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Abstract. Combinatorial testing has rapidly gained favor among software testers in the 
past decade as improved algorithms have become available, and practical success has 
been demonstrated. This article reviews the theory and application of this method, 
focusing particularly on research since 2010, with a brief background providing the 
rationale and development of combinatorial methods for software testing. Significant 
advances have occurred in algorithm performance, and the critical area of constraint 
representation and processing. In addition to these foundational topics, we take a look at 
advances in specialized areas including test suite prioritization, sequence testing, fault 
localization, the relationship between combinatorial testing and structural coverage, and 
approaches to very large testing problems.   
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1    Introduction 

 
An interesting phenomenon often occurs with large software systems. After successful 
use for a long period of time, the software is installed in a new location, with a different 
user base, and a new set of bugs appear. Typically the reason is not surprising – the 
change in usage has resulted in a different set of inputs, and some of these input 
combinations trigger failures that have escaped previous testing and extensive use. Such 
failures are known as interaction failures, because they are only exposed when two or 
more input values interact to cause the program to reach an incorrect result.  
 
For example, a pump may be observed to fail only when pressure is below a particular 
level and volume exceeds a certain amount, a 2-way interaction between pressure and 
volume. Figure 1 illustrates how such a 2-way interaction may happen in code. Note that 
the failure will only be triggered when both pressure < 10 and volume > 300 are true. 
Either one of the conditions, without the other, will not be a problem. 

 
< Figure 1. 2-way interaction failure triggered only when two conditions are true> 
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1.1   Empirical Data on Failures 
 
The example above focuses on a 2-way interaction failure. Pairwise testing, using tests 
that cover all 2-way combinations of parameter values, has long been accepted as a way 
of detecting such interaction failures [1][2][3][4]. However, higher order t-way 
interactions may also cause failures. For instance, consider a failure that is triggered by 
unusual combinations of three or four sensor values. For thorough checking, it may be 
necessary to test 3-way and 4-way combinations of values. The question arises as to 
whether testing all 4-way combinations is enough to detect all errors. What is the 
distribution of interaction failures beyond 2-way in real systems?  Surprisingly, this 
question had not been studied when NIST began investigating interaction failures in 1999 
[5]. Results of this and subsequent studies showed that across a variety of domains, all 
failures were triggered by a maximum of 4-way to 6-way interactions [6, 7, 8].  As shown 
in Figure 2, the detection rate increases rapidly with interaction strength (the interaction 
level t in t-way combinations is often referred to as strength). With the NASA 
application, for example, 67% of the failures were triggered by only a single parameter 
value, 93% by 2-way combinations, and 98% by 3-way combinations.  The detection rate 
curves for the other applications studied are similar, reaching 100% detection with 4 to 6-
way interactions.  Studies by other researchers [8, 9, 10] have been consistent with these 
results.  
     
 
< Figure 2. Cumulative fault distribution > 
      
The empirical data show that most failures are triggered by a single parameter value, or 
interactions between a small number of parameters, generally two to six, a relationship 
known as the interaction rule. An example of a single-value fault might be a buffer 
overflow that occurs when the length of an input string exceeds a particular limit. Only a 
single condition must be true to trigger the fault:  input length > buffer size. A 2-way fault 
is more complex, because two particular input values are needed to trigger the fault, as in 
the example above.   More generally, a t-way fault involves t such conditions. We refer to 
the distribution of t-way faults as the fault profile.  
 
A question naturally arises as to why the fault profiles of different applications are 
somewhat similar. While there is no definitive answer as yet, one clue can be seen in 
Figure 3. Fig. 3.1 (left) shows the distribution of conditions in branching statements (e.g., 
if, while) in four large avionics software modules [11]. Nearly all are single conditions or 
2-way, with a rapidly declining proportion involving 3-way or more complex sets of 
conditions. This curve is superimposed on the fault profiles presented above in Fig. 3.2. 
Note that it closely matches the profile for the NASA database application. The data for 
this application were from initial testing results, while the other curves are for fielded 
products. Thus the distribution of faults in this initial testing is quite close to the 
distribution of conditions documented in the FAA report. (It is not clear why the 
distribution of faults for the medical device software is as shown, as no information was 
available on the level of testing or usage for these products.) The fault profiles may 
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reflect the profile of t-way conditions in their application software, but as faults are 
discovered and removed, the more complex 3-way, 4-way and beyond, faults comprise a 
larger proportion of the total. Testing and extensive usage thus tend to push the curves 
down and to the right.  
 
< Fig 3.1 and 3.2 side by side; about ¼ page >  
<Figure 3.1. Distribution of conditions in branching statements> 
 
 
<Figure 3.2. Fault distribution of different application domains> 
 
 
1.2   Implications for Testing 
 
The fault profiles reported above suggests that testing which covers a high proportion of 
4-way to 6-way combinations can provide strong assurance. If we know that t or fewer 
variables are involved in failures, and we can test all t-way combinations, then we can 
have reasonably high confidence that the application will function correctly. As shown 
above, the distribution of faults varies among applications, but two important facts are 
apparent:  a consistently high level of fault detection has been observed for 4-way and 
higher strength combinations; and no interaction fault discovered so far, in thousands of 
failure reports, has involved more than six variables. Thus, the impossibility of 
exhaustive testing of all possible inputs is not a barrier to high assurance testing. That is, 
even though we cannot test all possible combinations of input values, failures involving 
more than six variables are extremely unlikely because they have not been seen in 
practice, so testing all possible combinations would provide little or no benefit beyond 
testing 4 to 6-way combinations. 
 
As with all testing, it is necessary to select a subset of values for variables with a large 
number of values, and test effectiveness is also dependent on the values selected, but 
testing t-way combinations has been shown to be highly effective in practice. This 
approach is known as combinatorial testing, an extension of the established field of 
statistical Design of Experiments (DoE). Matrices known as covering arrays cover all t-
way combinations of variable values, up to a specified level of t (typically t ≤ 6), making 
it possible to efficiently test all such t-way interactions.   
 
Consider the example in Table 1 that shows four configurations to consider when testing 
a web application. The tester wants to test their web app on three types of devices (called 
parameters), three web browsers, three PHP versions, and three network connections. 
Each parameter has 3 options (called values). To exhaustively test every combination 
requires 3*3*3*3 = 81 possible combinations. 
 
 
Device Web Browser PHP version Network 

Connection 
PC Safari 5.6.6 WiFi 
Tablet Firefox 5.5.22 3G 
Smart Phone Chrome 5.6.5 4G 
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Table 1 - Sample input for a combinatorial test suite that has 4 parameters that have 3 
possible values each 
 
We use the ACTS tool described in Section 3.3 to generate a 2-way Combinatorial Test 
Suite. This requires only 9 test cases (configurations) in order to test all pairs of 
parameter-value combinations as shown in Table 2. A pair is a combination of values for 
two different parameters. For instance, Test Case 1 covers six pairs: (PC, Safari), (PC, 
PHP version 5.5.22), (PC, 3G), (Safari, PHP version 5.5.22), (Safari, 3G), (PHP version 
5.5.22, 3G).  
 

Test No. Device Web Browser PHP Version Network Connection 

1 PC Safari 5.5.22 3G 

2 PC Firefox 5.6.5 4G 

3 PC Chrome 5.6.6 WiFi 

4 Tablet Safari 5.6.5 WiFi 

5 Tablet Firefox 5.6.6 3G 

6 Tablet Chrome 5.5.22 4G 

7 Smart Phone Safari 5.6.6 4G 

8 Smart Phone Firefox 5.5.22 WiFi 

9 Smart Phone Chrome 5.6.5 3G 

Table 2 - Sample Combinatorial Test Suite for the input 34 from Table 1 
 
 
 
The effectiveness of any software testing technique depends on whether test settings 
corresponding to the actual faults are included in the test sets. When test sets do not 
include settings corresponding to actual faults, the faults may not be detected. 
Conversely, we can be confident that the software works correctly for t-way 
combinations contained in passing tests. When the tests are derived from t-way covering 
arrays, we know that 100% of the t-way combinations have been tested.  
 
      
2    Covering Arrays 
 
Combinatorial testing (CT) is an adaptation of the ‘design of experiment (DoE)’ methods 
to test software and systems. CT and DoE are dynamic testing and learning methods in 
the sense that a system of interest is exercised (run) for a set of different test cases and the 
behavior or response of the system for those test cases is investigated. Historically, CT 
evolved from attempts to improve performance of software based systems starting in the 
1980s [12]. DoE refers to a methodology for conducting controlled experiments in which 
a system is exercised (worked in action) in a purposeful (designed) manner for chosen 
test settings of various input variables called factors. In DoE, many factors each having 
multiple test settings are investigated at the same time and the DoE plans satisfy relevant 
combinatorial properties. The corresponding values of one or more output variables 
(called responses) are measured. A statistical model (at least one) for the system response 
is associated with each DoE test plan. The DoE test plan and the responses values are 
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used to estimate the unknown parameters of the model. The estimated model so obtained 
represents statistical information for improving the performance of a class of similar 
systems [13], [14], [15], [16], and [17]. 
  
2.1   History of DoE 
 
Conventional DoE methods were developed starting in the 1920s by British geneticist 
Ronald Fisher and his contemporaries and their followers, to improve agricultural 
production [18], [19]. Later DoE were adapted for experiments with animals, medical 
research, and then to improve manufacturing processes, all subject to unavoidable 
variation. DoE continues to be a gold standard for research in life sciences, medical 
technologies, and drug discovery. Recently the US Office of the Secretary of Defense 
promulgated more effective use of DoE in Defense Operational Test and Evaluation 
(DOTE) [20]. The objective in conventional DoE is to improve the mean response over 
replications. A Japanese engineer, Genichi Taguchi, promulgated (starting in the late 
1960s Japan and 1980s USA) a variation of DoE methods for industrial experiments 
whose objective is to determine test settings at which the variation due to uncontrolled 
factors was least [21], [22], [23], [24], and [25]. Taguchi promoted use of mathematical 
objects called orthogonal arrays (OAs) as templates for industrial experiments. 
Orthogonal arrays (OAs) were largely mathematical curiosities before Taguchi stated 
using them for industrial experiments to develop robust products and processes. 
 
The concept of OAs was formally defined by C. R. Rao [26] as generalization of Latin 
squares [27]. The matrix shown in table 3 is an orthogonal array (OA) referred to as 
OA(8, 24×41, 2). The first parameter (which is 8) indicates the number of rows and the 
second parameter (which is 24×41) indicates that there are five columns of which four 
have 2 distinct elements each, denoted here by {0, 1}, and one column has 4 distinct 
elements, denoted here by {0, 1, 2, 3}. The third parameter (which is 2) indicates that this 
OA has strength 2, which means that every set of two columns contains all possible pairs 
of elements exactly the same number of times. Thus every pair of the first four columns 
contains the four possible pairs of elements {00, 01, 10, 11} exactly twice, and every pair 
of columns involving the fifth column contains the eight possible pairs of elements {00, 
01, 02, 03, 10, 11, 12, 13} exactly once. In an OA of strength t, every set of t columns 
contains all possible t-tuples of elements exactly the same number of times. 
 
<Insert table 3 about here> 
 
A fixed-value orthogonal array denoted by OA(N, vk, t) is an N х k matrix of elements 
from a set of v symbols {0, 1, …, (v – 1)} such that every set of t-columns contains each 
possible t-tuple of elements the same number of times. The positive integer t is the 
strength of the orthogonal array. In the context of an OA, elements such as 0, 1, 2, …, (v 
– 1) used in table 3 are symbols rather than numbers. The combinatorial property of an 
orthogonal array is not affected by the symbols that are used for the elements. Every set 
of three columns of a fixed value orthogonal array of strength 2 represents a Latin square 
(one column representing the rows, one column representing the columns and the third 
column representing the symbols). A mixed-value orthogonal array is an extension of 
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fixed-value OA where k = k1 + k2 +… + kn; k1 columns have v1 distinct elements, k2 
columns have v2 distinct elements, …, and kn columns have vn distinct elements, where 
v1, v2, …, vk are different. Mathematics of OAs and extensive references can be found in 
[28]. Neil Sloane maintains an electronic library of known OAs [29]. 
 
Consider an industrial DoE which has five factors A, B, C, D, and E and one response Y. 
Suppose A, B, C, and D have two test values each, denoted by {A0, A1}, {B 0, B1}, {C 0, 
C1} and {D0, D1}, respectively, and the factor E has four test values, denoted by {E0, E1, 
E2, E3}. The combinatorial test structure of this DoE is the exponential expression 24×41 

which indicates that there are five factors of which four have two test settings each and 
one has four test settings. The number of possible test cases is 24×41 = 64. The OA(8, 
24×41, 2) can be used to set up an experiment to evaluate the change in response when the 
test value of each factor is changed. The factors A, B, C, D, and E are associated with the 
columns of OA(8, 24×41, 2) and the test values are associated with the entries of the 
columns. Then the rows of OA(8, 24×41, 2) specify 8 of the 64 possible test cases shown 
in table 4.  
 
<Insert table 4 about here> 
 
The last column of table 4 displays the values y1, y2, …, y8, of the response Y for the 
eight test cases. The combinatorial properties of an OA enable estimation of the 
parameters of a statistical model associated with a DoE plan based on the OA. The 
estimated parameters and the estimated statistical model identify test settings of the five 
factors at which the system may have improved performance. 
 
2.2  From DoE to Covering Arrays 
 
Along with the advent of computers and telecommunication systems in the 1980s, 
independent verification and validation of software and hardware-software systems 
became important. Genichi Taguchi inspired the use of OAs for testing software systems. 
Software engineers in various companies (especially Fujitsu in Japan and the descendent 
organizations of the AT&T Bell System in the US) started to investigate use of DoE 
methods for testing software and hardware-software systems. The earliest papers include 
the following: [30], [31], [1], [2], [3]. The limitations of OAs for independent verification 
and validation of software based systems became clear soon after they were used. (i) 
Often, an OA matching the required combinatorial test structure does not exist; for 
example, a non-trivial OA of strength 2 matching the test structure 24×31 (four factors 
with two distinct settings and one with three settings) is mathematically impossible. (ii) 
Frequently, OA based test suites included invalid test cases which are impossible (or 
meaningless) to execute; for example, in testing jointly various operating systems and 
browsers Linux cannot be combined with Microsoft Internet Explorer. (iii) Available OA 
tables were limited to at most strength three, while for testing software systems, test 
suites of strength larger than three may be required. (iv) In testing software systems, 
hundreds of factors may be involved, but available OA tables were much smaller. Keizo 
Tatsumi [2] [3] and Dalal and Mallows [4] provided the insight that in testing software, 
combinatorial balancing property of OAs (that each t-tuple should appear the same 
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number of times) was not required (because parameters of statistical model were not 
being estimated). In testing software systems, space filling was needed; that is, each t-
tuple of interest of the test settings must be covered at least once. Therefore mathematical 
objects called covering arrays (CAs) are better suited than OAs as templates for 
generating test suites for software testing. 
 
The concept of Covering Arrays (CAs) was formally defined by AT&T mathematician 
Neil Sloane [32]. Additional developments on CAs can be found in the following recent 
papers: [33], and [34]. A fixed-value covering array denoted by CA(N, vk, t) is an N х k 
matrix of elements from a set of v symbols {0, 1, …, (v – 1)} such that every set of t-
columns contains each possible t-tuple of elements at least once. The positive integer t is 
the strength of the covering array. A fixed value covering array may also be denoted by 
CA(N, k, v, t). A mixed-value covering array is an extension of fixed value CA where k = 
k1 + k2 +… + kn; k1 columns have v1 distinct elements, k2 columns have v2 distinct 
elements, …, and kn columns have vn distinct elements. The six rows of rows of table 5 
form a covering array CA(6, 24×31, 2). In these six rows each set of two columns contains 
each possible pair of symbols at least once. The combinatorial property of covering 
arrays is more relaxed (less stringent) than that of orthogonal arrays: a CA need not be 
balanced in the sense that not all t-tuples need to appear the same number of times. All 
OAs are CAs but not all CAs are OAs. (An orthogonal array of index one in which every 
t-tuple appears exactly once is the best possible covering array.) Thus the concept of 
covering arrays is a generalization of OAs. Covering arrays have a number of advantages 
over OAs for testing software systems. (i) CAs can be constructed for any combinatorial 
test structure of unequal numbers of test settings. (ii) If for a combinatorial test structure 
an OA exists then a CA of the same or less number of test cases can be obtained. (iii) 
CAs can be constructed for any required strength (t-way) testing, while OAs are generally 
limited to strength 2 and 3. (iv) In generating test suites based on CAs invalid 
combinations can be deliberately excluded. (v) CA for very large number of factors can 
be constructed. 
 
For a given number of factors k, the size of a combinatorial t-way test suite based on a 
CA (number of rows of covering array) increases exponentially with the number of test 
settings v of each factor. Therefore in combinatorial testing it is advisable to limit the 
number of distinct discrete test settings of each factor to less than ten; preferred values 
are 2 to 4. The discrete test settings are generally determined by equivalence partitioning 
and boundary value analysis of the domain of possible values for each factor.  
 
The size of combinatorial t-way test suite also increases rapidly as t increases. For 
example consider the combinatorial test structure example 334452 from [35]. The number 
of possible test cases is 334452 = 172 800. Exhaustive testing may not be practical. The 
sizes (number of test cases) of t-way test suites (determined using ACTS/IPOG) for t = 2, 
3, 4, 5, and 6 are respectively 29, 137, 625, 2532, and 9168. This highlights the important 
question of how the strength t should be set? A reasonable choice of the strength t 
requires experience with the type of SUT being tested. The available knowledge about 
the SUT and the nature of possible faults to be detected is used in the specification of test 
factors, test setting, and the strength t. In one testing experiment involving 128 binary 
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factors (each having two distinct test settings) CAs of strength t for t = 2, ,…, 10 were 
needed. The sizes of required covering arrays determined by Jose Torres-Jimenez [36] 
are respectively, N = 11, 37, 112, 252, 1231, 2462, 17544, 90300, and 316940. When the 
available knowledge about the SUT is severely limited, the choice of t is difficult. The 
choice of t requires a tradeoff between the cost of testing (determined by the size of test 
suite) and the potential benefits of higher strength testing.  
 
 
Tables 
 
Table 3: Orthogonal array OA(8, 24×41, 2) 
 
 1 2 3 4 5 
1 0 0 0 0 0 
2 1 1 1 1 0 
3 0 0 1 1 1 
4 1 1 0 0 1 
5 0 1 0 1 2 
6 1 0 1 0 2 
7 0 1 1 0 3 
8 1 0 0 1 3 
 
 
 
 
Table 4: DoE plan based on OA(8, 24×41, 2) 
 
Test 
cases 

 
A 

 
B 

 
C 

 
D 

 
E 

 
Response 

1 A0 B0 C0 D0 E0 y1 

2 A1 B1 C1 D1 E0 y2 

3 A0 B0 C1 D1 E1 y3 
4 A1 B1 C0 D0 E1 y4 
5 A0 B1 C0 D1 E2 y5 
6 A1 B0 C1 D0 E2 y6 
7 A0 B1 C1 D0 E3 y7 
8 A1 B0 C0 D1 E3 y8 
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Table 5: Covering array CA(6, 24×31, 2) 
 

 
 
 
 
 
 
 
 

 
 
 
 
2.3    Combinatorial Coverage  
 
A recent Cambridge University technical report estimates the global cost of debugging 
software has risen to $312 billion annually. The authors suggest that software developers 
spend approximately 50% of their programming time on average finding and fixing bugs 
[117]. While there are many types of defects that contribute to project costs and many 
ways to test for different types of defects, one type of defect that we examine in this 
chapter is that of interaction faults. Tests based on covering arrays can be highly effective 
as they systematically cover t-way combinations of values. Covering arrays include these 
combinations in a very compact form, but as long as all of the combinations are covered, 
it does not matter whether they come from covering arrays or a less efficient test set, 
possibly generated randomly.  Test quality is obviously of central importance for 
software assurance, but there are few good measures available. A very basic, minimal 
foundation is that every requirement has been addressed by at least one test. If source 
code is available, then coverage measures such as statement or branch coverage may also 
be useful. Mutation testing is also a popular approach to evaluating test set adequacy. 
Combinatorial methods offer an additional tool for measuring test set quality.  
  
Any test with n variables contains C(n,t) t-way combinations, and any collection of tests 
will contain a set of combinations, though many are duplicated. If the test set is large 
enough, it may provide full t-way coverage, even if not originally constructed as a 
covering array. Combinatorial coverage, i.e., the coverage of t-way combinations in a 
test set, is thus a useful measure of test set quality [37][38]. Note that such a coverage 
measure is independent of other measures of test quality, such as the code coverage 
induced by a particular set of tests. It is also directly related to fault detection.  
Combinatorial coverage is a measure of the input space that is tested.  
 
The level of input space coverage also provides some measure of the degree of risk that 
remains after testing. Combinatorial coverage provides a direct measure of the proportion 
of input combinations for which the system has been shown to work correctly, which can 
be used in gauging the residual risk after testing.  
 

 1 2 3 4 5 
1 0 0 0 0 0 
2 1 1 1 1 0 
3 0 0 1 1 1 
4 1 1 0 0 1 
5 0 1 0 1 2 
6 1 0 1 0 2 
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2.3.1   Measures of Combinatorial Coverage 
 
Combinatorial coverage measures include the following (definitions and examples from 
[35]): 
 
Variable-value configuration:  For a set of t variables, a variable-value configuration is a 
set of t valid values, one for each of the variables, i.e., the variable-value configuration is 
a particular setting of the variables.    
 
Example. Given four binary variables a, b, c, and d, for a selection of three variables a, c, 
and d the set {a=0, c=1, d=0} is a variable-value configuration, and the set { a=1, c=1, 
d=0} is a different variable-value configuration.  
 
Simple t-way combination coverage:  For a given test set for n variables, simple t-way 
combination coverage is the proportion of t-way combinations of n variables for which 
all valid variable-values configurations are fully covered.    
 
Example. Table 6 shows four binary variables, a, b, c, and d, where each row represents a 
test. Of the six possible 2-way variable combinations, ab, ac, ad, bc, bd, cd, only bd and 
cd have all four binary values covered, so simple 2-way coverage for the four tests in 
Table 6 is 2/6 = 33.3%. There are four 3-way variable combinations, abc, abd, acd, bcd, 
each with eight possible configurations:  000, 001, 010, 011, 100, 101, 110, 111. Of the 
four combinations, none has all eight configurations covered, so simple 3-way coverage 
for this test set is 0%. As shown later, test sets may provide strong coverage for some 
measures even if simple combinatorial coverage is low. 
 
a b c d 
0 0 0 0 
0 1 1 0 
1 0 0 1 
0 1 1 1 
Table 6. Test array with four binary components 
 
It is also useful to measure the number of t-way combinations covered out of all possible 
settings of t variables.  
 
Total variable-value configuration coverage:  For a given combination of t variables, 
total variable-value configuration coverage is the proportion of all t-way variable-value 
configurations that are covered by at least one test case in a test set. This measure may 
also be referred to as total t-way coverage.  
 
An example helps to clarify these definitions. For the array in Table 6, there are C(4,2) = 
6 possible variable combinations and 22×C(4,2) = 24 possible variable-value 
configurations. Of these, 19 variable-value configurations are covered and the only ones 
missing are ab=11, ac=11, ad=10, bc=01, bc=10, so the total variable-value configuration 
coverage is 19/24 = 79%. But only two, bd and cd, out of six, are covered with all 4 value 
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pairs. So for simple t-way coverage, we have only 33% (2/6) coverage, but 79% (19/24) 
for total variable-value configuration coverage. Although the example in Table 6 uses 
variables with the same number of values, this is not essential for the measurement, and 
the same approach can be used to compute coverage for test sets in which parameters 
have differing numbers of values. 
   
< Fig 4 about ¼ page > 
< Figure 4. Graph of coverage for Table I tests > 
 
     Figure 4 shows a graph of the 2-way (red/solid) and 3-way (blue/dashed) coverage 
data for the tests in Table 6. Coverage is given as the Y axis, with the percentage of 
combinations reaching a particular coverage level as the X axis. For example, the 2-way 
line (red) reaches Y = 1.0 at X = .33, reflecting the fact that 2/6 of the six combinations 
have all 4 binary values of two variables covered. Similarly, Y = .5 at X = .833 because 
one out of the six combinations has 2 of the 4 binary values covered. The area under the 
curve for 2-way combinations is approximately 79% of the total area of the graph, 
reflecting the total variable-value configuration coverage, designated St. Two additional 
quantities are also useful. Φt = the proportion of full t-way coverage; in the example 
above, Φ2 = .33. Mt = minimum coverage for level t; in the example, M2 = .50. It is easy 
to show that St ≥ Φt + Mt - ΦtM t [38].  
 
In addition to analyzing the combination coverage of individual test suites, lower bounds 
for coverage have been established for a number of test criteria, including base choice 
[39] and MCDC [11]. For example, simple all-values testing provides  

St ≥ Μt  = 
1

1
−tv

. 

With base-choice testing [39] every parameter value must be covered at least once and in 
a test where other values are held constant. This process works by specifying one or more 
values for each parameter as base choices, which may be arbitrary, or “special interest” 
values, such as values more frequently used. Where parameters p1 .. pn have vi values 
each, the number of tests required is at least 1 + Σ i=1,n (vi -1), or 1+n(v-1) if all n 
parameters have the same number of values v. An example is shown below in Table 7, 
with four binary parameters. 

TABLE 7.  BASE CHOICE TESTS FOR 24
 CONFIGURATION 

 a b c d 
base: 0 0 0 0 
test 2 1 0 0 0 
test 3 0 1 0 0 
test 4 0 0 1 0 
test 5 0 0 0 1 
 
It can be shown that the minimum combination coverage for base choice is Μt = 

tv

vt )1(1 −+ , and consequently also St ≥ 
tv

vt )1(1 −+ . A variety of results for other strategies 

are given in [38].  
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2.3.2   Using Combinatorial Coverage      
 
Figure 5 illustrates the application of combinatorial coverage analysis to a set of 7,489 
tests developed for spacecraft software [40], using conventional test design methods (not 
designed as a covering array) to verify normal operation and a variety of fault scenarios. 
The system includes 82 variables, with the configuration shown in Table 8 of 132754262 
(three 1-value, 75 binary, two 4-value, and two 6-value). Figure 5 shows combinatorial 
coverage for this system (red = 2-way, blue = 3-way, green = 4-way, orange = 5-way). 
Pairwise coverage is with 82% of the 2-way combinations covering 100% of possible 
variable-value configurations covered and about 98% of the 2-way combinations have at 
least 75% of possible variable-value configurations covered (long horizontal portion of 
red line).  
 
 
< Figure 5. Configuration coverage for spacecraft example. > 
 
 
interaction combinations settings coverage 
2-way 3321 14761 94.0 
3-way 88560 828135 83.1 
4-way 1749060 34364130 68.8 
5-way 27285336 603068813 53.6 
Table 8. Total t-way coverage for Fig. 3 configuration. 

 
3   Algorithms for Combinatorial Testing 
 
As mentioned in previous sections, Combinatorial Testing for the purpose of software 
testing stems from a rich history of Design of Experiments, including designs such as 
Orthogonal Arrays [41]. This previous work has had a strong influence on algorithms to 
generate combinatorial test suites. In this section, we discuss challenges to generating 
combinatorial test suites, categories of algorithms that have been popular in literature, 
and automated tools for this purpose. 
 
Numerous algorithms exist to generate covering arrays or mixed-level covering arrays to 
represent combinatorial test suites. This is an NP-hard problem, meaning no efficient 
exact method exists. Further complications arise when constraints are required in many 
practical applications. That is, events may need to run in a particular sequence or that one 
event may disable the option to run other events. Testers may have test cases that they 
have already run, called seeds, and want credit for the combinations covered in those test 
cases rather than generating new tests to cover those interactions again. For some inputs, 
the best reported test suites or sizes are available [42,43, 44] while others, particularly 
those of mixed-level covering arrays or inputs with seeds or constraints are not collected 
and shared. In this section, we briefly review different types of algorithms that generate 
combinatorial test suites. 
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3.1   Categories of Algorithms 
Four categories of algorithms have been popular for the purpose of generating 
combinatorial test suites. These include: 
• Algebraic techniques, 
• Greedy algorithms, 
• Heuristic search, 
• Constraint Satisfaction Problem algorithms 

 
Software testers need to choose the technique that best applies to their domain. For 
instance, if a tester has 7 parameters that have 5 options each, an algebraic technique will 
give the best-known solution [43]. On the other hand, if a system has a varying number of 
options for each parameter and constraints among parameters, algebraic techniques are 
often less effective in terms of producing a smaller test suite. Constraint Satisfaction 
Problem algorithms have also been used, but mainly on small inputs [43]. Table 9 
summarizes tradeoffs among these algorithm classes.  
 

 Algebraic Greedy Heuristic Search 

Size of test 
suites 

Accurate on special 
cases; but not as 
general as needed 

Reasonably 
accurate  

Most accurate (if 
given enough time) 

Time to 
generate tests 

Yes Yes Often time 
consuming (for 
good results) 

Seeding/ 
Constraints 

Difficult to 
accommodate 
seeds/constraints 

Yes Yes 

Table 9. Covering array algorithm characteristics 
 
If a system has parameters with different numbers of options, this requires a mixed-level 
covering array for the solution. Greedy algorithms and heuristic search are often the best 
algorithms for the scenario of mixed-level inputs. For instance, consider the input 
415317229. The greedy DDA produces a test suite of size 35, the greedy IPO reports a test 
suite of size 36, and the AETG algorithm reports a test suite of size 41 [47]. Of course, 
there is still variation in the results among these three greedy algorithms in which each 
outperforms the others on different inputs.  
 
On the other hand, the best known result for input 513822 is 15 test cases as achieved by a 
heuristic search technique, simulated annealing [46]. Testers must consider the trade-off 
in time when selecting a greedy or heuristic search algorithm. Heuristic search algorithms 
may take much longer to find a “good” solution. This issue of time to generate test suites 
becomes more exaggerated as the t-way strength of coverage for a test suite increases. 
For instance, Table10 shows five sample inputs and the sizes and time to generate 2-way 
combinatorial test suites. Please refer to [47] for the exact details of these algorithms. The 
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deviation in the amount of time to generate the test suites grows dramatically as the size 
of the input increases. 
 

 
Table 10. Example size and runtime for covering array generation 
 
Constraints between parameters/options are common in software systems. Addressing 
constraints is a challenging issue. We give a brief overview here, but refer the reader  to 
Section 5 for a more detailed discussion. Consider Figure 6 below that shows four 
scenarios for constraints using the input 3123: 

1. Original scenario without constraints: This scenario has no constraints. There 
are 30 pairs to cover and this may be done in as few as 6 test cases. 

2. Scenario with constraints that results in a smaller test suite: This scenario has 
3 constraints, including that f0:0 may not be combined with f1:3, f2:5, or f3:7. 
These constraints leave 27 pairs left to cover. In this case, we are able to cover all 
of the pairs while respecting the constraints in as few as 5 test cases. 

3. Scenario with constraints that results in a larger test suite: This scenario also 
has 3 constraints: f0:0 may not be combined with f1:3; f1:3 may not be combined 
with f2:5; and f2:5 may not be combined with f3:7. Due to these constraints, the 
fewest number of test cases to cover all pairs with respect to the constraints is 7 
test cases. 

4. No feasible solution: The final scenario shows that the tester specified constraints 
in which it is not possible to construct a solution. If we must select an option for 
each parameter in order to generate a test case, you will notice that the constraints 
prohibit us from assigning a value to each parameter and covering all pairs. For 
instance, you will notice that f0:0 may not be combined with f1:3, so we would 
have to select f0:0 and f1:4 for the first two values of this test case. However, we 
are unable to select a value that respects the constraints for f2 since f2:5 may not 
be combined with f1:3 and f2:6 may not be combined with f1:4. This same 
scenario repeats if we include f0:1 and f1:3 in a test case. 

 
 
< Figure 6. Different scenarios with constraints > 
 
Greedy algorithms and heuristic search algorithms may address constraints. On the other 
hand, algebraic techniques may have difficulty addressing constraints. Section 5 
discusses constraints in more depth. 
 
3.2   Algorithms for Higher Strength Combinatorial Test Suites 
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Algorithms for higher strength combinatorial tests face the challenge that the number of 
t-tuples to cover increases exponentially as t increases. For instance, Table 11 below 
shows four sample inputs and the number of t-tuples to cover for t=2..k. For instance, the 
input 313 has 702 2-tuples, 7,722 3-tuples,47,915 4-tuples and goes up to 1,594,323 13-
tuples!  This poses challenges for algorithms, particularly in terms of time to generate test 
suites and the amount of memory used for computations. 
 

 
Table 11. Higher strength covering array examples  
 
The categories of algorithms to generate test suites for higher strength combinatorial test 
suites include the same as those mentioned previously in this section: algebraic 
techniques, greedy algorithms, heuristic search algorithms, and CSP algorithms. While 
the trade-offs of these algorithms are the same as those mentioned earlier in this section 
for t=2, the amount of time and memory usage for higher strength coverage often require 
special consideration. For instance, Table 12 shows the size of the test suites and 
execution time for t=2 through t=6 coverage of the input 510 using the IPOG algorithm 
[48]. The result for t=2 strength coverage results in a test suite of size 48 in .11 seconds 
while the algorithm produces 50,920 test cases for t=6 in 791.35 seconds. 
 

 
Table 12. IPOG test size and runtime  
 
 
The major challenges faced by algorithms to generate combinatorial test suites include 
the time to generate test suites, the size of the test suites, and ability to address seeding 
and constraints. Numerous algorithms exist to generate combinatorial test suites, with 
popular categories of algorithms including algebraic, greedy heuristic, and heuristic 
search algorithms. Testers must consider their particular domain and testing environment 
when selecting an algorithm to generate covering arrays. Further, testers may seek 
guidance by visiting website that maintain the best known reported solutions or sizes for 
many inputs [42, 43, 44]. 
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3.3   Example Tools 
 
A variety of tools can be found on the web site pairwise.org, including both commercial 
and open source.  Two of the most widely used covering array generators are Microsoft 
PICT [106][48] and NIST ACTS [45].  In this section we review ACTS. Tools may vary 
in features [50][51][52][53][54], and test environments are beginning to make it possible 
to integrate tools in ways that testers find most useful.  One of the most well-developed 
such frameworks is CITlab [55], which is integrated with the Eclipse editor and provides 
a means of defining domain-specific languages and connecting other Eclipse plugins.  
 
ACTS is a freely distributed set of research tools for software testing downloadable from 
a NIST web site [45]. The IPOG algorithm in ACTS generates combinatorial t-way test 
suites for arbitrary combinatorial test structures and any strength t with support of 
constraints (to exclude invalid combinations). CCM (for Combinatorial Coverage 
Measurement) is a research tool in ACTS for determining combinatorial coverage of a 
test suite which may not have been developed from a combinatorial viewpoint.  
 
(1) IPOG excludes those combinations of the test settings which are invalid according to 
the user specified constraints. (2) IPOG tool supports two test generation modes: scratch 
and extend. The former builds a test suite from the scratch, whereas the latter allows a 
test suite to be built by extending a previously constructed test suite which can save 
earlier effort in the testing process. (3) IPOG tool supports construction of variable-
strength test suites. For example, of the 10 test factors all could be covered with strength 
2 and a particular subset of 4 out of 10 factors (which are known to be inter-related) 
could be covered with higher strength 4. (4) IPOG tool verifies whether the test suite 
supplied by a user covers all t-way combinations. (5) IPOG tool allows the user to specify 
expected output for each test case in terms of the number of output parameters and their 
values. (6) IPOG tool supports three interfaces: a Graphical User Interface (GUI), a 
Command Line Interface (CLI), and an Application Programming Interface (API). The 
GUI interface allows a user to perform most operations through menu selections and 
button clicks. The CLI interface can be more efficient when the user knows the exact 
options that are needed for specific tasks. The CLI interface is also very useful for 
scripting. The API interface is designed to facilitate integration of ACTS with other tools 
(see Fig. 7 below). 
 
< Fig 7 about ¼ page > 
< Figure 7. ACTS/IPOG user interface > 
 
ACTS/CCM 
 
CCM [38] measures the combinatorial coverage of a test set, including the measures 
discussed in Sect. 2.3. It accepts a comma-separated values (CSV) format file where each 
row represents a test and each column represents a parameter. CSV files can be exported 
from any spreadsheet program. Constraints can be specified at the beginning of the file, 
in the same syntax used for ACTS/IPOG; each line will be considered a separate 
constraint. The invalid combinations will be shown if there are constraints specified. If 
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any coverage measurement has been specified the invalid combinations will be generated. 
For continuous-valued parameters, a user can specify equivalence classes by indicating 
the number of value classes and boundaries between the classes. Boundaries may include 
decimal values. Where the boundary between two classes c1 and c2 is x, the system places 
input values < x into c1 and values ≥ x in c2. CCM outputs a graphic display of coverage, 
as shown in Sect. 2.3, and complete statistics on tests, number of t-way combinations and 
combination settings needed for full coverage; number of t-way combination settings 
covered, and invalid combinations as determined by constraints. CCM was developed by 
NIST and the Centro Nacional de Metrologia, Mexico. The user interface is shown in 
Fig. 8. 
 
< Fig 8 about ¼ page > 
< Figure 8. ACTS/CCM user interface > 
 
 
4   Input Partitioning and Representation 
 
Covering array algorithms can produce highly compact matrices of t-way value 
combinations, but how does a tester decide what values to use?  Input space partitioning 
is a critical step in any software test approach, and traditional input modeling and 
partitioning methods are equally effective for combinatorial testing, but some aspects of 
combinatorial methods introduce differences from this step in conventional approaches.  
 
4.1 Combinatorial Issues in Input Model Development 
 
When applied to developing input models for a covering array tool, some issues become 
particularly important – three general classes of combination anomalies known as 
missing combinations, infeasible combinations and ineffectual combinations [58]. The 
efficiency of combinatorial testing stems partly from the fact that an individual test 
covers C(n,t) combinations, so a covering array can compress a large number of 
combinations into a reasonably small set of tests. Combination anomalies add 
complications to the generation of covering arrays.  
 
Missing combinations are those that may be required to trigger a failure, but which are 
not included in the test array. A t-way covering array will of course include all t-way 
combinations, and some (t+1)-way combinations, but not all (or it would be a (t+1)-way 
covering array. If there are some combinations that engineering judgment leads testers to 
believe are significant, they may be included specifically, to supplement the covering 
array. 
 
Infeasible combinations are extremely common, and are addressed by constraints. These 
are combinations which will never occur when the application is in use, perhaps because 
they are physically impossible. These combinations cannot be handled by simply 
removing tests that contain them, because many other, potentially necessary, 
combinations would be removed at the same time. Thus constraints are used to prevent 
the production of infeasible combinations in the covering array. For example, if 
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parameter B must have the value ‘100’ whenever parameter A = 100, then a constraint 
such as “A=100 → B=100” can be included in constraints processed by the covering 
array generator. Sect.4.3, below, discusses this process in detail.  
 
Ineffectual combinations may occur when the presence of another combination causes 
them to be ignored by the application [57][58]. A common scenario is when an error 
value causes the application to stop, so other combinations in the same test are not 
included in processing. This situation is often handled by separating tests for error 
processing from other tests [59]. Ineffectual combinations may also result when there are 
dependencies among combinations, which may be handled with constraints, as with 
infeasible combinations.  
 
It is important to keep in mind that the anomalies discussed above can occur with any 
test method. For example, a test that triggers an error may terminate the application, so 
other possible interactions caused by values in the failing tests will never be discovered. 
It is simply that most methods do not consider parameter interaction to the same degree 
of granularity as combinatorial testing. Using combinatorial methods helps to expose 
anomalies that may reduce the effectiveness of other methods.    

 
4.2   Size Considerations with Covering Arrays 
 
Key cost factors are the number of values per parameter, the interaction strength, and the 
number of parameters. The number of tests produced increases with vt log n, so the 
number of values per parameter is a critical consideration. Guidance for combinatorial 
methods usually recommends keeping the number of values per parameter to a limit of 
roughly 10. The number of parameters is much less significant for this approach, as the 
test set size increases with log n, for n parameters, and current tools make it possible to 
generate covering arrays for systems with a few hundred parameters, at least for lower 
strength arrays. For larger systems, random test generation may be used. If there are no 
constraints among variables, random generation makes it possible to probabilistically 
cover t-way combinations to any desired level [61]. In the more common case where 
there are constraints, a large test set may be generated randomly, then its combinatorial 
coverage measured while ensuring maintenance of the constraints [38].   
 
4.3 Modeling Environment Conditions and State 
 
When we perform input parameter modeling, it is important to consider environment 
conditions that often affect the behavior of a system. There are two types of environment 
condition, i.e., static and dynamic conditions. Static conditions are set before a system is 
put into execution and do not change over time. Examples of static conditions include the 
hardware or software platform, system configurations, and environment variables. For 
instance, a web application may behave differently depending on whether it is running on 
a desktop machine or a mobile device like a smart phone. In this case, the runtime 
platform can be modeled as a parameter in the input model and the different types of 
platform the web application is designed to run can be modeled as different values of the 
parameter. As another example, many software applications allow the user to customize 
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their behavior using a configuration file. Each configuration option can be modeled as a 
parameter in the input model and the different choices for a configuration option can be 
modeled as different values of the corresponding parameter. 
 
Dynamic conditions capture the state of the environment that changes as a system runs. 
For example, many systems use a database to manage their data. The same operation may 
behave differently depending on the state of the database. Thus, it is important to model 
the state of the database as a factor that could affect the system behavior. This can be 
accomplished by identifying a set of abstract parameters that capture some important 
characteristics of the database. As another example, in an object-oriented system, the 
behavior of a method often depends on the state of the object on which the method is 
invoked. Consider that a class manages a set of objects that does not allow duplicates. 
The class provides a method named insert that can be used to add an object into the set. 
This method would behave differently depending on whether the object already exists in 
the set. Thus, it is important to model the state of the set, which can be accomplished by 
identifying an abstract parameter that indicates whether the object to be added already 
exists in the set.  
 
4.4   Types of Constraints for Input Parameter Model 
After parameters and values are identified, another important part of input parameter 
modeling is to identify potential constraints that may exist between different parameters 
and values. Constraints are restrictions that must be satisfied by each test; otherwise, a 
test may be rejected by the system under test and thus would not serve the purpose. 
Similar to identification of parameters and values, constraints can be identified from 
various sources of information, e.g., requirement document, and domain knowledge. 
 
Different types of constraint can be classified based on different dimensions. A constraint 
can be an environment or system constraint, depending on whether it is imposed by the 
runtime environment a system is designed to run or by the system itself. A constraint can 
be a first-order or higher-order constraint, depending on whether the constraint needs to 
be evaluated against individual tests or sets of tests. A constraint can be a temporal or 
non-temporal constraint, depending on whether the constraint specifies properties related 
to time. In the following, we discuss these different types of constraints in more detail. 
 
 
 
4.4.1   Environment Constraints vs. System Constraints 
Environment constraints are imposed by the runtime environment of the system under 
test (SUT). For example, tester may want to ensure a web application executes correctly 
in different web browsers running on different operating systems. In this scenario, tests 
are combinations of web browsers and operation systems. Safari 6.0 or later cannot be 
executed on Windows. If the web browser is Safari 6.0 or later, the operating system 
cannot be Windows. Therefore, no test should contain the combination of { Safari6, 
Windows }. In general, combinations that violate environment constraints could never 
occur at runtime and must be excluded from a test set. 
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System constraints are imposed by the semantics of the SUT. For example, a hotel 
reservation system may impose a constraint that the number of guests in a room must be 
no more than the number of available beds. Note that invalid combinations which do not 
satisfy system constraints may still be rendered to the SUT at runtime. If this happens, 
these invalid combinations should be properly rejected by the SUT. Therefore, it is 
important to test these combinations for the purpose of robustness testing, i.e., making 
sure that the SUT is robust when invalid combinations are presented. In order to avoid 
potential mask effects, robustness testing often requires that each test contains only one 
invalid combination. 
 
The key difference between environment constraints and system constraints is that 
environment constraints must be satisfied by all the tests whereas tests that do not satisfy 
system constraints may be generated for robustness testing.  
 
4.4.2   First-order Constraints vs. Higher-order Constraints 
First-order constraints are constraints that restrict parameter values in an individual test. 
For example, in a debit account transaction, the amount of money to withdraw from an 
account should be no more than either the balance of the account or the withdrawal limit 
of the account. In general, first-order constraints can be expressed using first-order logic 
expressions. Satisfaction of first-order constraints can be evaluated based on individual 
tests. 
 
Higher-order constraints are constraints that impose certain restrictions on test sets or 
even sets of test sets, instead of on individual tests. Higher-order constraints can be more 
complex to understand and more expensive to evaluate. Constraints encountered in 
practice are typically no higher than second-order constraints. Many systems impose 
structural constraints, i.e., restrictions on the structure of test data. Structural constraints 
are typically higher-order constraints. For example, when we test software applications 
that access a database, we often need to populate some tables in the database as part of 
the effort to set up the test environment. These tables typically need to satisfy some 
structural constraints in order to ensure validity of the data that are stored in these tables. 
One common example is referential integrity, which requires that every data object 
referenced in one table must exist in some other table. Referential integrity is a second-
order constraint, as it must be evaluated against a set of data objects, instead of individual 
data objects. 
 
We note that most existing constraint solvers only handle first-order constraints. In order 
to handle higher-order constraints, a constraint solver customized for a particular domain 
is typically required. For example, a customized constraint solver may be developed to 
handle structural constraints that are commonly encountered in database testing.  
 
4.4.3 Temporal constraints vs. Non-temporal Constraints 
 
Temporal constraints impose restrictions on the temporal behavior exercised by a system. 
There are two types of temporal constraints, sequencing constraints and real-time 
constraints. Sequencing constraints specify the possible orders in which a sequence of 
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actions or events is allowed to take place. For example, a sequencing constraint may 
specify that a ready signal must be received before any operation is performed on a 
device.  
 
Real-time constraints specify temporal properties with an explicit reference to time. For 
example, a real-time constraint may specify that an event must take place 5 milliseconds 
before another event takes place. This is in contrast with sequencing constraints, which 
specifies temporal properties using relative timing, i.e., without an explicit reference to 
time. That is, a sequencing constraint may specify that an event E must happen before 
another event E’, but it does not specify how much time event E should occur before E’.  
 
Non-temporal constraints are properties that are not related to time. Existing work on 
combinatorial testing has been mainly focused on non-temporal constraints. This is partly 
because temporal constraints involve the extra dimension of time and are thus more 
difficult to handle. 
 
 
5. Constraints Handling in Covering Array Algorithms 
 
In practice, covering array algorithms must be able to process constraints imposed by 
real-world considerations. The way in which constraints are represented can have 
significant impacts on algorithm and tool performance.  
 
5. 1   Representations of Constraints  
Constraints identified in an input parameter model must be specified in a way that allows 
them to be automatically processed. One common approach to specifying constraints is 
representing them as a set of forbidden tuples, i.e., combinations that are not allowed to 
appear in any test. A test is valid if and only if it does not contain any forbidden tuple. 
For example, Fig. 9 shows a system consisting of three Boolean parameters A, B, C and 
two user-specified forbidden tuples {A=0, C=0} and {B=0, C=1}. Test {A=0, B=0, C=0} 
is invalid since it contains forbidden tuple {A=0, C=0}. Test {A=0, B=0, C=1} is invalid 
since it contains forbidden tuple {B=0, C=1}. Test {A=0, B=1, C=1} is valid since it 
doesn’t contain any forbidden tuple. When there are a large number of forbidden tuples, it 
can be difficult for the user to enumerate them. 

 
<Figure 9. Example of Invalid and Valid Tests> 
 
Alternatively, constraints can be specified using logic expressions. A logical expression 
describes a condition that must be satisfied by all the tests. A test is valid if and only if it 
satisfies all the logic expressions. Consider the system in Fig. 9, where the forbidden 
tuples can be represented by two logic expressions, (A=0) => (C!=0) and (B=0) => 
(C!=1). For complicated systems, logical expressions are more concise than explicit 
enumeration of forbidden tuples. 
 
5. 2   Major Approaches to Constraint Handling 
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Due to the existence of constraints, some parameter values cannot be combined in the 
same test. In this case, a conflict is said to exist between these parameter values. There 
are four general approaches [70] to constraint handling for constructing covering arrays, 
including abstract parameters, sub-models, avoid, and replace. These approaches employ 
different strategies to deal with potential conflicts between parameters. 
 
The abstract parameters and sub-models approaches remove conflicts from the input 
parameter model by means of model transformation prior to actual test generation. The 
avoid approach makes sure that only conflict-free tests are selected by checking validity 
of each test during actual test generation. The replace approach removes conflicts from a 
test set that has already been generated by replacing invalid tests with valid ones. 
 
5.2.1   The Abstract Parameters Approach 
In the abstract parameters approach, the original input parameter model that contains 
conflicts is transformed to one without conflicts prior to actual test generation. The main 
idea is to use one or more abstract parameters to represent valid sub-combinations of 
input parameters. First, conflicting parameters, i.e., parameters that contain one or more 
conflicts, are identified. Second, abstract parameters are introduced to replace these 
conflicting parameters. Each abstract parameter is used to represent a group of conflicting 
parameters. The values of an abstract parameter represent valid combinations of the 
corresponding conflicting parameters that satisfy the given coverage goal. 
 
For example, assume that there exists a constraint, A > B, between two parameters A and 
B of the system shown in Fig. 10. For 2-way testing, a new input parameter model can be 
created by replacing these two parameters with a new abstract parameter AB whose 
domain consists of all the 2-way valid combinations of parameters A and B, i.e., (A=2, 
B=1), (A=3, B=1), and (A=3, B=2). A test generation algorithm that does not support 
constraints can be applied to this new model to create a 2-way test set for this example. 
 
<Figure 10. Example of Abstract Parameters > 
 
The abstract parameters approach may lead to over-representation of some sub-
combinations. Consider the example in Figure 10, the number of 2-way tests for abstract 
parameter AB and parameter C would be 3 × 2 = 6, where any valid combination 
between parameters A and B will occur twice. In fact, five tests are enough to satisfy 2-
way coverage, in which one of the three sub-combinations between A and B only occurs 
once while each of the others two sub-combinations occurs twice. As a result, for systems 
with wide ranged parameters, it may create a test set that is too large unnecessarily. 
 
 
5.2.2   The Sub-models Approach 
Similar to the abstract parameters approach, the sub-models approach removes conflicts 
by transforming the original input parameter model. In this approach, an input parameter 
model containing conflicts is rewritten into two or more smaller conflict-free models. A 
test set is generated for each smaller model and the final test set is the union of all the test 
sets for the smaller models. 
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The key notion in the sub-models approach is called split parameter. A split parameter is 
a parameter that is involved in a conflict and that has the least number of values. After a 
split parameter is identified, the input parameter model is split into a number of sub-
models, one for each value of the split parameter. Next, for each sub-model, two-
parameter conflicts involving the value of the split parameter are eliminated by removing 
values of the other parameters involved in the conflicts. Note that conflicts involving 
more than two parameters can be reduced to conflicts involving two parameters.  
 
Again, consider the example in Fig. 10. Parameters A and B are involved in the conflicts. 
Suppose that parameter B is used as the split parameter. The input parameter model is 
split into three sub-models, one for each value of B. Then conflicts are eliminated in 
these three sub-models, which are shown in Fig. 11.  
 
<Figure 11. Example of Sub-models> 
 
Note that if conflicts still exist in the sub-models that do not involve the split parameter, 
the process is applied recursively. When all sub-models are conflict-free, some sub-
models can be merged. A merge is possible if two sub-models differ only in one 
parameter. 
 
When no further merges can be done, tests are generated for each sub-model. The final 
test set is the union of the tests generated for each sub-model. Consider the example in 
Fig. 11, and generate 2-way tests. For sub-model 1, there will be 2 × 2 = 4 tests; for sub-
model 2, there will be 2 tests; for sub-model 3, there will be 0 tests. The union of these 6 
tests is the final test set. 
 
Similar to the abstract parameters approach, this approach may create test sets that are 
unnecessarily large. This is because parameter values that are not involved in any conflict 
will be included in every sub-model, which may create overlapping tests that do not 
contribute to test coverage. In Fig. 11, suppose that {A=3, B=1, C=2} from sub-model 1 
is the last test (of the six possible tests) to be included in the final test set. This test 
doesn’t contribute to coverage, since all the 2-way combinations covered by this test have 
been covered by other tests. That is, {A=3, B=1} has already been covered by test {A=3, 
B=1, C=1} from sub-model 1, {B=1, C=2} has already been covered by test {A=2, B=1, 
C=2} from sub-model 1, and {A=3, C=2}has already been covered by test {A=3, B=2, 
C=2} from sub-model 2. 
 
 
5.2.3   The Avoid Approach 
The avoid approach does not perform any transformation on the input parameter model. 
Instead, it tries to avoid conflicts when tests are actually generated. The key idea is to 
avoid generating invalid tests, i.e., tests that do not satisfy all the constraints. This is 
accomplished by checking the validity of each candidate test and discarding tests that do 
not pass the check. More discussion on how to perform validity check is provided in 
Section 5.c. 
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Compared to the abstract parameters and sub-models approaches, the avoid approach 
often produces a smaller test set. This approach, however, is mainly applicable to greedy 
methods, which construct a test set one value at a time. That is, greedy methods consider 
a test set to be a matrix of values and a test set is built by choosing each value one at a 
time. The avoid approach cannot be directly applied to algebraic methods, which 
construct a test set based on some mathematic formulas without the notion of selecting a 
test over multiple candidates. 
 
5.2.4   The Replace Approach 
The replace approach allows conflicting tests, i.e., tests that contain conflicts, to be 
created in a test set. Conflicting tests are then removed from the test set by replacing 
them with conflict-free tests while preserving test coverage of the test set. Note that 
conflicting tests cannot be simply discarded. This is because some combinations that do 
not have a conflict may be covered by these conflicting tests only. In this case, new 
conflict-free tests must be created to cover these combinations in order to preserve test 
coverage.  
 
One approach to replacing an invalid test is to make multiple clones of the invalid test, 
each of which changes one or more of the parameter values to remove the conflicts from 
the test. The number of clones is chosen according to the strength of coverage and the 
number of conflicting parameters, in order to make sure that test coverage is preserved. If 
multiple conflicts exist in the same test, conflicts are removed one at a time via cloning, 
until all conflicts are eliminated. 
 
Table 13 shows how to apply the replace approach to build a 2-way test set for the 
system in Fig. 10. Since it is 2-way coverage and any conflict only involves two 
parameters, two clones are created for each of the conflicting tests. For each pair of 
clones, the value of the first parameter involved in the conflict is changed in the first 
clone and the value of the second parameter involved in the conflict is changed in the 
second clone. For example, T1 consists of a conflict {A=1, B=1}. This conflict is 
removed by replacing T1 with T1a in which the value of A is changed from 1 to 2. 
Finally, after removing the invalid and redundant tests, a test set consisting of T1a, T2a, 
T4, T5a and T7 is found. 
 
Tests  
 Ignoring Constraints 

Parameters  Tests  
 Cloned 

Parameters  Tests  
 Replaced 

Parameters 
A B C  A B C  A B C 

T1 1 1 2  T1a * 1 2  T1a 2 1 2 
T2 1 2 1  T1b 1 * 2  T1b 1 - 2 
T3 1 3 2  T2a * 2 1  T2a 3 2 1 
T4 2 1 1  T2b 1 * 1  T2b 1 - 1 
T5 2 2 2  T3a * 3 2  T3a - 3 2 
T6 2 3 1  T3b 1 * 2  T3b 1 - 2 
T7 3 1 2  T4 2 1 1  T4 2 1 1 
T8 3 2 1  T5a * 2 2  T5a 3 2 2 
T9 3 3 2  T5b 2 * 2  T5b 2 1 2 
     T6a * 3 1  T6a - 3 1 
     T6b 2 * 1  T6b 2 1 1 
     T7 3 1 2  T7 3 1 2 
     T8 3 2 1  T8 3 2 1 
     T9a * 3 2  T9a - 3 2 
     T9b 3 * 2  T9b 3 1 2 
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Table 13. Application of the replace approach to the system in Fig. 10. Conflicts are highlighted 
in each test. “*” indicates a value that needs to be changed; “-” indicates that no value can be 
assigned. 
 
Similar to the abstract parameters and sub-models approaches, the replace method may 
create test sets that are unnecessarily large. The reason is that clones are often 
overlapping. Thus, some combinations are covered more than once. This may create 
redundant tests that can be removed without compromising test coverage. 
 
Note that the three approaches, i.e., abstract parameters, sub-models, and replace, may 
create unnecessarily large test sets. Test sets generated by these approaches can be 
reduced by removing redundant tests, i.e., tests that can be removed without 
compromising test coverage. This can be accomplished by processing the tests one by 
one and discarding tests that do not cover new combinations. 
 
5.3   Validity Checking for the Avoid Approach 
A key step in the avoid approach is to perform validity checking, i.e., checking whether 
all the constraints are satisfied for a given test. In general, there are two ways to check the 
validity of a test, including constraint solving and forbidden tuples. 
 
The way in which validity checking is performed is independent from the way in which 
constraints are specified. Constraints specified using forbidden tuples can be converted 
into a set of logic expressions, which can be handled using a constraint solver. Similarly, 
a set of forbidden tuples can be derived from constraints specified using logic expressions 
and can be handled using a forbidden tuple-based approach. 
 
5.3.1   Constraint Solving Based Validity Checking 
In this approach a constraint solver is typically employed to perform validity checking. 
The main idea is to encode the problem of validity checking as a constraint satisfaction 
problem. Each time when a parameter value is to be assigned in a test, it must pass a 
check performed by the constraint solver to ensure all the constraints are satisfied.  
 
The main challenge of this approach is dealing with the fact that the constraint solving 
process can be time-consuming, especially when constraints are complex. In particular, 
existing constraint solvers are designed to check satisfiability of individual formulae. 
That is, they typically do not exploit information from the solving history to speed up 
constraint solving that may be performed in the future. 
 
Several approaches have been reported aiming to optimize the use of constraint solvers in 
the context of combinatorial testing [66, 67]. For example, an algorithm called IPOG-C 
[66] is developed that tries to reduce the number of calls to the constraint solver. In 
particular, algorithm IPOG-C reduces the number of validity checks on target 
combinations by leveraging the fact that if a test is determined to be valid, then all the 
combinations covered by this test would be valid, and thus do not have to be explicitly 
checked. In case that a call to the constraint solver cannot be avoided, algorithm IPOG-C 
tries to simplify the solving process as much as possible. It divides constraints into non-
intersecting groups to reduce the number of constraints that have to be checked during a 
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validity check. 
 
5.3.2   Forbidden Tuples Based Validity Checking 
An alternative approach to performing validity checking is to ensure that no forbidden 
tuple is contained in the test. As discussed above, forbidden tuples can be used to verify if 
a (complete) test is valid or not. However, a partial test that contains no forbidden tuples 
may be invalid. Consider the example shown in Fig. 12. A partial test {A=0, B=0} is 
invalid even when it includes no forbidden tuples, because we cannot later assign a valid 
value for parameter C to make a complete test. 
 
<Figure 12. Example of Invalid and Valid Partial Tests> 
 
Generally speaking, we cannot directly use forbidden tuples to check a partial test’s 
validity. This is because user-specified forbidden tuples may imply more other forbidden 
tuples that are not explicitly specified. A partial test that covers no explicit forbidden 
tuple may cover some implicit forbidden tuples. In Fig. 12, {A=0, B=0} is an implicit 
forbidden tuple, making the partial test {A=0, B=0} invalid. 
 
It is not practical for the user to specify all implicit forbidden tuples in a system. Thus, it 
is desired to automatically derive all implicit forbidden tuples from a set of forbidden 
tuples given by the user. This would allow the validity of a partial test to be determined in 
the same way as for a complete test, i.e., by ensuring the partial test does not contain any 
implicit or explicit forbidden tuple. However, the number of forbidden tuples can be 
large, making this approach very inefficient.  
 
The concept of minimum forbidden tuple [68] is proposed to address this challenge. 
Intuitively, a minimum forbidden tuple (MFT) is a forbidden tuple of minimum size. It is 
shown that if a tuple is invalid, it must cover at least one MFT. Thus, a partial test is valid 
if and only if it covers no MFT. This makes it possible to use MFTs to perform validity 
checks on both complete and partial tests. The number of MFTs is typically much smaller 
than the number of all possible forbidden tuples. Thus, the cost of managing forbidden 
tuples, in terms of both storage and lookup cost, can be significantly reduced. 
 
 
The MFTs generation algorithm iteratively applies two processes, i.e., derive and 
simplify, on the set of forbidden tuples until it converges. 
(Derive) Given a parameter P having n values as its domain, and n forbidden tuples each 
of which contains a different value of parameter P, a new forbidden tuple can be 
constructed by combining all values in these n forbidden tuples, excluding the values of 
parameter P. 
(Simplify) A tuple within the set of forbidden tuples can be removed if it covers any 
other forbidden tuple in the set. 
 
The MFTs generation algorithm starts from the set of explicit forbidden tuples. It 
iteratively derives new forbidden tuples and simplifies the set of forbidden tuples, until 
no new forbidden tuples can be derived. The final set of forbidden tuples consists of all 
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MFTs which explicitly indicate all the constraints implied by user-specified forbidden 
tuples and parameter domains. We use an example shown in Fig. 13 to describe how it 
works. In steps 1 and 2, three new forbidden tuples are derived using parameter A and B. 
There are no new forbidden tuples can be derived using parameter C, so we move to the 
simplify process, as in step 3, but no tuples can be removed at this time. The next 
iteration then starts with the three new forbidden tuples which are marked with “*”. In 
step 4 we derive a new tuple {C=0} using parameter A. There are no new forbidden 
tuples can be derived using parameter B and C, so we move to the simplify process, as in 
step 5, six forbidden tuples covering {C=0} are removed. Now there are only three 
forbidden tuples remaining in the set and no new tuples can be derived from them. They 
are MFTs and can be used to perform validity checking. 
 
<Figure 13. Example of MFTs Generation Process> 
 
 
6   Case Studies 
 
Combinatorial testing has found extensive use in software development, and a variety of 
examples for diverse industries can be found in the proceedings of the International 
Workshop on Combinatorial Testing [69].  The two highlighted in this section illustrate 
quite different aspects of this method in practice. The first, on the Document Object 
Model, is an interesting validation of the interaction rule and its implications. Tests 
covering 4-way combinations detected all faults found in complex real-world software 
that had previously been detected with exhaustive testing of discretized values. The 
second example below is, to our knowledge, the largest published study on industrial use 
of combinatorial testing, a 2.5 year investigation of the method to aerospace software that 
demonstrated significant cost savings and improved test coverage.    
 
6.1   Document Object Model  
The Document Object Model (DOM) [71][72] is a World Wide Web Consortium (W3C)  
standard for representing and interacting with documents through web browsers. DOM 
makes it easier for developers to incorporate non-sequential access in web sites by 
providing conventions for updating the content, structure, and style of documents 
dynamically. Implemented in browsers, DOM components typically include tens of 
thousands of lines of source code. Because of its importance to internet applications 
worldwide, developed the DOM Conformance Test Suites, to assist developers in 
ensuring interoperability and predictable behavior of web site components.  The 
conformance tests are comprehensive, providing exhaustive testing (all possible 
combinations) of discretized values for 35 DOM events, a total of more than 36,000 tests. 
Multiple commercially produced DOM implementations were tested.  
 
Since the DOM test suite was designed for exhaustive testing, it provided a unique 
opportunity to evaluate one of the major advantages of combinatorial testing – the 
empirical interaction rule that faults involve a small number of factors interacting, so 
covering all t-way faults, for small value of t, can be nearly as effective as exhaustive 
testing.  Five new DOM test suites were created, covering 2-way through 6-way 
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combinations, to compare the effectiveness of t-way combinatorial testing with the 
original exhaustive test suite  [73]. According to the interaction rule, testing all t-way 
combinations, for a suitable value of t, should be as effective as exhaustive testing of 
discretized values. Results, shown in Table 14, were consistent with the rule. At t = 4, the 
combinatorial test suite detected all DOM faults discovered in exhaustive testing.  
 
 

t-way  Tests 
Pct  
Original 

Test Results 
Pass Fail 

2 Way 702 1.92% 202 27 
3 Way 1342 3.67% 786 27 
4 Way 1818 4.96% 437 72 
5 Way 2742 7.49% 908 72 
6 Way 4227 11.54% 1803 72 
Table 14. Comparison of t-way with exhaustive test set size. 
 
Several interesting observations can be made about these results. Notice that 2-way tests 
detected only 37.5% of the faults, pairwise testing is clearly inadequate for this 
application, and even 3-way tests detected no additional faults. However, with 4-way 
covering arrays, all faults found in exhaustive testing were discovered, with less than 5% 
of the original test set size. This is an enormous savings, particularly for a user-interface 
related application such as DOM, where human involvement is required to verify test 
results involving images on a screen. We can also observe another aspect of these results 
consistent with the observations made in the introduction to this chapter.  While the 
distribution of 1-way and 2-way faults was broad (e.g., under 20% to more than 90% for 
1-way), a very narrow distribution was observed for 4-way to 6-way faults. In other 
words, empirical data suggest that results could be quite varied for 1-way, 2-way, and 
even 3-way covering arrays. On the other hand, when we reach t-way strengths of 4-way 
and beyond, fault detection should be both stronger and more consistent across 
applications. The DOM testing results are an example of such a situation.  
 
6.2   Lockheed Martin  

 
Lockheed Martin is one of the world’s largest aerospace firms. In 2005, the company 
began investigating application of pairwise testing to improve test effectiveness and 
reduce costs [74, 75]. This work led to discussions with NIST, and subsequently a Co-
operative Research and Development Agreement (CRADA) to evaluate the cost/benefit 
tradeoffs and areas of suitable application for combinatorial testing of complex industrial 
software [76]. (One of the ways in which NIST conducts joint research with US industry 
is through CRADAs, which allow federal laboratories to work with US industry and 
provide flexibility in structuring projects, intellectual property rights, and in protecting 
industry proprietary information and research results.) 
 
The pilot project objectives included: investigating CT across multiple application areas, 
including system, software, and hardware testing; estimating possible improvements in 
fault detection with combinatorial methods; and quantifying possible reductions in test 
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cost and overall lifecycle cost through earlier fault detection. The ACTS tool was used, 
supplemented with other tools that provided complementary capabilities, including:  Air 
Academy Associates: SPC XL, DOE KISS, DOE PRO XL, DFSS MASTER; Phadke & 
Associates: rdExpert; and Hexawise’s  web-based Hexawise tool. 
 
A diverse set of eight pilot projects were included in the evaluation, spanning a cross-
section of the company’s mission areas: 
• F-16 Ventral Fin Redesign Flight Test Program – system-level problem analysis, 

comparing with historical results [75] 
• Electronic Warfare (EW) system testing – evaluating and extending existing tests  
• Navigation Accuracy,  EW performance, Sensor information, and Radar detection – 

generating test cases for subsystems  
• Electromagnetic Effects (EMI) Engineering - CT tests were compared with tests 

developed using conventional methods  
• Digital System Command testing –file function testing with multiple parameters 
• Flight Vehicle Mission Effectiveness (ME) – comparing CT with tests generated from 

a statistical analysis tool  
• Flight Vehicle engine failure modes – CT tests were compared with tests developed 

using conventional methods  
• Flight Vehicle engine upgrade –combinations of flight mode factors were compared 

with existing tests  
 
Pilot projects found CT effective for reducing the number of tests, and for improving test 
coverage [76]. While there was some variation among projects, the company estimated 
that CT would reduce testing cost by roughly 20%, while providing 20% - 50% better test 
coverage. In some cases, significant but previously undiscovered bugs were found. As a 
result of this experience, Lockheed Martin established a process to encourage adoption of 
combinatorial methods in company projects, documented lessons learned and developed 
recommendations for the testing community at large. 

  
 
 
7   Advanced Topics in Combinatorial Testing 
 
As CT has evolved in practice, new opportunities and challenges have been identified. 
This section reviews research in a number of specialized topics that are increasingly 
finding use for solving test and assurance problems.  
 
7.1   Test Suite Prioritization 
Test suite prioritization by combinatorial-based coverage has been studied from two 
perspectives. The first generates combinatorial test suites using inputs that contain 
weights on the parameter-values. The second takes an existing test suite and reorders the 
test cases by combinatorial-based interaction coverage. 
 
 
7.1.1   Generation of Prioritized Test Suites by Combinatorial-based Coverage 
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Test suites that are generated by combinatorial-based coverage use an ℓ-biased covering, 
defined as: 

A ℓ-biased covering array is a covering array CA(N; 2, k, v) in which the first  
rows form tests whose utility is as large as possible according to some criterion. 
That is, no CA(N; 2, k, v) has  rows that provide larger utility according to the 
chosen criterion. 

 
We refer to an ℓ-biased covering array as a prioritized combinatorial test suite. To 
generate a prioritized combinatorial test suite, a tester must carefully assign weights to 
parameters and their values. The weights are assigned a value between 0 (low priority) to 
1 (high priority). A test then computes the weights of pairs by multiplying their weights. 
For instance, assume we have a pair with weights .2 and .1. The total weight is then .2*.1 
= .02. The goal of the algorithm is then to cover as much “weight” among pairs as soon 
as possible rather than simply covering pairs. As discussed in the section on Algorithms, 
there are many possible categories of algorithms that are able to generate covering arrays 
and they may certainly be modified to cover weight as needed for ℓ-biased covering 
arrays. Bryce et al. give one example that uses a greedy algorithm [77]. 
 
7.1.2   Prioritization of Existing Test Suites by Combinatorial-based Coverage 
Test suite prioritization by combinatorial-based coverage has been applied to Event 
Driven Systems, focusing on combinations of parameter-values on or across windows. In 
this section, we briefly discuss this test suite prioritization problem and then give an 
example. 
 
The Test Suite Prioritization problem is defined by Rothermel et. al. [80]:  

Given T, a test suite, Π, the set of all test suites obtained by permuting the tests of 
T, and f, a function from Π to the set of real numbers, the problem is to find π∈Π 
such that ∀π′ ∈Π,f(π)≥f(π′). In this definition, Π refers to the possible 
prioritizations of T and f is a function applied to evaluate the orderings. 

 
 
Example: Consider the case of test suite prioritization for a web application in which the 
source of the test cases is a set of user-sessions. Figure 14 shows that users connect a 
website where their actions (POST/GET requests) are recorded by a webserver. A tool 
converts of these user visits to a test case. Given that there are a large number of test 
cases, we then prioritize these test cases according to a criterion. In the case of 
combinatorial-based coverage criteria for GUI and web applications, intra-window and 
inter-window interactions have been proposed and empirical studied. 
 
 
 
 
< Figure 14. Test suite prioritization example > 
 
For instance, consider the example input shown below where we have three webpages 
that have the parameters and values as shown in Table 15. We will prioritize by inter-
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window combinatorial-based coverage. That is, combinations of parameter-values 
between pages. 

Page Values for 
parameter 1 

Values for 
parameter 2 

Values for 
parameter 3 

Page 1 0,1,2,3 4,5  

Page 2 6 7,8 9 

Page 3 10, 11 12  

Table 15. Example web interface parameter values 

Next consider that we have the following test cases that visit some of these pages and 
specify values for parameters. 

Test  Test Case  

1 0,4,6,8,11 

2 0,6,10 

3 4,6,8,11 

Table 16. Test cases for web pages 

Give the input and test cases, Table 17 shows the inter-window pairs that are covered in 
these test cases. In this scenario, we select Test Case 1 as the first test case since it covers 
8 pairs while the other test cases cover fewer pairs. We mark these pairs in Test Case 1 as 
covered and then select the next case such that it covers the most remaining “uncovered 
pairs”. In this case, we select Test Case 2 since it covers 2 new pairs, but Test Case 3 
does not cover any new pairs. 

Test Covered pairs No. of pairs 
covered 
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1 (0,6)(0,8)(0,11)(4,6)(4,8)(4,11)(6,11)(8,11) 8 

2 (0,6)(0,10)(6,10) 3 

3 (4,6)(4,8)(4,11)(6,11)(8,11) 5 

Table 17. Pairwise coverage of tests 

Empirical studies have shown that prioritization by combinatorial-based coverage has 
been valuable for improving the rate of fault reduction in several studies. For instance, 
Bryce et al. studied seven systems and observed a trend that test suite prioritization by 
combinatorial-based coverage often improved the rate of fault detection for GUI and web 
applications [77]. A tool, CPUT, is freely available for testers to repeat this process with 
their own web logs. CPUT converts Apache web logs to user-session-based test suites 
and prioritizes those test suites by combinatorial-based coverage [81].   

Test suite prioritization by combinatorial-based criteria has been investigated from two 
viewpoints: (1) generate test suites from scratch by incorporating the weights of t-tuples 
into the test generation process and (2) reorder existing test suites by a combinatorial-
based coverage criterion. Existing work in this area is quite promising in regard to the 
ability to improve fault detection effectiveness. It is simple to incorporate weights into 
algorithms that generate combinatorial test suites, but testers must take care in assigning 
weights. If a tester has existing test suites, they may also prioritize by combinatorial-
based coverage. Testers may use and extend the CPUT tool to apply test suite 
prioritization for user-session-based testing in their own domains [81].  

 
7.2   Sequence covering arrays  
 
Event sequences are important in many aspects of software testing [86, 87, 88, 89, 90, 
94]. For example, a typical e-commerce web system presents a variety of controls to the 
user, such as buttons, text entry fields, selection lists, including many with sub-options 
such as pull-down menus. It should be possible for the user to engage these controls in 
any order with the system working correctly irrespective of the order used. Another 
example (in fact the application for which the methods described here were developed) is 
the process of plugging in various peripherals. If the developer has made assumptions 
about the order in which peripherals are connected and controls engaged, then a user who 
violates this expected sequence may encounter errors. Applications should work correctly 
regardless of the sequence of events selected by the user, or else indicate that a different 
order is required.  

 
In many cases, the key factor in triggering a failure is whether a particular event has 

occurred prior to a second event, regardless of whether other events have occurred 
between these two. For example, the system may fail if a pump has been started before a 
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particular valve has been opened at some point, even though other events may have 
occurred in between. Sequence covering arrays were developed to locate faults of this 
type, using combinatorial methods to increase efficiency [91]. Tests based on these arrays 
ensure that every t events from a set of n (n > t) will be tested in every possible t-way 
order, possibly with interleaving events among each subset of t events.  

  
Definition. A sequence covering array, SCA(N, S, t) is an N x S matrix where entries are 
from a finite set S of s symbols, such that every t-way permutation of symbols from S 
occurs in at least one row and each row is a permutation of the s symbols  [79].  The t 
symbols in the permutation are not required to be adjacent. That is, for every t-way 
arrangement of symbols x1, x2, ..., xt, the regular expression .*x1.*x2.*xt.* matches at least 
one row in the array.  
 
Sequence covering arrays were introduced in [79] for software testing but were later 
shown to be equivalent to t-scrambling sets [92][93]. Margalit [95] provides closer 
bounds, and additional results and algorithms were presented in [96] and [97].   

 
7.2.1   Example 
  
We may have a component of a factory automation system that uses certain devices 
interacting with a control program. We want to test the events defined in Table 18. There 
are 6! = 720 possible sequences for these six events, and the system should respond 
correctly and safely no matter the order in which they occur. Operators may be instructed 
to use a particular order, but mistakes are inevitable, and should not result in injury to 
users or compromise the operation. Because setup, connections and operation of this 
component are manual, each test can take a considerable amount of time. It is not 
uncommon for system-level tests such as this to take hours to execute, monitor, and 
complete. We want to test this system as thoroughly as possible, but time and budget 
constraints do not allow for testing all possible sequences, so we will test all 3-event 
sequences.  
 
Event Description 
a connect air flow meter 
b connect pressure gauge 
c connect satellite link 
d connect pressure readout 
e engage drive motor 
f engage steering control 
Table 18. Example system events 
 

With six events, a, b, c, d, e, and f, one subset of three is {b, d, e}, which can be 
arranged in six permutations:  [b d e], [b e d], [d b e], [d e b], [e b d], [e d b]. A test that 
covers the permutation [d b e] is: [a d c f b e]; another is [a d c b e f].  With only 10 tests, 
we can test all 3-event sequences, shown in Table 19.  In other words, any sequence of 
three events taken from a..f arranged in any order can be found in at least one test in 
Table 19 (possibly with interleaved events).  
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Test Sequence 
1 a   b   c   d   e   f 
2 f   e   d   c   b   a 
3 d   e   f   a   b   c 
4 c   b   a   f   e   d 
5 b   f   a   d   c   e 
6 e   c   d   a   f   b 
7 a   e   f   c   b   d 
8 d   b   c   f   e   a 
9 c   e   a   d   b   f 
10 f   b   d   a   e   c 
Table 19. All 3-event sequences of 6 events. 

 
Returning to the example set of events {b, d, e}, with six permutations:  [b d e] is in 

Test 5, [b e d] is in Test 4, [d b e] is in Test 8, [d e b] is in Test 3, [e b d] is in Test 7, and 
[e d b] is in Test 2. 

 
With 10 events, the number of permutations is 10!, or 3,628,800 sequences for 

exhaustive testing. In that case, a 3-way sequence covering array requires only 14 tests to 
cover all 3-way sequences, and 72 tests are all that is needed for 4-way sequences.   

  
7.2.2   Generating Sequence Covering Arrays 
Any 2-way sequence covering problem requires only two tests. A 2-way sequence 
covering array can always be constructed by listing the events in some order for one test 
and in reverse order for the second test. See Table 20 for an example.   
 
Test Sequence 
1 a   b   c   d  e 
2 e  d   c   b   a 
Table 20. 2-way sequence covering array. 
 
Sequence covering arrays are related to covering arrays in covering t-way combinations, 
but there are significant limitations in producing SCAs from covering arrays [97]. 
Consequently specialized algorithms have been developed for SCAs, and are a continuing 
subject of research. For t-way sequence covering, t > 2, greedy methods are efficient and 
produce arrays with number of tests proportional to log n, for n events [91]. An improved 
greedy algorithm was developed by Erdem [96], producing fewer tests, and further results 
by Chee et al developed algorithms producing significantly smaller arrays than either  
[79] or [96], and results are provided up to strength 5.  
 
Event sequences are encountered frequently in testing, and combinatorial methods are 
effective in reducing the testing burden, especially for applications that require human 
involvement for test setup or system configuration. Since the test array size grows only 
logarithmically with the number of events, t-way sequence coverage is practical in many 
applications. Areas for future research in sequence covering arrays include algorithms to 
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provide smaller test arrays, or in shorter time; measures of fault detection in practical 
application; and handling of constraints. Constraints are a particularly challenging issue 
with SCAs [91, 95] since even a small limitation on t-way sequences can severely limit 
the possible arrangements in the sequence covering array. Variations such as multiple 
occurrences of an event and missing events are also possible, so an additional question is 
how sequence covering arrays compare with other methods of event sequence testing, 
such as those based on finite automata or other approaches that are frequently used in 
protocol testing.  

7.3   Fault localization 

After executing a combinatorial test set, the execution status, i.e., pass or fail, of each test is 
obtained. When one or more tests fail, the next task is fault localization, i.e. identifying faults that 
cause the failure. The problem of fault localization can be divided into two sub-problems: 1) 
Identifying failure-inducing combinations. A combination is failure-inducing if its existence in a 
test causes the test to fail. 2) Identifying actual faults in the source code. A fault is a code defect 
that can be an incorrect, extra, or missing statement. 
 

7.3.1   Identifying failure-inducing combinations  

One naïve approach to identifying failure-inducing combinations is to execute all possible tests 
and then identify combinations that only appear in failed tests. This approach is, however, not 
practical as it requires exhaustive testing. In the literature, several approaches have been reported 
that try to identify failure-inducing combinations by executing only a small set of tests. These 
approaches are essentially approximate solutions. That is, failure-inducing combinations 
identified by these approaches are suspects, but not guaranteed, to be failure-inducing. 
 
Existing approaches on identifying failure-inducing combinations can be largely classified into 
two groups. The first group of approaches takes as input a single test as well as its execution 
status and tries to identify failure-inducing combinations in the test. A simple solution involves 
checking every possible combination, one at a time, contained in the failed test. This solution is 
expensive due to the fact that the number of combinations contained in a test is an exponential 
function of the size of the test. Two efficient algorithms called FIC and FIC_BS are reported to 
quickly locate a failure-inducing combination by checking only a small number of possible 
combinations [10]. These two algorithms, however, make certain assumptions that may not be 
satisfied in practice. In particular, they assume that no new inducing combination is introduced 
when a value is changed to create a new test.  
 
The second group of approaches takes as input a set of tests as well as their execution statuses and 
try to identify failure-inducing combinations that may appear in any of these tests. This group 
could further divided into two sub-groups. The approaches in the first sub-group identify failure-
inducing combinations without adding any new test to the initial test set. For example, a machine 
learning-based approach was reported that uses a technique called classification tree to identify 
failure-inducing combinations [99]. Based on the execution result of a test set, this approach 
builds a classification tree that encodes information needed to predict status of a test execution. A 
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score is assigned to each combination that is likely to cause an execution to fail. If the 
combination’s score is greater than a predefined threshold, the combination is marked as 
inducing. 
 
The approaches in the second sub-group generate and execute additional tests to identify failure-
inducing combinations. These approaches first identify suspicious combinations with respect to 
the initial test set. Suspicious combinations are combinations that appear in failed tests but not in 
passed tests. These combinations are candidates that may be failure-inducing. Then a small set of 
new tests is generated to refine the set of suspicious combinations.  
 
One approach called AIFL [100] first identifies all the suspicious combinations in a test set. Next 
it uses a strategy called OFOT (One Factor One Time) to systematically change one value of the 
failed test at a time. Therefore, k new tests are generated for each failed test of size k. These new 
tests are executed to refine the suspicious combinations set. In particular, if a suspicious 
combination appears in any new test that passes, then this combination is removed from the 
suspicious set. This process can be repeated until a stable point is reached where the suspicious 
set does not change in two consecutive iterations [101]. 
 
Another approach implemented in a tool called BEN [102] ranks suspicious combinations, after 
they are identified, based on three notions of suspiciousness, including suspiciousness of 
component, combination, and  environment. A component represents a parameter value. 
Suspiciousness of combination is computed based on suspiciousness of components that appear in 
the combination. Suspiciousness of environment with respect to a combination is computed based 
on suspiciousness of components that appear in the same test but not in the combination. The 
higher the suspiciousness of a combination and the lower the suspiciousness of its environment, 
the higher this combination is ranked.  
 
The ranking of suspicious combinations allows the next step to focus on the most suspicious 
combinations. New tests are generated for a given number of top-ranked suspicious combinations 
to refine the set of suspicious combinations. A new test is generated for a top-ranked suspicious 
combination in a way such that it includes this suspicious combination while minimizing the 
suspiciousness of environment for this combination. If the new test fails, it is likely that this 
suspicious combination is a failure-inducing combination. Otherwise, this suspicious combination 
is not suspicious any more and is removed from the suspicious set. The process of ranking and 
refinement is repeated until a stable point is reached, e.g., the set of suspicious combination does 
not change in two consecutive iterations.  
 

7.3.2   Identifying faults in the source code  

The problem of how to identify faults in the source code is one of the most studied problems in 
software engineering. Many approaches have been reported and can be applied after 
combinatorial testing [104][105]. For example, spectrum-based approaches try to identify faults 
by analyzing the spectrums of passed and failed test executions. The key idea behind spectrum-
based approaches is that faults are more likely to be exercised in failed test executions than in 
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passed executions, which is independent from the way tests are generated. Thus, it is possible to 
apply spectrum-based approaches after combinatorial testing. 
 
The BEN approach introduced in the previous section is later extended to locate faults in the 
source code [103]. The main idea of the BEN approach consists of leveraging the notion of 
failure-inducing combination to generate a group of tests that are very similar but produce 
different outcomes. Similar tests are likely to exercise similar execution traces. Different 
outcomes produced by similar tests are more likely due to existence of faults. In contrast, different 
outcomes produced by tests that are significantly different are more likely due to program logic.  
 
Given a failure-inducing combination, BEN generates a group of tests that includes one failed test 
and several passed tests. The failed test is referred to as a core member and contains the failure-
inducing combination while the suspiciousness of environment with respect to this combination is 
minimized. The passed tests are referred to as derived members and are derived from the core 
member by changing only one value of the core member. In other words, derived members differ 
from the core member in only one value but produce a different outcome.  
 
For each statement, a suspiciousness value is computed by comparing the execution trace of the 
core member and each of the derived members. A statement is highly suspicious if it is only 
exercised in failed tests but not in passed tests. Statements are ranked based on a non-ascending 
order of their suspiciousness values. The higher a statement is ranked, the more likely it is 
considered to be faulty. 
 
 

 
7.4   Relationship between combinatorial testing and structural coverage  

 
Before an application is purchased or accepted, and especially when a system fails, one of the first 
questions that will be asked is “How well was it tested?”  A variety of measures have been 
developed to answer this question, based on the extent and manner in which components of the 
system have been exercised. Code coverage is one component to the answer for this question, so 
it is natural to consider how combinatorial testing relates to code coverage. Do higher strength 
covering arrays produce greater code coverage?  If so, at what rate does code coverage increase 
with increasing values of t?   Additionally, what impact does the input model have on the 
relationship between covering array strength and coverage?  We briefly review some of the more 
widely used measures, then consider results relating t-way testing to these measures.   

• Statement coverage is the proportion of source statements exercised by the test set. 
Statement coverage is a relatively weak criterion, but provides a level of confidence that some 
basic testing has been done.  

• Decision or branch coverage is a measure of branches that have been evaluated to both 
true and false in testing.  When branches contain multiple conditions, branch coverage can be 
100% without instantiating all conditions to true/false.  

• Condition coverage measures the proportion of conditions within decision expressions 
that have been evaluated to both true and false. Note that 100% condition coverage does not 
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guarantee 100% decision coverage. For example, “if (A || B) {do something} else 
{do something else}”  is tested with [0 1], [1 0], then A and B will both have been evaluated 
to 0 and 1, but the else branch will not be taken because neither test leaves both A and B false.  

• Modified condition decision coverage (MCDC) requires that every condition in a 
decision in the program has taken on all possible outcomes at least once, each condition has been 
shown to independently affect the decision outcome, and that each entry and exit point have been 
traversed at least once [11]. 

Since t-way testing has been shown effective in detecting faults, we might expect it to generate a 
high level of code coverage as well. Although there are only a few studies regarding this question, 
results indicate that tests based on covering arrays can produce good code coverage, but the 
degree of coverage is heavily dependent on the input model used.   

7.4.1   Basic Structural Coverage 

Czerwonka [106] studied branch and statement coverage generated by covering arrays of tests for 
t=1 to t=5, including questions of how the minimum, maximum, and range of coverage varied 
with increasing strength. Also considered was whether t-way tests produced statistically 
significant differences in coverage as compared with basic test criteria such as all-values, and if 
any improvements in coverage with increasing t were the result of combinatorial effects or simply 
larger test suites. Four relatively small command line utilities were used in this study, with 100 
different test suites for each level of t.  

Consistent with early work on combinatorial testing, results in [106] showed that code coverage 
does increase as covering array strength increases, as intuition would predict. Additional 
interesting findings included: 

• Statement and branch coverage generated by the test suites at t=2 and beyond were not 
extremely high, ranging from 64% to 76% for statement and 54% to 68% for branch.  

• As covering array strength increased, the difference between minimum and maximum 
code coverage became narrower; thus higher strength test arrays produced better coverage 
and were also more stable in the level of coverage produced.  

• Both statement and branch coverage increased significantly at t=2 as compared with all-
values (t=1), but increases diminished rapidly with additional increases in t.  

• The relationship between test suite size and covering array strength varied among the 
programs tested. For some, it appeared that improved coverage was not simply the result 
of additional tests at higher t levels, but in some other cases, test suite size, coupled with 
greater input combination diversity, was responsible for the improvement.  

• The low levels of coverage may have been the result of factor and levels chosen for the 
covering arrays not sufficiently modeling the possible inputs for each program.  

7.4.2   Effects of Input Model 
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The last point noted above may also explain the significant difference in coverage success shown 
in a different study that investigated the effectiveness of combinatorial testing for achieving 
MCDC coverage. Bartholomew [107][108] applied combinatorial methods in producing MCDC-
adequate test suites for a component of software defined radio system, showing that tests based on 
covering arrays could produce 100% MCDC coverage. Recall that MCDC subsumes branch 
coverage, which in turn subsumes statement coverage, so full MCDC coverage means that 
statement and branch coverage were 100% as well. A key feature in the application of MCDC is 
that tests are constructed based on requirements. Achieving structural coverage is viewed as a 
check that the test set is adequate, i.e., the MCDC source coverage is not the goal in itself, only a 
metric for evaluating the adequacy of the test set.    

In this study, a module of 579 lines was instrumented for branch and condition coverage, then 
tested with the objective of achieving MCDC requirements specified by the Federal Aviation 
Administration. Initial tests obtained results similar to those in [106], with approximately 75% 
statement coverage, 71% branch coverage, and 68% MCDC coverage. However, full branch 
coverage, and therefore statement coverage also, was obtained after “a brief period of iterative test 
case generation” [107], which required about four hours. MCDC, a substantially more complex 
criterion, was more difficult. In a few cases, obtaining complete MCDC coverage required 
construction of code stubs to force a particular sequence of tests, with specific combinations, to be 
executed. This process required two additional iterations, and a total of 16 additional hours. 
Complete test cases, based on covering arrays, were generated with a model checker, using the 
process described in [35]. This iterative process is consistent with the traditional use of the 
MCDC criterion as a check on test adequacy, as described previously. The integrated use of 
covering array based tests, with a model checker to determine expected results for each test, was 
found to be extremely successful in reducing testing costs for MCDC. A NASA report [116] 
indicates that achieving MCDC coverage often requires seven times the initial cost of code 
development, so the results reported in [107] suggest the potential for significant cost savings if 
replicated on larger systems.  

 
7.5   Testing Very Large Systems 
 

Thus far in this chapter we have discussed primarily combinations of input values, but the 
same combinatorial ideas can be used with configurations and software product lines. Such uses 
are increasingly common, as mobile applications and other types of software with extensive 
configuration options have proliferated. These systems are often referred to as highly configurable 
software [109]. Software product lines [110,111, 112, 113, 114] are a particularly interesting type 
of configurable system, where components may be assembled according to a user’s feature 
specification, resulting in potentially millions of possible instantiations. Since a product line with 
50 features that can be included or excluded will have 250, or roughly 1015, possible instantiations, 
only a small proportion of these possible configurations will ever be built. Since it is naturally 
impossible to test even a fraction of this number of configurations, combinatorial methods have 
been used to make testing more tractable. Instead of testing all configurations, it may be practical 
to test all 2-way, 3-way, or higher strength interactions among features.  One of the most 
significant differences with SPL testing is simply the number of variables that must be 
considered. For example, an SPL may have hundreds of features that can be selected, with many 
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more constraints than in other testing problems. One SPL is reported with 6,000 features [110]. 
Several techniques have been devised to deal with this scale of test design.  
 
One of the key problems with applying combinatorial testing for a large number of variables is 
that covering array algorithms are often limited in the number of input variables that can be 
handled, and may be severely impacted by the presence of constraints.  To process constraints, 
covering array generators often use Satisfiability Modulo Theory (SMT) constraint solvers. An 
alternative is to “flatten” the model to boolean values, then use boolean satisfiability (SAT) 
solvers.   

 
A model can be “flattened” by systematically replacing variable values with boolean 

variables that represent a variable-value combination, with constraints to ensure that only one of 
the values (per variable) in the original model is selected. The process is straightforward:  for each 
variable pi with values v1, v2, …, vk, create k boolean variables that represent the selection of one 
of the k values for pi. Then establish constraints as follows. We represent pi set to value vj as pij; 
thus boolean variables are pi1….pik.  

 
• One constraint, pi1 + pi2 + … + pik   ensures that at least one of the k values is 

selected 
• One constraint for each pair of values to ensure that at most one of the k values is 

selected (where x̅ represents x negated): ( p̅i1 + p̅i2), (p̅i1 + p̅i3), … , (p̅ik-1 + p̅ik) 
 

For example, constraints can be flattened for the configuration in Table 2. In this example, 
if we have a Linux system to test, there should be no tests containing IE as the browser, since this 
combination will not be seen in practice. Thus there must be a constraint such as “Linux → !IE”.  

 
Parameter Values 
Operating system XP, OS X, RHEL 
Browser IE, Firefox, Opera 
Protocol IPv4, IPv6 
CPU Intel, AMD 
DBMS MySQL, Sybase, Oracle 
Table 21. Application configurations 

 
Using the process described previously, we arrive at the following constraint set to prevent 

more than one operating system to be selected in the flattened model.  
 

XP ∨ OX ∨ or RHEL  (1) 
!XP ∨ !OSX   (2a) 
!XP ∨ !RHEL   (2b) 
!OSX ∨ !RHEL   (2c) 

 
Constraint (1) ensures that at least one of the options is selected, and constraints 2a, 2b, and 

2c prevent more than one from being selected at the same time. Thus this set of constraints 
preserves the original semantics that these are mutually exclusive options. Note that a large 
number of these constraints may be generated – for k options, we will need one constraint like (1) 
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1. Robert Mandl (1985) “Orthogonal Latin squares: an application of experiment design to compiler
testing” Communications of the ACM, 28, pp 1054-1058
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290

4. Siddhartha R. Dalal, and C. L. Mallows (1998) “Factor-covering designs for testing software”
Technometrics, 40, pp 234-243

above to ensure at least one option is selected, and C(k,2) constraints to ensure at most one is 
selected. However, modern SAT solvers have become extremely efficient, so this approach may 
work well. In some cases, it may be preferable to use the original model with an SMT solver, and 
in others a flattened model with SAT solver may perform better. The tradeoffs between these two 
approaches are an area of ongoing research [115].  

[See below for Section 8: Future Directions]

Conclusions 

Combinatorial testing has gained acceptance as a method to reduce cost and increase the 
effectiveness of software testing in many industries. The key insight underlying this method is 
that not every parameter contributes to every failure and most failures are caused by interactions 
between relatively few parameters. Empirical data indicate that software failures are triggered by 
only a few variables interacting (generally six or fewer). This finding has important implications 
for testing because it suggests that testing up to t-way combinations of parameters for small 
values of t can provide highly effective fault detection.  

Industrial use has validated this conclusion. Combinatorial testing has seen tremendous growth 
in both industrial usage and research in the past 10 years.  From an average of less than 10 papers 
a year prior to 2005, the field has grown to include an annual conference (since 2012) [69] and 
100 or more papers a year in conferences and journals. Efficient covering array generation 
algorithms have been developed, and sophisticated tools have incorporated covering array 
algorithms with the capacity to process constraints that may be encountered in practical 
applications. As with any technology, extensions and new applications are being discovered, and 
the challenges introduced by these new uses are being addressed.  

Disclaimer:  Certain commercial products may be identified in this document, but such 
identification does not imply recommendation by the US National Institute for Standards and 
Technology, nor does it imply that the products identified are necessarily the best available for the 
purpose. 
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8. Future Directions

Combinatorial testing has evolved into an accepted practice in software engineering. As it has entered 
mainstream use, research interest has become more specialized and application-oriented. Progress 
continues to be made in covering array generation algorithms, often with the aim of applying 
combinatorial methods to a broader range of testing problems, particularly those with larger inputs and 
complicated constraints. Concurrently, researchers are improving combinatorial test design methods by 
focusing on input model analysis and tools to assist in this phase of test design. Combinatorial testing 
continues to expand into domains such as Software Product Lines and mobile applications. Here we 
review current and upcoming developments in these areas, and suggest potential impacts for practical 
testing. Finally, we briefly discuss harder problems in the field for which broadly effective solutions are 
not fully perfected.   

8.1 Algorithms 

While conventional algorithms produce very compact arrays for many inputs, improvements are being 
achieved.  One recent trend in covering array algorithms is the use of reduction strategies on existing 
arrays.  That is, a t-way covering array with N tests is systematically reduced to fewer than N tests using a 
variety of mathematical transformations.  The near-term impacts of algorithm improvements in array 
construction include extending the applicability of combinatorial methods. For applications such as 
modeling and simulation, where a single test may run for hours, reducing covering array size by even a 
few tests is of great value. 

These methods have recently improved upon the best-known sizes of some covering array configurations 
[1, 2] and active research continues in this area. Similar transformations can also be done where there are 
constraints, and if the existing test suite was not designed as a covering array [3], using reductions that 
preserve the combinatorial coverage of the original test suite.  An extension of this strategy [4] includes 
the option of allowing a subset of parameters to have values freely assigned, i.e., new tests can be 
generated rather than requiring them to be selected from the original test set.  Other work shows that 
heuristic search can in some cases compete with greedy methods in speed and practicality for covering 
array construction [6].  Additionally, greedy algorithms can be improved using graph-coloring methods 
[7], to improve on a covering array generation phase that is optimal for t=2 but does not retain optimal 
properties at t>2.     

A somewhat different aspect of applying combinatorial methods in test suite reduction is the use of 
interaction coverage as a criterion for reducing a test suite [8].   This may be particularly valuable for 
regression testing. Various test reduction strategies have been applied in the past, but sometimes result in 
deteriorating fault-detection effectiveness.  Since combination coverage is effective in fault detection, 
retaining high combinatorial coverage in a reduced test set can preserve effectiveness using fewer tests. 
Yet another practical consideration is the setup time between tests.  Many testing problems, especially for 
system integration or other large system tests, require changes to the SUT configuration with each test.  
Minimizing this time, while retaining high combination coverage can thus be an effective strategy [5]. 

8.2 Input Modeling 

A second major research trend involves the integration of combinatorial methods in the development 
environment, and addressing practical problems particular to various domains.  The first step in any 
testing effort is to understand and define the input model, that is, the set of parameters and values that will 
be included in tests, along with any constraints on values or sequencing.  This phase is an issue for any 
testing approach, not just combinatorial, but the unique aspects of CT have led researchers to tailor 
conventional methods.  Test environments tailored to CT are being developed [9, 10] to work with 
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popular frameworks such as Eclipse.  These environments will allow for validating the consistency and 
other meta-properties of constraint sets [11].    

Software product lines are increasingly used and their enormous range of possible configurations provides 
a natural domain for combinatorial testing. An extensive survey [16] shows the variety of ways in which 
t-way testing is now being applied in SPL testing and evaluation.  Because of the large number of
parameters in many SPLs, methods are being devised to extend the range of practical application for
covering array generators.  Software product lines often have hundreds, or even thousands, of variables.
Conventional covering array algorithms are resource-limited in both time and storage to a few hundred.
One approach is flattening of the input models, as described in Sect.7.5 [13].  Such methods are an active
area of research.

Two current lines of research for improving definition of the input model are classification trees and 
UML models. UML sequence diagrams can be used as inputs to rule-based tools that extract an input 
model that can be used with a covering array generator [12].  Input variables and values are extracted 
from UML message specifications and guard conditions, providing partial automation of the process to 
reduce effort for test designers. Classification trees fit well with t-way testing, because they allow easy 
analysis and definition of test parameters in a tree structure [14].  Leaf nodes of the tree can be treated as 
category partitions and used directly in generating covering arrays.  Robust tools based on classification 
trees, UML diagrams, and related concepts can help make combinatorial methods easier to use for test 
developers.  

8.3 Harder problems 

Combinatorial testing will continue to find new domains of application, but some research problems 
remain to be solved. Two broad areas in particular are likely to receive attention from researchers, 
because of their practical significance in industrial applications.    

Very large systems:  As with many areas of software engineering, scalability is essential. Fortunately, 
current combinatorial methods and covering array generators can address the vast majority of testing 
requirements.  As noted earlier in the chapter, however, development approaches such as software 
product lines may involve thousands of parameters, with large numbers of constraints.  Current covering 
array algorithms do not scale to such large problems, and existing constraint solvers are also insufficient 
for an extremely large number of constraints and variables.   

Test development time:  Case studies and experience reports show that combinatorial methods can provide 
better testing at lower cost, but these methods can require significant expertise and do not necessarily 
speed up the testing process.  As such, if time-to-market is the primary concern, conventional test 
methods are likely to be preferred by developers.  Application domains where CT has seen the most rapid 
acceptance so far are those with very high assurance requirements, such as aerospace/defense, finance, 
and manufacturing.  Reducing the time required for using combinatorial methods is a significant 
challenge. 

Research and practice have shown that combinatorial testing is highly effective across a range of testing 
problems, and this range of applicability continues to expand for new domains and technologies. The 
current high level of research interest in the field suggests that it may continue to advance, providing 
stronger testing at reduced cost for developers.  

[Next Section: Conclusions]
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