Combinatorial Testing: Theory and Practice

D. Ric?ard Kuhh, Renee Bryce Feng Duah Laleh Sh. Ghandehdrivu Le®, Raghu N.
Kacke

National Institute of Standards and TechnologyMérsity of North Texas, University of
Texas at Arlington

kuhn@nist.govylei@uta.edurenee.bryce@uta.edieng.duan@mavs.uta.edu
raghu.kacker@nist.gov

Abstract. Combinatorial testing has rapidly gaifer among software testers in the
past decade as improved algorithms have becomkalalegaiand practical success has
been demonstrated. This article reviews the thandyapplication of this method,
focusing particularly on research since 2010, aittrief background providing the
rationale and development of combinatorial metHodsoftware testing. Significant
advances have occurred in algorithm performanagkffancritical area of constraint
representation and processing. In addition to thmsedational topics, we take a look at
advances in specialized areas including test puiteitization, sequence testing, fault
localization, the relationship between combinatdgating and structural coverage, and
approaches to very large testing problems.

Keywords: algorithms, combinatorial testing, coaisits, covering array, fault
localization, interaction testing, sequence testaodtware faults, software testing, test
suite prioritization

1 Introduction

An interesting phenomenon often occurs with la@fersare systems. After successful
use for a long period of time, the software isatistl in a new location, with a different
user base, and a new set of bugs appear. Typtballseason is not surprising — the
change in usage has resulted in a different sefpots, and some of these input
combinations trigger failures that have escapedipue testing and extensive use. Such
failures are known asteraction failures because they are only exposed when two or
more input values interact to cause the prograredoh an incorrect result.

For example, a pump may be observed to fail onlgrmpressure is below a particular
level and volume exceeds a certain amount, a 2intakaction between pressure and
volume. Figure 1 illustrates how such a 2-way imt&on may happen in code. Note that
the failure will only be triggered when bgbhessure< 10 andvolume> 300 are true.
Either one of the conditions, without the other) wot be a problem.

< Figure 1. 2-way interaction failure triggeredymnlhen two conditions are true>

1.1 Empirical Dataon Failures

The example above focuses on a 2-way interactiturdaPairwise testingusing tests
that cover all 2-way combinations of parameter gajuhas long been accepted as a way
of detecting such interaction failures [1][2][3][4lowever, higher orddrway

interactions may also cause failures. For instacmesider a failure that is triggered by
unusual combinations of three or four sensor valdesthorough checking, it may be
necessary to test 3-way and 4-way combinationglfes. The question arises as to
whether testing all 4-way combinations is enougtetect all errors. What is the
distribution of interaction failures beyond 2-wayreal systems? Surprisingly, this
guestion had not been studied when NIST begantigatisg interaction failures in 1999
[5]. Results of this and subsequent studies shdhatdacross a variety of domains, all
failures were triggered by a maximum of 4-way to&y interactions [6, 7, 8]. As shown
in Figure 2, the detection rate increases rapidtly wmteraction strength (the interaction
levelt in t-way combinations is often referred tosiength. With the NASA

application, for example, 67% of the failures weiggered by only a single parameter
value, 93% by 2-way combinations, and 98% by 3-a@ybinations. The detection rate
curves for the other applications studied are simreaching 100% detection with 4 to 6-
way interactions. Studies by other researcher8,[80] have been consistent with these
results.

< Figure 2. Cumulative fault distribution >

The empirical data show that most failures aregargd by a single parameter value, or
interactions between a small number of paramegerserally two to six, a relationship
known as thenteraction rule An example of a single-value fault might be aféuf
overflow that occurs when the length of an inpthgtexceeds a particular limit. Only a
single condition must be true to trigger the fautput length> buffer size A 2-way fault

is more complex, because two particular input v&akre needed to trigger the fault, as in
the example above. More generally;vaay fault involved such conditions. We refer to
the distribution ot-way faults as théult profile.

A question naturally arises as to why the faulfipgs of different applications are
somewhat similar. While there is no definitive aeswas yet, one clue can be seen in
Figure 3. Fig. 3.1 (left) shows the distributioncoinditions in branching statements (e.qg.,
if, while) in four large avionics software modules [11]. Ngall are single conditions or
2-way, with a rapidly declining proportion invohgr8-way or more complex sets of
conditions. This curve is superimposed on the faudfiles presented above in Fig. 3.2.
Note that it closely matches the profile for the S\ database application. The data for
this application were from initial testing resul#ile the other curves are for fielded
products. Thus the distribution of faults in tm#ial testing is quite close to the
distribution of conditions documented in the FAAoet. (It is not clear why the
distribution of faults for the medical device sodive is as shown, as no information was
available on the level of testing or usage for ¢h@oducts.) The fault profiles may

reflect the profile ot-way conditions in their application software, lagtfaults are
discovered and removed, the more complex 3-wayayamd beyond, faults comprise a
larger proportion of the total. Testing and exteasisage thus tend to push the curves
down and to the right.

< Fig 3.1 and 3.2 side by side; about ¥ page >
<Figure 3.1. Distribution of conditions in branchistatements>

<Figure 3.2. Fault distribution of different apg@itcon domains>

1.2 Implicationsfor Testing

The fault profiles reported above suggests thaénggsvhich covers a high proportion of
4-way to 6-way combinations can provide strong assee. If we know thator fewer
variables are involved in failures, and we can &distway combinations, then we can
have reasonably high confidence that the applicatiidl function correctly. As shown
above, the distribution of faults varies among gggpions, but two important facts are
apparent: a consistently high level of fault detechas been observed for 4-way and
higher strength combinations; and no interactiart fdiscovered so far, in thousands of
failure reports, has involved more than six vaeablThus, the impossibility of
exhaustive testing of all possible inputs is nbagier to high assurance testing. That is,
even though we cannot test all possible combinatadrinput values, failures involving
more than six variables are extremely unlikely lnseathey have not been seen in
practice, so testing all possible combinations wairbvide little or no benefit beyond
testing 4 to 6-way combinations.

As with all testing, it is necessary to select las&t of values for variables with a large
number of values, and test effectiveness is alpemt#ent on the values selected, but
testingt-way combinations has been shown to be highly effeah practice. This
approach is known ambinatorial testingan extension of the established field of
statistical Design of Experiments (DoE). MatricemWwn ascovering arrayscover allt-
way combinations of variable values, up to a spetievel oft (typicallyt < 6), making
it possible to efficiently test all sug¢tway interactions.

Consider the example in Table 1 that shows foufigorations to consider when testing
a web application. The tester wants to test theiv app on three types of devices (called
parameters), three web browsers, three PHP versiodghree network connections.
Each parameter has 3 options (called values). hauestively test every combination
requires 3*3*3*3 = 81 possible combinations.

Device Web Browser PHP version Networ k
Connection
PC Safari 5.6.6 WiFi
Tablet Firefox 5.5.22 3G
Smart Phone Chrome 5.6.5 4G

3

Table 1 - Sample input for a combinatorial test suite that has 4 parameters that have 3
possible values each

We use the ACTS tool described in Section 3.3 teeggte a 2-way Combinatorial Test
Suite. This requires only 9 test cases (configani) in order to test all pairs of
parameter-value combinations as shown in Table [2aiAis a combination of values for
two different parameters. For instance, Test Casevérs six pairs: (PC, Safari), (PC,
PHP version 5.5.22), (PC, 3G), (Safari, PHP versi&22), (Safari, 3G), (PHP version
5.5.22, 3G).

|Test No.||Device ||Web Browser||PHPVersion||Network Connection|
11 |PC | safari | 5522 | 3G |
2 |PC || Firefox | 5.6.5 | 4G |
3 |PC | Chrome | 5.6.6 | wiFi |
4 |Tablet || Safari | 5.6.5 | WiFi |
5 |Tablet || Firefox | 5.6.6 | 3G |
6 |Tablet || Chrome | 5522 | 4G |
7 ||Smart PhorjSafari 5.6.6 | 4G |
8 ||Smart Phorjirefox |5.5.22 | WiFi |
o ||[Smart Phorj&€hrome | 5.6.5 | 3G |

Table 2 - Sample Combinatorial Test Suite for the input 3* from Table 1

The effectiveness of any software testing technappends on whether test settings
corresponding to the actual faults are includetthéntest sets. When test sets do not
include settings corresponding to actual faults,fults may not be detected.
Conversely, we can be confident that the softwarksvcorrectly foit-way
combinations contained in passing tests. Whenetsts tare derived frotaway covering
arrays, we know that 100% of thevay combinations have been tested.

2 Covering Arrays

Combinatorial testing (CT) is an adaptation of ‘thesign of experiment (DoE)’ methods
to test software and systems. CT and DoE are dyntsiing and learning methods in
the sense that a system of interest is exercis@)l {or a set of different test cases and the
behavior or response of the system for those tssiscis investigated. Historically, CT
evolved from attempts to improve performance ofvgaffe based systems starting in the
1980s [12]. DoE refers to a methodology for conshgctontrolled experiments in which

a system is exercised (worked in action) in a psefud (designed) manner for chosen
test settings of various input variables cafiectors In DoE, many factors each having
multiple test settings are investigated at the stame and the DoE plans satisfy relevant
combinatorial properties. The corresponding vahfesne or more output variables
(called responses) are measured. A statistical hjatlleast one) for the system response
is associated with each DoE test plan. The DoEplastand the responses values are

4

used to estimate the unknown parameters of the Imblae estimated model so obtained
represents statistical information for improving terformance of a class of similar
systems [13], [14], [15], [16], and [17].

2.1 History of DoE

Conventional DoE methods were developed startirigaril920s by British geneticist
Ronald Fisher and his contemporaries and theiovials, to improve agricultural
production [18], [19]. Later DoE were adapted faperiments with animals, medical
research, and then to improve manufacturing presesdl subject to unavoidable
variation. DoE continues to be a gold standarddsearch in life sciences, medical
technologies, and drug discovery. Recently the ife€®of the Secretary of Defense
promulgated more effective use of DoE in Defenser@jonal Test and Evaluation
(DOTE) [20]. The objective in conventional DoE @gsilmprove the mean response over
replications. A Japanese engineer, Genichi Tagpcbmulgated (starting in the late
1960s Japan and 1980s USA) a variation of DoE nastfar industrial experiments
whose objective is to determine test settings athvtine variation due to uncontrolled
factors was least [21], [22], [23], [24], and [2%]guchi promoted use of mathematical
objects called orthogonal arrays (OAs) as templatemdustrial experiments.
Orthogonal arrays (OAs) were largely mathematicalosities before Taguchi stated
using them for industrial experiments to develdpusi products and processes.

The concept of OAs was formally defined by C. RofR26] as generalization of Latin
squares [27]. The matrix shown in table 3 is ahayonal array (OA) referred to as
OA(8, x4, 2). The first parameter (which is 8) indicates ttumber of rows and the
second parameter (which i$<2") indicates that there are five columns of whictrfo
have 2 distinct elements each, denoted here by}{@&nd one column has 4 distinct
elements, denoted here by {0, 1, 2, 3}. The thaedameter (which is 2) indicates that this
OA has strength 2, which means that every set ofdwlumns contains all possible pairs
of elements exactly the same number of times. Elasy pair of the first four columns
contains the four possible pairs of elements {d0,1®, 11} exactly twice, and every pair
of columns involving the fifth column contains tlight possible pairs of elements {00,
01, 02, 03, 10, 11, 12, 13} exactly once. In an @Atrengtht, every set of columns
contains all possibletuples of elements exactly the same number ofdime

<Insert table 3 about here>

A fixed-value orthogonal array denoted by QI t) is anN x k matrix of elements

from a set ol symbols {0, 1, ...,\{— 1)} such that every set béicolumns contains each
possiblet-tuple of elements the same number of times. Theip®itegert is the

strength of the orthogonal array. In the contexdrmfOA, elements such as 0, 1, 2, v., (
— 1) used in table 3 are symbols rather than nusnfiére combinatorial property of an
orthogonal array is not affected by the symbols$ #na used for the elements. Every set
of three columns of a fixed value orthogonal awagtrength 2 represents a Latin square
(one column representing the rows, one column sgmiteng the columns and the third
column representing the symbols). A mixed-valuaagbnalarray is an extension of

fixed-value OA wher&k =k, + ky +... +K,; ky columns have; distinct elements,
columns have, distinct elements, ..., arld columns have,, distinct elements, where
Vi, Vo, ...,V are different. Mathematics of OAs and extensiveremces can be found in
[28]. Neil Sloane maintains an electronic librafjknown OAs [29].

Consider an industrial DoE which has five factor®BAC, D, and E and one response Y.
Suppose A, B, C, and D have two test values eanigtdd by {A, A1}, {B o, B1}, {Co,

C.} and {Do, D4}, respectively, and the factor E has four testieal denoted by {§ E;,

E,, Es}. The combinatorial test structure of this DoEhs exponential expressior‘]»@,l
which indicates that there are five factors of whiigur have two test settings each and
one has four test settings. The number of possistecases is*24' = 64. The OA(S,

2*x4', 2) can be used to set up an experiment to ewathatchange in response when the
test value of each factor is changed. The factoi8,AC, D, and E are associated with the
columns of OA(8, 24, 2) and the test values are associated with tiiEsmof the
columns. Then the rows of OA(&X&, 2) specify 8 of the 64 possible test cases shown
in table 4.

<Insert table 4 about here>

The last column of table 4 displays the valygys, ..., ys, of the response Y for the
eight test cases. The combinatorial propertienddA enable estimation of the
parameters of a statistical model associated widba plan based on the OA. The
estimated parameters and the estimated statistimaé! identify test settings of the five
factors at which the system may have improved pewdoce.

2.2 From DoE to Covering Arrays

Along with the advent of computers and telecommation systems in the 1980s,
independent verification and validation of softwarel hardware-software systems
became important. Genichi Taguchi inspired theais@As for testing software systems.
Software engineers in various companies (espedtaiiiysu in Japan and the descendent
organizations of the AT&T Bell System in the USJréed to investigate use of DoE
methods for testing software and hardware-softwgséems. The earliest papers include
the following: [30], [31], [1], [2], [3]. The limitions of OAs for independent verification
and validation of software based systems becanae st®n after they were used. (i)
Often, an OA matching the required combinatoriat structure does not exist; for
example, a non-trivial OA of strength 2 matching tast structure’®3" (four factors

with two distinct settings and one with three sgf$) is mathematically impossible. (ii)
Frequently, OA based test suites included inva# tases which are impossible (or
meaningless) to execute; for example, in testingljvarious operating systems and
browsers Linux cannot be combined with Microsofemet Explorer. (iii) Available OA
tables were limited to at most strength three, evful testing software systems, test
suites of strength larger than three may be redu(re) In testing software systems,
hundreds of factors may be involved, but avail&fetables were much smaller. Keizo
Tatsumi [2] [3] and Dalal and Mallows [4] providdte insight that in testing software,
combinatorial balancing property of OAs (that eatiple should appear the same

number of times) was not required (because parametstatistical model were not

being estimated). In testing software systems,esfiling was needed; that is, each

tuple of interest of the test settings must be mayat least once. Therefore mathematical
objects called covering arrays (CAs) are bettaeduihan OAs as templates for
generating test suites for software testing.

The concept of Covering Arrays (CAs) was formalkgfided by AT&T mathematician
Neil Sloane [32]. Additional developments on CAs t& found in the following recent
papers: [33], and [34]. A fixed-value covering groenoted by CAY, VX, t) is anN x k
matrix of elements from a setwkymbols {0, 1, ...,\{— 1)} such that every set of
columns contains each possibleiple of elements at least once. The positive ettt
the strength of the covering array. A fixed valogering array may also be denoted by
CA(N, k, v, t). A mixed-value covering array is an extensiotfixcédd value CA wherd =
ki + ko +... + Ky ki columns have; distinct elements, columns have, distinct
elements, ..., ankl, columns have, distinct elements. The six rows of rows of table 5
form a covering array CA(6,'23", 2). In these six rows each set of two columngaios
each possible pair of symbols at least once. Thebawatorial property of covering
arrays is more relaxed (less stringent) than thattbogonal arrays: a CA need not be
balanced in the sense that nottdliples need to appear the same number of timés. Al
OAs are CAs but not all CAs are OAs. (An orthogaarahy of index one in which every
t-tuple appears exactly once is the best possiberow array.) Thus the concept of
covering arrays is a generalization of OAs. Cowgarrays have a number of advantages
over OAs for testing software systems. (i) CAs barconstructed for any combinatorial
test structure of unequal numbers of test settifigdt for a combinatorial test structure
an OA exists then a CA of the same or less numbisbcases can be obtained. (iii)
CAs can be constructed for any required strengivaf/) testing, while OAs are generally
limited to strength 2 and 3. (iv) In generating ®sgtes based on CAs invalid
combinations can be deliberately excluded. (v) GAvkery large number of factors can
be constructed.

For a given number of factoksthe size of a combinatorigway test suite based on a
CA (number of rows of covering array) increasesomgntially with the number of test
settingsv of each factor. Therefore in combinatorial tesiing advisable to limit the
number of distinct discrete test settings of eaddr to less than ten; preferred values
are 2 to 4. The discrete test settings are gegyeatatermined by equivalence partitioning
and boundary value analysis of the domain of ptssidlues for each factor.

The size of combinatoriddway test suite also increases rapidly ereases. For
example consider the combinatorial test structmegrmle 34’52 from [35]. The number

of possible test cases i¥%? = 172 800. Exhaustive testing may not be practida¢ T
sizes (number of test cases)-avay test suites (determined using ACTS/IPOG}) for2,

3, 4, 5, and 6 are respectively 29, 137, 625, 2&86&,9168. This highlights the important
guestion of how the strengtlshould be set? A reasonable choice of the stréngth
requires experience with the type of SUT beingeesThe available knowledge about
the SUT and the nature of possible faults to bealed is used in the specification of test
factors, test setting, and the strenigtim one testing experiment involving 128 binary

factors (each having two distinct test settingss@Astrength fort = 2, ,..., 10 were
needed. The sizes of required covering arrays m@ted by Jose Torres-Jimenez [36]
are respectivelyN = 11, 37, 112, 252, 1231, 2462, 17544, 90300,34168940. When the
available knowledge about the SUT is severely gahithe choice dfis difficult. The
choice oft requires a tradeoff between the cost of testiegefunined by the size of test
suite) and the potential benefits of higher strerigsting.

Tables

Table 3: Orthogonal array OA(8h&", 2)

O~NO Ol WN B
P OPFRPORFR,OPR O
OPFrRPOPFRPPFORFRON
OFrRPPFPOORFRPFRFOW
P OOFRORRFROlM
W WNDNPEFE PP OOO

Table 4: DoE plan based on OA(8x2, 2)

Test
cassesA B C D E Response

1 Ao Bo Co DO EO y1
At B C D1 By ¥y
Ao Bo C; D1 E1 ¥3
At Bir Co Do E1 Vys
Bi Co D1 Ex ¥s5
A Bo C Do E Vs
Ao B C Do Es V7
A Bo Co D1 Es Vs

O~NO T, WDN
&

Table 5: Covering array CA(6:23", 2)

1 2 3 45
1/0 0 0 0O
2111110
3]0 0111
411 1 0 0 1
501 01 2
6/1 01 0 2

2.3 Combinatorial Coverage

A recent Cambridge University technical reportrasties the global cost of debugging
software has risen to $312 billion annually. Thehats suggest that software developers
spend approximately 50% of their programming timeagerage finding and fixing bugs
[117]. While there are many types of defects tluaitigbute to project costs and many
ways to test for different types of defects, oneetpf defect that we examine in this
chapter is that of interaction faults. Tests basedovering arrays can be highly effective
as they systematically coveway combinations of values. Covering arrays incltise
combinations in a very compact form, but as longlbsf the combinations are covered,
it does not matter whether they come from coveairigys or a less efficient test set,
possibly generated randomly. Test quality is obsip of central importance for

software assurance, but there are few good measuadable. A very basic, minimal
foundation is that every requirement has been addckeby at least one test. If source
code is available, then coverage measures suchtasent or branch coverage may also
be useful. Mutation testing is also a popular apphato evaluating test set adequacy.
Combinatorial methods offer an additional tool fioeasuring test set quality.

Any test withn variables contains @) t-way combinations, and any collection of tests
will contain a set of combinations, though manyauplicated. If the test set is large
enough, it may provide futtway coverage, even if not originally constructedas
covering array. Gmbinatorial coverage.e., the coverage ¢tfway combinations in a
test set, is thus a useful measure of test seity(&r][38]. Note that such a coverage
measure is independent of other measures of taitygsuch as the code coverage
induced by a particular set of tests. It is alsedly related to fault detection.
Combinatorial coverage is a measure of the inpatephat is tested.

The level of input space coverage also providesesar@asure of the degree of risk that
remains after testing. Combinatorial coverage plesia direct measure of the proportion
of input combinations for which the system has b&®swn to work correctly, which can
be used in gauging the residual risk after testing.

2.3.1 Measuresof Combinatorial Coverage

Combinatorial coverage measures include the follgwdefinitions and examples from
[35]):

Variable-value configuration For a set of variables, a variable-value configuration is a
set oft valid values, one for each of the variables, tte,variable-value configuration is
a particular setting of the variables.

Example. Given four binary variables, b, ¢ andd, for a selection of three variablasg
andd the set =0, c=1, d=0} is a variable-value configuration, and the{sst1, c=1,
d=0} is a different variable-value configuration.

Simple t-way combination coverag€or a given test set forvariables, simpléway
combination coverage is the proportiont-efay combinations af variables for which
all valid variable-values configurations are futigvered.

Example. Table 6 shows four binary variables b, c, andd, where each row represents a
test. Of the six possible 2-way variable combinadiab, ac, ad, bc, bd, ¢dnly bd and

cd have all four binary values covered, so simplea3~aoverage for the four tests in
Table 6 is 2/6 = 33.3%. There are four 3-way vdei@ombinationsabc, abd, acd, bcd
each with eight possible configurations: 000, @0, 011, 100, 101, 110, 111. Of the
four combinations, none has all eight configuradiocnvered, so simple 3-way coverage
for this test set is 0%. As shown later, test s&y provide strong coverage for some
measures even if simple combinatorial coveragews |

0

1

RO |Oo|T

=l =1
o

1

a
0
0
1
0
Table 6. Test array with four binary components

It is also useful to measure the numbet-wty combinations covered out of all possible
settings ot variables.

Total variable-value configuration coveragé&or a given combination ofvariables,
total variable-value configuration coverage is pneportion of altt-way variable-value
configurations that are covered by at least onecese in a test set. This measure may
also be referred to as totalvay coverage.

An example helps to clarify these definitions. Boe array in Table 6, there are C(4,2) =
6 possible variable combinations arfe¢@(4,2) = 24 possible variable-value
configurations. Of these, 19 variable-value configions are covered and the only ones
missing areab=11,ac=11,ad=10,bc=01,bc=10, so the total variable-value configuration
coverage is 19/24 = 79%. But only tvam andcd, out of six, are covered with all 4 value

10

pairs. So for simpleéway coverage, we have only 33% (2/6) coverage7 9% (19/24)
for total variable-value configuration coveragethdiugh the example in Table 6 uses
variables with the same number of values, thiotsessential for the measurement, and
the same approach can be used to compute covenagstf sets in which parameters
have differing numbers of values.

< Fig 4 about % page >
< Figure 4. Graph of coverage for Table | tests >

Figure 4 shows a graph of the 2-way (red/$ait 3-way (blue/dashed) coverage
data for the tests in Table 6. Coverage is givatha¥ axis, with the percentage of
combinations reaching a particular coverage les¢ha X axis. For example, the 2-way
line (red) reaches Y = 1.0 at X = .33, reflectihg fact that 2/6 of the six combinations
have all 4 binary values of two variables covef&dilarly, Y = .5 at X = .833 because
one out of the six combinations has 2 of the 4iyinalues covered. The area under the
curve for 2-way combinations is approximately 798the total area of the graph,
reflecting the total variable-value configuraticoverage, designategl Two additional
guantities are also usefdd; = the proportion of fult-way coverage; in the example
above,®, = .33. M = minimum coverage for level t; in the example, M50. It is easy
to show that & ®; + M; - ®M; [38].

In addition to analyzing the combination coveragedividual test suites, lower bounds
for coverage have been established for a numbtessotriteria, including base choice
[39] and MCDC [11]. For example, simple all-valuesting provides

S>M, = 1.

Vt—l

With base-choice testing [39] every parameter valust be covered at least once and in
a test where other values are held constant. Toeps works by specifying one or more
values for each parameter as base choices, whigtbenarbitrary, or “special interest”
values, such as values more frequently used. Wiaemeters; .. p, havey, values
each, the number of tests required is at least L (vi -1), or 14(v-1) if all n
parameters have the same number of valuds example is shown below in Table 7,
with four binary parameters.

TABLE 7. BASE CHOICE TESTS FOR* CONFIGURATION

alb|c|d
base:] 00|00
test2/1|0|0|0
test3/0{1|0]|0
test4/0|0|1|0
test5/|0| 0|0 |1

It can be shown that the minimum combination cogerar base choice M; =

w, and consequently al&> w A variety of results for other strategies
\ Vv

are given in [38].

11

2.3.2 Using Combinatorial Coverage

Figure 5 illustrates the application of combinaabdoverage analysis to a set of 7,489
tests developed for spacecraft software [40], usortyentional test design methods (not
designed as a covering array) to verify normal afi@n and a variety of fault scenarios.
The system includes 82 variables, with the confiian shown in Table 8 0f2°4%6?
(three 1-value, 75 binary, two 4-value, and twoafise). Figure 5 shows combinatorial
coverage for this system (red = 2-way, blue = 3;vgagen = 4-way, orange = 5-way).
Pairwise coverage is with 82% of the 2-way combamest covering 100% of possible
variable-value configurations covered and about @8%e 2-way combinations have at
least 75% of possible variable-value configuratioogered (long horizontal portion of
red line).

< Figure 5. Configuration coverage for spacecrséingple. >

interaction | combinations | settings cover age
2-way 3321 14761 94.0
3-way 88560 828135 83.1
4-way 1749060 34364130 68.8
5-way 27285336 60306881%3.6

Table 8. Total t-way coverage for Fig. 3 configioat
3 Algorithmsfor Combinatorial Testing

As mentioned in previous sections, Combinatoriadtihg for the purpose of software
testing stems from a rich history of Design of BExpents, including designs such as
Orthogonal Arrays [41]. This previous work has laagstrong influence on algorithms to
generate combinatorial test suites. In this secti@ndiscuss challenges to generating
combinatorial test suites, categories of algorittinas have been popular in literature,
and automated tools for this purpose.

Numerous algorithms exist to generate coveringyaros mixed-level covering arrays to
represent combinatorial test suites. This is arhidfel problem, meaning no efficient
exact method exists. Further complications arisenwd¢onstraints are required in many
practical applications. That is, events may needitoin a particular sequence or that one
event may disable the option to run other evergstérs may have test cases that they
have already run, called seeds, and want creditheocombinations covered in those test
cases rather than generating new tests to covee ihteractions again. For some inputs,
the best reported test suites or sizes are availdB|43, 44] while others, particularly
those of mixed-level covering arrays or inputs ve#ieds or constraints are not collected
and shared. In this section, we briefly reviewetiéint types of algorithms that generate
combinatorial test suites.

12

3.1 Categoriesof Algorithms

Four categories of algorithms have been populath@ipurpose of generating
combinatorial test suites. These include:

Algebraic techniques,

Greedy algorithms,

Heuristic search,

Constraint Satisfaction Problem algorithms

Software testers need to choose the techniquédsaapplies to their domain. For
instance, if a tester has 7 parameters that hayeiéns each, an algebraic technique will
give the best-known solutida3]. On the other hand, if a system has a vargpungber of
options for each parameter and constraints amorayyers, algebraic techniques are
often less effective in terms of producing a snakst suite. Constraint Satisfaction
Problem algorithms have also been used, but mamigmall inputs [43]. Table 9
summarizes tradeoffs among these algorithm classes.

Algebraic Greedy Heuristic Search
Size of test Accurate on special Reasonably Most accur ate (if
suites cases; but not as accur ate given enough time)

general as needed
Timeto Yes Yes Often time
generatetests consuming (for

good results)

Seeding/ Difficult to Yes Yes
Constraints accommodate

seeds/constraints

Table 9. Covering array algorithm characteristics

If a system has parameters with different numbeogptions, this requires a mixed-level
covering array for the solution. Greedy algorithensl heuristic search are often the best
algorithms for the scenario of mixed-level inpuier instance, consider the input
41°3'72?° The greedy DDA produces a test suite of sizat85greedy IPO reports a test
suite of size 36, and the AETG algorithm reportesh suite of size 41 [47]. Of course,
there is still variation in the results among thésee greedy algorithms in which each
outperforms the others on different inputs.

On the other hand, the best known result for if)8t2? is 15 test cases as achieved by a
heuristic search technique, simulated annealinfy [B&sters must consider the trade-off
in time when selecting a greedy or heuristic seafgbrithm. Heuristic search algorithms
may take much longer to find a “good” solution. JiEsue of time to generate test suites
becomes more exaggerated astthvy strength of coverage for a test suite increases
For instance, Tablel0 shows five sample inputsthedizes and time to generate 2-way
combinatorial test suites. Please refer to [47}lierexact details of these algorithms. The

13

deviation in the amount of time to generate thedaedes grows dramatically as the size

of the input increases.

Input our-TCG our-AETG SA

(size/time In secs) | (size/time in secs) | (size/time in secs)
513822 18/6 20/58 15/214
716151473823 | 42/57 44 /489 42 /874
514431195 25/33 28 /368 21/3T
61514°3%2% | 32/42 35/376 30/579
10%Y 213/1,333 198/6,001 183/10,833

Table 10. Example size and runtime for coveringyageneration

Constraints between parameters/options are commsuoifiware systems. Addressing
constraints is a challenging issue. We give a laweirview here, but refer the reader to
Section 5 for a more detailed discussion. Condtitpure 6 below that shows four
scenarios for constraints using the inpt#*3

1. Original scenario without constraints: This scenario has no constraints. There
are 30 pairs to cover and this may be done invase6 test cases.

2. Scenariowith constraintsthat resultsin a smaller test suite: This scenario has
3 constraints, including that f0:0 may not be camebliwith 1:3, f2:5, or f3:7.
These constraints leave 27 pairs left to covethimcase, we are able to cover all
of the pairs while respecting the constraints ifeasas 5 test cases.

3. Scenario with constraintsthat resultsin alarger test suite: This scenario also
has 3 constraints: f0:0 may not be combined witB;ffil:3 may not be combined
with f2:5; and f2:5 may not be combined with f3Due to these constraints, the
fewest number of test cases to cover all pairs wsipect to the constraints is 7
test cases.

4. Nofeasible solution: The final scenario shows that the tester specd@tbtraints
in which it is not possible to construct a solutiirwe must select an option for
each parameter in order to generate a test cageyillaotice that the constraints
prohibit us from assigning a value to each paranastd covering all pairs. For
instance, you will notice that f0:0 may not be cameld with f1:3, so we would
have to select f0:0 and f1:4 for the first two \eswof this test case. However, we
are unable to select a value that respects theraonts for f2 since f2:5 may not
be combined with f1:3 and f2:6 may not be combiwéd f1:4. This same
scenario repeats if we include f0:1 and 1.3 iest tase.

< Figure 6. Different scenarios with constraints >
Greedy algorithms and heuristic search algorithrag address constraints. On the other
hand, algebraic techniques may have difficulty adsling constraints. Section 5

discusses constraints in more depth.

3.2 Algorithmsfor Higher Strength Combinatorial Test Suites
14

Algorithms for higher strength combinatorial tefstse the challenge that the number of
t-tuples to cover increases exponentially ereases. For instance, Table 11 below
shows four sample inputs and the numbertaples to cover fot=2.k. For instance, the
input 3 has 702 2-tuples, 7,722 3-tuples,47,915 4-tupidsgmes up to 1,594,323 13-
tuples! This poses challenges for algorithms,igalerly in terms of time to generate test
suites and the amount of memory used for compuisitio

10'9'8Y [10* [3% 117
7'61 5!
4'3talq!

t=21,320 600 702 14,520

t=3|18,150 (4,000 |7,722 745,360

t=4 (157,773 [10,000|57,.915 |26,646,620
t=>5|902,055 312,741 |703,470,768
t=6(3,416,930 1,250,954 [1,301,758,600

t=k[3,628,800 [10,000 (1,594 323 |45,949,729,863,572,200
Table 11. Higher strength covering array examples

The categories of algorithms to generate teststmiehigher strength combinatorial test
suites include the same as those mentioned prdyiouthis section: algebraic
techniques, greedy algorithms, heuristic searcbritkgns, and CSP algorithms. While
the trade-offs of these algorithms are the sanikas® mentioned earlier in this section
for t=2, the amount of time and memory usage for highrength coverage often require
special consideration. For instance, Table 12 slibessize of the test suites and
execution time fot=2 throught=6 coverage of the input%using the IPOG algorithm
[48]. The result fot=2 strength coverage results in a test suite ef4&in .11 seconds
while the algorithm produces 50,920 test cases=oin 791.35 seconds.

t-way 2 3 4 5 6
Size 48 308 | 1843 | 10119 | 50920
Time | 0.11 [0.56 | 6.38 63.8 791.35

Table 12. IPOG test size and runtime

The major challenges faced by algorithms to gererainbinatorial test suites include
the time to generate test suites, the size ofdstesuites, and ability to address seeding
and constraints. Numerous algorithms exist to gegrerombinatorial test suites, with
popular categories of algorithms including algetirgreedy heuristic, and heuristic
search algorithms. Testers must consider theirqodeit domain and testing environment
when selecting an algorithm to generate coveringyar Further, testers may seek
guidance by visiting website that maintain the l@stwn reported solutions or sizes for
many inputs [42, 43, 44].

15

3.3 ExampleTools

A variety of tools can be found on the web gpigérwise.org including both commercial
and open source. Two of the most widely used eogerrray generators are Microsoft
PICT [106][48] and NIST ACTS [45]. In this sectiare review ACTS. Tools may vary
in features [50][51][52][53][54], and test enviroents are beginning to make it possible
to integrate tools in ways that testers find mestful. One of the most well-developed
such frameworks is CITlab [55], which is integrateith the Eclipse editor and provides
a means of defining domain-specific languages amtecting other Eclipse plugins.

ACTS is a freely distributed set of research tdotsoftware testing downloadable from
a NIST web site [45]. The IPOG algorithm in ACTShgeates combinatori&iway test
suites for arbitrary combinatorial test structusiesl any strengthwith support of
constraints (to exclude invalid combinations). C@hd Combinatorial Coverage
Measurement) is a research tool in ACTS for deteirmgi combinatorial coverage of a
test suite which may not have been developed fraongbinatorial viewpoint.

(1) IPOG excludes those combinations of the tetinge which are invalid according to
the user specified constraints. (2) IPOG tool sugpwo test generation modes: scratch
and extend. The former builds a test suite fromsttratch, whereas the latter allows a
test suite to be built by extending a previouslgstaucted test suite which can save
earlier effort in the testing process. (3) IPOG w&goports construction of variable-
strength test suites. For example, of the 10 &etbfs all could be covered with strength
2 and a particular subset of 4 out of 10 factodsi¢tvare known to be inter-related)
could be covered with higher strength 4. (4) IPOA verifies whether the test suite
supplied by a user covers allvay combinations. (5) IPOG tool allows the usespecify
expected output for each test case in terms afitingber of output parameters and their
values. (6) IPOG tool supports three interfaceSraphical User Interface (GUI), a
Command Line Interface (CLI), and an Applicatiomgamming Interface (API). The
GUI interface allows a user to perform most operatithrough menu selections and
button clicks. The CLI interface can be more eéfitiwhen the user knows the exact
options that are needed for specific tasks. Theiftelface is also very useful for
scripting. The API interface is designed to faatkt integration of ACTS with other tools
(see Fig. 7 below).

< Fig 7 about ¥4 page >
< Figure 7. ACTS/IPOG user interface >

ACTS/ICCM

CCM [38] measures the combinatorial coverage ekaget, including the measures
discussed in Sect. 2.3. It accepts a comma-separabees (CSV) format file where each
row represents a test and each column repres@atameter. CSV files can be exported
from any spreadsheet program. Constraints candmfigal at the beginning of the file,

in the same syntax used for ACTS/IPOG; each lirleb&iconsidered a separate
constraint. The invalid combinations will be shoiivthere are constraints specified. If

16

any coverage measurement has been specified thkdicombinations will be generated.
For continuous-valued parameters, a user can gpemifivalence classes by indicating
the number of value classes and boundaries betieeriasses. Boundaries may include
decimal values. Where the boundary between tweetas andc; is x, the system places
input values « into ¢; and valueg x in c,. CCM outputs a graphic display of coverage,
as shown in Sect. 2.3, and complete statisticesis,tnumber dfway combinations and
combination settings needed for full coverage; nemdft-way combination settings
covered, and invalid combinations as determineddnstraints. CCM was developed by
NIST and the Centro Nacional de Metrologia, Mexitbe user interface is shown in

Fig. 8.

< Fig 8 about ¥4 page >
< Figure 8. ACTS/CCM user interface >

4 Input Partitioning and Representation

Covering array algorithms can produce highly compaatrices ot-way value
combinations, but how does a tester decide whatkesgdb use? Input space partitioning
is a critical step in any software test approaal, tsaditional input modeling and
partitioning methods are equally effective for conaorial testing, but some aspects of
combinatorial methods introduce differences from #tep in conventional approaches.

4.1 Combinatorial Issuesin Input Model Development

When applied to developing input models for a comgearray tool, some issues become
particularly important — three general classesoofilcination anomalies known as
missing combinationsnfeasible combinationandineffectual combinationfs8]. The
efficiency of combinatorial testing stems partlgrfr the fact that an individual test
covers Ci,t) combinations, so a covering array can comprédasga number of
combinations into a reasonably small set of t&stgnbination anomalies add
complications to the generation of covering arrays.

Missing combinations are those that may be requoddgger a failure, but which are
not included in the test array.tAvay covering array will of course include #ivay
combinations, and some+()-way combinations, but not all (or it would bé&-&l)-way
covering array. If there are some combinations éngineering judgment leads testers to
believe are significant, they may be included dpeadly, to supplement the covering
array.

Infeasible combinations are extremely common, ardaddressed by constraints. These
are combinations which will never occur when thpliggation is in use, perhaps because
they are physically impossible. These combinatmarsot be handled by simply
removing tests that contain them, because many,qibtentially necessary,
combinations would be removed at the same times Thustraints are used to prevent
the production of infeasible combinations in theering array. For example, if

17

parameter B must have the value ‘100’ wheneverpeatar A = 100, then a constraint
such as “A=100- B=100" can be included in constraints processethbyovering
array generator. Sect.4.3, below, discusses tbiseps in detail.

Ineffectual combinations may occur when the pres@i@nother combination causes
them to be ignored by the application [57][58]. @mmon scenario is when an error
value causes the application to stop, so other cwahbns in the same test are not
included in processing. This situation is oftendiad by separating tests for error
processing from other tests [59]. Ineffectual cambibns may also result when there are
dependencies among combinations, which may be édndth constraints, as with
infeasible combinations.

It is important to keep in mind that the anomatiescussed above can occur with any
test method. For example, a test that triggergtam may terminate the application, so
other possible interactions caused by values iffidiiag tests will never be discovered.
It is simply that most methods do not consider peetar interaction to the same degree
of granularity as combinatorial testing. Using camalborial methods helps to expose
anomalies that may reduce the effectiveness of otle¢hods.

4.2 Size Considerationswith Covering Arrays

Key cost factors are the number of values per patamthe interaction strength, and the
number of parameters. The number of tests prodinceeases with' logn, so the
number of values per parameter is a critical caraiion. Guidance for combinatorial
methods usually recommends keeping the numberloésger parameter to a limit of
roughly 10. The number of parameters is much lggsficant for this approach, as the
test set size increases with lagor n parameters, and current tools make it possible to
generate covering arrays for systems with a fewdhethparameters, at least for lower
strength arrays. For larger systems, random temtrggon may be used. If there are no
constraints among variables, random generation snd@ssible to probabilistically
covert-way combinations to any desired level [61]. In there common case where
there are constraints, a large test set may beatederandomly, then its combinatorial
coverage measured while ensuring maintenance afothstraints [38].

4.3 Modeling Environment Conditions and State

When we perform input parameter modeling, it isam@nt to consider environment
conditions that often affect the behavior of asystThere are two types of environment
condition, i.e., static and dynamic conditions ti8teonditions are set before a system is
put into execution and do not change over timeniftas of static conditions include the
hardware or software platform, system configuratjand environment variables. For
instance, a web application may behave differesiéfyending on whether it is running on
a desktop machine or a mobile device like a snfaohp. In this case, the runtime
platform can be modeled as a parameter in the imogtel and the different types of
platform the web application is designed to runlobamodeled as different values of the
parameter. As another example, many software ajaits allow the user to customize

18

their behavior using a configuration file. Each foguration option can be modeled as a
parameter in the input model and the different cb®ifor a configuration option can be
modeled as different values of the correspondingrpater.

Dynamic conditions capture the state of the envirent that changes as a system runs.
For example, many systems use a database to ménegdata. The same operation may
behave differently depending on the state of theldese. Thus, it is important to model
the state of the database as a factor that cofddtdhe system behavior. This can be
accomplished by identifying a set of abstract patens that capture some important
characteristics of the database. As another exanmmpda object-oriented system, the
behavior of a method often depends on the stateeodbject on which the method is
invoked. Consider that a class managsstaf objects that does not allow duplicates.
The class provides a method nanmeskrtthat can be used to add an object into the set.
This method would behave differently depending dwtler the object already exists in
the set. Thus, it is important to model the stathe set, which can be accomplished by
identifying an abstract parameter that indicatestivr the object to be added already
exists in the set.

4.4 Typesof Constraintsfor Input Parameter Model

After parameters and values are identified, andthportant part of input parameter
modeling is to identify potential constraints thady exist between different parameters
and values. Constraints are restrictions that e satisfied by each test; otherwise, a
test may be rejected by the system under testharsdwould not serve the purpose.
Similar to identification of parameters and valuasstraints can be identified from
various sources of information, e.g., requirememutnent, and domain knowledge.

Different types of constraint can be classifieddabsn different dimensions. A constraint
can be an environment or system constraint, depgrah whether it is imposed by the
runtime environment a system is designed to rusydhe system itself. A constraint can
be a first-order or higher-order constraint, defpeg@n whether the constraint needs to
be evaluated against individual tests or setsstété\ constraint can be a temporal or
non-temporal constraint, depending on whether tmstraint specifies properties related
to time. In the following, we discuss these differgypes of constraints in more detail.

4.4.1 Environment Constraintsvs. System Constraints

Environment constraints are imposed by the runemgronment of the system under
test (SUT). For example, tester may want to enaweb application executes correctly
in different web browsers running on different ggigrg systems. In this scenario, tests
are combinations of web browsers and operatioresystSafari 6.0 or later cannot be
executed on Windows. If the web browser is Safdrid later, the operating system
cannot be Windows. Therefore, no test should coritee combination of { Safari6,
Windows }. In general, combinations that violatesiemnment constraints could never
occur at runtime and must be excluded from a st s

19

System constraints are imposed by the semantite@UT. For example, a hotel
reservation system may impose a constraint thatuh&er of guests in a room must be
no more than the number of available beds. Noteitwalid combinations which do not
satisfy system constraints may still be renderati¢cSUT at runtime. If this happens,
these invalid combinations should be properly te@dy the SUT. Therefore, it is
important to test these combinations for the pugpfgobustness testing, i.e., making
sure that the SUT is robust when invalid combinetiare presented. In order to avoid
potential mask effects, robustness testing oftgaires that each test contains only one
invalid combination.

The key difference between environment constraintssystem constraints is that
environment constraints must be satisfied by a&lltdsts whereas tests that do not satisfy
system constraints may be generated for robustasssg.

4.4.2 First-order Constraintsvs. Higher-order Constraints

First-order constraints are constraints that reigparameter values in an individual test.
For example, in a debit account transaction, thetarhof money to withdraw from an
account should be no more than either the balahtee@ccount or the withdrawal limit
of the account. In general, first-order constragas be expressed using first-order logic
expressions. Satisfaction of first-order constsag@n be evaluated based on individual
tests.

Higher-order constraints are constraints that irp@stain restrictions on test sets or
even sets of test sets, instead of on individwsstddigher-order constraints can be more
complex to understand and more expensive to evalQamnstraints encountered in
practice are typically no higher than second-ombgrstraints. Many systems impose
structural constraints, i.e., restrictions on ttiecture of test data. Structural constraints
are typically higher-order constraints. For exampleen we test software applications
that access a database, we often need to popatattables in the database as part of
the effort to set up the test environment. Thekkesatypically need to satisfy some
structural constraints in order to ensure validityhe data that are stored in these tables.
One common example is referential integrity, wiiefuires that every data object
referenced in one table must exist in some otle t&Referential integrity is a second-
order constraint, as it must be evaluated agaisst af data objects, instead of individual
data objects.

We note that most existing constraint solvers dragdle first-order constraints. In order
to handle higher-order constraints, a constraitvesa@ustomized for a particular domain
is typically required. For example, a customizedstraint solver may be developed to
handle structural constraints that are commonlpentered in database testing.

4.4.3 Temporal constraintsvs. Non-temporal Constraints
Temporal constraints impose restrictions on theptaal behavior exercised by a system.

There are two types of temporal constraints, secjogrconstraints and real-time
constraints. Sequencing constraints specify theiplesorders in which a sequence of

20

actions or events is allowed to take place. Fomgpte, a sequencing constraint may
specify that a ready signal must be received befoyeoperation is performed on a
device.

Real-time constraints specify temporal propertiégh an explicit reference to time. For
example, a real-time constraint may specify thag\aant must take place 5 milliseconds
before another event takes place. This is in centrgh sequencing constraints, which
specifies temporal properties using relative timing, without an explicit reference to
time. That is, a sequencing constraint may speéb#yan event E must happen before
another event E’, but it does not specify how mticte event E should occur before E’.

Non-temporal constraints are properties that ateetated to time. Existing work on
combinatorial testing has been mainly focused antemporal constraints. This is partly
because temporal constraints involve the extra s of time and are thus more
difficult to handle.

5. Constraints Handling in Covering Array Algorithms

In practice, covering array algorithms must be ablprocess constraints imposed by
real-world considerations. The way in which constsaare represented can have
significant impacts on algorithm and tool perforroan

5.1 Representations of Constraints

Constraints identified in an input parameter madatt be specified in a way that allows
them to be automatically processed. One commoroapprto specifying constraints is
representing them as a set of forbidden tuples,combinations that are not allowed to
appear in any test. A test is valid if and onlif does not contain any forbidden tuple.
For example, Fig. 9 shows a system consistingreketBoolean parameters A, B, C and
two user-specified forbidden tuples {A=0, C=0} &80, C=1}. Test {A=0, B=0, C=0}
is invalid since it contains forbidden tuple {A=05=0}. Test {A=0, B=0, C=1} is invalid
since it contains forbidden tuple {B=0, C=1}. T¢at0, B=1, C=1}is valid since it
doesn’t contain any forbidden tuple. When thereaal@@ge number of forbidden tuples, it
can be difficult for the user to enumerate them.

<Figure 9. Example of Invalid and Valid Tests>

Alternatively, constraints can be specified usingj¢ expressions. A logical expression
describes a condition that must be satisfied bthalltests. A test is valid if and only if it
satisfies all the logic expressions. Consider ttstesn in Fig. 9, where the forbidden
tuples can be represented by two logic express({@a€)) => (C!=0) and (B=0) =>
(C!=1). For complicated systems, logical expressiare more concise than explicit
enumeration of forbidden tuples.

5.2 Major Approachesto Constraint Handling

21

Due to the existence of constraints, some paramatees cannot be combined in the
same test. In this case, a conflict is said totéasnveen these parameter values. There
are four general approaches [70] to constraint lvagnébr constructing covering arrays,
includingabstract parametersub-modelsavoid andreplace These approaches employ
different strategies to deal with potential cortflibetween parameters.

Theabstract parameterandsub-modelgpproaches remove conflicts from the input
parameter model by means of model transformatiar o actual test generation. The
avoid approach makes sure that only conflict-free tastsselected by checking validity
of each test during actual test generation. fEpéaceapproach removes conflicts from a
test set that has already been generated by reglaialid tests with valid ones.

5.2.1 TheAbstract Parameters Approach

In theabstract parameterapproach, the original input parameter model ¢batains
conflicts is transformed to one without conflictsop to actual test generation. The main
idea is to use one or more abstract parameteeptesent valid sub-combinations of
input parameters. First, conflicting parametees, parameters that contain one or more
conflicts, are identified. Second, abstract paransedre introduced to replace these
conflicting parameters. Each abstract parametesasl to represent a group of conflicting
parameters. The values of an abstract parametesseayg valid combinations of the
corresponding conflicting parameters that satisé/diven coverage goal.

For example, assume that there exists a constfamB, between two parameters A and
B of the system shown in Fig. 10. For 2-way testangew input parameter model can be
created by replacing these two parameters withwaatistract parameter AB whose
domain consists of all the 2-way valid combinatiohparameters A and B, i.e., (A=2,
B=1), (A=3, B=1), and (A=3, B=2). A test generat@lgorithm that does not support
constraints can be applied to this new model tatera 2-way test set for this example.

<Figure 10. Example of Abstract Parameters >

Theabstract parameterapproach may lead to over-representation of sabe s
combinations. Consider the example in Figure 1€ nilimber of 2-way tests for abstract
parameter AB and parameter C would be 3 x 2 = @rgvhny valid combination

between parameters A and B will occur twice. Irt,fige tests are enough to satisfy 2-
way coverage, in which one of the three sub-conitnna between A and B only occurs
once while each of the others two sub-combinatemtsirs twice. As a result, for systems
with wide ranged parameters, it may create a taghat is too large unnecessarily.

5.2.2 The Sub-models Approach

Similar to theabstract parameterapproach, theub-modelapproach removes conflicts
by transforming the original input parameter modtekhis approach, an input parameter
model containing conflicts is rewritten into tworaore smaller conflict-free models. A
test set is generated for each smaller model anfirtal test set is the union of all the test
sets for the smaller models.

22

The key notion in theub-modelspproach is called split parameter. A split partamis

a parameter that is involved in a conflict and the the least number of values. After a
split parameter is identified, the input parametedel is split into a number of sub-
models, one for each value of the split paramétekt, for each sub-model, two-
parameter conflicts involving the value of the sparameter are eliminated by removing
values of the other parameters involved in theletaf Note that conflicts involving

more than two parameters can be reduced to caniiieblving two parameters.

Again, consider the example in Fig. 10. Parameieaiad B are involved in the conflicts.
Suppose that parameter B is used as the split p&eanThe input parameter model is
split into three sub-models, one for each valuB.ofhen conflicts are eliminated in
these three sub-models, which are shown in Fig. 11.

<Figure 11. Example of Sub-models>

Note that if conflicts still exist in the sub-modéhat do not involve the split parameter,
the process is applied recursively. When all suli@®are conflict-free, some sub-
models can be merged. A merge is possible if tiraadels differ only in one
parameter.

When no further merges can be done, tests areajeddor each sub-model. The final
test set is the union of the tests generated fdr eab-model. Consider the example in
Fig. 11, and generate 2-way tests. For sub-modékte will be 2 x 2 = 4 tests; for sub-
model 2, there will be 2 tests; for sub-model &réhwill be 0 tests. The union of these 6
tests is the final test set.

Similar to theabstract parameterapproach, this approach may create test setarhat
unnecessarily large. This is because parameteev#hat are not involved in any conflict
will be included in every sub-model, which may ¢eeaverlapping tests that do not
contribute to test coverage. In Fig. 11, suppoae{h=3, B=1, C=2} from sub-model 1

is the last test (of the six possible tests) tinbkided in the final test set. This test
doesn’t contribute to coverage, since all the 2-a@ybinations covered by this test have
been covered by other tests. That is, {A=3, B=13 hlkeady been covered by test {A=3,
B=1, C=1} from sub-model 1, {B=1, C=2} has alredolyen covered by test {A=2, B=1,
C=2} from sub-model 1, and {A=3, C=2}has alreadebeovered by test {A=3, B=2,
C=2} from sub-model 2.

5.2.3 TheAvoid Approach

Theavoidapproach does not perform any transformation enrtput parameter model.
Instead, it tries to avoid conflicts when testsactually generated. The key idea is to
avoid generating invalid tests, i.e., tests thahdbsatisfy all the constraints. This is
accomplished by checking the validity of each cdat# test and discarding tests that do
not pass the check. More discussion on how to parf@lidity check is provided in
Section 5.c.

23

Compared to thabstract parameterandsub-modelspproaches, thevoid approach
often produces a smaller test set. This approamiever, is mainly applicable to greedy
methods, which construct a test set one valudiatea That is, greedy methods consider
a test set to be a matrix of values and a tess$ $eftilt by choosing each value one at a
time. Theavoidapproach cannot be directly applied to algebrathimds, which
construct a test set based on some mathematic fasmithout the notion of selecting a
test over multiple candidates.

5.24 TheReplace Approach

Thereplaceapproach allows conflicting tests, i.e., tests tuatain conflicts, to be
created in a test set. Conflicting tests are tleemoved from the test set by replacing
them with conflict-free tests while preserving tesverage of the test set. Note that
conflicting tests cannot be simply discarded. Téisecause some combinations that do
not have a conflict may be covered by these cdnfljdests only. In this case, new
conflict-free tests must be created to cover tloesebinations in order to preserve test
coverage.

One approach to replacing an invalid test is toemakiltiple clones of the invalid test,
each of which changes one or more of the paramnatees to remove the conflicts from
the test. The number of clones is chosen accotditige strength of coverage and the
number of conflicting parameters, in order to malee that test coverage is preserved. If
multiple conflicts exist in the same test, conflieire removed one at a time via cloning,
until all conflicts are eliminated.

Table 13 shows how to apply theplaceapproach to build a 2-way test set for the
system in Fig. 10. Since it is 2-way coverage amdanflict only involves two
parameters, two clones are created for each afahfficting tests. For each pair of
clones, the value of the first parameter involuethie conflict is changed in the first
clone and the value of the second parameter indalvéhe conflict is changed in the
second clone. For example, T1 consists of a cagfisl, B=1}. This conflict is

removed by replacing T1 with T1a in which the vaddié\ is changed from 1 to 2.
Finally, after removing the invalid and redundagsts, a test set consisting of Tla, T2a,
T4, T5a and T7 is found.

Tests Parameters Tests Parameters Tests Parameters
Ignoring Constraints | A | B | C Cloned | A|B | C Replaced | A | B | C
T1 1|12 Tla * 11 |2 Tla 2 1] 2
T2 1 /21 T1b 1| * |2 Tib 1 |-]2
T3 1|3]2 T2a * 12 |1 T2a 312]1
T4 2 11]1 T2b 1| * |1 T2b 1| - 1
T5 2 12 1]2 T3a * 13 |2 T3a - 3|2
T6 2 13]1 T3b 1|1 *]2 T3b 1 2

T7 31| 2 T4 2| 1] 1 T4 2l 1 1
T8 312]1 T5a * 12 |2 T5a 3122
T9 313]2 T5b 2 | * |2 T5b 2 1] 2
T6a * 13 |1 T6a - 3|1
T6éb 2 | * 11 T6b 2 |11]1

T7 31| 2 T7 3] 1] 2

T8 32| 1 T8 3] 2| 1
T9a * 13 |2 T9a - 3|2
T9b 3| * |2 T9b 3 |11] 2

24

Table 13. Application of the replace approach todhstem in Fig. 10. Conflicts are highlighted
in each test. “*” indicates a value that needsda@hanged; “-” indicates that no value can be
assigned.

Similar to theabstract parameterandsub-modelsapproaches, theplacemethod may
create test sets that are unnecessarily largereBsen is that clones are often
overlapping. Thus, some combinations are coveree ithan once. This may create
redundant tests that can be removed without comignogitest coverage.

Note that the three approaches, abstract parametersub-modelsandreplace may
create unnecessarily large test sets. Test setsajed by these approaches can be
reduced by removing redundant tests, i.e., teatscin be removed without
compromising test coverage. This can be accompuliblggorocessing the tests one by
one and discarding tests that do not cover new cwahbns.

5.3 Validity Checking for the Avoid Approach

A key step in thevoid approach is to perform validity checking, i.e.ecking whether

all the constraints are satisfied for a given tisgeneral, there are two ways to check the
validity of a test, including constraint solvingdaforbidden tuples.

The way in which validity checking is performednsiependent from the way in which
constraints are specified. Constraints specifiedgu®rbidden tuples can be converted
into a set of logic expressions, which can be hethdking a constraint solver. Similarly,
a set of forbidden tuples can be derived from cairgs specified using logic expressions
and can be handled using a forbidden tuple-basechagh.

5.3.1 Constraint Solving Based Validity Checking

In this approach a constraint solver is typicaltypdoyed to perform validity checking.
The main idea is to encode the problem of validitgcking as a constraint satisfaction
problem. Each time when a parameter value is @sb&gned in a test, it must pass a
check performed by the constraint solver to enallithe constraints are satisfied.

The main challenge of this approach is dealing withfact that the constraint solving
process can be time-consuming, especially whenti@nts are complex. In particular,
existing constraint solvers are designed to chatikfgbility of individual formulae.
That is, they typically do not exploit informatiémom the solving history to speed up
constraint solving that may be performed in therfet

Several approaches have been reported aiming itoieptthe use of constraint solvers in
the context of combinatorial testing [66, 67]. Eaample, an algorithm called IPOG-C
[66] is developed that tries to reduce the numibeabls to the constraint solver. In
particular, algorithm IPOG-C reduces the numberadidity checks on target
combinations by leveraging the fact that if a testetermined to be valid, then all the
combinations covered by this test would be valid] thus do not have to be explicitly
checked. In case that a call to the constraintesalannot be avoided, algorithm IPOG-C
tries to simplify the solving process as much assfie. It divides constraints into non-
intersecting groups to reduce the number of comssréhat have to be checked during a

25

validity check.

5.3.2 Forbidden TuplesBased Validity Checking

An alternative approach to performing validity ckieg is to ensure that no forbidden
tuple is contained in the test. As discussed abiovieidden tuples can be used to verify if
a (complete) test is valid or not. However, a patgst that contains no forbidden tuples
may be invalid. Consider the example shown in E&).A partial test {A=0, B=0} is
invalid even when it includes no forbidden tuplescause we cannot later assign a valid
value for parameter C to make a complete test.

<Figure 12. Example of Invalid and Valid Partials&>

Generally speaking, we cannot directly use forbmdlgles to check a partial test’s
validity. This is because user-specified forbidtigpies may imply more other forbidden
tuples that are not explicitly specified. A partiast that covers no explicit forbidden
tuple may cover some implicit forbidden tuplesFig. 12, {A=0, B=0} is an implicit
forbidden tuple, making the partial test {A=0, B=dyalid.

It is not practical for the user to specify all il forbidden tuples in a system. Thus, it
is desired to automatically derive all implicit badden tuples from a set of forbidden
tuples given by the user. This would allow the digyi of a partial test to be determined in
the same way as for a complete test, i.e., by amgstite partial test does not contain any
implicit or explicit forbidden tuple. However, timeimber of forbidden tuples can be
large, making this approach very inefficient.

The concept of minimum forbidden tuple [68] is ppepd to address this challenge.
Intuitively, a minimum forbidden tuple (MFT) is arbidden tuple of minimum size. It is
shown that if a tuple is invalid, it must coveledst one MFT. Thus, a partial test is valid
if and only if it covers no MFT. This makes it pids to use MFTs to perform validity
checks on both complete and partial tests. The euwibMFTs is typically much smaller
than the number of all possible forbidden tupldsud, the cost of managing forbidden
tuples, in terms of both storage and lookup cast, ke significantly reduced.

The MFTs generation algorithm iteratively applie® tprocesses, i.e., derive and
simplify, on the set of forbidden tuples until droverges.

(Derive) Given a parametd? havingn values as its domain, andorbidden tuples each
of which contains a different value of paraméea new forbidden tuple can be
constructed by combining all values in thederbidden tuples, excluding the values of
parameteP.

(Simplify) A tuple within the set of forbidden tuples canremoved if it covers any
other forbidden tuple in the set.

The MFTs generation algorithm starts from the $explicit forbidden tuples. It

iteratively derives new forbidden tuples and siriigdi the set of forbidden tuples, until
no new forbidden tuples can be derived. The fietib$ forbidden tuples consists of all

26

MFTs which explicitly indicate all the constraintsplied by user-specified forbidden
tuples and parameter domains. We use an examphnshd-ig. 13 to describe how it
works. In steps 1 and 2, three new forbidden tuatesderived using parameter A and B.
There are no new forbidden tuples can be derivedyymrameter C, so we move to the
simplify process, as in step 3, but no tuples carelmoved at this time. The next
iteration then starts with the three new forbidtlgries which are marked with “*”. In
step 4 we derive a new tuple {C=0} using param@terhere are no new forbidden
tuples can be derived using parameter B and Cesmawve to the simplify process, as in
step 5, six forbidden tuples covering {C=0} are cared. Now there are only three
forbidden tuples remaining in the set and no nedetican be derived from them. They
are MFTs and can be used to perform validity chegki

<Figure 13. Example of MFTs Generation Process>

6 Case Studies

Combinatorial testing has found extensive use ftwswe development, and a variety of
examples for diverse industries can be found irptieeeedings of the International
Workshop on Combinatorial Testing [69]. The twghlighted in this section illustrate
quite different aspects of this method in practidee first, on the Document Object
Model, is an interesting validation of the interantrule and its implications. Tests
covering 4-way combinations detected all faultsin complex real-world software

that had previously been detected with exhauséiseng of discretized values. The
second example below is, to our knowledge, theeltrgublished study on industrial use
of combinatorial testing, a 2.5 year investigatidithe method to aerospace software that
demonstrated significant cost savings and impragsticoverage.

6.1 Document Object Model

The Document Object Model (DOM) [71][72] is a Wokidide Web Consortium (W3C)
standard for representing and interacting with deents through web browsers. DOM
makes it easier for developers to incorporate remusntial access in web sites by
providing conventions for updating the contentystiure, and style of documents
dynamically. Implemented in browsers, DOM compogéwpically include tens of
thousands of lines of source code. Because ahig@itance to internet applications
worldwide, developed the DOM Conformance Test Suiie assist developers in
ensuring interoperability and predictable behawioveb site components. The
conformance tests are comprehensive, providinguestive testing (all possible
combinations) of discretized values for 35 DOM dsgen total of more than 36,000 tests.
Multiple commercially produced DOM implementationsre tested.

Since the DOM test suite was designed for exhagiséisting, it provided a unique
opportunity to evaluate one of the major advantage®mbinatorial testing — the
empirical interaction rule that faults involve aamumber of factors interacting, so
covering allt-way faults, for small value df can be nearly as effective as exhaustive
testing. Five new DOM test suites were createdeng 2-way through 6-way

27

combinations, to compare the effectivenesswy combinatorial testing with the
original exhaustive test suite [73]. Accordinghe interaction rule, testing dalwvay
combinations, for a suitable valuetpfhould be as effective as exhaustive testing of
discretized values. Results, shown in Table 14ewensistent with the rule. At 4, the
combinatorial test suite detected all DOM faultscdvered in exhaustive testing.

Pct Test Results
tway VEEE Original | Pass Fail
2 Way 702 1.92% 202 27
3 Way 1342 3.67% 786 27
4 Way 1818 4.96% 437 72
5 Way 2742 7.49% 908 72
6 Way 4227 11.54% 1803 72

Table 14. Comparison of-way with exhaustive test set size.

Several interesting observations can be made d@besk results. Notice that 2-way tests
detected only 37.5% of the faults, pairwise tesiingearly inadequate for this
application, and even 3-way tests detected noiadditfaults. However, with 4-way
covering arrays, all faults found in exhaustivditgswere discovered, with less than 5%
of the original test set size. This is an enormsasngs, particularly for a user-interface
related application such as DOM, where human iremlent is required to verify test
results involving images on a screen. We can disemwe another aspect of these results
consistent with the observations made in the intctidn to this chapter. While the
distribution of 1-way and 2-way faults was broadj(eunder 20% to more than 90% for
1-way), a very narrow distribution was observed4avay to 6-way faults. In other
words, empirical data suggest that results coulguie varied for 1-way, 2-way, and
even 3-way covering arrays. On the other hand, wereach-way strengths of 4-way
and beyond, fault detection should be both stroagdrmore consistent across
applications. The DOM testing results are an exarnpbkuch a situation.

6.2 Lockheed Martin

Lockheed Martin is one of the world’s largest apax® firms. In 2005, the company
began investigating application of pairwise testmgmprove test effectiveness and
reduce costs [74, 75]. This work led to discusswite NIST, and subsequently a Co-
operative Research and Development Agreement (CRA®Avaluate the cost/benefit
tradeoffs and areas of suitable application for loimtorial testing of complex industrial
software [76]. (One of the ways in which NIST cootdyjoint research with US industry
is through CRADAS, which allow federal laboratortesvork with US industry and
provide flexibility in structuring projects, intelttual property rights, and in protecting
industry proprietary information and research ress)l

The pilot project objectives included: investiggti@T across multiple application areas,

including system, software, and hardware testisgimating possible improvements in
fault detection with combinatorial methods; andmifging possible reductions in test

28

cost and overall lifecycle cost through earlierfaetection. The ACTS tool was used,
supplemented with other tools that provided completary capabilities, including: Air
Academy Associates: SPC XL, DOE KISS, DOE PRO XESS MASTER; Phadke &
Associates: rdExpert; and Hexawise’'s web-basedttese tool.

A diverse set of eight pilot projects were includedhe evaluation, spanning a cross-

section of the company’s mission areas:

* F-16 Ventral Fin Redesign Flight Test Program tesyslevel problem analysis,
comparing with historical results [75]

» Electronic Warfare (EW) system testing — evaluating extending existing tests

* Navigation Accuracy, EW performance, Sensor infation, and Radar detection —
generating test cases for subsystems

* Electromagnetic Effects (EMI) Engineering - CT sastere compared with tests
developed using conventional methods

» Digital System Command testing —file function tegtivith multiple parameters

* Flight Vehicle Mission Effectiveness (ME) — compayiCT with tests generated from
a statistical analysis tool

* Flight Vehicle engine failure modes — CT tests wempared with tests developed
using conventional methods

* Flight Vehicle engine upgrade —combinations oftitigrnode factors were compared
with existing tests

Pilot projects found CT effective for reducing tin@mber of tests, and for improving test
coverage [76]. While there was some variation anyfmogects, the company estimated
that CT would reduce testing cost by roughly 20%ilevproviding 20% - 50% better test
coverage. In some cases, significant but previoustliscovered bugs were found. As a
result of this experience, Lockheed Martin estélgitsa process to encourage adoption of
combinatorial methods in company projects, docueteidgssons learned and developed
recommendations for the testing community at large.

7 Advanced Topicsin Combinatorial Testing

As CT has evolved in practice, new opportunities eimallenges have been identified.
This section reviews research in a number of speedhtopics that are increasingly
finding use for solving test and assurance problems

7.1 Test SuitePrioritization

Test suite prioritization by combinatorial-based@@ge has been studied from two
perspectives. The first generates combinatorialsigises using inputs that contain
weights on the parameter-values. The second takegisting test suite and reorders the
test cases by combinatorial-based interaction emeer

7.1.1 Generation of Prioritized Test Suites by Combinatorial-based Coverage

29

Test suites that are generated by combinatoriadébasverage use drbiased covering,
defined as:
A (-biased covering arrais a covering arraCA(N; 2, k, V) in which the first
rows form tests whose utility is as large as pdsslbcording to some criterion.
That is, naCA(N; 2, k,) has rows that provide larger utility according to the
chosen criterion.

We refer to art-biased covering arrags a prioritized combinatorial test suite. To
generate a prioritized combinatorial test suitesstéer must carefully assign weights to
parameters and their values. The weights are asigwvalue between 0 (low priority) to
1 (high priority). A test then computes the weigbitgairs by multiplying their weights.
For instance, assume we have a pair with weighasd2.1. The total weight is then .2*.1
=.02. The goal of the algorithm is then to covenaich “weight” among pairs as soon
as possible rather than simply covering pairs. i8su$sed in the section on Algorithms,
there are many possible categories of algorithrasare able to generate covering arrays
and they may certainly be modified to cover weighneeded foi-biased covering
arrays.Bryce et al. give one example that uses a grelgyitom [77].

7.1.2 Prioritization of Existing Test Suites by Combinatorial-based Coverage

Test suite prioritization by combinatorial-based@@ge has been applied to Event
Driven Systems, focusing on combinations of paramedlues on or across windows. In
this section, we briefly discuss this test suitentization problem and then give an
example.

The Test Suite Prioritization problem is definedRythermel et. al. [80]:
Given T, a test suité], the set of all test suites obtained by permutiegtests of
T, and f, a function fronil to the set of real numbers, the problem is to fiil
such thatvrn' €l1,f(z)>f(n"). In this definition I refers to the possible
prioritizations of T and f is a function applieddwaluate the orderings.

Example: Consider the case of test suite priotibpafor a web application in which the
source of the test cases is a set of user-sessiguse 14 shows that users connect a
website where their actions (POST/GET requestsjem@ded by a webserver. A tool
converts of these user visits to a test case. Ghatrthere are a large number of test
cases, we then prioritize these test cases acgotalia criterion. In the case of
combinatorial-based coverage criteria for GUI aradbapplications, intra-window and
inter-window interactions have been proposed angirgral studied.

< Figure 14. Test suite prioritization example >

For instance, consider the example input showrnvbelbere we have three webpages
that have the parameters and values as shown le TabWe will prioritize by inter-

30

window combinatorial-based coverage. That is, com@itons of parameter-values
between pages.

Page Valuesfor Valuesfor Valuesfor
parameter 1 | parameter 2 | parameter 3

Page 1 0,1,2,3 4.5
Page 2 6 7,8 9
Page 3 10, 11 12

Table 15. Example web interface parameter values

Next consider that we have the following test cdbasvisit some of these pages and
specify values for parameters.

Test Test Case
1 0,4,6,8,11
2 0,6,10

3 4,6,8,11

Table 16. Test cases for web pages

Give the input and test cases, Table 17 showsiteewindow pairs that are covered in
these test cases. In this scenario, we selectClasst 1 as the first test case since it covers
8 pairs while the other test cases cover fewespdiie mark these pairs in Test Case 1 as
covered and then select the next case such taers the most remaining “uncovered
pairs”. In this case, we select Test Case 2 sinoavers 2 new pairs, but Test Case 3
does not cover any new pairs.

Test | Covered pairs No. of pairs
covered

31

1 (0,6)(0,8)(0,11)(4,6)(4,8)(4,11)(6,11)(8,1[L) 8
2 (0,6)(0,10)(6,10) 3
3 (4,6)(4,8)(4,11)(6,11)(8,11) 5

Table 17. Pairwise coverage of tests

Empirical studies have shown that prioritizationdoynbinatorial-based coverage has
been valuable for improving the rate of fault retttutin several studies. For instance,
Bryce et al. studied seven systems and observexha that test suite prioritization by
combinatorial-based coverage often improved the oafault detection for GUI and web
applications [77]. A tool, CPUT, is freely availaldbr testers to repeat this process with
their own web logs. CPUT converts Apache web logsser-session-based test suites
and prioritizes those test suites by combinatdraded coverage [81].

Test suite prioritization by combinatorial-baseiiecra has been investigated from two
viewpoints: (1) generate test suites from scratchhborporating the weights ¢ftuples
into the test generation process and (2) reordstieg test suites by a combinatorial-
based coverage criterion. Existing work in thisaagequite promising in regard to the
ability to improve fault detection effectivenessislsimple to incorporate weights into
algorithms that generate combinatorial test suliastesters must take care in assigning
weights. If a tester has existing test suites, thay also prioritize by combinatorial-
based coverage. Testers may use and extend the @BLI® apply test suite
prioritization for user-session-based testing girtbwn domains [81].

7.2 Sequencecovering arrays

Event sequences are important in many aspectdtefase testing [86, 87, 88, 89, 90,

94]. For example, a typical e-commerce web systesgnts a variety of controls to the
user, such as buttons, text entry fields, seledists, including many with sub-options
such as pull-down menus. It should be possibl¢hfemuser to engage these controls in
any order with the system working correctly irrestpee of the order used. Another
example (in fact the application for which the noett described here were developed) is
the process of plugging in various peripheralshéf developer has made assumptions
about the order in which peripherals are conneateticontrols engaged, then a user who
violates this expected sequence may encountersedpplications should work correctly
regardless of the sequence of events selectecehystr, or else indicate that a different
order is required.

In many cases, the key factor in triggering a failis whether a particular event has
occurred prior to a second event, regardless ofhiven@ther events have occurred
between these two. For example, the system maif &appump has been started before a

32

particular valve has been opened at some point, gngeigh other events may have
occurred in between. Sequence covering arrays dereloped to locate faults of this
type, using combinatorial methods to increase iefiicy [91]. Tests based on these arrays
ensure that evenyevents from a set of (n > t) will be tested in every possikiavay

order, possibly with interleaving events among eadtset of events.

Definition. A sequence covering array, SQA(S, } is anN x Smatrix where entries are
from a finite seS of s symbols, such that eversway permutation of symbols frof
occurs in at least one row and each row is a peatmuatof thes symbols [79]. The
symbols in the permutation are not required todyacent. That is, for evetyway
arrangement of symbolg, x,, ..., X, the regular expressionx**x,.* x.* matches at least
one row in the array.

Sequence covering arrays were introduced in [719$ddtware testing but were later
shown to be equivalent tescrambling sets [92][93]. Margalit [95] provideeser
bounds, and additional results and algorithms \wegsented in [96] and [97].

7.2.1 Example

We may have a component of a factory automatiotesyshat uses certain devices
interacting with a control program. We want to tingt events defined in Table 18. There
are 6! = 720 possible sequences for these six gvand the system should respond
correctly and safely no matter the order in whiodytoccur. Operators may be instructed
to use a particular order, but mistakes are inblgtaand should not result in injury to
users or compromise the operation. Because sasnpgections and operation of this
component are manual, each test can take a coaBidexrmount of time. It is not
uncommon for system-level tests such as this te takirs to execute, monitor, and
complete. We want to test this system as thorougslyossible, but time and budget
constraints do not allow for testing all possilegences, so we will test all 3-event
sequences.

Event | Description

connect air flow meter

connect pressure gauge

connect satellite link

connect pressure readout

engage drive motor

engage steering control

|~ 0D | QO |T|D

able 18. Example system events

With six eventsa, b, c, d, eandf, one subset of three ib{d, ¢, which can be
arranged in six permutationsb i 4, [be d,[dbd,[d e, [e bd, [e d §. A test that
covers the permutationib § is: [ad c fb § anotheris&d d c b e]f With only 10 tests,
we can test all 3-event sequences, shown in T&bldrilother words, any sequence of
three events taken froe.farranged in any order can be found in at leastestan
Table 19 (possibly with interleaved events).

33

Test | Sequence
1 abocdef
2 fedcb a
3 d efabec
4 c bafed
5 b fadoce
6 ecdafb
7 aefcbd
8 d bcfea
9 ceadb f
10 |[f b d a e ¢
Table 19. All 3-event sequences of 6 events.

Returning to the example set of everiisd, @, with six permutations: f d 4 is in
Test5,pedisinTest4,fibdisin Test8,flelisinTest3,¢b disin Test 7, and
[edQisin Test 2.

With 10 events, the number of permutations is @08,628,800 sequences for
exhaustive testing. In that case, a 3-way sequenwering array requires only 14 tests to
cover all 3-way sequences, and 72 tests are aligimeeded for 4-way sequences.

7.2.2 Generating Sequence Covering Arrays

Any 2-way sequence covering problem requires omtytests. A 2-way sequence
covering array can always be constructed by liglivegevents in some order for one test
and in reverse order for the second test. See Pabler an example.

Test | Sequence

1 abcde

2 edc b a

Table 20. 2-way sequence covering array.

Sequence covering arrays are related to covernagsin covering-way combinations,
but there are significant limitations in produci®@@As from covering arrays [97].
Consequently specialized algorithms have been dpedlfor SCAs, and are a continuing
subject of research. Fbéway sequence covering, t > 2, greedy methods &ogeet and
produce arrays with number of tests proportiondb¢m, for n events [91]. An improved
greedy algorithm was developed by Erdem [96], pcatyfewer tests, and further results
by Chee et al developed algorithms producing sicamtly smaller arrays than either

[79] or [96], and results are provided up to sttarty

Event sequences are encountered frequently imggestnd combinatorial methods are
effective in reducing the testing burden, espegifait applications that require human
involvement for test setup or system configurati®imce the test array size grows only
logarithmically with the number of eventsyay sequence coverage is practical in many
applications. Areas for future research in sequeongering arrays include algorithms to

34

provide smaller test arrays, or in shorter timeasuges of fault detection in practical
application; and handling of constraints. Consteaare a particularly challenging issue
with SCAs [91, 95] since even a small limitationtemay sequences can severely limit
the possible arrangements in the sequence covamiag. Variations such as multiple
occurrences of an event and missing events argaksible, so an additional question is
how sequence covering arrays compare with othelnadstof event sequence testing,
such as those based on finite automata or otheoagipes that are frequently used in
protocol testing.

7.3 Fault localization

After executing a combinatorial test set, the ekieoustatus, i.e., pass or fail, of each test is
obtained. When one or more tests fail, the nextim&ult localization, i.e. identifying faultsdh
cause the failure. The problem of fault localizatean be divided into two sub-problems: 1)
Identifying failure-inducing combinations. A comhiion is failure-inducing if its existence in a
test causes the test to fail. 2) Identifying acfaalts in the source code. A fault is a code defec
that can be an incorrect, extra, or missing statéme

7.3.1 ldentifying failure-inducing combinations

One naive approach to identifying failure-inducaagnbinations is to execute all possible tests
and then identify combinations that only appedailed tests. This approach is, however, not
practical as it requires exhaustive testing. Inliteeature, several approaches have been reported
that try to identify failure-inducing combinatioby executing only a small set of tests. These
approaches are essentially approximate solutidmet i§, failure-inducing combinations

identified by these approaches are suspects, Ibguavanteed, to be failure-inducing.

Existing approaches on identifying failure-induco@mbinations can be largely classified into
two groups. The first group of approaches takas@# a single test as well as its execution
status and tries to identify failure-inducing condtions in the test. A simple solution involves
checking every possible combination, one at a tooatained in the failed test. This solution is
expensive due to the fact that the number of coatlnns contained in a test is an exponential
function of the size of the test. Two efficient@lighms called FIC and FIC_BS are reported to
quickly locate a failure-inducing combination byecking only a small number of possible
combinations [10]. These two algorithms, howeveakencertain assumptions that may not be
satisfied in practice. In particular, they assuhs ho new inducing combination is introduced
when a value is changed to create a new test.

The second group of approaches takes as inputcd &sits as well as their execution statuses and
try to identify failure-inducing combinations thaty appear in any of these tests. This group
could further divided into two sub-groups. The agumhes in the first sub-group identify failure-
inducing combinations without adding any new teghe initial test set. For example, a machine
learning-based approach was reported that usehaidgee called classification tree to identify
failure-inducing combinations [99]. Based on the@xion result of a test set, this approach
builds a classification tree that encodes infororaheeded to predict status of a test execution. A

35

score is assigned to each combination that isyliteetause an execution to falil. If the
combination’s score is greater than a predefinesktiold, the combination is marked as
inducing.

The approaches in the second sub-group generatexaodte additional tests to identify failure-
inducing combinations. These approaches first iffestispicious combinations with respect to
the initial test set. Suspicious combinations amlainations that appear in failed tests but not in
passed tests. These combinations are candidatandlyebe failure-inducing. Then a small set of
new tests is generated to refine the set of sugmatombinations.

One approach called AIFL [100] first identifies #ike suspicious combinations in a test set. Next
it uses a strategy called OFOT (One Factor One Jlimsystematically change one value of the
failed test at a time. Therefore, k new tests areegated for each failed test of size k. These new
tests are executed to refine the suspicious cortibingaset. In particular, if a suspicious
combination appears in any new test that passes,tkiis combination is removed from the
suspicious set. This process can be repeatedausttible point is reached where the suspicious
set does not change in two consecutive iteratib@s][

Another approach implemented in a tool called BEBP] ranks suspicious combinations, after
they are identified, based on three notions of isimsness, including suspiciousness of
component, combination, and environment. A compbrepresents a parameter value.
Suspiciousness of combination is computed baseigpiciousness of components that appear in
the combination. Suspiciousness of environment veigipect to a combination is computed based
on suspiciousness of components that appear isatine test but not in the combination. The
higher the suspiciousness of a combination an¢bthier the suspiciousness of its environment,
the higher this combination is ranked.

The ranking of suspicious combinations allows tegtrstep to focus on the most suspicious
combinations. New tests are generated for a givemboer of top-ranked suspicious combinations
to refine the set of suspicious combinations. A test is generated for a top-ranked suspicious
combination in a way such that it includes thigpstisus combination while minimizing the
suspiciousness of environment for this combinatibtihe new test fails, it is likely that this
suspicious combination is a failure-inducing conaltion. Otherwise, this suspicious combination
is not suspicious any more and is removed fronstispicious set. The process of ranking and
refinement is repeated until a stable point isledce.g., the set of suspicious combination does
not change in two consecutive iterations.

7.3.2 ldentifying faultsin the source code

The problem of how to identify faults in the souomele is one of the most studied problems in
software engineering. Many approaches have beemtegpand can be applied after
combinatorial testing [104][105]. For example, dpe&m-based approaches try to identify faults
by analyzing the spectrums of passed and faildcetexutions. The key idea behind spectrum-
based approaches is that faults are more likegtexercised in failed test executions than in

36

passed executions, which is independent from thetests are generated. Thus, it is possible to
apply spectrum-based approaches after combinatestihg.

The BEN approach introduced in the previous sedtidater extended to locate faults in the
source code [103]. The main idea of the BEN appra@ansists of leveraging the notion of
failure-inducing combination to generate a groupests that are very similar but produce
different outcomes. Similar tests are likely to rexse similar execution traces. Different
outcomes produced by similar tests are more lideky to existence of faults. In contrast, different
outcomes produced by tests that are significantfgrént are more likely due to program logic.

Given a failure-inducing combination, BEN generaeagoup of tests that includes one failed test
and several passed tests. The failed test is egfféoras a core member and contains the failure-
inducing combination while the suspiciousness @frenment with respect to this combination is
minimized. The passed tests are referred to agetEmembers and are derived from the core
member by changing only one value of the core mentb®ther words, derived members differ
from the core member in only one value but produdédferent outcome.

For each statement, a suspiciousness value is ¢ethpy comparing the execution trace of the
core member and each of the derived members. @nséatt is highly suspicious if it is only
exercised in failed tests but not in passed t&ttements are ranked based on a non-ascending
order of their suspiciousness values. The higlsat@ment is ranked, the more likely it is
considered to be faulty.

7.4 Relationship between combinatorial testing and structural coverage

Before an application is purchased or acceptedgeapdcially when a system fails, one of the first
guestions that will be asked is “How well was #gteel?” A variety of measures have been
developed to answer this question, based on tlemeanhd manner in which components of the
system have been exercised. Code coverage is amgooent to the answer for this question, so
it is natural to consider how combinatorial testiettes to code coverage. Do higher strength
covering arrays produce greater code coverage®, Ht what rate does code coverage increase
with increasing values @? Additionally, what impact does the input mokaVe on the
relationship between covering array strength aneiage? We briefly review some of the more
widely used measures, then consider results rglatiray testing to these measures.

o Statement coverageisthe proportion of source statements exercised éyest set.
Statement coverage is a relatively weak criterut,provides a level of confidence that some
basic testing has been done.

o Decision or branch coverageisa measure of branches that have been evaluated to both
true andfalsein testing. When branches contain multiple coadg, branch coverage can be
100% without instantiating all conditions to trusde.

o Condition coverage measuresthe proportion of conditions within decision expressions
that have been evaluated to both true and falste that 100% condition coverage does not

37

guarantee 100% decision coverage. For exartiple,(A || B) {do sonet hing} el se
{do sonet hi ng el se}” is tested with [0 1], [1 O], then A and B will bohave been evaluated
to 0 and 1, but thelsebranch will not be taken because neither tesieleéoth A and B false.

) Modified condition decision coverage (M CDC) requires that every condition in a
decision in the program has taken on all possibteames at least once, each condition has been
shown to independently affect the decision outcamne,that each entry and exit point have been
traversed at least once [11].

Sincet-way testing has been shown effective in detecindts, we might expect it to generate a
high level of code coverage as well. Although tremeeonly a few studies regarding this question,
results indicate that tests based on covering aicag produce good code coverage, but the
degree of coverage is heavily dependent on the mpdel used.

7.4.1 Basic Structural Coverage

Czerwonka [106] studied branch and statement cgeeganerated by covering arrays of tests for
t=1 to t=5, including questions of how the minimumaximum, and range of coverage varied
with increasing strength. Also considered was wiidtiwvay tests produced statistically
significant differences in coverage as comparet hasic test criteria such as all-values, and if
any improvements in coverage with increasing t vileeeresult of combinatorial effects or simply
larger test suites. Four relatively small command utilities were used in this study, with 100
different test suites for each leveltof

Consistent with early work on combinatorial testirggults in [106] showed that code coverage
does increase as covering array strength increasastuition would predict. Additional
interesting findings included:

e Statement and branch coverage generated by theuitet at=2 and beyond were not
extremely high, ranging from 64% to 76% for statatrend 54% to 68% for branch.

e As covering array strength increased, the diffeedmetween minimum and maximum
code coverage became narrower; thus higher stréesftlarrays produced better coverage
and were also more stable in the level of covepgduced.

e Both statement and branch coverage increased isgmify att=2 as compared with all-
values (=1), but increases diminished rapidly with addisibimcreases ih

e The relationship between test suite size and cogeiray strength varied among the
programs tested. For some, it appeared that imdroseerage was not simply the result
of additional tests at higher t levels, but in sartieer cases, test suite size, coupled with
greater input combination diversity, was resporesibl the improvement.

e The low levels of coverage may have been the re$déictor and levels chosen for the
covering arrays not sufficiently modeling the pbgsinputs for each program.

7.4.2 Effectsof Input Model

38

The last point noted above may also explain theifscgnt difference in coverage success shown
in a different study that investigated the effeetigss of combinatorial testing for achieving
MCDC coverage. Bartholomew [107][108] applied conatorial methods in producing MCDC-
adequate test suites for a component of softwdmeedkradio system, showing that tests based on
covering arrays could produce 100% MCDC coverageaR that MCDC subsumes branch
coverage, which in turn subsumes statement covesadgell MCDC coverage means that
statement and branch coverage were 100% as wk#y/Aeature in the application of MCDC is
that tests are constructed based on requiremeaiseving structural coverage is viewed as a
check that the test set is adequate, i.e., the M&®Cce coverage is not the goal in itself, only a
metric for evaluating the adequacy of the test set.

In this study, a module of 579 lines was instruradrfor branch and condition coverage, then
tested with the objective of achieving MCDC requiemnts specified by the Federal Aviation
Administration. Initial tests obtained results danito those in [106], with approximately 75%
statement coverage, 71% branch coverage, and 682 Mverage. However, full branch
coverage, and therefore statement coverage alsoplbtained after “a brief period of iterative test
case generation” [107], which required about foaurs. MCDC, a substantially more complex
criterion, was more difficult. In a few cases, obitag complete MCDC coverage required
construction of code stubs to force a particulgusece of tests, with specific combinations, to be
executed. This process required two additionahitens, and a total of 16 additional hours.
Complete test cases, based on covering arrays,geeerated with a model checker, using the
process described in [35]. This iterative procesonsistent with the traditional use of the
MCDC criterion as a check on test adequacy, agitbescpreviously. The integrated use of
covering array based tests, with a model checkdetermine expected results for each test, was
found to be extremely successful in reducing tgstmsts for MCDC. A NASA report [116]
indicates that achieving MCDC coverage often rexgugeven times the initial cost of code
development, so the results reported in [107] ssigidee potential for significant cost savings if
replicated on larger systems.

7.5 Testing Very Large Systems

Thus far in this chapter we have discussed primmagmbinations of input values, but the
same combinatorial ideas can be used with configurs®and software product lines. Such uses
are increasingly common, as mobile applicationsa@hdr types of software with extensive
configuration options have proliferated. Theseeayst are often referred to laighly configurable
software [109]. Software product lines [110,1112,1113, 114] are a particularly interesting type
of configurable system, where components may benalsied according to a user’s feature
specification, resulting in potentially millions pbssible instantiations. Since a product line with
50 features that can be included or excluded wen2®, or roughly 1&°, possible instantiations,
only a small proportion of these possible configioras will ever be built. Since it is naturally
impossible to test even a fraction of this numidesamfigurations, combinatorial methods have
been used to make testing more tractable. Inste@s$ting all configurations, it may be practical
to test all 2-way, 3-way, or higher strength intéi@ns among features. One of the most
significant differences with SPL testing is simge number of variables that must be
considered. For example, an SPL may have hundfddatares that can be selected, with many

39

more constraints than in other testing problems SRL is reported with 6,000 features [110].
Several techniques have been devised to deal wglstale of test design.

One of the key problems with applying combinatot@sting for a large number of variables is
that covering array algorithms are often limitedhe number of input variables that can be
handled, and may be severely impacted by the pres&rconstraints. To process constraints,
covering array generators often use Satisfiabiodulo Theory (SMT) constraint solvers. An
alternative is to “flatten” the model to booleanues, then use boolean satisfiability (SAT)
solvers.

A model can be “flattened” by systematically rejphacvariable values with boolean
variables that represent a variable-value comhmnativith constraints to ensure that only one of
the values (per variable) in the original modedetected. The process is straightforward: for each
variablep; with valuesvy, v,, ..., Vi, createk boolean variables that represent the selectiomef o
of thek values foip;. Then establish constraints as follows. We repriggeset to valuey; aspi;
thus boolean variables gog....pi.

e One constrainty; + piz + ... +pik ensures that at least one of kealues is

selected
e One constraint for each pair of values to ensuaeahmost one of thevalues is
selected (wherg representg negated): (i1 + pi2), (Piz + Pia), --- » Eik-1+ Pik)

For example, constraints can be flattened for trdiguration in Table 2. In this example,
if we have a Linux system to test, there shoulddéests containing IE as the browser, since this
combination will not be seen in practice. Thus ¢éheust be a constraint such as “Linux!IE”.

Parameter Values

Operating system | XP, OS X, RHEL
Browser IE, Firefox, Opera
Protocol IPv4, IPv6

CPU Intel, AMD

DBMS MySQL, Sybase, Oracle

Table 21. Application configurations

Using the process described previously, we arrivheafollowing constraint set to prevent
more than one operating system to be selectecifigtiened model.

XP v OX v or RHEL (1)

IXP v 10SX (2a)
IXP v IRHEL (2b)
I0SX v IRHEL (2¢)

Constraint (1) ensures that at least one of thewpis selected, and constraints 2a, 2b, and
2c prevent more than one from being selected addhee time. Thus this set of constraints
preserves the original semantics that these areaiyexclusive options. Note that a large
number of these constraints may be generatedk-dptions, we will need one constraint like (1)

40

aboveto ensureat leastoneoptionis selected, and(k,2) constraintgo ensureat mostoneis
selected. However, mode8AT solvershavebecomeextremelyefficient, sothis approachmay
work well. In some cases, ihay be preferableto usethe original modelwith an SMT solver, and
in othersa flattenedmodelwith SAT solvermay performbetter. Theradeoffsbetweenthesetwo
approacheareanareaof ongoingresearcij115].

[See below for Section 8: Future Directions]

Conclusions

Combinatoriatestinghasgained acceptana@s a methodo reduce coséndincreasehe
effectivenessf softwaretestingin manyindustries. Thé&eyinsightunderlyingthis methodis
thatnot every parameter contributes every failureand mostfailuresare causedy interactions
betweerrelativelyfew parameters. Empiricalataindicatethatsoftware failuresare triggeredby
only afew variablesinteracting (generallgix or fewer). Thisfinding hasimportantimplications
for testingbecauset suggestghattestingup to t-way combinationsof parametergor small
valuesof t canprovidehighly effective fault detection.

Industrialusehasvalidatedthis conclusion. Combinatoridgkstinghasseen tremendous growth
in bothindustrialusageand researchn the past10 years. Fronan average ofessthan10 papers
a yearprior to 2005, thefield hasgrownto includean annualconferencgsince2012)[69] and
1000r more papersayearin conferencesnd journals. Efficientoveringarray generation
algorithmshavebeendeveloped, andophisticatedools haveincorporateadoveringarray
algorithmswith the capacityto processconstraintshatmay be encountereth practical
applications. Asvith any technology extensiongnd new gplicationsare beingdiscoveredand
thechallengesntroducedoy these new ses ardeingaddressed.

Disclaimer: Certaincommercialproductsmay be identifiedin this document, busuch
identificationdoesnot imply recommendatioby theUS National Institut€or Standards and
Technology, nodoesit imply thatthe productsidentifiedare necessarilyhe bestavailable forthe
purpose.

References

1. Robert Mandl (1985) “Orthogonal Latin squares: an application of experiment design to compiler
testing” Communications of the ACM, 28, pp 1054-1058

2. Keizo Tatsumi (1987) “Test-case design support system” Proceedings of International Conference
on Quality Control, Tokyo, pp 615-620

3. Keizo Tatsumi, S. Watanabe, Y. Takeuchi, and H. Shimokawa (1987) “Conceptual support for test
case design” Proceedings of 11th IEEE Computer Software and Applications Conference, pp 285-
290

4. Siddhartha R. Dalal, and C. L. Mallows (1998) “Factor-covering designs for testing software”
Technometrics, 40, pp 234-243

41

42

10.

11.

12.

13.
14.
15.
16.

17.

18.

19.

20.

21.

22.

23.
24,

D.R. Wallace, D.R. Kuhn, Failure Modes in MedicaJite Software: an Analysis of 15 Years of
Recall Datalnternational Journal of Reliability, Quality, aréafety Engineering/ol. 8, No. 4,
2001.

D.R. Kuhn, M.J. Reilly, An Investigation of the Alpgability of Design of Experiments to
Software Testing27th NASA/IEEE Software Engineering WorkshdASA Goddard Space
Flight Center, 4-6 December, 2002 .

D.R. Kuhn, D.R. Wallace, and A. Gallo, “SoftwareuRdnteractions and Implications for
Software Testing,TEEE Transactions on Software EngineeriB§(6): 418-421, 2004

K. Z. Bell and Mladen A. Vouk. On effectivenesspafirwise methodology for testing network-
centric softwareProceedings of the ITI Third IEEE International Gerence on Information &
Communications Technologyages 221-235, Cairo, Egypt, December 2005.

K.Z. Bell, Optimizing Effectiveness and Efficienoy Software Testing: a Hybrid Approach, PhD
Dissertation, North Carolina State University, 2006

Z. Zhang, and J. Zhang, “Characterizing failuresiragi parameter interactions by adaptive
testing,” In Proceeding of ACM International Symjpws on Software Testing and Analysis
(ISSTA), 2011, pp. 331-341.

J. J. Chilenski, An Investigation of Three Formglef Modified Condition Decision Coverage
(MCDC) Criterion, Report DOT/FAA/AR-01/18, April 21, 214 pp.

Raghu N. Kacker, D. Richard Kuhn, Yu Lei, and Jafmelsawrence (2013) “Combinatorial
testing for software: An adaptation of design gberxments” Measurement, 46, pp 3745-3752

William G. Cochran and G. M. Cox (1950) Experimémasigns, New York: Wiley
Oscar Kempthorne (1952) Design and Analysis of Erpents, New York: Wiley
George W. Snedecor and W. G. Cochran (1967) Stafidflethods, lowa State University Press

George E. P. Box, W. G. Hunter, and J. S. Hunt@r§) Statistics for Experimenters, New York:
Wiley

Douglas C. Montgomery (2004) Design and AnalysiExgberiments, 4th edition, New York:
Wiley

R. A. Fisher (1925) Statistical Methods for Reskahorkers, Edinburgh: Oliver and Boyd
R. A. Fisher (1935) The Design of Experiments, Bdigh: Oliver and Boyd

C. McQueary, “Using Design of Experiments for Opiersal Test and Evaluation,” Memo, Office
of the Secretary of Defense, May 2009,
www.dote.osd.mil/pub/policies/2009/200905UsingDaEfoE_ MOA. pdf

Genichi Taguchi (1986) Introduction to Quality Emgering, White Plains New York: UNIPUB
Kraus International

Genichi Taguchi (1987) System of Experimental Desi¢pl. 1 and Vol. 2, White Plains New
York: UNIPUB Kraus International (English transtats of the 3-rd edition of Jikken Keikakuho
(Japanese) published in 1977 and 1978 by Maruzen)

Genichi Taguchi (1993) Taguchi on Robust Technolbgyelopment, New York: ASME Press

Raghu N. Kackar (1985) “Off-line quality controlafameter design and the Taguchi method”
Journal of Quality Technology, 17, pp 176-209

43

25

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.
37.

38.

39.

40.

41.

42.

. M. S. Phadke (1989) Quality Engineering using RoBesign, Englewood Cliffs New Jersey:
Prentice Hall

C. R. Rao (1947) “Factorial experiments derivabbef combinatorial arrangements of arrays”
Journal of Royal Statistical Society (Suppleme@atp 128-139

Damaraju Raghavarao (1971) Constructions and Catdrial Problems in Design of
Experiments, Dover: New York

A. S. Hedayat, N. J. A. Sloan, and J. Stufken (J@®hogonal Arrays: Theory and Applications,
New York: Springer

Neil J. A. Sloane (webpage) http://wwwz2.researtlta@/~njas/oadir/

Shinobu Sato and H. Shimokawa (1984) “Methods éttirsy software test parameters using the
design of experiments method (in Japanese)” Prawgedf 4th Symposium on Quality Control in
Software, Japanese Union of Scientists and Engrn(@&ISE), pp 1-8

Hiroki Shimokawa (1985) “Method of generating saite test cases using the experimental
design (in Japanese)” Report on Software Enging&I, Information Processing Society of
Japan, N0.1984-SE-040

Neil J. A. Sloane (1993) “Covering arrays and is¢eting codes” Journal of Combinatorial
Designs, 1, pp 51-63

James F. Lawrence, R. N. Kacker, Yu Lei, D. R. Kudmd M. Forbes (2011) “A survey of binary
covering arrays” The Electronic Journal of Combaonats, 18, P84

Jose Torres-Jimenez and E. Rodriguez-Tello (2002 bounds for binary covering arrays using
simulated annealing” Information Sciences, 18518p-152

D. Richard Kuhn, R. N. Kacker, and Yu Lei (2010a&rcal Combinatorial Testing, NIST Special
Publication 800-142 (http://csrc.nist.gov/groupsBdatts/documents/SP800-142-101006.pdf)

Jose Torres-Jimenez (webpage) http://www.tampsesiray. mx/~jtj/CA.php

D.R. Kuhn, R. N. Kacker, and Yu Lei. Combinatoli4tasurement Tool User Guide, Available
online at http://csrc.nist.gov/groups/SNS/acts/deents/ComCoverage110130.pdf, Published on
January 30, 2011 and last accessed on May 14, 2012.

Kuhn, D. R., Dominguez Mendoza, |., Kacker, R.&lLei, Y. (2013, March). Combinatorial
coverage measurement concepts and applicatioSaftware Testing, Verification and Validation
Workshops (ICSTW), 2013 IEEE Sixth Internationahf€eence orfpp. 352-361).

Ammann, P. E. & Offutt, A. J. (1994). Using fornmakthods to derive test frames in category-
partition testingProc. Ninth Annual Conf. Computer Assuraf€®MPASS'94),Gaithersburg
MD, IEEE Computer Society Press, pp. 69-80.

J.R. Maximoff, M.D. Trela, D.R. Kuhn, R. Kacker, ‘Method for Analyzing System State-space
Coverage within a t-Wise Testing FrameworlEEE International Systems Conference 2010
Apr. 4-11, 2010, San Diego.

Raghu N. Kacker, D. Richard Kuhn, Yu Lei, Jamekdwrence. Combinatorial testing for
software: an adaptation of design of experimdvitsasurementvol. 46, no. 9, November 2013,
pp. 3745-3752.

NIST Covering Array Tables, available online atptifmath.nist.gov/coveringarrays/ipof/ipof-
results.html, accessed on 3/23/15

44

43. C. Colbourn. Covering Array Tables for t=2,3,4,56ailable online at:
http://www.public.asu.edu/~ccolbou/src/tabby/cagaitinl, accessed on 3/23/15

44. . Torres. Covering Arrays, available at: http:/fmtamps.cinvestav.mx/~jtj/#, access on 3/23/15

45. Combinatorial Methods in Software Testing. Natioimstitute of Standards and Technology,
http://csrc.nist.gov/acts

46. M. B. Cohen, C. J. Colbourn, P. B. Gibbons, andBAMugridge. Constructing test suites for
interaction testing. IProceedings of the International ConferenceSmiftware Engineering (ICSE
2003) pages 28-48, May 2003.

47. R. Bryce. Algorithms for Covering arrays, Arizon&® University Ph.D. Dissertation, 2006.

48. J. Czerwonka, “Pairwise Testing in the Real Worldtp://msdn.microsoft.com/en-
us/library/cc150619.aspx

49.Zhao, Y., Zhang, Z., Yan, J., & Zhang, J. (2013ytha Cascade: a test generation tool
for combinatorial testing. I8oftware Testing, Verification and Validation Wdrégs
(ICSTW), 2013 IEEE Sixth International Conferenodpp. 267-270). IEEE.

50. Satish, P., Sheeba, K., & Rangarajan, K. (2013 ciaDeriving Combinatorial Test
Design Model from UML Activity Diagram. lIi$oftware Testing, Verification and
Validation Workshops (ICSTW), 2013 IEEE Sixth miional Conference ofpp. 331-
337). IEEE.

51.Qu, X., & Cohen, M. B. (2013, March). A study irnqoitization for higher strength
combinatorial testing. I®oftware Testing, Verification and Validation Wdrgs
(ICSTW), 2013 IEEE Sixth International Conferenodpp. 285-294). IEEE.

52. Arcaini, P., Gargantini, A., & Vavassori, P. (20March). Validation of models and tests
for constrained combinatorial interaction testimgSoftware Testing, Verification and
Validation Workshops (ICSTW), 2014 IEEE Seventrhational Conference ofpp. 98-
107). IEEE.

53.Wu, H., Nie, C., & Kuo, F. C. (2014, March). Tesits prioritization by switching cost.
In Software Testing, Verification and Validation Wdrips (ICSTW), 2014 IEEE Seventh
International Conference ofpp. 133-142). IEEE.

54.Farchi, E., Segall, I., Tzoref-Brill, R., & Zlotrk¢ A. (2014, March). Combinatorial
Testing with Order Requirements. $oftware Testing, Verification and Validation
Workshops (ICSTW), 2014 IEEE Seventh InternatiGoaference oifpp. 118-127).
IEEE.

55. A. Gargantini, & P. Vavassori, (2012, April). Gii: a laboratory for combinatorial
interaction testing. ISoftware Testing, Verification and Validation (10S2012 IEEE
Fifth International Conference ofpp. 559-568). IEEE.

56. Y. Lei, R. Kacker, D. Kuhn, V. Okun and J. Lawreni&OG/IPOD: Efficient Test Generation for
Multi-Way Combinatorial Testingsoftware Testing, Verification, and Reliabilitol. 18, no. 3,
September 2008, pp. 125-148.

57.Segall, 1., Tzoref-Brill, R., & Zlotnick, A. (2012April). Simplified modeling of
combinatorial test spaces. Software Testing, Verification and Validation (1§S2012
IEEE Fifth International Conference dpp. 573-579). IEEE.

58. E. Miranda, Test Parameter Analysis. Chapter 5.iKithn, R.N. Kacker, and Y. Lei,
Introduction to Combinatorial TestingRC Press, 2013.

45

59.Segall, 1., Tzoref-Brill, R., & Zlotnick, A. (2012pril). Common patterns in

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

combinatorial models. I8oftware Testing, Verification and Validation (1Sd012
IEEE Fifth International Conference dpp. 624-629). IEEE.

N. Changhai, L. Hareton, A Survey of Combinatofiakting, ACM Computing Surveys, 43(2): ,
2014.

A. Arcuri, L. Briand, "Formal Analysis of the Prdtifity of Interaction Fault Detection Using
Random Testing IEEE Trans. Software Engineering8 Aug. 2011. IEEE Computer Society,
http://doi.ieeecomputersociety.org/10.1109/TSE.288 1

Kuhn, D. Richard, Raghu N. Kacker, and Yu Lei. fottuction to Combinatorial Testing”. CRC
press, 2013.

Chays, David, Saikat Dan, Phyllis G. Frankl, Fitygd. Vokolos, and Elaine J. Weber. “A
framework for testing database applications.” ACNMGSOFT Software Engineering Notes 25, no.
5 (2000): 147-157.

Grindal, M. and Offutt, J. , “Input Parameter MadglFor Combination Strategies”, Proceedings
of the IASTED International Conference on Softwargyineering (SE2007), Innsbruck, Austria,
13-15 Feb 2007, pages 255-260.

Vilkomir, Sergiy A., W. Thomas Swain, and Jessd&’Hore. “Software input space modeling with
constraints among parameters.” In Computer Soft@aceApplications Conference, 2009.
COMPSAC'09. 33rd Annual IEEE International, volpp, 136-141. IEEE, 2009.

Yu, Linbin, Yu Lei, Mehra Nourozborazjany, Raghulacker, and D. Richard Kuhn. “An
efficient algorithm for constraint handling in comatorial test generation.” In Software Testing,
Verification and Validation (ICST), 2013 IEEE Sixtfternational Conference on, pp. 242-251.
IEEE, 2013.

Cohen, Myra B., Matthew B. Dwyer, and Jiangfan SExploiting constraint solving history to

construct interaction test suites.” In Testing: demic and Industrial Conference Practice and
Research Techniques-MUTATION, 2007. TAICPART-MUTAN 2007, pp. 121-132. IEEE,

2007.

Yu, Linbin, Feng Duan, Yu Lei, Raghu N. Kacker, d@dRichard Kuhn. “Combinatorial Test
Generation for Software Product Lines Using Minimunwvalid Tuples.” In High-Assurance
Systems Engineering (HASE), 2014 IEEE 15th Intéomal Symposium on, pp. 65-72. IEEE,
2014.

IEEE, International Workshop on Combinatorial Tiegti
http://lieeexplore.ieee.org/xpl/conhome.jsp?reloag&punumber=1001832

Grindal, Mats, Jeff Offutt, and Jonas Mellin. “Héind constraints in the input space when using
combination strategies for software testing.” (2006

World Wide Web Consoritum, “Document Object Modeltcessed 28 Mar 2015,
http://www.w3.org/DOM/

World Wide Web Consoritum, DOM Level 3 Events Sfieation, 8 Sept 2009.
http://www.w3.0org/TR/DOM-Level-3-Events/

C. Montanez-Rivera, D.R. Kuhn, M. Brady, R.M. Rieel]. Reyes and M.K. Powers, Evaluation
of Fault Detection Effectiveness for Combinatodatl Exhaustive Selection of Discretized Test
Inputs,Software Quality Professionalol. 14, no. 3, June 2012.

46

74

75.

76.

7.

78.

79.

80.

81.

82.

83.

84.

85.

86.

J. Hagar, R. Kuhn, R. Kacker, and T. Wissink, Idtreing Combinatorial Testing in a Large
Organization: Pilot Project Experience Report [pdsThird International Workshop on
Combinatorial Testing (IWCT 2014), in Proceedinfthe Seventh IEEE International
Conference on Software, Testing, Verification aatiddtion (ICST 2014)Cleveland, Ohio,
March 31-April 4, 2014, p. 153.

Cunningham, A. M., Hagar, J., & Holman, R. J. (20Agril). A system analysis study comparing
reverse engineered combinatorial testing to expdgment. InSoftware Testing, Verification and
Validation (ICST), 2012 IEEE Fifth International @ference orfpp. 630-635). IEEE.

J.D. Hagar, T.L. Wissink, D.R. Kuhn, R.N. Kackentfoducing Combinatorial Testing in a Large
Organization”, IEEE Computer, v. 48, n. 4, Apr130

R. Bryce, S. Sampath, A. Memon. Developing a Siipelel and Test Prioritization Strategies
for Event-Driven Software, Transactions on Softwangineering, (January 2011), 37(1):48-64.

R. Bryce, S. Sampath, J. Pedersen, S. ManchestsrStiite Prioritization by Cost-based
Combinatorial Interaction Coverage, Internatiormalrdal on Systems Assurance Engineering and
Management (Springer), (April 2011), 2(2): 126-134.

D.R. Kuhn, J.M. Higdon, J.F. Lawrence, R.N. Kackérlei, "Combinatorial Methods for Event
Sequence Testing", Workshop on Combinatorial Tgstin-located with the International
Conference on Software Testing Verification andidéion, April 2012

G. Rothermel, R. H. Untch, C. Chu, and M. J. Hatrélrioritizing test cases for regression
testing. IEEE Trans. on Software Engineering, (0etd®2001), 27(10):929-948.

S. Sampath, R. Bryce, S. Jain, S. Manchester. Aféo@ombinatorial-based Prioritization and
Reduction of User-Session-Based Test Suites, Pdoweseof the International Conference on
Software Maintenance (ICSM) - Tool Demonstratioack; Williamsburg, VA (September 2011),
pp. 574-577.

S. Sampath, R. Bryce. Improving the effectivenddesi suite reduction for user-session-based
testing of web applications, Information and Sofev@iechnology Journal (IST, Elsevier), (July
2012), 54(7): 724-738.

Sreedevi Sampath, Renée Bryce, Gokulanand Viswavatii Kandimalla, A. Glnes Koru,
"Prioritizing User-Session-Based Test Cases for Wiglication Testing", International
Conference on Software Testing, Verification, aradidation (ICST) (April 2008), pp..141-150.

X. Qu, M. B. Cohen, and K. M. Woolf. Combinatoriateraction regression testing: A study of
test case generation and prioritization. In Inbn€rence on Software Maintenance, pages 255—
264, Oct. 2007.

R. Bryce and C. Colbourn. Prioritized interactiesting for pair-wise coverage with seeding and
constraints. Journal of Information and Softwarehir®logy, 48(10):960-970, 2006.

D.L. Parnas, “On the Use of Transition Diagramthm Design of User Interface for an Interactive

a7

87.

88.

89.

90.

91.

92.
93.

94.

95.

96.

97.

98.

Computer System,” Proc. 24th ACM Nat'l Conf., pp. 379-385, 1969.

W. E. Howden, G. M. Shi: Linear and Structural Event Sequence And§ySiSA 1996pp. 98-
106, 1996.

S. Chow, “Testing Software Design Modeled by Finite-State Machines,” IEEE Trans. Softw. Eng.,
vol. 4, no. 3, pp. 178-187, 1978.

J. Offutt, L. Shaoying, A. Abdurazik, and P. Ammann, “Generating Test Data From State-Based
Specifications,” J. Software Testing, Verification and Reliabiit). 13, no. 1, pp. 25-53, March,
2003.

B. Sarikaya, “Conformance Testing: Architectures and Test Sequences,” Computer Networks and
ISDN Systemsol.17, no. 2, North-Holland, pp. 111-126, 1989.

Kuhn, D. R., Higdon, J. M., Lawrence, J. F., Kacker, R. N., & Lei, Y. (2012, April).
Combinatorial methods for event sequence testing. In Software Testing, Verification and
Validation (ICST), 2012 IEEE Fifth International Conferencejom. 601-609).
IEEE.http://csrc.nist.gov/groups/SNS/acts/documents/event-seq101008.pdf

B. Dushnik, Concerning a certain set of arrangements, Proc. Amer. Math. Soc, 1 (1950), 788-796.

J. Spencer, Minimal scrambling sets of simple orders, Acta Math. Acad. Sci. Hungary, 22
(1971)/1972), 349-353.

X. Yuan, M.B. Cohen, A. Memon, “Covering Array Sampling of Input Event Sequences for
Automated GUI Testing”, November 2085E '07:Proc. 22nd IEEE/ACM Intl. Conf. Automated
Software Engineeringpp. 405-408.

Margalit, O. (2013, March). Better Bounds for Event Sequencing Testing. In Software Testing,
Verification and Validation Workshops (ICSTW), 2013 IEEE Sixth International Conference on
(pp. 281-284). IEEE.

E. Erdem, K. Inoue, J. Oetsch, J. P'uhrer, H. Tompits, and C. Yilmaz, Answer-set programmingas
a new approach to event-sequence testing, in Proceedings of the 2nd InternationalConference on
Advances in System Testing and Validation Lifecycle, XpertPublishing Services, 2011, pp. 25—
34.

Chee, Y. M., Colbourn, C. J., Horsley, D., & Zhou, J. (2013). Sequence covering arAdfs.
Journal on Discrete Mathematicg7(4), 1844-1861.

C. Yilmaz, M. B. Cohen, and A. Porter, “Covering arrays for efficient fault characterization in
complex configuration spaces,” in Proceedings of the 2004 ACM SIGSOFT international
symposium on Software testing and analysis, New York, NY, USA, 2004, pp. 45-54.

48

99. E. Dumlu, C. Yilmaz, M. B. Cohen, and A. Porter, “Feedback driven adaptive combinatorial
testing,” in Proceedings of the 2011 International Symposium on Software Testing and Analysis,
New York, NY, USA, 2011, pp. 243-253.

100. L. Shi, C. Nie, and B. Xu, “A software debugging method based on pairwise testing,” in
Proceedings of the 5th international conference on Computational Science, Berlin, Heidelberg,
2005, pp. 1088-1091.

101. Z. Wang, B. Xu, L. Chen, and L. Xu, “Adaptive Interaction Fault Location Based on
Combinatorial Testing,” In Proceedings of 10th International Conference on Quality Software
(QSIC), 2010, pp. 495-502.

102. L. S. Ghandehari, Y. Lei, T. Xie, D. R. Kuhn, and R. Kacker, “ldentifying Failure-
Inducing Combinations in a Combinatorial Test Set,” in Proceedings of 5th IEEE International
Conference on Software Testing, Verification and Validation, 2012, pp. 370-379.

103. L. S. Ghandehari, Y. Lei, R. Kacker, R. Kuhn, D. Kung, “Fault Localization Based on
Failure-Inducing Combinations”, In -IEEE International Symposium on Software Reliability
Engineering (ISSRE), Pasadena, CA, 2013, pp. 168-177.

104. J. Jones, M. Harrold, and J. Stasko, “Visualization of test information to assist fault
localization,” In Proceedings of the 24th International Conference on Software
Engineering (ICSE), 2002, pp. 467-477.

105. M. Renieris and S. Reiss, “Fault localization with nearest neighbor queries,” In
Proceedings of the International Conference on Automated Software Engineering, 2003, pp. 30-
39.

106. Czerwonka, J. (2013, March). On Use of Coverage Metrics in Assessing Effectiveness of
Combinatorial Test Designs. 8oftware Testing, Verification and Validation Workshops
(ICSTW), 2013 IEEE Sixth International Conferencdpm 257-266). IEEE.

107. Bartholomew, R. (2013, May). An industry proof-of-concept demonstration of automated
combinatorial test. In Automation of Software Test (AST), 2013 8th International Workshop on
(pp. 118-124). IEEE.

108. Bartholomew, R., & Collins, R. (2014). Using Combinatorial Testing to Reduce Software
Rework. CrossTalk23.
109. Cohen, M. B., Dwyer, M. B., & Shi, J. (2007, July). Interaction testing of highly-

configurable systems in the presence of constraints. In Proceedings of the 2007 international
symposium on Software testing and analgis 129-139). ACM.

110. Henard, C., Papadakis, M., Perrouin, G., Klein, J., Heymans, P., & Traon, Y. L. (2012).
Bypassing the combinatorial explosion: Using similarity to generate and prioritize t-wise test
suites for large software product linasXiv preprint arXiv:1211.5451

111. White, J., Dougherty, B., & Schmidt, D. C. (2009). Selecting highly optimal architectural
feature sets with filtered cartesian flattening. Journal of Systems and Sp8#8je1268-1284.
112. Lee, J., Kang, S., & Lee, D. (2012, September). A survey on software product line

testing. In Proceedings of the 16th International Software Product Line Conference-Volume 1
(pp. 31-40). ACM.

113. Xu, Z., Cohen, M. B., Motycka, W., & Rothermel, G. (2013, August). Continuous test
suite augmentation in software product linesPtaceedings of the 17th International Software
Product Line Conferencigp. 52-61). ACM.

114. Garvin, B. J., Cohen, M. B., & Dwyer, M. B. (2013). Failure avoidance in configurable
systems through feature locality. In Assurances for Self-Adaptive Sypteri66-296). Springer
Berlin Heidelberg.

115. Henard, C., Papadakis, M., Traon, Y. L. Flattening or Not the Combinatorial Interaction
Testing Models? Intl. Wkshp. on Combinatorial Testing, IEEE, 2015.

116. Moy, Ledinot, Delseny, Wiels, Monate, “Testing or Formal Verification: DO-178C
Alternatives and Industrial Experience”, IEEE Software, May/June 2013. citing: NASA ARMD
Research Opportunities in Aeronautics 2011 (ROA-2011), research program System-Wide Safety
and Assurance Technologies Project (SSAT2), subtopic AFCS-1.3 Software Intensive Systems, p.
77.

117. T. Britton, L. Jeng, G. Carver, P. Cheak, and T. Katzenellenbogen. Reversible debugging
software. Technical report, University of Cambridge, Judge Business School, 2013

| [See Additional References associated with Section 8] |

49

[Back to end of Section 7]

8. Future Directions

Combinatorial testing has evolved into an accepted practice in software engineering. As it has entered
mainstream use, research interest has become more specialized and application-oriented. Progress
continues to be made in covering array generation algorithms, often with the aim of applying
combinatorial methods to a broader range of testing problems, particularly those with larger inputs and
complicated constraints. Concurrently, researchers are improving combinatorial test design methods by
focusing on input model analysis and tools to assist in this phase of test design. Combinatorial testing
continues to expand into domains such as Software Product Lines and mobile applications. Here we
review current and upcoming developments in these areas, and suggest potential impacts for practical
testing. Finally, we briefly discuss harder problems in the field for which broadly effective solutions are
not fully perfected.

8.1 Algorithms

While conventional algorithms produce very compact arrays for many inputs, improvements are being
achieved. One recent trend in covering array algorithms is the use of reduction strategies on existing
arrays. That is, away covering array witiN tests is systematically reduced to fewer tNamsts using a
variety of mathematical transformations. The near-term impacts of algorithm improvements in array
construction include extending the applicability of combinatorial methods. For applications such as
modeling and simulation, where a single test may run for hours, reducing covering array size by even a
few tests is of great value.

These methods have recently improved upon the best-known sizes of some covering array configurations
[1, 2] and active research continues in this area. Similar transformations can also be done where there are
constraints, and if the existing test suite was not designed as a covering array [3], using reductions that
preserve the combinatorial coverage of the original test suite. An extension of this strategy [4] includes
the option of allowing a subset of parameters to have values freely assigned, i.e., new tests can be
generated rather than requiring them to be selected from the original test set. Other work shows that
heuristic search can in some cases compete with greedy methods in speed and practicality for covering
array construction [6]. Additionally, greedy algorithms can be improved using graph-coloring methods

[7], to improve on a covering array generation phase that is optimaiXdiut does not retain optimal

properties at>2.

A somewhat different aspect of applying combinatorial methods in test suite reduction is the use of
interaction coverage as a criterion for reducing a test suite [8]. This may be particularly valuable for
regression testing. Various test reduction strategies have been applied in the past, but sometimes result in
deteriorating fault-detection effectiveness. Since combination coverage is effective in fault detection,
retaining high combinatorial coverage in a reduced test set can preserve effectiveness using fewer tests.
Yet another practical consideration is the setup time between tests. Many testing problems, especially for
system integration or other large system tests, require changes to the SUT configuration with each test.
Minimizing this time, while retaining high combination coverage can thus be an effective strategy [5].

8.2 Input Modeling

A second major research trend involves the integration of combinatorial methods in the development
environment, and addressing practical problems particular to various domains. The first step in any
testing effort is to understand and define the input model, that is, the set of parameters and values that will
be included in tests, along with any constraints on values or sequencing. This phase is an issue for any
testing approach, not just combinatorial, but the unique aspects of CT have led researchers to tailor
conventional methods. Test environments tailored to CT are being developed [9, 10] to work with

popular frameworks such as Eclipse. These environments will allow for validating the consistency and
other meta-properties of constraint sets [11].

Software product lines are increasingly used and their enormous range of possible configurations provides
a natural domain for combinatorial testing. An extensive survey [16] shows the variety of ways in which
t-way testing is now being applied in SPL testing and evaluation. Because of the large number of
parameters in many SPLs, methods are being devised to extend the range of practical application for
covering array generators. Software product lines often have hundreds, or even thousands, of variables.
Conventional covering array algorithms are resource-limited in both time and storage to a few hundred.
One approach is flattening of the input models, as described in Sect.7.5 [13]. Such methods are an active
area of research.

Two current lines of research for improving definition of the input model are classification trees and

UML models. UML sequence diagrams can be used as inputs to rule-based tools that extract an input
model that can be used with a covering array generator [12]. Input variables and values are extracted
from UML message specifications and guard conditions, providing partial automation of the process to
reduce effort for test designers. Classification trees fit well taithy testing, because they allow easy
analysis and definition of test parameters in a tree structure [14]. Leaf nodes of the tree can be treated as
category partitions and used directly in generating covering arrays. Robust tools based on classification
trees, UML diagrams, and related concepts can help make combinatorial methods easier to use for test
developers.

8.3 Harder problems

Combinatorial testing will continue to find new domains of application, but some research problems
remain to be solved. Two broad areas in particular are likely to receive attention from researchers,
because of their practical significance in industrial applications.

Very large systems: As with many areas of software engineering, scalabisitgssential. Fortunately,

current combinatorial methods and covering array generators can address the vast majority of testing
requirements. As noted earlier in the chapter, however, development approaches such as software
product lines may involve thousands of parameters, with large numbers of constraints. Current covering
array algorithms do not scale to such large problems, and existing constraint solvers are also insufficient
for an extremely large number of constraints and variables.

Test development time: Case studies and experience reports show that combinatorial methods can provide
better testing at lower cost, but these methods can require significant expertise and do not necessarily
speed up the testing process. As such, if time-to-market is the primary concern, conventional test
methods are likely to be preferred by developers. Application domains where CT has seen the most rapid
acceptance so far are those with very high assurance requirements, such as aerospace/defense, finance,
and manufacturing. Reducing the time required for using combinatorial methods is a significant
challenge.

Research and practice have shown that combinatorial testing is highly effective across a range of testing
problems, and this range of applicability continues to expand for new domains and technologies. The
current high level of research interest in the field suggests that it may continue to advance, providing
stronger testing at reduced cost for developers.

[Next Section: Conclusions]

[Back to main References]

Additional references

1.

10.

11.

12.

13.

14.

Avila-George, H., Torres-Jimenez, J., Gonzalez-Hernandez, L., & Hernandez, V. (2013). Metaheuristic
approach for constructing functional test-suitéd. software, 7(2), 104-117.

Li, X., Dong, Z., Wu, H., Nie, C., & Cai, K. Y. (2014, March). Refining a Randomized Post-optimization
Method for Covering Arrays. I8oftware Testing, Verification and Validation Workshops (ICSTW), 2014
|EEE Seventh International Conference on (pp. 143-152). IEEE.

Farchi, E., Segall, I., Tzoref-Brill, R., & Zlotnick, A. (2014, March). Combinatorial Testing with Order
Requirements. I&oftware Testing, Verification and Validation Workshops (ICSTW), 2014 | EEE Seventh
International Conference on (pp. 118-127). IEEE.

Itai Segall, Rachel Tzoref-Brill and Aviad Zlotnick. Combining Minimization and Generation for
Combinatorial Testing ISoftware Testing, Verification and Validation Workshops (ICSTW), 2015 |IEEE
Sixth International Conferenceon IEEE.

Wu, H., Nie, C., & Kuo, F. C. (2014, March). Test suite prioritization by switching coStftimare
Testing, Verification and Validation Workshops (ICSTW), 2014 |EEE Seventh International Conference on
(pp. 133-142). IEEE.

Petke, J., Cohen, M., Harman, M., & Yoo, S. Practical Combinatorial Interaction Testing: Empirical
Findings on Efficiency and Early Fault Detection. IEEE TSE, preprint, 2015.

Linbin Yu, Feng Duan, Yu Lei, Raghu N. Kacker and D. Richard Kuhn. Constraint Handling In
Combinatorial Test Generation Using Forbidden Tuples

Mayo, Q., Michaels, R., & Bryce, R. (2014, March). Test Suite Reduction by Combinatorial-Based
Coverage of Event SequencesStfitware Testing, Verification and Validation Workshops (ICSTW), 2014
|EEE Seventh International Conference on (pp. 128-132). IEEE.

Gargantini, A., & Vavassori, P. (2012, April). Citlab: a laboratory for combinatorial interaction testing. In
Software Testing, Verification and Validation (ICST), 2012 |EEE Fifth International Conference on (pp.
559-568). IEEE.

Garn, B., & Simos, D. E. (2014, March). Eris: A tool for combinatorial testing of the Linux system call
interface. InSoftware Testing, Verification and Validation Workshops (ICSTW), 2014 |EEE Seventh
International Conference on (pp. 58-67). IEEE.

Arcaini, P., Gargantini, A., & Vavassori, P. (2014, March). Validation of models and tests for constrained
combinatorial interaction testing. Boftware Testing, Verification and Validation Workshops (ICSTW),
2014 |EEE Seventh International Conference on (pp. 98-107). IEEE.

Satish, P., Paul, A., & Rangarajan, K. (2014, March). Extracting the combinatorial test parameters and
values from UML sequence diagrams Shitware Testing, Verification and Validation Workshops
(ICSTW), 2014 |EEE Seventh International Conference on (pp. 88-97). IEEE.

Christopher Henard, Mike Papadakis and Yves Le Traon. Flattening or Not the Combinatorial Interaction
Testing Models?Software Testing, Verification and Validation (ICST), 2015 |EEE Fifth International
Conference

Zeppetzauer, U., & Kruse, P. M. (2014, September). Automating test case design within the classification
tree editor. IlComputer Science and Information Systems (FedCS S), 2014 Federated Conference on (pp.
1585-1590). IEEE.

15. Gargantini, A., & Vavassori, P. (2014). Efficient Combinatorial Test Generation Based on Multivalued
Decision Diagrams. Irardware and Software: Verification and Testing (pp. 220-235). Springer
International Publishing.

16. Roberto Erick Lopez-Herrejon, Stefan Fischer, Rudolf Ramler and Alexander Egyed. A First Systematic
Mapping Study on Combinatorial Interaction Testing for Software Product |Sofaare Testing,
Verification and Validation Workshops (ICSTW), 2015 |EEE Seventh International Conference on

