacional de Metrologia, Mexico. The user interface is shown in
Fig. 8.

< Fig 8 about ¼ page >
< Figure 8. ACTS/CCM user interface >

4 Input Partitioning and Representation

Covering array algorithms can produce highly compact matrices of t-way value
combinations, but how does a tester decide what values to use? Input space partitioning
is a critical step in any software test approach, and traditional input modeling and
partitioning methods are equally effective for combinatorial testing, but some aspects of
combinatorial methods introduce differences from this step in conventional approaches.

4.1 Combinatorial Issues in Input Model Development

When applied to developing input models for a covering array tool, some issues become
particularly important – three general classes of combination anomalies known as
missing combinations, infeasible combinations and ineffectual combinations [58]. The
efficiency of combinatorial testing stems partly from the fact that an individual test
covers C(n,t) combinations, so a covering array can compress a large number of
combinations into a reasonably small set of tests. Combination anomalies add
complications to the generation of covering arrays.

Missing combinations are those that may be required to trigger a failure, but which are
not included in the test array. A t-way covering array will of course include all t-way
combinations, and some (t+1)-way combinations, but not all (or it would be a (t+1)-way
covering array. If there are some combinations that engineering judgment leads testers to
believe are significant, they may be included specifically, to supplement the covering
array.

Infeasible combinations are extremely common, and are addressed by constraints. These
are combinations which will never occur when the application is in use, perhaps because
they are physically impossible. These combinations cannot be handled by simply
removing tests that contain them, because many other, potentially necessary,
combinations would be removed at the same time. Thus constraints are used to prevent
the production of infeasible combinations in the covering array. For example, if

18

parameter B must have the value ‘100’ whenever parameter A = 100, then a constraint
such as “A=100 → B=100” can be included in constraints processed by the covering
array generator. Sect.4.3, below, discusses this process in detail.

Ineffectual combinations may occur when the presence of another combination causes
them to be ignored by the application [57][58]. A common scenario is when an error
value causes the application to stop, so other combinations in the same test are not
included in processing. This situation is often handled by separating tests for error
processing from other tests [59]. Ineffectual combinations may also result when there are
dependencies among combinations, which may be handled with constraints, as with
infeasible combinations.

It is important to keep in mind that the anomalies discussed above can occur with any
test method. For example, a test that triggers an error may terminate the application, so
other possible interactions caused by values in the failing tests will never be discovered.
It is simply that most methods do not consider parameter interaction to the same degree
of granularity as combinatorial testing. Using combinatorial methods helps to expose
anomalies that may reduce the effectiveness of other methods.

4.2 Size Considerations with Covering Arrays

Key cost factors are the number of values per parameter, the interaction strength, and the
number of parameters. The number of tests produced increases with vt log n, so the
number of values per parameter is a critical consideration. Guidance for combinatorial
methods usually recommends keeping the number of values per parameter to a limit of
roughly 10. The number of parameters is much less significant for this approach, as the
test set size increases with log n, for n parameters, and current tools make it possible to
generate covering arrays for systems with a few hundred parameters, at least for lower
strength arrays. For larger systems, random test generation may be used. If there are no
constraints among variables, random generation makes it possible to probabilistically
cover t-way combinations to any desired level [61]. In the more common case where
there are constraints, a large test set may be generated randomly, then its combinatorial
coverage measured while ensuring maintenance of the constraints [38].

4.3 Modeling Environment Conditions and State

When we perform input parameter modeling, it is important to consider environment
conditions that often affect the behavior of a system. There are two types of environment
condition, i.e., static and dynamic conditions. Static conditions are set before a system is
put into execution and do not change over time. Examples of static conditions include the
hardware or software platform, system configurations, and environment variables. For
instance, a web application may behave differently depending on whether it is running on
a desktop machine or a mobile device like a smart phone. In this case, the runtime
platform can be modeled as a parameter in the input model and the different types of
platform the web application is designed to run can be modeled as different values of the
parameter. As another example, many software applications allow the user to customize

19

their behavior using a configuration file. Each configuration option can be modeled as a
parameter in the input model and the different choices for a configuration option can be
modeled as different values of the corresponding parameter.

Dynamic conditions capture the state of the environment that changes as a system runs.
For example, many systems use a database to manage their data. The same operation may
behave differently depending on the state of the database. Thus, it is important to model
the state of the database as a factor that could affect the system behavior. This can be
accomplished by identifying a set of abstract parameters that capture some important
characteristics of the database. As another example, in an object-oriented system, the
behavior of a method often depends on the state of the object on which the method is
invoked. Consider that a class manages a set of objects that does not allow duplicates.
The class provides a method named insert that can be used to add an object into the set.
This method would behave differently depending on whether the object already exists in
the set. Thus, it is important to model the state of the set, which can be accomplished by
identifying an abstract parameter that indicates whether the object to be added already
exists in the set.

4.4 Types of Constraints for Input Parameter Model
After parameters and values are identified, another important part of input parameter
modeling is to identify potential constraints that may exist between different parameters
and values. Constraints are restrictions that must be satisfied by each test; otherwise, a
test may be rejected by the system under test and thus would not serve the purpose.
Similar to identification of parameters and values, constraints can be identified from
various sources of information, e.g., requirement document, and domain knowledge.

Different types of constraint can be classified based on different dimensions. A constraint
can be an environment or system constraint, depending on whether it is imposed by the
runtime environment a system is designed to run or by the system itself. A constraint can
be a first-order or higher-order constraint, depending on whether the constraint needs to
be evaluated against individual tests or sets of tests. A constraint can be a temporal or
non-temporal constraint, depending on whether the constraint specifies properties related
to time. In the following, we discuss these different types of constraints in more detail.

4.4.1 Environment Constraints vs. System Constraints
Environment constraints are imposed by the runtime environment of the system under
test (SUT). For example, tester may want to ensure a web application executes correctly
in different web browsers running on different operating systems. In this scenario, tests
are combinations of web browsers and operation systems. Safari 6.0 or later cannot be
executed on Windows. If the web browser is Safari 6.0 or later, the operating system
cannot be Windows. Therefore, no test should contain the combination of { Safari6,
Windows }. In general, combinations that violate environment constraints could never
occur at runtime and must be excluded from a test set.

20

System constraints are imposed by the semantics of the SUT. For example, a hotel
reservation system may impose a constraint that the number of guests in a room must be
no more than the number of available beds. Note that invalid combinations which do not
satisfy system constraints may still be rendered to the SUT at runtime. If this happens,
these invalid combinations should be properly rejected by the SUT. Therefore, it is
important to test these combinations for the purpose of robustness testing, i.e., making
sure that the SUT is robust when invalid combinations are presented. In order to avoid
potential mask effects, robustness testing often requires that each test contains only one
invalid combination.

The key difference between environment constraints and system constraints is that
environment constraints must be satisfied by all the tests whereas tests that do not satisfy
system constraints may be generated for robustness testing.

4.4.2 First-order Constraints vs. Higher-order Constraints
First-order constraints are constraints that restrict parameter values in an individual test.
For example, in a debit account transaction, the amount of money to withdraw from an
account should be no more than either the balance of the account or the withdrawal limit
of the account. In general, first-order constraints can be expressed using first-order logic
expressions. Satisfaction of first-order constraints can be evaluated based on individual
tests.

Higher-order constraints are constraints that impose certain restrictions on test sets or
even sets of test sets, instead of on individual tests. Higher-order constraints can be more
complex to understand and more expensive to evaluate. Constraints encountered in
practice are typically no higher than second-order constraints. Many systems impose
structural constraints, i.e., restrictions on the structure of test data. Structural constraints
are typically higher-order constraints. For example, when we test software applications
that access a database, we often need to populate some tables in the database as part of
the effort to set up the test environment. These tables typically need to satisfy some
structural constraints in order to ensure validity of the data that are stored in these tables.
One common example is referential integrity, which requires that every data object
referenced in one table must exist in some other table. Referential integrity is a second-
order constraint, as it must be evaluated against a set of data objects, instead of individual
data objects.

We note that most existing constraint solvers only handle first-order constraints. In order
to handle higher-order constraints, a constraint solver customized for a particular domain
is typically required. For example, a customized constraint solver may be developed to
handle structural constraints that are commonly encountered in database testing.

4.4.3 Temporal constraints vs. Non-temporal Constraints

Temporal constraints impose restrictions on the temporal behavior exercised by a system.
There are two types of temporal constraints, sequencing constraints and real-time
constraints. Sequencing constraints specify the possible orders in which a sequence of

21

actions or events is allowed to take place. For example, a sequencing constraint may
specify that a ready signal must be received before any operation is performed on a
device.

Real-time constraints specify temporal properties with an explicit reference to time. For
example, a real-time constraint may specify that an event must take place 5 milliseconds
before another event takes place. This is in contrast with sequencing constraints, which
specifies temporal properties using relative timing, i.e., without an explicit reference to
time. That is, a sequencing constraint may specify that an event E must happen before
another event E’, but it does not specify how much time event E should occur before E’.

Non-temporal constraints are properties that are not related to time. Existing work on
combinatorial testing has been mainly focused on non-temporal constraints. This is partly
because temporal constraints involve the extra dimension of time and are thus more
difficult to handle.

5. Constraints Handling in Covering Array Algorithms

In practice, covering array algorithms must be able to process constraints imposed by
real-world considerations. The way in which constraints are represented can have
significant impacts on algorithm and tool performance.

5. 1 Representations of Constraints
Constraints identified in an input parameter model must be specified in a way that allows
them to be automatically processed. One common approach to specifying constraints is
representing them as a set of forbidden tuples, i.e., combinations that are not allowed to
appear in any test. A test is valid if and only if it does not contain any forbidden tuple.
For example, Fig. 9 shows a system consisting of three Boolean parameters A, B, C and
two user-specified forbidden tuples {A=0, C=0} and {B=0, C=1}. Test {A=0, B=0, C=0}
is invalid since it contains forbidden tuple {A=0, C=0}. Test {A=0, B=0, C=1} is invalid
since it contains forbidden tuple {B=0, C=1}. Test {A=0, B=1, C=1} is valid since it
doesn’t contain any forbidden tuple. When there are a large number of forbidden tuples, it
can be difficult for the user to enumerate them.

<Figure 9. Example of Invalid and Valid Tests>

Alternatively, constraints can be specified using logic expressions. A logical expression
describes a condition that must be satisfied by all the tests. A test is valid if and only if it
satisfies all the logic expressions. Consider the system in Fig. 9, where the forbidden
tuples can be represented by two logic expressions, (A=0) => (C!=0) and (B=0) =>
(C!=1). For complicated systems, logical expressions are more concise than explicit
enumeration of forbidden tuples.

5. 2 Major Approaches to Constraint Handling

22

Due to the existence of constraints, some parameter values cannot be combined in the
same test. In this case, a conflict is said to exist between these parameter values. There
are four general approaches [70] to constraint handling for constructing covering arrays,
including abstract parameters, sub-models, avoid, and replace. These approaches employ
different strategies to deal with potential conflicts between parameters.

The abstract parameters and sub-models approaches remove conflicts from the input
parameter model by means of model transformation prior to actual test generation. The
avoid approach makes sure that only conflict-free tests are selected by checking validity
of each test during actual test generation. The replace approach removes conflicts from a
test set that has already been generated by replacing invalid tests with valid ones.

5.2.1 The Abstract Parameters Approach
In the abstract parameters approach, the original input parameter model that contains
conflicts is transformed to one without conflicts prior to actual test generation. The main
idea is to use one or more abstract parameters to represent valid sub-combinations of
input parameters. First, conflicting parameters, i.e., parameters that contain one or more
conflicts, are identified. Second, abstract parameters are introduced to replace these
conflicting parameters. Each abstract parameter is used to represent a group of conflicting
parameters. The values of an abstract parameter represent valid combinations of the
corresponding conflicting parameters that satisfy the given coverage goal.

For example, assume that there exists a constraint, A > B, between two parameters A and
B of the system shown in Fig. 10. For 2-way testing, a new input parameter model can be
created by replacing these two parameters with a new abstract parameter AB whose
domain consists of all the 2-way valid combinations of parameters A and B, i.e., (A=2,
B=1), (A=3, B=1), and (A=3, B=2). A test generation algorithm that does not support
constraints can be applied to this new model to create a 2-way test set for this example.

<Figure 10. Example of Abstract Parameters >

The abstract parameters approach may lead to over-representation of some sub-
combinations. Consider the example in Figure 10, the number of 2-way tests for abstract
parameter AB and parameter C would be 3 × 2 = 6, where any valid combination
between parameters A and B will occur twice. In fact, five tests are enough to satisfy 2-
way coverage, in which one of the three sub-combinations between A and B only occurs
once while each of the others two sub-combinations occurs twice. As a result, for systems
with wide ranged parameters, it may create a test set that is too large unnecessarily.

5.2.2 The Sub-models Approach
Similar to the abstract parameters approach, the sub-models approach removes conflicts
by transforming the original input parameter model. In this approach, an input parameter
model containing conflicts is rewritten into two or more smaller conflict-free models. A
test set is generated for each smaller model and the final test set is the union of all the test
sets for the smaller models.

23

The key notion in the sub-models approach is called split parameter. A split parameter is
a parameter that is involved in a conflict and that has the least number of values. After a
split parameter is identified, the input parameter model is split into a number of sub-
models, one for each value of the split parameter. Next, for each sub-model, two-
parameter conflicts involving the value of the split parameter are eliminated by removing
values of the other parameters involved in the conflicts. Note that conflicts involving
more than two parameters can be reduced to conflicts involving two parameters.

Again, consider the example in Fig. 10. Parameters A and B are involved in the conflicts.
Suppose that parameter B is used as the split parameter. The input parameter model is
split into three sub-models, one for each value of B. Then conflicts are eliminated in
these three sub-models, which are shown in Fig. 11.

<Figure 11. Example of Sub-models>

Note that if conflicts still exist in the sub-models that do not involve the split parameter,
the process is applied recursively. When all sub-models are conflict-free, some sub-
models can be merged. A merge is possible if two sub-models differ only in one
parameter.

When no further merges can be done, tests are generated for each sub-model. The final
test set is the union of the tests generated for each sub-model. Consider the example in
Fig. 11, and generate 2-way tests. For sub-model 1, there will be 2 × 2 = 4 tests; for sub-
model 2, there will be 2 tests; for sub-model 3, there will be 0 tests. The union of these 6
tests is the final test set.

Similar to the abstract parameters approach, this approach may create test sets that are
unnecessarily large. This is because parameter values that are not involved in any conflict
will be included in every sub-model, which may create overlapping tests that do not
contribute to test coverage. In Fig. 11, suppose that {A=3, B=1, C=2} from sub-model 1
is the last test (of the six possible tests) to be included in the final test set. This test
doesn’t contribute to coverage, since all the 2-way combinations covered by this test have
been covered by other tests. That is, {A=3, B=1} has already been covered by test {A=3,
B=1, C=1} from sub-model 1, {B=1, C=2} has already been covered by test {A=2, B=1,
C=2} from sub-model 1, and {A=3, C=2}has already been covered by test {A=3, B=2,
C=2} from sub-model 2.

5.2.3 The Avoid Approach
The avoid approach does not perform any transformation on the input parameter model.
Instead, it tries to avoid conflicts when tests are actually generated. The key idea is to
avoid generating invalid tests, i.e., tests that do not satisfy all the constraints. This is
accomplished by checking the validity of each candidate test and discarding tests that do
not pass the check. More discussion on how to perform validity check is provided in
Section 5.c.

24

Compared to the abstract parameters and sub-models approaches, the avoid approach
often produces a smaller test set. This approach, however, is mainly applicable to greedy
methods, which construct a test set one value at a time. That is, greedy methods consider
a test set to be a matrix of values and a test set is built by choosing each value one at a
time. The avoid approach cannot be directly applied to algebraic methods, which
construct a test set based on some mathematic formulas without the notion of selecting a
test over multiple candidates.

5.2.4 The Replace Approach
The replace approach allows conflicting tests, i.e., tests that contain conflicts, to be
created in a test set. Conflicting tests are then removed from the test set by replacing
them with conflict-free tests while preserving test coverage of the test set. Note that
conflicting tests cannot be simply discarded. This is because some combinations that do
not have a conflict may be covered by these conflicting tests only. In this case, new
conflict-free tests must be created to cover these combinations in order to preserve test
coverage.

One approach to replacing an invalid test is to make multiple clones of the invalid test,
each of which changes one or more of the parameter values to remove the conflicts from
the test. The number of clones is chosen according to the strength of coverage and the
number of conflicting parameters, in order to make sure that test coverage is preserved. If
multiple conflicts exist in the same test, conflicts are removed one at a time via cloning,
until all conflicts are eliminated.

Table 13 shows how to apply the replace approach to build a 2-way test set for the
system in Fig. 10. Since it is 2-way coverage and any conflict only involves two
parameters, two clones are created for each of the conflicting tests. For each pair of
clones, the value of the first parameter involved in the conflict is changed in the first
clone and the value of the second parameter involved in the conflict is changed in the
second clone. For example, T1 consists of a conflict {A=1, B=1}. This conflict is
removed by replacing T1 with T1a in which the value of A is changed from 1 to 2.
Finally, after removing the invalid and redundant tests, a test set consisting of T1a, T2a,
T4, T5a and T7 is found.

Tests
 Ignoring Constraints

Parameters Tests
 Cloned

Parameters Tests
 Replaced

Parameters
A B C A B C A B C

T1 1 1 2 T1a * 1 2 T1a 2 1 2
T2 1 2 1 T1b 1 * 2 T1b 1 - 2
T3 1 3 2 T2a * 2 1 T2a 3 2 1
T4 2 1 1 T2b 1 * 1 T2b 1 - 1
T5 2 2 2 T3a * 3 2 T3a - 3 2
T6 2 3 1 T3b 1 * 2 T3b 1 - 2
T7 3 1 2 T4 2 1 1 T4 2 1 1
T8 3 2 1 T5a * 2 2 T5a 3 2 2
T9 3 3 2 T5b 2 * 2 T5b 2 1 2
 T6a * 3 1 T6a - 3 1
 T6b 2 * 1 T6b 2 1 1
 T7 3 1 2 T7 3 1 2
 T8 3 2 1 T8 3 2 1
 T9a * 3 2 T9a - 3 2
 T9b 3 * 2 T9b 3 1 2

25

Table 13. Application of the replace approach to the system in Fig. 10. Conflicts are highlighted
in each test. “*” indicates a value that needs to be changed; “-” indicates that no value can be
assigned.

Similar to the abstract parameters and sub-models approaches, the replace method may
create test sets that are unnecessarily large. The reason is that clones are often
overlapping. Thus, some combinations are covered more than once. This may create
redundant tests that can be removed without compromising test coverage.

Note that the three approaches, i.e., abstract parameters, sub-models, and replace, may
create unnecessarily large test sets. Test sets generated by these approaches can be
reduced by removing redundant tests, i.e., tests that can be removed without
compromising test coverage. This can be accomplished by processing the tests one by
one and discarding tests that do not cover new combinations.

5.3 Validity Checking for the Avoid Approach
A key step in the avoid approach is to perform validity checking, i.e., checking whether
all the constraints are satisfied for a given test. In general, there are two ways to check the
validity of a test, including constraint solving and forbidden tuples.

The way in which validity checking is performed is independent from the way in which
constraints are specified. Constraints specified using forbidden tuples can be converted
into a set of logic expressions, which can be handled using a constraint solver. Similarly,
a set of forbidden tuples can be derived from constraints specified using logic expressions
and can be handled using a forbidden tuple-based approach.

5.3.1 Constraint Solving Based Validity Checking
In this approach a constraint solver is typically employed to perform validity checking.
The main idea is to encode the problem of validity checking as a constraint satisfaction
problem. Each time when a parameter value is to be assigned in a test, it must pass a
check performed by the constraint solver to ensure all the constraints are satisfied.

The main challenge of this approach is dealing with the fact that the constraint solving
process can be time-consuming, especially when constraints are complex. In particular,
existing constraint solvers are designed to check satisfiability of individual formulae.
That is, they typically do not exploit information from the solving history to speed up
constraint solving that may be performed in the future.

Several approaches have been reported aiming to optimize the use of constraint solvers in
the context of combinatorial testing [66, 67]. For example, an algorithm called IPOG-C
[66] is developed that tries to reduce the number of calls to the constraint solver. In
particular, algorithm IPOG-C reduces the number of validity checks on target
combinations by leveraging the fact that if a test is determined to be valid, then all the
combinations covered by this test would be valid, and thus do not have to be explicitly
checked. In case that a call to the constraint solver cannot be avoided, algorithm IPOG-C
tries to simplify the solving process as much as possible. It divides constraints into non-
intersecting groups to reduce the number of constraints that have to be checked during a

26

validity check.

5.3.2 Forbidden Tuples Based Validity Checking
An alternative approach to performing validity checking is to ensure that no forbidden
tuple is contained in the test. As discussed above, forbidden tuples can be used to verify if
a (complete) test is valid or not. However, a partial test that contains no forbidden tuples
may be invalid. Consider the example shown in Fig. 12. A partial test {A=0, B=0} is
invalid even when it includes no forbidden tuples, because we cannot later assign a valid
value for parameter C to make a complete test.

<Figure 12. Example of Invalid and Valid Partial Tests>

Generally speaking, we cannot directly use forbidden tuples to check a partial test’s
validity. This is because user-specified forbidden tuples may imply more other forbidden
tuples that are not explicitly specified. A partial test that covers no explicit forbidden
tuple may cover some implicit forbidden tuples. In Fig. 12, {A=0, B=0} is an implicit
forbidden tuple, making the partial test {A=0, B=0} invalid.

It is not practical for the user to specify all implicit forbidden tuples in a system. Thus, it
is desired to automatically derive all implicit forbidden tuples from a set of forbidden
tuples given by the user. This would allow the validity of a partial test to be determined in
the same way as for a complete test, i.e., by ensuring the partial test does not contain any
implicit or explicit forbidden tuple. However, the number of forbidden tuples can be
large, making this approach very inefficient.

The concept of minimum forbidden tuple [68] is proposed to address this challenge.
Intuitively, a minimum forbidden tuple (MFT) is a forbidden tuple of minimum size. It is
shown that if a tuple is invalid, it must cover at least one MFT. Thus, a partial test is valid
if and only if it covers no MFT. This makes it possible to use MFTs to perform validity
checks on both complete and partial tests. The number of MFTs is typically much smaller
than the number of all possible forbidden tuples. Thus, the cost of managing forbidden
tuples, in terms of both storage and lookup cost, can be significantly reduced.

The MFTs generation algorithm iteratively applies two processes, i.e., derive and
simplify, on the set of forbidden tuples until it converges.
(Derive) Given a parameter P having n values as its domain, and n forbidden tuples each
of which contains a different value of parameter P, a new forbidden tuple can be
constructed by combining all values in these n forbidden tuples, excluding the values of
parameter P.
(Simplify) A tuple within the set of forbidden tuples can be removed if it covers any
other forbidden tuple in the set.

The MFTs generation algorithm starts from the set of explicit forbidden tuples. It
iteratively derives new forbidden tuples and simplifies the set of forbidden tuples, until
no new forbidden tuples can be derived. The final set of forbidden tuples consists of all

27

MFTs which explicitly indicate all the constraints implied by user-specified forbidden
tuples and parameter domains. We use an example shown in Fig. 13 to describe how it
works. In steps 1 and 2, three new forbidden tuples are derived using parameter A and B.
There are no new forbidden tuples can be derived using parameter C, so we move to the
simplify process, as in step 3, but no tuples can be removed at this time. The next
iteration then starts with the three new forbidden tuples which are marked with “*”. In
step 4 we derive a new tuple {C=0} using parameter A. There are no new forbidden
tuples can be derived using parameter B and C, so we move to the simplify process, as in
step 5, six forbidden tuples covering {C=0} are removed. Now there are only three
forbidden tuples remaining in the set and no new tuples can be derived from them. They
are MFTs and can be used to perform validity checking.

<Figure 13. Example of MFTs Generation Process>

6 Case Studies

Combinatorial testing has found extensive use in software development, and a variety of
examples for diverse industries can be found in the proceedings of the International
Workshop on Combinatorial Testing [69]. The two highlighted in this section illustrate
quite different aspects of this method in practice. The first, on the Document Object
Model, is an interesting validation of the interaction rule and its implications. Tests
covering 4-way combinations detected all faults found in complex real-world software
that had previously been detected with exhaustive testing of discretized values. The
second example below is, to our knowledge, the largest published study on industrial use
of combinatorial testing, a 2.5 year investigation of the method to aerospace software that
demonstrated significant cost savings and improved test coverage.

6.1 Document Object Model
The Document Object Model (DOM) [71][72] is a World Wide Web Consortium (W3C)
standard for representing and interacting with documents through web browsers. DOM
makes it easier for developers to incorporate non-sequential access in web sites by
providing conventions for updating the content, structure, and style of documents
dynamically. Implemented in browsers, DOM components typically include tens of
thousands of lines of source code. Because of its importance to internet applications
worldwide, developed the DOM Conformance Test Suites, to assist developers in
ensuring interoperability and predictable behavior of web site components. The
conformance tests are comprehensive, providing exhaustive testing (all possible
combinations) of discretized values for 35 DOM events, a total of more than 36,000 tests.
Multiple commercially produced DOM implementations were tested.

Since the DOM test suite was designed for exhaustive testing, it provided a unique
opportunity to evaluate one of the major advantages of combinatorial testing – the
empirical interaction rule that faults involve a small number of factors interacting, so
covering all t-way faults, for small value of t, can be nearly as effective as exhaustive
testing. Five new DOM test suites were created, covering 2-way through 6-way

28

combinations, to compare the effectiveness of t-way combinatorial testing with the
original exhaustive test suite [73]. According to the interaction rule, testing all t-way
combinations, for a suitable value of t, should be as effective as exhaustive testing of
discretized values. Results, shown in Table 14, were consistent with the rule. At t = 4, the
combinatorial test suite detected all DOM faults discovered in exhaustive testing.

t-way Tests
Pct
Original

Test Results
Pass Fail

2 Way 702 1.92% 202 27
3 Way 1342 3.67% 786 27
4 Way 1818 4.96% 437 72
5 Way 2742 7.49% 908 72
6 Way 4227 11.54% 1803 72
Table 14. Comparison of t-way with exhaustive test set size.

Several interesting observations can be made about these results. Notice that 2-way tests
detected only 37.5% of the faults, pairwise testing is clearly inadequate for this
application, and even 3-way tests detected no additional faults. However, with 4-way
covering arrays, all faults found in exhaustive testing were discovered, with less than 5%
of the original test set size. This is an enormous savings, particularly for a user-interface
related application such as DOM, where human involvement is required to verify test
results involving images on a screen. We can also observe another aspect of these results
consistent with the observations made in the introduction to this chapter. While the
distribution of 1-way and 2-way faults was broad (e.g., under 20% to more than 90% for
1-way), a very narrow distribution was observed for 4-way to 6-way faults. In other
words, empirical data suggest that results could be quite varied for 1-way, 2-way, and
even 3-way covering arrays. On the other hand, when we reach t-way strengths of 4-way
and beyond, fault detection should be both stronger and more consistent across
applications. The DOM testing results are an example of such a situation.

6.2 Lockheed Martin

Lockheed Martin is one of the world’s largest aerospace firms. In 2005, the company
began investigating application of pairwise testing to improve test effectiveness and
reduce costs [74, 75]. This work led to discussions with NIST, and subsequently a Co-
operative Research and Development Agreement (CRADA) to evaluate the cost/benefit
tradeoffs and areas of suitable application for combinatorial testing of complex industrial
software [76]. (One of the ways in which NIST conducts joint research with US industry
is through CRADAs, which allow federal laboratories to work with US industry and
provide flexibility in structuring projects, intellectual property rights, and in protecting
industry proprietary information and research results.)

The pilot project objectives included: investigating CT across multiple application areas,
including system, software, and hardware testing; estimating possible improvements in
fault detection with combinatorial methods; and quantifying possible reductions in test

29

cost and overall lifecycle cost through earlier fault detection. The ACTS tool was used,
supplemented with other tools that provided complementary capabilities, including: Air
Academy Associates: SPC XL, DOE KISS, DOE PRO XL, DFSS MASTER; Phadke &
Associates: rdExpert; and Hexawise’s web-based Hexawise tool.

A diverse set of eight pilot projects were included in the evaluation, spanning a cross-
section of the company’s mission areas:
• F-16 Ventral Fin Redesign Flight Test Program – system-level problem analysis,

comparing with historical results [75]
• Electronic Warfare (EW) system testing – evaluating and extending existing tests
• Navigation Accuracy, EW performance, Sensor information, and Radar detection –

generating test cases for subsystems
• Electromagnetic Effects (EMI) Engineering - CT tests were compared with tests

developed using conventional methods
• Digital System Command testing –file function testing with multiple parameters
• Flight Vehicle Mission Effectiveness (ME) – comparing CT with tests generated from

a statistical analysis tool
• Flight Vehicle engine failure modes – CT tests were compared with tests developed

using conventional methods
• Flight Vehicle engine upgrade –combinations of flight mode factors were compared

with existing tests

Pilot projects found CT effective for reducing the number of tests, and for improving test
coverage [76]. While there was some variation among projects, the company estimated
that CT would reduce testing cost by roughly 20%, while providing 20% - 50% better test
coverage. In some cases, significant but previously undiscovered bugs were found. As a
result of this experience, Lockheed Martin established a process to encourage adoption of
combinatorial methods in company projects, documented lessons learned and developed
recommendations for the testing community at large.

7 Advanced Topics in Combinatorial Testing

As CT has evolved in practice, new opportunities and challenges have been identified.
This section reviews research in a number of specialized topics that are increasingly
finding use for solving test and assurance problems.

7.1 Test Suite Prioritization
Test suite prioritization by combinatorial-based coverage has been studied from two
perspectives. The first generates combinatorial test suites using inputs that contain
weights on the parameter-values. The second takes an existing test suite and reorders the
test cases by combinatorial-based interaction coverage.

7.1.1 Generation of Prioritized Test Suites by Combinatorial-based Coverage

30

Test suites that are generated by combinatorial-based coverage use an ℓ-biased covering,
defined as:

A ℓ-biased covering array is a covering array CA(N; 2, k, v) in which the first
rows form tests whose utility is as large as possible according to some criterion.
That is, no CA(N; 2, k, v) has rows that provide larger utility according to the
chosen criterion.

We refer to an ℓ-biased covering array as a prioritized combinatorial test suite. To
generate a prioritized combinatorial test suite, a tester must carefully assign weights to
parameters and their values. The weights are assigned a value between 0 (low priority) to
1 (high priority). A test then computes the weights of pairs by multiplying their weights.
For instance, assume we have a pair with weights .2 and .1. The total weight is then .2*.1
= .02. The goal of the algorithm is then to cover as much “weight” among pairs as soon
as possible rather than simply covering pairs. As discussed in the section on Algorithms,
there are many possible categories of algorithms that are able to generate covering arrays
and they may certainly be modified to cover weight as needed for ℓ-biased covering
arrays. Bryce et al. give one example that uses a greedy algorithm [77].

7.1.2 Prioritization of Existing Test Suites by Combinatorial-based Coverage
Test suite prioritization by combinatorial-based coverage has been applied to Event
Driven Systems, focusing on combinations of parameter-values on or across windows. In
this section, we briefly discuss this test suite prioritization problem and then give an
example.

The Test Suite Prioritization problem is defined by Rothermel et. al. [80]:

Given T, a test suite, Π, the set of all test suites obtained by permuting the tests of
T, and f, a function from Π to the set of real numbers, the problem is to find π∈Π
such that ∀π′ ∈Π,f(π)≥f(π′). In this definition, Π refers to the possible
prioritizations of T and f is a function applied to evaluate the orderings.

Example: Consider the case of test suite prioritization for a web application in which the
source of the test cases is a set of user-sessions. Figure 14 shows that users connect a
website where their actions (POST/GET requests) are recorded by a webserver. A tool
converts of these user visits to a test case. Given that there are a large number of test
cases, we then prioritize these test cases according to a criterion. In the case of
combinatorial-based coverage criteria for GUI and web applications, intra-window and
inter-window interactions have been proposed and empirical studied.

< Figure 14. Test suite prioritization example >

For instance, consider the example input shown below where we have three webpages
that have the parameters and values as shown in Table 15. We will prioritize by inter-

31

window combinatorial-based coverage. That is, combinations of parameter-values
between pages.

Page Values for
parameter 1

Values for
parameter 2

Values for
parameter 3

Page 1 0,1,2,3 4,5

Page 2 6 7,8 9

Page 3 10, 11 12

Table 15. Example web interface parameter values

Next consider that we have the following test cases that visit some of these pages and
specify values for parameters.

Test Test Case

1 0,4,6,8,11

2 0,6,10

3 4,6,8,11

Table 16. Test cases for web pages

Give the input and test cases, Table 17 shows the inter-window pairs that are covered in
these test cases. In this scenario, we select Test Case 1 as the first test case since it covers
8 pairs while the other test cases cover fewer pairs. We mark these pairs in Test Case 1 as
covered and then select the next case such that it covers the most remaining “uncovered
pairs”. In this case, we select Test Case 2 since it covers 2 new pairs, but Test Case 3
does not cover any new pairs.

Test Covered pairs No. of pairs
covered

32

1 (0,6)(0,8)(0,11)(4,6)(4,8)(4,11)(6,11)(8,11) 8

2 (0,6)(0,10)(6,10) 3

3 (4,6)(4,8)(4,11)(6,11)(8,11) 5

Table 17. Pairwise coverage of tests

Empirical studies have shown that prioritization by combinatorial-based coverage has
been valuable for improving the rate of fault reduction in several studies. For instance,
Bryce et al. studied seven systems and observed a trend that test suite prioritization by
combinatorial-based coverage often improved the rate of fault detection for GUI and web
applications [77]. A tool, CPUT, is freely available for testers to repeat this process with
their own web logs. CPUT converts Apache web logs to user-session-based test suites
and prioritizes those test suites by combinatorial-based coverage [81].

Test suite prioritization by combinatorial-based criteria has been investigated from two
viewpoints: (1) generate test suites from scratch by incorporating the weights of t-tuples
into the test generation process and (2) reorder existing test suites by a combinatorial-
based coverage criterion. Existing work in this area is quite promising in regard to the
ability to improve fault detection effectiveness. It is simple to incorporate weights into
algorithms that generate combinatorial test suites, but testers must take care in assigning
weights. If a tester has existing test suites, they may also prioritize by combinatorial-
based coverage. Testers may use and extend the CPUT tool to apply test suite
prioritization for user-session-based testing in their own domains [81].

7.2 Sequence covering arrays

Event sequences are important in many aspects of software testing [86, 87, 88, 89, 90,
94]. For example, a typical e-commerce web system presents a variety of controls to the
user, such as buttons, text entry fields, selection lists, including many with sub-options
such as pull-down menus. It should be possible for the user to engage these controls in
any order with the system working correctly irrespective of the order used. Another
example (in fact the application for which the methods described here were developed) is
the process of plugging in various peripherals. If the developer has made assumptions
about the order in which peripherals are connected and controls engaged, then a user who
violates this expected sequence may encounter errors. Applications should work correctly
regardless of the sequence of events selected by the user, or else indicate that a different
order is required.

In many cases, the key factor in triggering a failure is whether a particular event has

occurred prior to a second event, regardless of whether other events have occurred
between these two. For example, the system may fail if a pump has been started before a

33

particular valve has been opened at some point, even though other events may have
occurred in between. Sequence covering arrays were developed to locate faults of this
type, using combinatorial methods to increase efficiency [91]. Tests based on these arrays
ensure that every t events from a set of n (n > t) will be tested in every possible t-way
order, possibly with interleaving events among each subset of t events.

Definition. A sequence covering array, SCA(N, S, t) is an N x S matrix where entries are
from a finite set S of s symbols, such that every t-way permutation of symbols from S
occurs in at least one row and each row is a permutation of the s symbols [79]. The t
symbols in the permutation are not required to be adjacent. That is, for every t-way
arrangement of symbols x1, x2, ..., xt, the regular expression .*x1.*x2.*xt.* matches at least
one row in the array.

Sequence covering arrays were introduced in [79] for software testing but were later
shown to be equivalent to t-scrambling sets [92][93]. Margalit [95] provides closer
bounds, and additional results and algorithms were presented in [96] and [97].

7.2.1 Example

We may have a component of a factory automation system that uses certain devices
interacting with a control program. We want to test the events defined in Table 18. There
are 6! = 720 possible sequences for these six events, and the system should respond
correctly and safely no matter the order in which they occur. Operators may be instructed
to use a particular order, but mistakes are inevitable, and should not result in injury to
users or compromise the operation. Because setup, connections and operation of this
component are manual, each test can take a considerable amount of time. It is not
uncommon for system-level tests such as this to take hours to execute, monitor, and
complete. We want to test this system as thoroughly as possible, but time and budget
constraints do not allow for testing all possible sequences, so we will test all 3-event
sequences.

Event Description
a connect air flow meter
b connect pressure gauge
c connect satellite link
d connect pressure readout
e engage drive motor
f engage steering control
Table 18. Example system events

With six events, a, b, c, d, e, and f, one subset of three is {b, d, e}, which can be
arranged in six permutations: [b d e], [b e d], [d b e], [d e b], [e b d], [e d b]. A test that
covers the permutation [d b e] is: [a d c f b e]; another is [a d c b e f]. With only 10 tests,
we can test all 3-event sequences, shown in Table 19. In other words, any sequence of
three events taken from a..f arranged in any order can be found in at least one test in
Table 19 (possibly with interleaved events).

34

Test Sequence
1 a b c d e f
2 f e d c b a
3 d e f a b c
4 c b a f e d
5 b f a d c e
6 e c d a f b
7 a e f c b d
8 d b c f e a
9 c e a d b f
10 f b d a e c
Table 19. All 3-event sequences of 6 events.

Returning to the example set of events {b, d, e}, with six permutations: [b d e] is in

Test 5, [b e d] is in Test 4, [d b e] is in Test 8, [d e b] is in Test 3, [e b d] is in Test 7, and
[e d b] is in Test 2.

With 10 events, the number of permutations is 10!, or 3,628,800 sequences for

exhaustive testing. In that case, a 3-way sequence covering array requires only 14 tests to
cover all 3-way sequences, and 72 tests are all that is needed for 4-way sequences.

7.2.2 Generating Sequence Covering Arrays
Any 2-way sequence covering problem requires only two tests. A 2-way sequence
covering array can always be constructed by listing the events in some order for one test
and in reverse order for the second test. See Table 20 for an example.

Test Sequence
1 a b c d e
2 e d c b a
Table 20. 2-way sequence covering array.

Sequence covering arrays are related to covering arrays in covering t-way combinations,
but there are significant limitations in producing SCAs from covering arrays [97].
Consequently specialized algorithms have been developed for SCAs, and are a continuing
subject of research. For t-way sequence covering, t > 2, greedy methods are efficient and
produce arrays with number of tests proportional to log n, for n events [91]. An improved
greedy algorithm was developed by Erdem [96], producing fewer tests, and further results
by Chee et al developed algorithms producing significantly smaller arrays than either
[79] or [96], and results are provided up to strength 5.

Event sequences are encountered frequently in testing, and combinatorial methods are
effective in reducing the testing burden, especially for applications that require human
involvement for test setup or system configuration. Since the test array size grows only
logarithmically with the number of events, t-way sequence coverage is practical in many
applications. Areas for future research in sequence covering arrays include algorithms to

35

provide smaller test arrays, or in shorter time; measures of fault detection in practical
application; and handling of constraints. Constraints are a particularly challenging issue
with SCAs [91, 95] since even a small limitation on t-way sequences can severely limit
the possible arrangements in the sequence covering array. Variations such as multiple
occurrences of an event and missing events are also possible, so an additional question is
how sequence covering arrays compare with other methods of event sequence testing,
such as those based on finite automata or other approaches that are frequently used in
protocol testing.

7.3 Fault localization

After executing a combinatorial test set, the execution status, i.e., pass or fail, of each test is
obtained. When one or more tests fail, the next task is fault localization, i.e. identifying faults that
cause the failure. The problem of fault localization can be divided into two sub-problems: 1)
Identifying failure-inducing combinations. A combination is failure-inducing if its existence in a
test causes the test to fail. 2) Identifying actual faults in the source code. A fault is a code defect
that can be an incorrect, extra, or missing statement.

7.3.1 Identifying failure-inducing combinations

One naïve approach to identifying failure-inducing combinations is to execute all possible tests
and then identify combinations that only appear in failed tests. This approach is, however, not
practical as it requires exhaustive testing. In the literature, several approaches have been reported
that try to identify failure-inducing combinations by executing only a small set of tests. These
approaches are essentially approximate solutions. That is, failure-inducing combinations
identified by these approaches are suspects, but not guaranteed, to be failure-inducing.

Existing approaches on identifying failure-inducing combinations can be largely classified into
two groups. The first group of approaches takes as input a single test as well as its execution
status and tries to identify failure-inducing combinations in the test. A simple solution involves
checking every possible combination, one at a time, contained in the failed test. This solution is
expensive due to the fact that the number of combinations contained in a test is an exponential
function of the size of the test. Two efficient algorithms called FIC and FIC_BS are reported to
quickly locate a failure-inducing combination by checking only a small number of possible
combinations [10]. These two algorithms, however, make certain assumptions that may not be
satisfied in practice. In particular, they assume that no new inducing combination is introduced
when a value is changed to create a new test.

The second group of approaches takes as input a set of tests as well as their execution statuses and
try to identify failure-inducing combinations that may appear in any of these tests. This group
could further divided into two sub-groups. The approaches in the first sub-group identify failure-
inducing combinations without adding any new test to the initial test set. For example, a machine
learning-based approach was reported that uses a technique called classification tree to identify
failure-inducing combinations [99]. Based on the execution result of a test set, this approach
builds a classification tree that encodes information needed to predict status of a test execution. A

36

score is assigned to each combination that is likely to cause an execution to fail. If the
combination’s score is greater than a predefined threshold, the combination is marked as
inducing.

The approaches in the second sub-group generate and execute additional tests to identify failure-
inducing combinations. These approaches first identify suspicious combinations with respect to
the initial test set. Suspicious combinations are combinations that appear in failed tests but not in
passed tests. These combinations are candidates that may be failure-inducing. Then a small set of
new tests is generated to refine the set of suspicious combinations.

One approach called AIFL [100] first identifies all the suspicious combinations in a test set. Next
it uses a strategy called OFOT (One Factor One Time) to systematically change one value of the
failed test at a time. Therefore, k new tests are generated for each failed test of size k. These new
tests are executed to refine the suspicious combinations set. In particular, if a suspicious
combination appears in any new test that passes, then this combination is removed from the
suspicious set. This process can be repeated until a stable point is reached where the suspicious
set does not change in two consecutive iterations [101].

Another approach implemented in a tool called BEN [102] ranks suspicious combinations, after
they are identified, based on three notions of suspiciousness, including suspiciousness of
component, combination, and environment. A component represents a parameter value.
Suspiciousness of combination is computed based on suspiciousness of components that appear in
the combination. Suspiciousness of environment with respect to a combination is computed based
on suspiciousness of components that appear in the same test but not in the combination. The
higher the suspiciousness of a combination and the lower the suspiciousness of its environment,
the higher this combination is ranked.

The ranking of suspicious combinations allows the next step to focus on the most suspicious
combinations. New tests are generated for a given number of top-ranked suspicious combinations
to refine the set of suspicious combinations. A new test is generated for a top-ranked suspicious
combination in a way such that it includes this suspicious combination while minimizing the
suspiciousness of environment for this combination. If the new test fails, it is likely that this
suspicious combination is a failure-inducing combination. Otherwise, this suspicious combination
is not suspicious any more and is removed from the suspicious set. The process of ranking and
refinement is repeated until a stable point is reached, e.g., the set of suspicious combination does
not change in two consecutive iterations.

7.3.2 Identifying faults in the source code

The problem of how to identify faults in the source code is one of the most studied problems in
software engineering. Many approaches have been reported and can be applied after
combinatorial testing [104][105]. For example, spectrum-based approaches try to identify faults
by analyzing the spectrums of passed and failed test executions. The key idea behind spectrum-
based approaches is that faults are more likely to be exercised in failed test executions than in

37

passed executions, which is independent from the way tests are generated. Thus, it is possible to
apply spectrum-based approaches after combinatorial testing.

The BEN approach introduced in the previous section is later extended to locate faults in the
source code [103]. The main idea of the BEN approach consists of leveraging the notion of
failure-inducing combination to generate a group of tests that are very similar but produce
different outcomes. Similar tests are likely to exercise similar execution traces. Different
outcomes produced by similar tests are more likely due to existence of faults. In contrast, different
outcomes produced by tests that are significantly different are more likely due to program logic.

Given a failure-inducing combination, BEN generates a group of tests that includes one failed test
and several passed tests. The failed test is referred to as a core member and contains the failure-
inducing combination while the suspiciousness of environment with respect to this combination is
minimized. The passed tests are referred to as derived members and are derived from the core
member by changing only one value of the core member. In other words, derived members differ
from the core member in only one value but produce a different outcome.

For each statement, a suspiciousness value is computed by comparing the execution trace of the
core member and each of the derived members. A statement is highly suspicious if it is only
exercised in failed tests but not in passed tests. Statements are ranked based on a non-ascending
order of their suspiciousness values. The higher a statement is ranked, the more likely it is
considered to be faulty.

7.4 Relationship between combinatorial testing and structural coverage

Before an application is purchased or accepted, and especially when a system fails, one of the first
questions that will be asked is “How well was it tested?” A variety of measures have been
developed to answer this question, based on the extent and manner in which components of the
system have been exercised. Code coverage is one component to the answer for this question, so
it is natural to consider how combinatorial testing relates to code coverage. Do higher strength
covering arrays produce greater code coverage? If so, at what rate does code coverage increase
with increasing values of t? Additionally, what impact does the input model have on the
relationship between covering array strength and coverage? We briefly review some of the more
widely used measures, then consider results relating t-way testing to these measures.

• Statement coverage is the proportion of source statements exercised by the test set.
Statement coverage is a relatively weak criterion, but provides a level of confidence that some
basic testing has been done.

• Decision or branch coverage is a measure of branches that have been evaluated to both
true and false in testing. When branches contain multiple conditions, branch coverage can be
100% without instantiating all conditions to true/false.

• Condition coverage measures the proportion of conditions within decision expressions
that have been evaluated to both true and false. Note that 100% condition coverage does not

38

guarantee 100% decision coverage. For example, “if (A || B) {do something} else
{do something else}” is tested with [0 1], [1 0], then A and B will both have been evaluated
to 0 and 1, but the else branch will not be taken because neither test leaves both A and B false.

• Modified condition decision coverage (MCDC) requires that every condition in a
decision in the program has taken on all possible outcomes at least once, each condition has been
shown to independently affect the decision outcome, and that each entry and exit point have been
traversed at least once [11].

Since t-way testing has been shown effective in detecting faults, we might expect it to generate a
high level of code coverage as well. Although there are only a few studies regarding this question,
results indicate that tests based on covering arrays can produce good code coverage, but the
degree of coverage is heavily dependent on the input model used.

7.4.1 Basic Structural Coverage

Czerwonka [106] studied branch and statement coverage generated by covering arrays of tests for
t=1 to t=5, including questions of how the minimum, maximum, and range of coverage varied
with increasing strength. Also considered was whether t-way tests produced statistically
significant differences in coverage as compared with basic test criteria such as all-values, and if
any improvements in coverage with increasing t were the result of combinatorial effects or simply
larger test suites. Four relatively small command line utilities were used in this study, with 100
different test suites for each level of t.

Consistent with early work on combinatorial testing, results in [106] showed that code coverage
does increase as covering array strength increases, as intuition would predict. Additional
interesting findings included:

• Statement and branch coverage generated by the test suites at t=2 and beyond were not
extremely high, ranging from 64% to 76% for statement and 54% to 68% for branch.

• As covering array strength increased, the difference between minimum and maximum
code coverage became narrower; thus higher strength test arrays produced better coverage
and were also more stable in the level of coverage produced.

• Both statement and branch coverage increased significantly at t=2 as compared with all-
values (t=1), but increases diminished rapidly with additional increases in t.

• The relationship between test suite size and covering array strength varied among the
programs tested. For some, it appeared that improved coverage was not simply the result
of additional tests at higher t levels, but in some other cases, test suite size, coupled with
greater input combination diversity, was responsible for the improvement.

• The low levels of coverage may have been the result of factor and levels chosen for the
covering arrays not sufficiently modeling the possible inputs for each program.

7.4.2 Effects of Input Model

39

The last point noted above may also explain the significant difference in coverage success shown
in a different study that investigated the effectiveness of combinatorial testing for achieving
MCDC coverage. Bartholomew [107][108] applied combinatorial methods in producing MCDC-
adequate test suites for a component of software defined radio system, showing that tests based on
covering arrays could produce 100% MCDC coverage. Recall that MCDC subsumes branch
coverage, which in turn subsumes statement coverage, so full MCDC coverage means that
statement and branch coverage were 100% as well. A key feature in the application of MCDC is
that tests are constructed based on requirements. Achieving structural coverage is viewed as a
check that the test set is adequate, i.e., the MCDC source coverage is not the goal in itself, only a
metric for evaluating the adequacy of the test set.

In this study, a module of 579 lines was instrumented for branch and condition coverage, then
tested with the objective of achieving MCDC requirements specified by the Federal Aviation
Administration. Initial tests obtained results similar to those in [106], with approximately 75%
statement coverage, 71% branch coverage, and 68% MCDC coverage. However, full branch
coverage, and therefore statement coverage also, was obtained after “a brief period of iterative test
case generation” [107], which required about four hours. MCDC, a substantially more complex
criterion, was more difficult. In a few cases, obtaining complete MCDC coverage required
construction of code stubs to force a particular sequence of tests, with specific combinations, to be
executed. This process required two additional iterations, and a total of 16 additional hours.
Complete test cases, based on covering arrays, were generated with a model checker, using the
process described in [35]. This iterative process is consistent with the traditional use of the
MCDC criterion as a check on test adequacy, as described previously. The integrated use of
covering array based tests, with a model checker to determine expected results for each test, was
found to be extremely successful in reducing testing costs for MCDC. A NASA report [116]
indicates that achieving MCDC coverage often requires seven times the initial cost of code
development, so the results reported in [107] suggest the potential for significant cost savings if
replicated on larger systems.

7.5 Testing Very Large Systems

Thus far in this chapter we have discussed primarily combinations of input values, but the
same combinatorial ideas can be used with configurations and software product lines. Such uses
are increasingly common, as mobile applications and other types of software with extensive
configuration options have proliferated. These systems are often referred to as highly configurable
software [109]. Software product lines [110,111, 112, 113, 114] are a particularly interesting type
of configurable system, where components may be assembled according to a user’s feature
specification, resulting in potentially millions of possible instantiations. Since a product line with
50 features that can be included or excluded will have 250, or roughly 1015, possible instantiations,
only a small proportion of these possible configurations will ever be built. Since it is naturally
impossible to test even a fraction of this number of configurations, combinatorial methods have
been used to make testing more tractable. Instead of testing all configurations, it may be practical
to test all 2-way, 3-way, or higher strength interactions among features. One of the most
significant differences with SPL testing is simply the number of variables that must be
considered. For example, an SPL may have hundreds of features that can be selected, with many

40

more constraints than in other testing problems. One SPL is reported with 6,000 features [110].
Several techniques have been devised to deal with this scale of test design.

One of the key problems with applying combinatorial testing for a large number of variables is
that covering array algorithms are often limited in the number of input variables that can be
handled, and may be severely impacted by the presence of constraints. To process constraints,
covering array generators often use Satisfiability Modulo Theory (SMT) constraint solvers. An
alternative is to “flatten” the model to boolean values, then use boolean satisfiability (SAT)
solvers.

A model can be “flattened” by systematically replacing variable values with boolean

variables that represent a variable-value combination, with constraints to ensure that only one of
the values (per variable) in the original model is selected. The process is straightforward: for each
variable pi with values v1, v2, …, vk, create k boolean variables that represent the selection of one
of the k values for pi. Then establish constraints as follows. We represent pi set to value vj as pij;
thus boolean variables are pi1….pik.

• One constraint, pi1 + pi2 + … + pik ensures that at least one of the k values is

selected
• One constraint for each pair of values to ensure that at most one of the k values is

selected (where x̅ represents x negated): (p̅i1 + p̅i2), (p̅i1 + p̅i3), … , (p̅ik-1 + p̅ik)

For example, constraints can be flattened for the configuration in Table 2. In this example,
if we have a Linux system to test, there should be no tests containing IE as the browser, since this
combination will not be seen in practice. Thus there must be a constraint such as “Linux → !IE”.

Parameter Values
Operating system XP, OS X, RHEL
Browser IE, Firefox, Opera
Protocol IPv4, IPv6
CPU Intel, AMD
DBMS MySQL, Sybase, Oracle
Table 21. Application configurations

Using the process described previously, we arrive at the following constraint set to prevent

more than one operating system to be selected in the flattened model.

XP ∨ OX ∨ or RHEL (1)
!XP ∨ !OSX (2a)
!XP ∨ !RHEL (2b)
!OSX ∨ !RHEL (2c)

Constraint (1) ensures that at least one of the options is selected, and constraints 2a, 2b, and

2c prevent more than one from being selected at the same time. Thus this set of constraints
preserves the original semantics that these are mutually exclusive options. Note that a large
number of these constraints may be generated – for k options, we will need one constraint like (1)

41

1. Robert Mandl (1985) “Orthogonal Latin squares: an application of experiment design to compiler
testing” Communications of the ACM, 28, pp 1054-1058

2. Keizo Tatsumi (1987) “Test-case design support system” Proceedings of International Conference
on Quality Control, Tokyo, pp 615-620

3. Keizo Tatsumi, S. Watanabe, Y. Takeuchi, and H. Shimokawa (1987) “Conceptual support for test
case design” Proceedings of 11th IEEE Computer Software and Applications Conference, pp 285-
290

4. Siddhartha R. Dalal, and C. L. Mallows (1998) “Factor-covering designs for testing software”
Technometrics, 40, pp 234-243

above to ensure at least one option is selected, and C(k,2) constraints to ensure at most one is
selected. However, modern SAT solvers have become extremely efficient, so this approach may
work well. In some cases, it may be preferable to use the original model with an SMT solver, and
in others a flattened model with SAT solver may perform better. The tradeoffs between these two
approaches are an area of ongoing research [115].

[See below for Section 8: Future Directions]

Conclusions

Combinatorial testing has gained acceptance as a method to reduce cost and increase the
effectiveness of software testing in many industries. The key insight underlying this method is
that not every parameter contributes to every failure and most failures are caused by interactions
between relatively few parameters. Empirical data indicate that software failures are triggered by
only a few variables interacting (generally six or fewer). This finding has important implications
for testing because it suggests that testing up to t-way combinations of parameters for small
values of t can provide highly effective fault detection.

Industrial use has validated this conclusion. Combinatorial testing has seen tremendous growth
in both industrial usage and research in the past 10 years. From an average of less than 10 papers
a year prior to 2005, the field has grown to include an annual conference (since 2012) [69] and
100 or more papers a year in conferences and journals. Efficient covering array generation
algorithms have been developed, and sophisticated tools have incorporated covering array
algorithms with the capacity to process constraints that may be encountered in practical
applications. As with any technology, extensions and new applications are being discovered, and
the challenges introduced by these new uses are being addressed.

Disclaimer: Certain commercial products may be identified in this document, but such
identification does not imply recommendation by the US National Institute for Standards and
Technology, nor does it imply that the products identified are necessarily the best available for the
purpose.

References

42

5. D.R. Wallace, D.R. Kuhn, Failure Modes in Medical Device Software: an Analysis of 15 Years of
Recall Data, International Journal of Reliability, Quality, and Safety Engineering, Vol. 8, No. 4,
2001.

6. D.R. Kuhn, M.J. Reilly, An Investigation of the Applicability of Design of Experiments to
Software Testing, 27th NASA/IEEE Software Engineering Workshop, NASA Goddard Space
Flight Center, 4-6 December, 2002 .

7. D.R. Kuhn, D.R. Wallace, and A. Gallo, “Software Fault Interactions and Implications for
Software Testing,” IEEE Transactions on Software Engineering, 30(6): 418-421, 2004

8. K. Z. Bell and Mladen A. Vouk. On effectiveness of pairwise methodology for testing network-
centric software. Proceedings of the ITI Third IEEE International Conference on Information &
Communications Technology, pages 221–235, Cairo, Egypt, December 2005.

9. K.Z. Bell, Optimizing Effectiveness and Efficiency of Software Testing: a Hybrid Approach, PhD
Dissertation, North Carolina State University, 2006.

10. Z. Zhang, and J. Zhang, “Characterizing failure-causing parameter interactions by adaptive
testing,” In Proceeding of ACM International Symposium on Software Testing and Analysis
(ISSTA), 2011, pp. 331-341.

11. J. J. Chilenski, An Investigation of Three Forms of the Modified Condition Decision Coverage
(MCDC) Criterion, Report DOT/FAA/AR-01/18, April 2001, 214 pp.

12. Raghu N. Kacker, D. Richard Kuhn, Yu Lei, and James F. Lawrence (2013) “Combinatorial
testing for software: An adaptation of design of experiments” Measurement, 46, pp 3745-3752

13. William G. Cochran and G. M. Cox (1950) Experimental Designs, New York: Wiley

14. Oscar Kempthorne (1952) Design and Analysis of Experiments, New York: Wiley

15. George W. Snedecor and W. G. Cochran (1967) Statistical Methods, Iowa State University Press

16. George E. P. Box, W. G. Hunter, and J. S. Hunter (1978) Statistics for Experimenters, New York:
Wiley

17. Douglas C. Montgomery (2004) Design and Analysis of Experiments, 4th edition, New York:
Wiley

18. R. A. Fisher (1925) Statistical Methods for Research Workers, Edinburgh: Oliver and Boyd

19. R. A. Fisher (1935) The Design of Experiments, Edinburgh: Oliver and Boyd

20. C. McQueary, “Using Design of Experiments for Operational Test and Evaluation,” Memo, Office
of the Secretary of Defense, May 2009,
www.dote.osd.mil/pub/policies/2009/200905UsingDoEforOTE_MOA.pdf

21. Genichi Taguchi (1986) Introduction to Quality Engineering, White Plains New York: UNIPUB
Kraus International

22. Genichi Taguchi (1987) System of Experimental Design, Vol. 1 and Vol. 2, White Plains New
York: UNIPUB Kraus International (English translations of the 3-rd edition of Jikken Keikakuho
(Japanese) published in 1977 and 1978 by Maruzen)

23. Genichi Taguchi (1993) Taguchi on Robust Technology Development, New York: ASME Press

24. Raghu N. Kackar (1985) “Off-line quality control, parameter design and the Taguchi method”
Journal of Quality Technology, 17, pp 176-209

43

25. M. S. Phadke (1989) Quality Engineering using Robust Design, Englewood Cliffs New Jersey:
Prentice Hall

26. C. R. Rao (1947) “Factorial experiments derivable from combinatorial arrangements of arrays”
Journal of Royal Statistical Society (Supplement), 9, pp 128-139

27. Damaraju Raghavarao (1971) Constructions and Combinatorial Problems in Design of
Experiments, Dover: New York

28. A. S. Hedayat, N. J. A. Sloan, and J. Stufken (1999) Orthogonal Arrays: Theory and Applications,
New York: Springer

29. Neil J. A. Sloane (webpage) http://www2.research.att.com/~njas/oadir/

30. Shinobu Sato and H. Shimokawa (1984) “Methods for setting software test parameters using the
design of experiments method (in Japanese)” Proceedings of 4th Symposium on Quality Control in
Software, Japanese Union of Scientists and Engineers (JUSE), pp 1-8

31. Hiroki Shimokawa (1985) “Method of generating software test cases using the experimental
design (in Japanese)” Report on Software Engineering SIG, Information Processing Society of
Japan, No.1984-SE-040

32. Neil J. A. Sloane (1993) “Covering arrays and intersecting codes” Journal of Combinatorial
Designs, 1, pp 51-63

33. James F. Lawrence, R. N. Kacker, Yu Lei, D. R. Kuhn, and M. Forbes (2011) “A survey of binary
covering arrays” The Electronic Journal of Combinatorics, 18, P84

34. Jose Torres-Jimenez and E. Rodriguez-Tello (2012) “New bounds for binary covering arrays using
simulated annealing” Information Sciences, 185, pp 137-152

35. D. Richard Kuhn, R. N. Kacker, and Yu Lei (2010) Practical Combinatorial Testing, NIST Special
Publication 800-142 (http://csrc.nist.gov/groups/SNS/acts/documents/SP800-142-101006.pdf)

36. Jose Torres-Jimenez (webpage) http://www.tamps.cinvestav.mx/~jtj/CA.php

37. D.R. Kuhn, R. N. Kacker, and Yu Lei. Combinatorial Measurement Tool User Guide, Available
online at http://csrc.nist.gov/groups/SNS/acts/documents/ComCoverage110130.pdf, Published on
January 30, 2011 and last accessed on May 14, 2012.

38. Kuhn, D. R., Dominguez Mendoza, I., Kacker, R. N., & Lei, Y. (2013, March). Combinatorial
coverage measurement concepts and applications. In Software Testing, Verification and Validation
Workshops (ICSTW), 2013 IEEE Sixth International Conference on (pp. 352-361).

39. Ammann, P. E. & Offutt, A. J. (1994). Using formal methods to derive test frames in category-
partition testing, Proc. Ninth Annual Conf. Computer Assurance (COMPASS'94),Gaithersburg
MD, IEEE Computer Society Press, pp. 69-80.

40. J.R. Maximoff, M.D. Trela, D.R. Kuhn, R. Kacker, “A Method for Analyzing System State-space
Coverage within a t-Wise Testing Framework”, IEEE International Systems Conference 2010,
Apr. 4-11, 2010, San Diego.

41. Raghu N. Kacker, D. Richard Kuhn, Yu Lei, James F. Lawrence. Combinatorial testing for
software: an adaptation of design of experiments, Measurement, vol. 46, no. 9, November 2013,
pp. 3745-3752.

42. NIST Covering Array Tables, available online at: http://math.nist.gov/coveringarrays/ipof/ipof-
results.html, accessed on 3/23/15

44

43. C. Colbourn. Covering Array Tables for t=2,3,4,5,6, available online at:
http://www.public.asu.edu/~ccolbou/src/tabby/catable.html, accessed on 3/23/15

44. J. Torres. Covering Arrays, available at: http://www.tamps.cinvestav.mx/~jtj/#, access on 3/23/15

45. Combinatorial Methods in Software Testing. National Institute of Standards and Technology,
http://csrc.nist.gov/acts

46. M. B. Cohen, C. J. Colbourn, P. B. Gibbons, and W. B. Mugridge. Constructing test suites for
interaction testing. In Proceedings of the International Conference on Software Engineering (ICSE
2003), pages 28–48, May 2003.

47. R. Bryce. Algorithms for Covering arrays, Arizona State University Ph.D. Dissertation, 2006.
48. J. Czerwonka, “Pairwise Testing in the Real World”, http://msdn.microsoft.com/en-

us/library/cc150619.aspx
49. Zhao, Y., Zhang, Z., Yan, J., & Zhang, J. (2013, March). Cascade: a test generation tool

for combinatorial testing. In Software Testing, Verification and Validation Workshops
(ICSTW), 2013 IEEE Sixth International Conference on (pp. 267-270). IEEE.

50. Satish, P., Sheeba, K., & Rangarajan, K. (2013, March). Deriving Combinatorial Test
Design Model from UML Activity Diagram. In Software Testing, Verification and
Validation Workshops (ICSTW), 2013 IEEE Sixth International Conference on (pp. 331-
337). IEEE.

51. Qu, X., & Cohen, M. B. (2013, March). A study in prioritization for higher strength
combinatorial testing. In Software Testing, Verification and Validation Workshops
(ICSTW), 2013 IEEE Sixth International Conference on (pp. 285-294). IEEE.

52. Arcaini, P., Gargantini, A., & Vavassori, P. (2014, March). Validation of models and tests
for constrained combinatorial interaction testing. In Software Testing, Verification and
Validation Workshops (ICSTW), 2014 IEEE Seventh International Conference on (pp. 98-
107). IEEE.

53. Wu, H., Nie, C., & Kuo, F. C. (2014, March). Test suite prioritization by switching cost.
In Software Testing, Verification and Validation Workshops (ICSTW), 2014 IEEE Seventh
International Conference on (pp. 133-142). IEEE.

54. Farchi, E., Segall, I., Tzoref-Brill, R., & Zlotnick, A. (2014, March). Combinatorial
Testing with Order Requirements. In Software Testing, Verification and Validation
Workshops (ICSTW), 2014 IEEE Seventh International Conference on (pp. 118-127).
IEEE.

55. A. Gargantini, & P. Vavassori, (2012, April). Citlab: a laboratory for combinatorial
interaction testing. In Software Testing, Verification and Validation (ICST), 2012 IEEE
Fifth International Conference on (pp. 559-568). IEEE.

56. Y. Lei, R. Kacker, D. Kuhn, V. Okun and J. Lawrence, IPOG/IPOD: Efficient Test Generation for
Multi-Way Combinatorial Testing, Software Testing, Verification, and Reliability, vol. 18, no. 3,
September 2008, pp. 125-148.

57. Segall, I., Tzoref-Brill, R., & Zlotnick, A. (2012, April). Simplified modeling of
combinatorial test spaces. In Software Testing, Verification and Validation (ICST), 2012
IEEE Fifth International Conference on (pp. 573-579). IEEE.

58. E. Miranda, Test Parameter Analysis. Chapter 5 in D. Kuhn, R.N. Kacker, and Y. Lei,
Introduction to Combinatorial Testing, CRC Press, 2013.

45

59. Segall, I., Tzoref-Brill, R., & Zlotnick, A. (2012, April). Common patterns in
combinatorial models. In Software Testing, Verification and Validation (ICST), 2012
IEEE Fifth International Conference on (pp. 624-629). IEEE.

60. N. Changhai, L. Hareton, A Survey of Combinatorial Testing, ACM Computing Surveys, 43(2): ,
2014.

61. A. Arcuri, L. Briand, "Formal Analysis of the Probability of Interaction Fault Detection Using
Random Testing," IEEE Trans. Software Engineering, 18 Aug. 2011. IEEE Computer Society,
http://doi.ieeecomputersociety.org/10.1109/TSE.2011.85

62. Kuhn, D. Richard, Raghu N. Kacker, and Yu Lei. “Introduction to Combinatorial Testing”. CRC
press, 2013.

63. Chays, David, Saikat Dan, Phyllis G. Frankl, Filippos I. Vokolos, and Elaine J. Weber. “A
framework for testing database applications.” ACM SIGSOFT Software Engineering Notes 25, no.
5 (2000): 147-157.

64. Grindal, M. and Offutt, J. , “Input Parameter Modeling For Combination Strategies”, Proceedings
of the IASTED International Conference on Software Engineering (SE2007), Innsbruck, Austria,
13-15 Feb 2007, pages 255-260.

65. Vilkomir, Sergiy A., W. Thomas Swain, and Jesse H. Poore. “Software input space modeling with
constraints among parameters.” In Computer Software and Applications Conference, 2009.
COMPSAC'09. 33rd Annual IEEE International, vol. 1, pp. 136-141. IEEE, 2009.

66. Yu, Linbin, Yu Lei, Mehra Nourozborazjany, Raghu N. Kacker, and D. Richard Kuhn. “An
efficient algorithm for constraint handling in combinatorial test generation.” In Software Testing,
Verification and Validation (ICST), 2013 IEEE Sixth International Conference on, pp. 242-251.
IEEE, 2013.

67. Cohen, Myra B., Matthew B. Dwyer, and Jiangfan Shi. “Exploiting constraint solving history to
construct interaction test suites.” In Testing: Academic and Industrial Conference Practice and
Research Techniques-MUTATION, 2007. TAICPART-MUTATION 2007, pp. 121-132. IEEE,
2007.

68. Yu, Linbin, Feng Duan, Yu Lei, Raghu N. Kacker, and D. Richard Kuhn. “Combinatorial Test
Generation for Software Product Lines Using Minimum Invalid Tuples.” In High-Assurance
Systems Engineering (HASE), 2014 IEEE 15th International Symposium on, pp. 65-72. IEEE,
2014.

69. IEEE, International Workshop on Combinatorial Testing,
http://ieeexplore.ieee.org/xpl/conhome.jsp?reload=true&punumber=1001832

70. Grindal, Mats, Jeff Offutt, and Jonas Mellin. “Handling constraints in the input space when using
combination strategies for software testing.” (2006).

71. World Wide Web Consoritum, “Document Object Model”, accessed 28 Mar 2015,
http://www.w3.org/DOM/

72. World Wide Web Consoritum, DOM Level 3 Events Specification, 8 Sept 2009.
http://www.w3.org/TR/DOM-Level-3-Events/

73. C. Montanez-Rivera, D.R. Kuhn, M. Brady, R.M. Rivello, J. Reyes and M.K. Powers, Evaluation
of Fault Detection Effectiveness for Combinatorial and Exhaustive Selection of Discretized Test
Inputs, Software Quality Professional, vol. 14, no. 3, June 2012.

46

74. J. Hagar, R. Kuhn, R. Kacker, and T. Wissink, Introducing Combinatorial Testing in a Large
Organization: Pilot Project Experience Report [poster], Third International Workshop on
Combinatorial Testing (IWCT 2014), in Proceedings of the Seventh IEEE International
Conference on Software, Testing, Verification and Validation (ICST 2014), Cleveland, Ohio,
March 31-April 4, 2014, p. 153.

75. Cunningham, A. M., Hagar, J., & Holman, R. J. (2012, April). A system analysis study comparing
reverse engineered combinatorial testing to expert judgment. In Software Testing, Verification and
Validation (ICST), 2012 IEEE Fifth International Conference on (pp. 630-635). IEEE.

76. J.D. Hagar, T.L. Wissink, D.R. Kuhn, R.N. Kacker, “Introducing Combinatorial Testing in a Large
Organization”, IEEE Computer, v. 48, n. 4, Apr. 2015.

77. R. Bryce, S. Sampath, A. Memon. Developing a Single Model and Test Prioritization Strategies
for Event-Driven Software, Transactions on Software Engineering, (January 2011), 37(1):48-64.

78.
R. Bryce, S. Sampath, J. Pedersen, S. Manchester. Test Suite Prioritization by Cost-based
Combinatorial Interaction Coverage, International Journal on Systems Assurance Engineering and
Management (Springer), (April 2011), 2(2): 126-134.

79.
D.R. Kuhn, J.M. Higdon, J.F. Lawrence, R.N. Kacker, Y. Lei, "Combinatorial Methods for Event
Sequence Testing", Workshop on Combinatorial Testing, co-located with the International
Conference on Software Testing Verification and Validation, April 2012

80.
G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold. Prioritizing test cases for regression
testing. IEEE Trans. on Software Engineering, (October 2001), 27(10):929–948.

81.
S. Sampath, R. Bryce, S. Jain, S. Manchester. A Tool for Combinatorial-based Prioritization and
Reduction of User-Session-Based Test Suites, Proceedings of the International Conference on
Software Maintenance (ICSM) - Tool Demonstration Track, Williamsburg, VA (September 2011),
pp. 574-577.

82.
S. Sampath, R. Bryce. Improving the effectiveness of test suite reduction for user-session-based
testing of web applications, Information and Software Technology Journal (IST, Elsevier), (July
2012), 54(7): 724-738.

83.
Sreedevi Sampath, Renée Bryce, Gokulanand Viswanath, Vani Kandimalla, A. Günes Koru,
"Prioritizing User-Session-Based Test Cases for Web Application Testing", International
Conference on Software Testing, Verification, and Validation (ICST) (April 2008), pp..141-150.

84.
X. Qu, M. B. Cohen, and K. M. Woolf. Combinatorial interaction regression testing: A study of
test case generation and prioritization. In Intl. Conference on Software Maintenance, pages 255–
264, Oct. 2007.

85.
R. Bryce and C. Colbourn. Prioritized interaction testing for pair-wise coverage with seeding and
constraints. Journal of Information and Software Technology, 48(10):960–970, 2006.

86.
D.L. Parnas, “On the Use of Transition Diagrams in the Design of User Interface for an Interactive

47

Computer System,” Proc. 24th ACM Nat’l Conf., pp. 379-385, 1969.

87.
W. E. Howden, G. M. Shi: Linear and Structural Event Sequence Analysis. ISSTA 1996: pp. 98-
106, 1996.

88. S. Chow, “Testing Software Design Modeled by Finite-State Machines,” IEEE Trans. Softw. Eng.,
vol. 4, no. 3, pp. 178-187, 1978.

89. J. Offutt, L. Shaoying, A. Abdurazik, and P. Ammann, “Generating Test Data From State-Based
Specifications,” J. Software Testing, Verification and Reliability, vol. 13, no. 1, pp. 25-53, March,
2003.

90. B. Sarikaya, “Conformance Testing: Architectures and Test Sequences,” Computer Networks and
ISDN Systems, vol.17, no. 2, North-Holland, pp. 111-126, 1989.

91. Kuhn, D. R., Higdon, J. M., Lawrence, J. F., Kacker, R. N., & Lei, Y. (2012, April).
Combinatorial methods for event sequence testing. In Software Testing, Verification and
Validation (ICST), 2012 IEEE Fifth International Conference on (pp. 601-609).
IEEE.http://csrc.nist.gov/groups/SNS/acts/documents/event-seq101008.pdf

92. B. Dushnik, Concerning a certain set of arrangements, Proc. Amer. Math. Soc, 1 (1950), 788-796.

93. J. Spencer, Minimal scrambling sets of simple orders, Acta Math. Acad. Sci. Hungary, 22
(1971)/1972), 349-353.

94. X. Yuan, M.B. Cohen, A. Memon, “Covering Array Sampling of Input Event Sequences for
Automated GUI Testing”, November 2007 ASE '07: Proc. 22nd IEEE/ACM Intl. Conf. Automated
Software Engineering, pp. 405-408.

95. Margalit, O. (2013, March). Better Bounds for Event Sequencing Testing. In Software Testing,
Verification and Validation Workshops (ICSTW), 2013 IEEE Sixth International Conference on
(pp. 281-284). IEEE.

96. E. Erdem, K. Inoue, J. Oetsch, J. P¨uhrer, H. Tompits, and C. Yilmaz, Answer-set programmingas
a new approach to event-sequence testing, in Proceedings of the 2nd InternationalConference on
Advances in System Testing and Validation Lifecycle, XpertPublishing Services, 2011, pp. 25–
34.

97. Chee, Y. M., Colbourn, C. J., Horsley, D., & Zhou, J. (2013). Sequence covering arrays. SIAM
Journal on Discrete Mathematics, 27(4), 1844-1861.

98. C. Yilmaz, M. B. Cohen, and A. Porter, “Covering arrays for efficient fault characterization in
complex configuration spaces,” in Proceedings of the 2004 ACM SIGSOFT international
symposium on Software testing and analysis, New York, NY, USA, 2004, pp. 45–54.

48

99. E. Dumlu, C. Yilmaz, M. B. Cohen, and A. Porter, “Feedback driven adaptive combinatorial
testing,” in Proceedings of the 2011 International Symposium on Software Testing and Analysis,
New York, NY, USA, 2011, pp. 243–253.

100. L. Shi, C. Nie, and B. Xu, “A software debugging method based on pairwise testing,” in
Proceedings of the 5th international conference on Computational Science, Berlin, Heidelberg,
2005, pp. 1088–1091.

101. Z. Wang, B. Xu, L. Chen, and L. Xu, “Adaptive Interaction Fault Location Based on
Combinatorial Testing,” In Proceedings of 10th International Conference on Quality Software
(QSIC), 2010, pp. 495–502.

102. L. S. Ghandehari, Y. Lei, T. Xie, D. R. Kuhn, and R. Kacker, “Identifying Failure-
Inducing Combinations in a Combinatorial Test Set,” in Proceedings of 5th IEEE International
Conference on Software Testing, Verification and Validation, 2012, pp. 370–379.

103. L. S. Ghandehari, Y. Lei, R. Kacker, R. Kuhn, D. Kung, “Fault Localization Based on
Failure-Inducing Combinations”, In -IEEE International Symposium on Software Reliability
Engineering (ISSRE), Pasadena, CA, 2013, pp. 168-177.

104. J. Jones, M. Harrold, and J. Stasko, “Visualization of test information to assist fault
localization,” In Proceedings of the 24th International Conference on Software
Engineering (ICSE), 2002, pp. 467-477.

105. M. Renieris and S. Reiss, “Fault localization with nearest neighbor queries,” In
Proceedings of the International Conference on Automated Software Engineering, 2003, pp. 30-
39.

106. Czerwonka, J. (2013, March). On Use of Coverage Metrics in Assessing Effectiveness of
Combinatorial Test Designs. In Software Testing, Verification and Validation Workshops
(ICSTW), 2013 IEEE Sixth International Conference on (pp. 257-266). IEEE.

107. Bartholomew, R. (2013, May). An industry proof-of-concept demonstration of automated
combinatorial test. In Automation of Software Test (AST), 2013 8th International Workshop on
(pp. 118-124). IEEE.

108. Bartholomew, R., & Collins, R. (2014). Using Combinatorial Testing to Reduce Software
Rework. CrossTalk, 23.

109. Cohen, M. B., Dwyer, M. B., & Shi, J. (2007, July). Interaction testing of highly-
configurable systems in the presence of constraints. In Proceedings of the 2007 international
symposium on Software testing and analysis (pp. 129-139). ACM.

110. Henard, C., Papadakis, M., Perrouin, G., Klein, J., Heymans, P., & Traon, Y. L. (2012).
Bypassing the combinatorial explosion: Using similarity to generate and prioritize t-wise test
suites for large software product lines. arXiv preprint arXiv:1211.5451.

111. White, J., Dougherty, B., & Schmidt, D. C. (2009). Selecting highly optimal architectural
feature sets with filtered cartesian flattening. Journal of Systems and Software, 82(8), 1268-1284.

112. Lee, J., Kang, S., & Lee, D. (2012, September). A survey on software product line
testing. In Proceedings of the 16th International Software Product Line Conference-Volume 1
(pp. 31-40). ACM.

113. Xu, Z., Cohen, M. B., Motycka, W., & Rothermel, G. (2013, August). Continuous test
suite augmentation in software product lines. In Proceedings of the 17th International Software
Product Line Conference (pp. 52-61). ACM.

114. Garvin, B. J., Cohen, M. B., & Dwyer, M. B. (2013). Failure avoidance in configurable
systems through feature locality. In Assurances for Self-Adaptive Systems (pp. 266-296). Springer
Berlin Heidelberg.

49

115. Henard, C., Papadakis, M., Traon, Y. L. Flattening or Not the Combinatorial Interaction
Testing Models? Intl. Wkshp. on Combinatorial Testing, IEEE, 2015.

116. Moy, Ledinot, Delseny, Wiels, Monate, “Testing or Formal Verification: DO-178C
Alternatives and Industrial Experience”, IEEE Software, May/June 2013. citing: NASA ARMD
Research Opportunities in Aeronautics 2011 (ROA-2011), research program System-Wide Safety
and Assurance Technologies Project (SSAT2), subtopic AFCS-1.3 Software Intensive Systems, p.
77.

117. T. Britton, L. Jeng, G. Carver, P. Cheak, and T. Katzenellenbogen. Reversible debugging
software. Technical report, University of Cambridge, Judge Business School, 2013

[See Additional References associated with Section 8]

8. Future Directions

Combinatorial testing has evolved into an accepted practice in software engineering. As it has entered
mainstream use, research interest has become more specialized and application-oriented. Progress
continues to be made in covering array generation algorithms, often with the aim of applying
combinatorial methods to a broader range of testing problems, particularly those with larger inputs and
complicated constraints. Concurrently, researchers are improving combinatorial test design methods by
focusing on input model analysis and tools to assist in this phase of test design. Combinatorial testing
continues to expand into domains such as Software Product Lines and mobile applications. Here we
review current and upcoming developments in these areas, and suggest potential impacts for practical
testing. Finally, we briefly discuss harder problems in the field for which broadly effective solutions are
not fully perfected.

8.1 Algorithms

While conventional algorithms produce very compact arrays for many inputs, improvements are being
achieved. One recent trend in covering array algorithms is the use of reduction strategies on existing
arrays. That is, a t-way covering array with N tests is systematically reduced to fewer than N tests using a
variety of mathematical transformations. The near-term impacts of algorithm improvements in array
construction include extending the applicability of combinatorial methods. For applications such as
modeling and simulation, where a single test may run for hours, reducing covering array size by even a
few tests is of great value.

These methods have recently improved upon the best-known sizes of some covering array configurations
[1, 2] and active research continues in this area. Similar transformations can also be done where there are
constraints, and if the existing test suite was not designed as a covering array [3], using reductions that
preserve the combinatorial coverage of the original test suite. An extension of this strategy [4] includes
the option of allowing a subset of parameters to have values freely assigned, i.e., new tests can be
generated rather than requiring them to be selected from the original test set. Other work shows that
heuristic search can in some cases compete with greedy methods in speed and practicality for covering
array construction [6]. Additionally, greedy algorithms can be improved using graph-coloring methods
[7], to improve on a covering array generation phase that is optimal for t=2 but does not retain optimal
properties at t>2.

A somewhat different aspect of applying combinatorial methods in test suite reduction is the use of
interaction coverage as a criterion for reducing a test suite [8]. This may be particularly valuable for
regression testing. Various test reduction strategies have been applied in the past, but sometimes result in
deteriorating fault-detection effectiveness. Since combination coverage is effective in fault detection,
retaining high combinatorial coverage in a reduced test set can preserve effectiveness using fewer tests.
Yet another practical consideration is the setup time between tests. Many testing problems, especially for
system integration or other large system tests, require changes to the SUT configuration with each test.
Minimizing this time, while retaining high combination coverage can thus be an effective strategy [5].

8.2 Input Modeling

A second major research trend involves the integration of combinatorial methods in the development
environment, and addressing practical problems particular to various domains. The first step in any
testing effort is to understand and define the input model, that is, the set of parameters and values that will
be included in tests, along with any constraints on values or sequencing. This phase is an issue for any
testing approach, not just combinatorial, but the unique aspects of CT have led researchers to tailor
conventional methods. Test environments tailored to CT are being developed [9, 10] to work with

[Back to end of Section 7]

popular frameworks such as Eclipse. These environments will allow for validating the consistency and
other meta-properties of constraint sets [11].

Software product lines are increasingly used and their enormous range of possible configurations provides
a natural domain for combinatorial testing. An extensive survey [16] shows the variety of ways in which
t-way testing is now being applied in SPL testing and evaluation. Because of the large number of
parameters in many SPLs, methods are being devised to extend the range of practical application for
covering array generators. Software product lines often have hundreds, or even thousands, of variables.
Conventional covering array algorithms are resource-limited in both time and storage to a few hundred.
One approach is flattening of the input models, as described in Sect.7.5 [13]. Such methods are an active
area of research.

Two current lines of research for improving definition of the input model are classification trees and
UML models. UML sequence diagrams can be used as inputs to rule-based tools that extract an input
model that can be used with a covering array generator [12]. Input variables and values are extracted
from UML message specifications and guard conditions, providing partial automation of the process to
reduce effort for test designers. Classification trees fit well with t-way testing, because they allow easy
analysis and definition of test parameters in a tree structure [14]. Leaf nodes of the tree can be treated as
category partitions and used directly in generating covering arrays. Robust tools based on classification
trees, UML diagrams, and related concepts can help make combinatorial methods easier to use for test
developers.

8.3 Harder problems

Combinatorial testing will continue to find new domains of application, but some research problems
remain to be solved. Two broad areas in particular are likely to receive attention from researchers,
because of their practical significance in industrial applications.

Very large systems: As with many areas of software engineering, scalability is essential. Fortunately,
current combinatorial methods and covering array generators can address the vast majority of testing
requirements. As noted earlier in the chapter, however, development approaches such as software
product lines may involve thousands of parameters, with large numbers of constraints. Current covering
array algorithms do not scale to such large problems, and existing constraint solvers are also insufficient
for an extremely large number of constraints and variables.

Test development time: Case studies and experience reports show that combinatorial methods can provide
better testing at lower cost, but these methods can require significant expertise and do not necessarily
speed up the testing process. As such, if time-to-market is the primary concern, conventional test
methods are likely to be preferred by developers. Application domains where CT has seen the most rapid
acceptance so far are those with very high assurance requirements, such as aerospace/defense, finance,
and manufacturing. Reducing the time required for using combinatorial methods is a significant
challenge.

Research and practice have shown that combinatorial testing is highly effective across a range of testing
problems, and this range of applicability continues to expand for new domains and technologies. The
current high level of research interest in the field suggests that it may continue to advance, providing
stronger testing at reduced cost for developers.

[Next Section: Conclusions]

Additional references

1. Avila-George, H., Torres-Jimenez, J., Gonzalez-Hernandez, L., & Hernández, V. (2013). Metaheuristic
approach for constructing functional test-suites. IET software, 7(2), 104-117.

2. Li, X., Dong, Z., Wu, H., Nie, C., & Cai, K. Y. (2014, March). Refining a Randomized Post-optimization
Method for Covering Arrays. In Software Testing, Verification and Validation Workshops (ICSTW), 2014
IEEE Seventh International Conference on (pp. 143-152). IEEE.

3. Farchi, E., Segall, I., Tzoref-Brill, R., & Zlotnick, A. (2014, March). Combinatorial Testing with Order
Requirements. In Software Testing, Verification and Validation Workshops (ICSTW), 2014 IEEE Seventh
International Conference on (pp. 118-127). IEEE.

4. Itai Segall, Rachel Tzoref-Brill and Aviad Zlotnick. Combining Minimization and Generation for
Combinatorial Testing In Software Testing, Verification and Validation Workshops (ICSTW), 2015 IEEE
Sixth International Conference on IEEE.

5. Wu, H., Nie, C., & Kuo, F. C. (2014, March). Test suite prioritization by switching cost. In Software
Testing, Verification and Validation Workshops (ICSTW), 2014 IEEE Seventh International Conference on
(pp. 133-142). IEEE.

6. Petke, J., Cohen, M., Harman, M., & Yoo, S. Practical Combinatorial Interaction Testing: Empirical
Findings on Efficiency and Early Fault Detection. IEEE TSE, preprint, 2015.

7. Linbin Yu, Feng Duan, Yu Lei, Raghu N. Kacker and D. Richard Kuhn. Constraint Handling In
Combinatorial Test Generation Using Forbidden Tuples

8. Mayo, Q., Michaels, R., & Bryce, R. (2014, March). Test Suite Reduction by Combinatorial-Based
Coverage of Event Sequences. In Software Testing, Verification and Validation Workshops (ICSTW), 2014
IEEE Seventh International Conference on (pp. 128-132). IEEE.

9. Gargantini, A., & Vavassori, P. (2012, April). Citlab: a laboratory for combinatorial interaction testing. In
Software Testing, Verification and Validation (ICST), 2012 IEEE Fifth International Conference on (pp.
559-568). IEEE.

10. Garn, B., & Simos, D. E. (2014, March). Eris: A tool for combinatorial testing of the Linux system call
interface. In Software Testing, Verification and Validation Workshops (ICSTW), 2014 IEEE Seventh
International Conference on (pp. 58-67). IEEE.

11. Arcaini, P., Gargantini, A., & Vavassori, P. (2014, March). Validation of models and tests for constrained
combinatorial interaction testing. In Software Testing, Verification and Validation Workshops (ICSTW),
2014 IEEE Seventh International Conference on (pp. 98-107). IEEE.

12. Satish, P., Paul, A., & Rangarajan, K. (2014, March). Extracting the combinatorial test parameters and
values from UML sequence diagrams. In Software Testing, Verification and Validation Workshops
(ICSTW), 2014 IEEE Seventh International Conference on (pp. 88-97). IEEE.

13. Christopher Henard, Mike Papadakis and Yves Le Traon. Flattening or Not the Combinatorial Interaction
Testing Models?, Software Testing, Verification and Validation (ICST), 2015 IEEE Fifth International
Conference

14. Zeppetzauer, U., & Kruse, P. M. (2014, September). Automating test case design within the classification
tree editor. In Computer Science and Information Systems (FedCSIS), 2014 Federated Conference on (pp.
1585-1590). IEEE.

[Back to main References]

15. Gargantini, A., & Vavassori, P. (2014). Efficient Combinatorial Test Generation Based on Multivalued
Decision Diagrams. In Hardware and Software: Verification and Testing (pp. 220-235). Springer
International Publishing.

16. Roberto Erick Lopez-Herrejon, Stefan Fischer, Rudolf Ramler and Alexander Egyed. A First Systematic
Mapping Study on Combinatorial Interaction Testing for Software Product Lines, Software Testing,
Verification and Validation Workshops (ICSTW), 2015 IEEE Seventh International Conference on

