
Towards Probabilistic Identification of Zero-day Attack Paths

Xiaoyan Sun1, Jun Dai2, Peng Liu1, Anoop Singhal3, John Yen1

1 Penn State University, University Park, PA 16802, USA
2 California State University, Sacramento, CA 95819, USA

3 National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
xzs5052,pliu,jyen@ist.psu.edu, jun.dai@csus.edu, anoop.singhal@nist.gov

Abstract. Zero-day attacks continue to challenge the enterprise net-
work security defense. A zero-day attack path is formed when a multi-
step attack contains one or more zero-day exploits. Detecting zero-day
attack paths in time could enable early disclosure of zero-day threats.
In this paper, we propose a probabilistic approach to identify zero-day
attack paths and implement a prototype system named Pr0bA. A Sys-
tem Object Instance Dependency Graph (SOIDG) is first built from sys-
tem calls to capture the intrusion propagation. To further reveal the
zero-day attack paths hiding in the SOIDG, our system constructs an
SOIDG-based Bayesian network. By leveraging intrusion evidence, the
Bayesian network can quantitatively compute the probabilities of object
instances being infected. The object instances with high infection proba-
bilities reveal themselves and form the candidate zero-day attack paths.
The experiment results show that our system can successfully identify
zero-day attack paths and the paths are of manageable size.

1 Introduction

Defending against zero-day attacks is one of the most fundamentally challenging
problems yet to be solved. Zero-day attacks are usually enabled by unknown
vulnerabilities. The information asymmetry between what the attacker knows
and what the defender knows makes zero-day exploits extremely difficult to
detect. Signature-based detection assumes that a signature is already extracted
from detected exploits. Anomaly detection [1–3] may detect zero-day exploits,
but this solution has to cope with high false positive rates.

Recently, one noticeable research progress is based on a key observation that
in many cases identifying zero-day attack paths is substantially more feasible
than identifying individual zero-day exploits. A zero-day attack path is a multi-
step attack path which includes one or more zero-day exploits. When not every
exploit in a zero-day attack path is zero-day, part of the path can already be
detected by commodity signature-based IDS. That is, the defender can leverage
one weakness of the attacker: in many cases he is unable to let an attack path
be completely composed of zero-day exploits.

Both alert correlation [4,5] and attack graphs [6–9] are limited in identifying
zero-day attack paths. They both can identify the non-zero-day segments (i.e.,
“islands”) of a zero-day attack path; however, none of them can automatically
bridge these islands into a meaningful path, especially when different segments
may belong to totally irrelevant attack paths.

mailto:anoop.singhal@nist.gov
mailto:jun.dai@csus.edu
mailto:xzs5052,pliu,jyen@ist.psu.edu

2 Xiaoyan Sun, Jun Dai, Peng Liu, Anoop Singhal, John Yen

To address these limitations, Dai et al. proposed to use (data and control)
dependencies between OS-level objects (e.g., files, processes, sockets) to bridge
the non-zero-day islands so that the zero-day segments can be revealed [10].
Nevertheless, this approach has a main limitation, namely the explosion in the
number and size of zero-day attack path candidates. The forward and backward
tracking from intrusion detection points can result in a large number of candidate
paths, especially when lots of intrusion detection points are available. In addition,
a candidate path can be too big because it preserves every tracking-reachable
object. With the large number and size, discerning from the candidates and
verifying the real zero-day attack paths becomes unpractical. As a consequence,
in many cases this approach may generate a big “haystack” for the defender to
find a “needle” in it.

In this paper, we propose a probabilistic zero-day attack path identification
approach to address the explosion problem. The goal is to make the “haystack”
orders of magnitude smaller. Our approach is to 1) establish a System Object In-
stance Dependency Graph (SOIDG) to capture the intrusion propagation, where
an instance of an object is a “version” of the object with a specific timestamp; 2)
build a Bayesian network (BN) based on the SOIDG to leverage the intrusion ev-
idence collected from various information sources. Intrusion evidence can be the
abnormal system and network activities that are noticed by human admins or
security sensors such as Intrusion Detection Systems (IDSs). With the evidence,
the SOIDG-based BN can quantitatively compute the probabilities of object in-
stances being infected. Connected through dependency relations, the instances
with high infection probabilities form a path, which can be viewed as a candi-
date zero-day attack path. As a result, the SOIDG-based BN can significantly
narrow down the set of suspicious objects and make the manual verification of
the zero-day attack paths feasible.

This approach is proposed based on the following insights: 1) A BN is able
to capture cause-and-effect relations, and thus can be used to model the infec-
tion propagation among instances of different system objects: the cause is an
already infected instance of one object, while the effect is its infection to an
innocent instance of another object. We name this cause-and-effect relation as a
type of infection causality, which is formed due to the interaction between the
two objects in a system call operation. 2) An SOIDG can reflect the infection
propagation process by capturing the dependencies among instances of different
system objects. 3) Based on above insights, a BN can be constructed on top of
the SOIDG because they couple well with each other: the dependencies among
instances of different system objects can be directly interpreted into infection
causalities in the BN. The BN’s graphical nature makes it fit well with SOIDG.

We made the following contributions.
– To the best of our knowledge, this work is the first probabilistic approach

towards zero-day attack path identification.
– We proposed constructing Bayesian network at the low system object level

by introducing System Object Instance Dependency Graph.
– We have designed and implemented a system prototype named Pr0bA, which

can successfully identify the zero-day attack paths.

3 Pr0bA

1

t1: process A reads file 1

t2: process A creates process B

t3: process A creates process C

t4: process B writes file 2

t5: process C writes file 1

t6: process B reads file 3

process Afile 3

file 1

process Cprocess B

file 2

t1

t5t3t2

t4

t6

(a) simplified system call log in time-order (b) SODG

Fig. 1: An SODG generated by parsing an example set of simplified system call log.
The label on each edge shows the time associated with the corresponding system call.

2 Motivation and Approach Overview

2.1 System Object Dependency Graph

This paper classifies OS-level entities in UNIX-like systems into three types of
objects: processes, files and sockets. The operating system performs a set of
operations towards these objects via system calls such as read, write, etc. For
instance, a process can read from a file as input, and then write to a socket.
Such interactions among system objects enable intrusions to propagate from one
object to another. Generally an intrusion starts with one or several seed objects
that are created directly or indirectly by attackers. The intrusion seeds can
be processes such as compromised service programs, or files such as viruses, or
corrupted data, etc. As the intrusion seeds interact with other system objects via
system call operations, the innocent objects can get infected. We call this process
as infection propagation. Therefore the intrusion will propagate throughout the
system, or even propagate to the network through socket communications.

To capture the intrusion propagation, previous work [10,16,17] has explored
constructing System Object Dependency Graphs (SODGs) by parsing system
call traces. Each system call is interpreted into three parts: a source object,
a sink object, and a dependency relation between them. The objects and the
dependencies respectively become nodes and directed edges in SODGs. For ex-
ample, a process reading a file in the system call read indicates that the process
(sink) depends on the file (source). The dependency is denoted as file→process.
Similar rules (Table 5 in Appendix) as used in previous work [10, 16, 17] can
be adopted to generate dependencies from system calls. Fig. 1b is an example
SODG generated by parsing the simplified system call log shown in Fig. 1a.

2.2 Why use Bayesian Network?

The SODG can be used directly to identify the candidate zero-day attack paths
through forward and backward tracking from intrusion detection points. How-
ever, such tracking will result in an explosion in the number and size of zero-day
attack path candidates. The explosion is two-fold. First, in addition to real zero-
day attack paths, the number of false positive path candidates is proportional
to the number of false alerts. Second, an individual candidate path may con-
tain too many objects for security analysts to comprehend, because it preserves
every tracking-reachable object. Therefore, discerning from the candidates and
verifying the real paths becomes difficult.

4 Xiaoyan Sun, Jun Dai, Peng Liu, Anoop Singhal, John Yen

...

...

p1

p2 p3

p4

1

CPT at node p2

p1=T p1=F

p2=T 0.9 0.01

p2=F 0.1 0.99

Fig. 2: An example Bayesian network.

A Bayesian network can effectively deal with the explosion problem. The key
reason is that a BN can quantitatively compute the probabilities of objects being
infected through incorporating intrusion evidence from a variety of information
sources. By only focusing on the objects with high infection probabilities, the set
of suspicious objects can be significantly narrowed down. The candidate zero-
day attack paths formed by the high-probability objects through dependency
relations can be of manageable size.

The BN is a probabilistic graphical model that represents the cause-and-
effect relations. It is formally defined as a Directed Acyclic Graph (DAG) that
contains a set of nodes and directed edges, where a node denotes a variable of
interest, and an edge denotes the causality relations between two nodes. The
strength of such causality relation is indicated using a conditional probability
table (CPT). Fig. 2 shows an example BN and the CPT tables associated with
p2. Given p1 is true, the probability of p2 being true is 0.9, which can be rep-
resented with P (p2 = T |p1 = T) = 0.9. Similarly, the probability of p4 can be
determined by the states of p2 and p3 according to a CPT table at p4. BN is able
to incorporate the collected evidence by updating the posterior probabilities of
interested variables. For example, after evidence p2 = T is observed, it can be
incorporated by computing probability P (p1 = T |p2 = T).

2.3 Problems of Constructing Bayesian Network based on SODG

SODG has the potential to serve as the base of BN construction. For one thing,
BN has the capability of capturing cause-and-effect relations in infection propa-
gation. For another thing, SODG reflects the dependency relations among system
objects. Such dependencies imply and can be leveraged to construct the infection
causalities in BN. For example, the dependency process A→file 1 in an SODG
can be interpreted into an infection causality relation in BN: file 1 is likely to
be infected if process A is already infected. In such a way, an SODG-based BN
can be constructed by directly taking the structure topology of SODG.

However, several drawbacks of the SODG prevent it from being the base of
BN. First, an SODG without time labels cannot reflect the correct information
flow according to the time order of system call operations. This is a problem
because the time labels cannot be preserved when constructing BNs based on
SODGs. Lack of time information will cause incorrect causality inference in the
SODG-based BNs. For example, without the time labels, the dependencies in
Fig. 1b indicates infection causality relations existing among file 3, process B
and file 2, meaning that if file 3 is infected, process B and file 2 are likely to
be infected by file 3. Nevertheless, the time information shows that the system
call operation “process B reads file 3” happens at time t6, which is after the

5 Pr0bA

operation “process B writes file 2” at time t4. This implies that the status of file
3 has no direct influence on the status of file 2.

Second, the SODG contains cycles among nodes. For instance, file 1, process
A and process C in Fig. 1b form a cycle. By directly adopting the topology of
SODG, the SODG-based BN inevitably inherits cycles from SODG. However,
the BN is an acyclic probabilistic graphical model that does not allow any cycles.

Third, a node in an SODG can end up with having too many parent nodes,
which will render the CPT assignment difficult and even impractical in the
SODG-based BN. For example, if process B in Fig. 1b continuously reads hun-
dreds of files (which is normal in a practical operating system), it will get hun-
dreds of file nodes as its parents. In the corresponding SODG-based BN, if each
file node has two possible states that are “infected” and “uninfected”, and the
total number of parent file nodes are denoted as n, then the CPT table at pro-
cess B has to assign 2n numbers in order to specify the infection causality of the
parent file nodes to process B. This is impractical when n is very large.

To address the above problems, we propose a new type of dependency graph,
System Object Instance Dependency Graph, which is a mutation of SODG.

2.4 System Object Instance Dependency Graph

In SOIDG, each node is not an object, but an instance of the object with a
certain timestamp. Different instances are different “versions” of the same object
at different time points, and can thus have different infection status.

Definition 1. System Object Instance Dependency Graph (SOIDG)
If the system call trace in a time window T [tbegin, tend] is denoted as ΣT and
the set of system objects (mainly processes, files or sockets) involved in ΣT is
denoted as OT , then the SOIDG is a directed graph GT (V , E), where:

– V is the set of nodes, and initialized to empty set ∅;
– E is the set of directed edges, and initialized to empty set ∅;
– If a system call syscall ∈ ΣT is parsed into two system object instances
srci, sinkj , i, j ≥ 1, and a dependency relation depc: srci→sinkj (according
to dependency rules in Table 5), where srci is the ith instance of system
object src ∈ OT , and sinkj is the jth instance of system object sink ∈ OT ,
then V = V ∪ {srci, sinkj }, E = E ∪ {depc}. The timestamps for syscall,
depc, srci, and sinkj are respectively denoted as t syscall, t depc,t srci, and
t sinkj . The t depc inherits t syscall from syscall. The indexes i and j are
determined before adding srci and sinkj into V by:
◦ For ∀ srcm, sinkn ∈ V , m, n ≥ 1, if imax and jmax are respectively the
maximum indexes of instances for object src and sink, and;

◦ If ∃ srck ∈ V , k ≥ 1, then i = imax, and t srci stays the same; Otherwise,
i = 1, and t srci is updated to t syscall ;

◦ If ∃ sinkz ∈ V , z ≥ 1, then j = jmax+1; Otherwise, j = 1. In both
cases t sinkj is updated to t syscall ; If j ≥ 2, then E = E ∪ {deps:
sinkj−1→sinkj }.

– If a→b ∈ E and b→c ∈ E, then c transitively depends on a.

6 Xiaoyan Sun, Jun Dai, Peng Liu, Anoop Singhal, John Yen

file 3 instance 1

process B instance 2

t6

file 1 instance 1

process A instance 1
t1

file 1 instance 2

t5

process C instance 1

t3

process B instance 1

t2

t5

file 2 instance 1

t4t6

Fig. 3: An SOIDG generated by parsing the same set of simplified system call log as
in Fig. 1a. The label on each edge shows the time associated with the corresponding
system call operation. The dotted rectangle and ellipse are new instances of already
existed objects. The solid edges and the dotted edges respectively denote the contact
dependencies and the state transition dependencies.

According to Definition 1, for src object, a new instance is created only when
no instances of src exist in the SOIDG. For sink object, however, a new instance
is created whenever a src→sink dependency appears. The underlying insight is
that the status of the src object will not be altered by the src→sink, while the
status of sink will be influenced. Hence a new instance for an object should be
created when the object has the possibility of being affected. A dependency depc

is added between the most recent instance of src and the newly created instance
of sink. We name depc as contact dependency because it is generated by the
contact between two different objects through a system call operation.

In addition, when a new instance is created for an object, a new dependency
relation deps is also added between the most recent instance of the object and
the new instance. This is necessary and reasonable because the status of the new
instance can be influenced by the status of the most recent instance. We name
deps as state transition dependency because it is caused by the state transition
between different instances of the same system object.

The SOIDG can well tackle the problems existing in the SODG for con-
structing BNs. It can be illustrated using Fig. 3, an SOIDG created for the
same simplified system call log as in Fig. 1a. First, the SOIDG is able to reflect
correct information flows by implying time information through creating object
instances. For example, instead of parsing the system call at time t6 directly
into file 3→process B, Fig. 3 parsed it into file 3 instance 1→process B instance
2. Comparing to Fig. 1b in which file 3 has indirect infection causality on file
2 through process B, the SOIDG in Fig. 3 indicates that file 3 can only infect
instance 2 of process B but no previous instances. Hence in this graph file 3
does not have infection causality on file 2.

Second, SOIDGs can break the cycles contained in SODGs. Again, in Fig. 3,
the system call at time t5 is parsed into process C instance 1→file 1 instance 2,
rather than process C→file 1 as in Fig. 1b. Therefore, instead of pointing back
to file 1, the edge from process C is directed to a new instance of file 1. As a
result, the cycle formed by file 1, process A and process C is broken.

Third, the mechanism of creating new sink instances for a relation src→sink
prevents the nodes in SOIDGs from getting too many parents. For example,

7 Pr0bA

...

...

sinkj srci

sinkj+1

...

1

CPT at node sinkj+1

sinkj=Infected sinkj=Uninfected

srci=Infected srci=Uninfected srci=Infected srci=Uninfected

sinkj+1=Infected 1 1 ⌧ ⇢

sinkj+1=Uninfected 0 0 1 � ⌧ 1 � ⇢

Fig. 4: The infection propagation models.

process B instance 2 in Fig. 3 has two parents: process B instance 1 and file
3 instance 1. If process B appears again as the sink object in later src→sink
dependencies, new instances of process B will be created instead of directly
adding src as the parent to process B instance 2. Therefore, a node in the SOIDG
only has 2 parents at most: one is the previous instance for the same object; the
other one is an instance for a different object that the node depends on.

3 SOIDG-based Bayesian Networks

To build a BN based on an SOIDG and compute probabilities for interested
variables, two steps are required. First, the CPT tables have to be specified
for each node via constructing proper infection propagation models. Second,
evidence from different information sources has to be incorporated into BN for
subsequent probability inference.

3.1 The Infection Propagation Models

In SOIDG-based BNs, each object instance has two possible states, “infected”
and “uninfected”. The strength of the infection causalities among the instances
has to be specified in corresponding CPT tables. Our infection propagation mod-
els in this paper deal with two types of infection causalities, contact infection
causalities and state transition infection causalities, which correspond to the
contact dependencies and state transition dependencies in SOIDGs.

Contact Infection Causality Model. This model captures the infection
propagation between instances of two different objects. Fig. 4 shows a portion
of BN constructed when a dependency src→sink occurs and the CPT table
associated with sinkj+1. When sinkj is uninfected, the probability of sinkj+1

being infected depends on the infection status of srci, a contact infection rate τ
and an intrinsic infection rate ρ, 0 ≤ τ, ρ ≤ 1.

The intrinsic infection rate ρ decides how likely sinkj+1 gets infected given
srci is uninfected. In this case, since srci is not the infection source of sinkj+1, if
sinkj+1 is infected, it should be caused by other factors. So ρ can be determined
by the prior probabilities of an object being infected, which is usually a very
small constant number.

The contact infection rate τ determines how likely sinkj+1 gets infected
when srci is infected. The value of τ determines to which extent the infection
can be propagated within the range of an SOIDG. In an extreme case where
τ = 1, all the object instances will get contaminated as long as they have contact
with the infected objects. In another extreme case where τ = 0, the infection
will be confined inside the infected object and does not propagate to any other
contacting object instances. Our system allows security experts to tune the value
of τ based on their knowledge and experience.

8 Xiaoyan Sun, Jun Dai, Peng Liu, Anoop Singhal, John Yen

p1

p2 p3

p4

...
p5

p6 p7

p8

Actual State of an Instance

Observation

The rest of BN

!
!
!
!
!
!
!

!
!
!

1

CPT at node Observation

Actual=Infected Actual=Uninfected

Observation=True 0.9 0.15

Observation=False 0.1 0.85

!

!

False&nega)ve&rate False&posi)ve&rate

Fig. 5: Local observation model.

Since a large number of system call traces with ground truths are often
unavailable, it is very unlikely to learn the parameters of τ and ρ using statistical
techniques. Hence, currently these parameters have to be assigned by security
experts. We will evaluate the impact of τ and ρ in Section 6.2.

State Transition Infection Causality Model. This model captures the
infection propagation between instances of the same objects. We follow one rule
to model this type of causalities: an object will never return to the state of
“uninfected” from the state of “infected”4. That is, once an instance of an object
gets infected, all future instances of this object will remain the infected state,
regardless of the infection status of other contacting object instances. This rule
is enforced in the CPT tables as exemplified in Fig. 4. If sinkj is infected, the
infection probability of sinkj+1 keeps to be 1, no matter whether srci is infected
or not. If sinkj is uninfected, the infection probability of sinkj+1 is decided by
the infection status of srci according to the contact infection causality model.

3.2 Evidence Incorporation

BN is able to incorporate security alerts from a variety of information sources as
the evidence of attack occurrence. Numerous ways have been developed to cap-
ture intrusion symptoms, which can be caused by attacks exploiting both known
vulnerabilities and zero-day vulnerabilities. A tool Wireshark [12] can notice a
back telnet connection that is instructed to open; an IDS such as Snort [13]
may recognize a malicious packet; a packet analyzer tcpdump [14] can capture
suspicious network traffic, etc. In addition, human security admins can also man-
ually check the system or network logs to discover other abnormal activities that
cannot be captured by security sensors. As more evidence is fed into BN, the
identified zero-day attack paths get closer to real facts.

In this paper, we adopt two ways to incorporate evidence. First, add evidence
directly on a node by providing the infection state of the instance. If human se-
curity experts have scrutinized an object and proven that an object is infected at
a specific time, they can feed the evidence to the SOIDG-based BN by directly
changing the infection status of the corresponding instance into infected. Sec-
ond, leverage the local observation model (LOM) [22] to model the uncertainty
towards observations. Human security admins or security sensors may notice
suspicious activities that imply attack occurrence. Nonetheless, these observa-
tions often suffer from false rates. As shown in Fig. 5, an observation node can
be added as the direct child node to an object instance. The implicit causality

4 This rule is formulated based on the assumptions that no intrusion recovery opera-
tions are performed and attackers only conduct malicious activities.

9 Pr0bA

System Call
Auditing and

Filtering

System Call Traces

Graph
Generation

System Call Parsing
and Dependency

Extraction

BN
Construction

Evidence
Incorporation and

Probability Inference

Candidate Zero-
day Attack Path

Identification

Dependencies SOIDG SOIDG-based BN SOIDG with Probabilities

System Components

Interim Outputs Input Output

Fig. 6: System design.

relation is that the actual state of the instance can likely affect the observation to
be made. If the observation comes from security alerts, the CPT inherently indi-
cates the false rates of the security sensors. For example, P (Observation = True
| Actual = Uninfected) shows the false positive rate and P (Observation = False
| Actual = Infected) indicates the false negative rate.

4 System Design

Fig. 6 shows the overall system design, which includes 7 components.
System call auditing and filtering. System call auditing is performed against

all running processes and should preserve sufficient OS-aware information. Sub-
sequent system call reconstruction can thus accurately identify the processes and
files by their process IDs or file descriptors. The filtering process basically prunes
system calls that involve redundant and very likely innocent objects, such as the
dynamic linked library files or some dummy objects. We conduct system call
auditing at run time towards each host in the enterprise network.

System call parsing and dependency extraction. The collected system call
traces are then sent to a central machine for off-line analysis, where the depen-
dency relations between system objects are extracted according to Table 5.

Graph generation. The extracted dependencies are then analyzed line by line
for graph generation. The generated graph can be either host-wide or network-
wide, depending on the analysis scope. A network-wide SOIDG can be con-
structed by concatenating individual host-wide SOIDGs through instances of
the communicating sockets. Algorithm 1 is the basis algorithm for SOIDG gen-
eration, which is designed according to the logic in Definition 1.

BN construction. The BN is constructed by taking the topology of an SOIDG.
The instances and dependencies in an SOIDG become nodes and edges in BN.
Basically the nodes and the associated CPT tables are specified in a .net file,
which is one file type that can carry the SOIDG-based BN.

Evidence incorporation and probability inference. Evidence is incorporated by
either providing the infection state of the object instance directly, or constructing
an local observation model (LOM) for the instance. After probability inference,
each node in the SOIDG receives a probability.

Candidate Zero-day Attack Paths Identification. To reveal the candidate zero-
day attack paths from the mess of SOIDG, the nodes with high probabilities
are to be preserved, while the link between them should not be broken. We
implemented Algorithm 2 on the basis of depth-first search (DFS) algorithm [24]

10 Xiaoyan Sun, Jun Dai, Peng Liu, Anoop Singhal, John Yen

to tag each node in the SOIDG as either possessing high probability itself, or
having both an ancestor and a descendant with high probabilities. The tagged
nodes are the ones that actually propagate the infection through the network,
and thus should be preserved in the final graph. Our system allows a probability
threshold to be tuned for recognizing high-probability nodes. For example, if the
threshold is set at 80%, only instances that have the infection probabilities of
80% or higher will be recognized as the high-probability nodes.

5 Implementation

The whole system includes online system call auditing and off-line data analysis.
For system call auditing, we share with Patrol [10] the same component that
is implemented with a loadable kernel module. For the off-line data analysis,
our prototype is implemented with approximately 2915 lines of gawk code that
constructs a .net file for the SOIDG-based BN and a dot-compatible file for
visualizing the candidate zero-day attack paths in Graphviz [25], and 145 lines
of Java code for probability inference, leveraging the API provided by the BN
tool SamIam [23].

An SOIDG can be too large due to the introduction of instances. Therefore,
in addition to system call filtering, we also develop several ways to prune that
SOIDGs while not impede reflecting the major infection propagation process.

One helpful way is to ignore the repeated dependencies. It is common that
the same dependency may happen between two system objects for a number of
times, even through different system call operations. For example, process A may
write file 1 for several times. In such cases, each time the write operation occurs,
a new instance of file 1 is created and a new dependency is added between the
most recent instance of process A and the new instance of file 1. If the status of
process A is not affected by any other system objects during this time period,
the infection status of file 1 will not change neither. Hence the new instances of
file 1 and the related new dependencies become redundant information in under-
standing the infection propagation. Therefore, a repeated src→sink dependency
can be ignored if the src object is not influenced by other objects since the last
time that the same src→sink dependency appeared.

Another way to simplify an SOIDG is to ignore the root instances whose
original objects have never appear as the sink object in a src→sink dependency
during the time period of being analyzed. For instance, file 3 in Fig. 3 only
appears as the src object in the dependencies parsed from the system call log
in Fig. 1a, so file 3 instance 1 can be ignored in the simplified SOIDG. Such
instances are not influenced by other objects in the specified time window, and
thus are not manipulated by attackers, neither. Hence ignoring these root in-
stances does not break any routes of intrusion sequence and will not hinder the
understanding of infection propagation. This method is helpful for situations
such as a process reading a large number of configuration or header files.

A third way to prune an SOIDG is to ignore some repeated mutual depen-
dencies, in which two objects will keep affecting each other through creating
new instances. One situation is that a process can frequently send and receive

Pr0bA 11

Intranet

Attacker SSH Server Database Server

Web Server Email Server NFS Server Workstation 3Other users in wild

DMZ Firewall Intranet Firewall Inside Firewall

Workstation 1 Workstation 2

Bruteforce key guessing NFS mount

Trojan horse download

DMZInternet

Workstation 4

Inside

Fig. 7: Attack scenario.

messages from a socket. For example, in one of our experiments, 107 new in-
stances are created respectively for the process (pid:6706, pcmd:sshd) and the
socket (ip:192.168.101.5, port: 22) due to their interaction. Since no other ob-
jects are involved during this procedure, the infection status of these two objects
will keep the same through all the new instances. Thus a simplified SOIDG can
preserve the very first and last dependencies while neglect the middle ones. An-
other situation is that a process can frequently take input from a file and then
write the output to it again after some operations. The middle repeated mutual
dependencies could also be ignored in a similar way.

6 Experiments

6.1 Attack Scenario

We built a test-bed network and launched a three-step attack towards it. Fig. 7
illustrates the attack scenario, which is similar to the one in [10]. Step 1, the
attacker exploits vulnerability CVE-2008-0166 to gain root privilege on SSH
Server through a brute-force key guessing attack. Step 2, since the export table
on NFS Server is not set up appropriately, the attacker can upload a malicious
executable file to a public directory on NFS. The malicious file contains a Trojan-
horse that can exploit CVE-2009-2692. The public directory is shared among all
the hosts in the test-bed network. Step 3, once the malicious file is mounted and
installed on the Workstation 3, the attacker is able to execute arbitrary code on
Workstation 3. To capture the intrusion evidence for subsequent BN probability
inference, we deployed security sensors in the test-bed, such as firewalls, Snort,
Tripwire, Wireshark, Ntop [26] and Nessus. For sensors that need configuration,
we tailored their rules or policy files to match our hosts.

Since zero-day exploits are not readily available, we emulate zero-day vul-
nerabilities with known vulnerabilities. For example, we treat CVE-2009-2692
as a zero-day vulnerability by assuming the current time is Dec 31, 2008. In
addition, the configuration error on NFS is also viewed as a special type of un-
known vulnerability because it is ruled out by vulnerability scanners like Nessus.
The strategy of emulation also brings another benefit. The information for these
“known zero-day” vulnerabilities can be available to verify the correctness of our
experiment results.

12 Xiaoyan Sun, Jun Dai, Peng Liu, Anoop Singhal, John Yen

W
or

ks
ta

tio
n

SS
H

 S
er

ve
r N

FS
 S

er
ve

r

x3
50

.1
: S

no
rt

B
ru

te
 F

or
ce

 A
le

rt

x4
.1

:(6
56

0:
65

59
:m

ou
nt

.n
fs

)

x4
.2

:(6
56

0:
65

59
:m

ou
nt

.n
fs

)

x1
0.

1:
(/e

tc
/m

ta
b:

87
98

39
7)

x1
00

7.
1:

(1
72

.1
8.

34
.5

:2
04

9)

x1
42

.2
5:

(1
92

.1
68

.1
01

.5
:2

2)

x2
53

.3
:(6

70
6:

67
03

:s
sh

d)

x2
53

.4
:(6

70
6:

67
03

:s
sh

d)

x2
53

.5
:(6

70
6:

67
03

:s
sh

d)

x2
53

.6
:(6

70
6:

67
03

:s
sh

d)

x2
53

.7
:(6

70
6:

67
03

:s
sh

d)

x2
53

.8
:(6

70
6:

67
03

:s
sh

d) x2
54

.1
:(6

70
7:

67
06

:s
sh

d)

x2
54

.2
:(6

70
7:

67
06

:s
sh

d)

x2
54

.3
:(6

70
7:

67
06

:b
as

h)

x2
54

.4
:(6

70
7:

67
06

:b
as

h)

x2
54

.5
:(6

70
7:

67
06

:b
as

h)

x2
54

.6
:(6

70
7:

67
06

:b
as

h)

x2
54

.7
:(6

70
7:

67
06

:s
cp

)

x2
59

.1
:(/

m
nt

/w
or

ks
ta

tio
n_

at
ta

ck
.ta

r.g
z:

94
53

57
4)

x2
60

.1
:(/

m
nt

:)

x1
00

8.
1:

(5
11

8:
1:

un
fs

d)

x1
00

7.
6:

(1
72

.1
8.

34
.5

:2
04

9)

x2
00

6.
2:

(6
73

7:
67

36
:m

ou
nt

)

x1
00

8.
2:

(5
11

8:
1:

un
fs

d)

x1
00

8.
3:

(5
11

8:
1:

un
fs

d)

x1
00

8.
4:

(5
11

8:
1:

un
fs

d)

x1
00

8.
5:

(5
11

8:
1:

un
fs

d)

x1
01

7.
1:

(/e
xp

or
ts

/w
or

ks
ta

tio
n_

at
ta

ck
.ta

r.g
z:

94
53

57
4)

x2
00

6.
3:

(6
73

7:
67

36
:m

ou
nt

.n
fs

)

x2
06

1.
1:

(/e
tc

/m
ta

b:
14

93
08

8)

x2
08

3.
1:

(/m
nt

/w
or

ks
ta

tio
n_

at
ta

ck
.ta

r.g
z:

94
53

57
4)

x2
07

8.
6:

(6
76

1:
67

19
:c

p)

x2
08

2.
2:

(/h
om

e/
us

er
/te

st
-b

ed
/w

or
ks

ta
tio

n_
at

ta
ck

.ta
r.g

z:
13

84
57

6)

x2
08

6.
4:

(6
76

3:
67

19
:ta

r)

x2
08

6.
5:

(6
76

3:
67

19
:ta

r)

x2
10

2.
1:

(/h
om

e/
us

er
/te

st
-b

ed
/w

or
ks

ta
tio

n_
at

ta
ck

/e
xp

lo
it.

sh
:1

54
03

18
)

x2
10

7.
1:

(/h
om

e/
us

er
/te

st
-b

ed
/w

or
ks

ta
tio

n_
at

ta
ck

/w
un

de
rb

ar
_e

m
po

riu
m

/e
xp

lo
it.

c:
15

48
37

6)
x2

10
8.

1:
(/h

om
e/

us
er

/te
st

-b
ed

/w
or

ks
ta

tio
n_

at
ta

ck
/w

un
de

rb
ar

_e
m

po
riu

m
/w

un
de

rb
ar

_e
m

po
riu

m
.sh

:1
54

83
77

)

x2
11

4.
1:

(/h
om

e/
us

er
/te

st
-b

ed
/w

or
ks

ta
tio

n_
at

ta
ck

/w
un

de
rb

ar
_e

m
po

riu
m

/p
w

nk
er

ne
l.c

:1
54

83
83

)

x2
14

4.
2:

(6
78

1:
62

85
:b

as
h)

x2
31

1.
3:

(6
79

4:
67

93
:c

c1
)

x2
14

7.
2:

(6
78

3:
67

81
:e

xp
lo

it.
sh

)

x2
11

4.
2:

(/h
om

e/
us

er
/te

st
-b

ed
/w

or
ks

ta
tio

n_
at

ta
ck

/w
un

de
rb

ar
_e

m
po

riu
m

/p
w

nk
er

ne
l.c

:1
54

83
83

)

x2
15

3.
4:

(6
78

7:
67

83
:s

ed
)

x2
11

4.
3:

(/h
om

e/
us

er
/te

st
-b

ed
/w

or
ks

ta
tio

n_
at

ta
ck

/w
un

de
rb

ar
_e

m
po

riu
m

/p
w

nk
er

ne
l.c

:1
54

83
83

)

x2
15

7.
1:

(/h
om

e/
us

er
/te

st
-b

ed
/w

or
ks

ta
tio

n_
at

ta
ck

/w
un

de
rb

ar
_e

m
po

riu
m

/p
w

nk
er

ne
l2

.c
:1

54
83

83
)

x2
14

4.
3:

(6
78

1:
62

85
:e

xp
lo

it.
sh

)

x2
14

4.
4:

(6
78

1:
62

85
:e

xp
lo

it.
sh

)

x2
14

7.
1:

(6
78

3:
67

81
:e

xp
lo

it.
sh

)

x2
15

2.
1:

(/h
om

e/
us

er
/te

st
-b

ed
/w

or
ks

ta
tio

n_
at

ta
ck

/w
un

de
rb

ar
_e

m
po

riu
m

/p
w

nk
er

ne
l1

.c
:1

54
83

96
)

x2
15

3.
1:

(6
78

7:
67

83
:w

un
de

rb
ar

_e
m

po
r)

x2
15

4.
1:

(6
78

8:
67

83
:w

un
de

rb
ar

_e
m

po
r)

x2
15

8.
1:

(6
78

9:
67

83
:w

un
de

rb
ar

_e
m

po
r)

x2
30

8.
1:

(6
79

3:
67

83
:w

un
de

rb
ar

_e
m

po
r)

x2
38

3.
1:

(6
79

8:
67

83
:w

un
de

rb
ar

_e
m

po
r)

x2
39

7.
1:

(6
80

3:
67

83
:w

un
de

rb
ar

_e
m

po
r)

x2
46

0.
1:

(6
81

2:
67

83
:w

un
de

rb
ar

_e
m

po
r)

x2
15

2.
2:

(/h
om

e/
us

er
/te

st
-b

ed
/w

or
ks

ta
tio

n_
at

ta
ck

/w
un

de
rb

ar
_e

m
po

riu
m

/p
w

nk
er

ne
l1

.c
:1

54
83

96
)

x2
15

2.
3:

(/h
om

e/
us

er
/te

st
-b

ed
/w

or
ks

ta
tio

n_
at

ta
ck

/w
un

de
rb

ar
_e

m
po

riu
m

/p
w

nk
er

ne
l1

.c
:1

54
83

96
)

x2
16

0.
1:

(/h
om

e/
us

er
/te

st
-b

ed
/w

or
ks

ta
tio

n_
at

ta
ck

/w
un

de
rb

ar
_e

m
po

riu
m

/p
w

nk
er

ne
l.c

:1
54

83
96

)

x2
15

3.
2:

(6
78

7:
67

83
:w

un
de

rb
ar

_e
m

po
r)

x2
15

3.
3:

(6
78

7:
67

83
:s

ed
)

x2
15

4.
2:

(6
78

8:
67

83
:w

un
de

rb
ar

_e
m

po
r)

x2
15

4.
3:

(6
78

8:
67

83
:m

v)

x2
15

4.
4:

(6
78

8:
67

83
:m

v)

x2
15

4.
5:

(6
78

8:
67

83
:m

v)

x2
15

7.
2:

(/h
om

e/
us

er
/te

st
-b

ed
/w

or
ks

ta
tio

n_
at

ta
ck

/w
un

de
rb

ar
_e

m
po

riu
m

/p
w

nk
er

ne
l2

.c
:1

54
83

83
)

x2
15

8.
2:

(6
78

9:
67

83
:w

un
de

rb
ar

_e
m

po
r)

x2
15

8.
3:

(6
78

9:
67

83
:m

v)

x2
15

8.
4:

(6
78

9:
67

83
:m

v)

x2
15

8.
5:

(6
78

9:
67

83
:m

v)

x2
38

5.
3:

(6
79

9:
67

98
:c

c1
)

x2
30

8.
2:

(6
79

3:
67

83
:w

un
de

rb
ar

_e
m

po
r)

x2
30

8.
3:

(6
79

3:
67

83
:c

c)

x2
31

0.
1:

(/t
m

p/
cc

cX
Q

xZ
n.

s:
29

84
22

2)
x2

31
1.

4:
(6

79
4:

67
93

:c
c1

)
x2

37
2.

1:
(/t

m
p/

cc
fR

R
34

r.o
:2

98
42

23
)

x2
37

3.
5:

(6
79

5:
67

93
:a

s)

x2
31

0.
2:

(/t
m

p/
cc

cX
Q

xZ
n.

s:
29

84
22

2)

x2
31

0.
3:

(/t
m

p/
cc

cX
Q

xZ
n.

s:
29

84
22

2)

x2
37

3.
3:

(6
79

5:
67

93
:a

s)

x2
31

1.
5:

(6
79

4:
67

93
:c

c1
)

x2
31

1.
6:

(6
79

4:
67

93
:c

c1
)

x2
31

1.
7:

(6
79

4:
67

93
:c

c1
)

x2
31

1.
8:

(6
79

4:
67

93
:c

c1
)

x2
31

1.
9:

(6
79

4:
67

93
:c

c1
)

x2
31

1.
10

:(6
79

4:
67

93
:c

c1
)

x2
31

1.
11

:(6
79

4:
67

93
:c

c1
)

x2
31

1.
12

:(6
79

4:
67

93
:c

c1
)

x2
31

1.
13

:(6
79

4:
67

93
:c

c1
)

x2
31

1.
14

:(6
79

4:
67

93
:c

c1
)

x2
31

1.
15

:(6
79

4:
67

93
:c

c1
)

x2
31

1.
16

:(6
79

4:
67

93
:c

c1
)

x2
31

1.
17

:(6
79

4:
67

93
:c

c1
)

x2
31

1.
18

:(6
79

4:
67

93
:c

c1
)

x2
31

1.
19

:(6
79

4:
67

93
:c

c1
)

x2
31

1.
20

:(6
79

4:
67

93
:c

c1
)

x2
31

1.
21

:(6
79

4:
67

93
:c

c1
)

x2
31

1.
22

:(6
79

4:
67

93
:c

c1
)

x2
31

1.
23

:(6
79

4:
67

93
:c

c1
)

x2
31

1.
24

:(6
79

4:
67

93
:c

c1
)

x2
31

1.
25

:(6
79

4:
67

93
:c

c1
)

x2
31

1.
26

:(6
79

4:
67

93
:c

c1
)

x2
31

1.
27

:(6
79

4:
67

93
:c

c1
)

x2
31

1.
28

:(6
79

4:
67

93
:c

c1
)

x2
31

1.
29

:(6
79

4:
67

93
:c

c1
)

x2
31

1.
30

:(6
79

4:
67

93
:c

c1
)

x2
31

1.
31

:(6
79

4:
67

93
:c

c1
)

x2
31

1.
32

:(6
79

4:
67

93
:c

c1
)

x2
31

1.
33

:(6
79

4:
67

93
:c

c1
)

x2
31

1.
34

:(6
79

4:
67

93
:c

c1
)

x2
31

1.
35

:(6
79

4:
67

93
:c

c1
)

x2
31

1.
36

:(6
79

4:
67

93
:c

c1
)

x2
31

1.
37

:(6
79

4:
67

93
:c

c1
)

x2
31

1.
38

:(6
79

4:
67

93
:c

c1
)

x2
31

1.
39

:(6
79

4:
67

93
:c

c1
)

x2
31

1.
40

:(6
79

4:
67

93
:c

c1
)

x2
31

1.
41

:(6
79

4:
67

93
:c

c1
)

x2
31

1.
42

:(6
79

4:
67

93
:c

c1
)

x2
31

1.
43

:(6
79

4:
67

93
:c

c1
)

x2
31

1.
44

:(6
79

4:
67

93
:c

c1
)

x2
31

1.
45

:(6
79

4:
67

93
:c

c1
)

x2
31

1.
46

:(6
79

4:
67

93
:c

c1
)

x2
31

1.
47

:(6
79

4:
67

93
:c

c1
)

x2
31

1.
48

:(6
79

4:
67

93
:c

c1
)

x2
31

1.
49

:(6
79

4:
67

93
:c

c1
)

x2
31

1.
50

:(6
79

4:
67

93
:c

c1
)

x2
31

1.
51

:(6
79

4:
67

93
:c

c1
)

x2
31

1.
52

:(6
79

4:
67

93
:c

c1
)

x2
31

1.
53

:(6
79

4:
67

93
:c

c1
)

x2
31

1.
54

:(6
79

4:
67

93
:c

c1
)

x2
31

1.
55

:(6
79

4:
67

93
:c

c1
)

x2
31

1.
56

:(6
79

4:
67

93
:c

c1
)

x2
31

1.
57

:(6
79

4:
67

93
:c

c1
)

x2
31

1.
58

:(6
79

4:
67

93
:c

c1
)

x2
31

1.
59

:(6
79

4:
67

93
:c

c1
)

x2
31

1.
60

:(6
79

4:
67

93
:c

c1
)

x2
31

1.
61

:(6
79

4:
67

93
:c

c1
)

x2
31

1.
62

:(6
79

4:
67

93
:c

c1
)

x2
31

1.
63

:(6
79

4:
67

93
:c

c1
)

x2
31

1.
64

:(6
79

4:
67

93
:c

c1
)

x2
37

2.
2:

(/t
m

p/
cc

fR
R

34
r.o

:2
98

42
23

)

x2
37

3.
4:

(6
79

5:
67

93
:a

s)

x2
38

3.
2:

(6
79

8:
67

83
:w

un
de

rb
ar

_e
m

po
r)

x2
38

3.
3:

(6
79

8:
67

83
:c

c) x2
38

4.
1:

(/t
m

p/
cc

Q
X

pw
LK

.s:
29

84
22

6)
x2

38
5.

4:
(6

79
9:

67
98

:c
c1

)
x2

38
8.

1:
(/t

m
p/

cc
U

Zc
d3

t.o
:2

98
42

27
)

x2
38

9.
5:

(6
80

0:
67

98
:a

s)

x2
38

4.
2:

(/t
m

p/
cc

Q
X

pw
LK

.s:
29

84
22

6)

x2
38

4.
3:

(/t
m

p/
cc

Q
X

pw
LK

.s:
29

84
22

6)

x2
38

9.
3:

(6
80

0:
67

98
:a

s)

x2
38

5.
5:

(6
79

9:
67

98
:c

c1
)

x2
38

5.
6:

(6
79

9:
67

98
:c

c1
)

x2
38

5.
7:

(6
79

9:
67

98
:c

c1
)

x2
38

5.
8:

(6
79

9:
67

98
:c

c1
)

x2
38

5.
9:

(6
79

9:
67

98
:c

c1
)

x2
38

5.
10

:(6
79

9:
67

98
:c

c1
)

x2
38

5.
11

:(6
79

9:
67

98
:c

c1
)

x2
38

5.
12

:(6
79

9:
67

98
:c

c1
)

x2
38

5.
13

:(6
79

9:
67

98
:c

c1
)

x2
38

5.
14

:(6
79

9:
67

98
:c

c1
)

x2
38

5.
15

:(6
79

9:
67

98
:c

c1
)

x2
38

5.
16

:(6
79

9:
67

98
:c

c1
)

x2
38

5.
17

:(6
79

9:
67

98
:c

c1
)

x2
38

5.
18

:(6
79

9:
67

98
:c

c1
)

x2
38

5.
19

:(6
79

9:
67

98
:c

c1
)

x2
38

5.
20

:(6
79

9:
67

98
:c

c1
)

x2
38

5.
21

:(6
79

9:
67

98
:c

c1
)

x2
38

5.
22

:(6
79

9:
67

98
:c

c1
)

x2
38

5.
23

:(6
79

9:
67

98
:c

c1
)

x2
38

5.
24

:(6
79

9:
67

98
:c

c1
)

x2
38

5.
25

:(6
79

9:
67

98
:c

c1
)

x2
38

5.
26

:(6
79

9:
67

98
:c

c1
)

x2
38

5.
27

:(6
79

9:
67

98
:c

c1
)

x2
38

5.
28

:(6
79

9:
67

98
:c

c1
)

x2
38

5.
29

:(6
79

9:
67

98
:c

c1
)

x2
38

5.
30

:(6
79

9:
67

98
:c

c1
)

x2
38

5.
31

:(6
79

9:
67

98
:c

c1
)

x2
38

5.
32

:(6
79

9:
67

98
:c

c1
)

x2
38

5.
33

:(6
79

9:
67

98
:c

c1
)

x2
38

5.
34

:(6
79

9:
67

98
:c

c1
)

x2
38

5.
35

:(6
79

9:
67

98
:c

c1
)

x2
38

8.
2:

(/t
m

p/
cc

U
Zc

d3
t.o

:2
98

42
27

)

x2
38

9.
4:

(6
80

0:
67

98
:a

s)

x2
39

7.
2:

(6
80

3:
67

83
:w

un
de

rb
ar

_e
m

po
r)

x2
39

7.
3:

(6
80

3:
67

83
:p

w
nk

er
ne

l)

x2
39

7.
4:

(6
80

3:
67

83
:p

ul
se

au
di

o)

x2
39

7.
5:

(6
80

3:
67

83
:p

ul
se

au
di

o)

x2
39

7.
6:

(6
80

3:
67

83
:p

ul
se

au
di

o)

x2
39

7.
7:

(6
80

3:
67

83
:p

ul
se

au
di

o)

x2
39

7.
8:

(6
80

3:
67

83
:p

ul
se

au
di

o)

x2
39

7.
9:

(6
80

3:
67

83
:p

ul
se

au
di

o)

x2
40

4.
1:

(/t
m

p/
pu

ls
e-

ca
rt/

pi
d:

29
84

08
1)

x2
39

7.
10

:(6
80

3:
67

83
:p

ul
se

au
di

o)

x2
39

7.
11

:(6
80

3:
67

83
:p

ul
se

au
di

o)

x2
40

9.
1:

(/h
om

e/
ca

rt/
.e

sd
_a

ut
h:

97
48

83
)

x2
39

7.
12

:(6
80

3:
67

83
:p

ul
se

au
di

o)

x2
41

1.
1:

(/h
om

e/
ca

rt/
.p

ul
se

-c
oo

ki
e:

97
48

85
)

x2
39

7.
13

:(6
80

3:
67

83
:p

ul
se

au
di

o)

x2
39

7.
14

:(6
80

3:
67

83
:p

ul
se

au
di

o)

x2
39

7.
15

:(6
80

3:
67

83
:p

ul
se

au
di

o)

x2
39

7.
16

:(6
80

3:
67

83
:p

ul
se

au
di

o)

x2
39

7.
17

:(6
80

3:
67

83
:p

ul
se

au
di

o)

x2
39

7.
18

:(6
80

3:
67

83
:p

ul
se

au
di

o)

x2
39

7.
19

:(6
80

3:
67

83
:p

ul
se

au
di

o)

x2
39

7.
20

:(6
80

3:
67

83
:p

ul
se

au
di

o)
x2

42
1.

1:
(P

A
G

E0
:m

em
or

y(
0-

40
96

))

x2
39

7.
21

:(6
80

3:
67

83
:p

ul
se

au
di

o)
x2

42
3.

1:
(/t

m
p/

se
nd

fil
e.

p4
lb

tq
:2

98
42

31
)

x2
42

9.
1:

(6
81

1:
68

03
:s

h)

x2
42

9.
2:

(6
81

1:
68

03
:s

h)

x2
42

9.
3:

(6
81

1:
68

03
:u

se
ra

dd
)

x2
42

9.
4:

(6
81

1:
68

03
:u

se
ra

dd
)

x2
42

9.
5:

(6
81

1:
68

03
:u

se
ra

dd
)

x2
42

9.
6:

(6
81

1:
68

03
:u

se
ra

dd
)

x2
42

9.
7:

(6
81

1:
68

03
:u

se
ra

dd
)

x2
42

9.
8:

(6
81

1:
68

03
:u

se
ra

dd
)

x2
43

3.
1:

(/e
tc

/.p
w

d.
lo

ck
:1

49
10

65
)

x2
43

4.
1:

(/e
tc

/p
as

sw
d.

68
11

:1
49

31
03

)

x2
42

9.
9:

(6
81

1:
68

03
:u

se
ra

dd
)

x2
42

9.
10

:(6
81

1:
68

03
:u

se
ra

dd
)

x2
43

7.
1:

(/e
tc

/s
ha

do
w.

68
11

:1
49

31
04

)

x2
42

9.
11

:(6
81

1:
68

03
:u

se
ra

dd
)

x2
44

0.
1:

(/e
tc

/g
ro

up
.6

81
1:

14
93

10
5)

x2
42

9.
12

:(6
81

1:
68

03
:u

se
ra

dd
)

x2
44

3.
1:

(/e
tc

/g
sh

ad
ow

.6
81

1:
14

93
10

6)

x2
42

9.
13

:(6
81

1:
68

03
:u

se
ra

dd
)

x2
42

9.
14

:(6
81

1:
68

03
:u

se
ra

dd
)

x2
44

8.
1:

(/e
tc

/p
as

sw
d-

:1
49

11
34

)
x2

44
9.

1:
(/e

tc
/p

as
sw

d+
:1

49
31

07
)

x2
45

1.
1:

(/e
tc

/s
ha

do
w

-:1
49

11
47

)
x2

45
2.

1:
(/e

tc
/s

ha
do

w
+:

14
93

10
8)

x2
45

4.
1:

(/e
tc

/g
ro

up
-:1

49
10

89
)

x2
45

5.
1:

(/e
tc

/g
ro

up
+:

14
93

10
9)

x2
45

7.
1:

(/e
tc

/g
sh

ad
ow

-:1
49

10
91

)
x2

45
8.

1:
(/e

tc
/g

sh
ad

ow
+:

14
93

11
0)

x2
45

0.
1:

(/e
tc

/p
as

sw
d:

14
93

10
7)

x2
45

3.
1:

(/e
tc

/s
ha

do
w

:1
49

31
08

)

x2
52

4.
4:

(6
82

8:
68

15
:c

at
)

x2
45

6.
1:

(/e
tc

/g
ro

up
:1

49
31

09
)

x2
45

9.
1:

(/e
tc

/g
sh

ad
ow

:1
49

31
10

)

x2
46

0.
2:

(6
81

2:
67

83
:w

un
de

rb
ar

_e
m

po
r)

x2
46

0.
3:

(6
81

2:
67

83
:m

v)

x2
46

0.
4:

(6
81

2:
67

83
:m

v)

x2
46

0.
5:

(6
81

2:
67

83
:m

v)

x2
49

3.
7:

(6
81

5:
68

13
:s

sh
d)

x2
49

3.
8:

(6
81

5:
68

13
:b

as
h)

x2
49

3.
9:

(6
81

5:
68

13
:b

as
h)

x2
49

3.
10

:(6
81

5:
68

13
:b

as
h)

x2
49

3.
11

:(6
81

5:
68

13
:b

as
h)

x2
49

3.
12

:(6
81

5:
68

13
:b

as
h)

x2
50

3.
1:

(6
81

8:
68

15
:b

as
h)

x2
52

2.
1:

(6
82

7:
68

15
:b

as
h)

x2
52

4.
1:

(6
82

8:
68

15
:b

as
h)

x2
52

5.
1:

(6
82

9:
68

15
:b

as
h)

x2
52

7.
1:

(6
83

0:
68

15
:b

as
h)

x2
53

0.
1:

(6
83

1:
68

15
:b

as
h)

x2
53

2.
1:

(6
83

2:
68

15
:b

as
h)

x2
53

4.
1:

(6
83

3:
68

15
:b

as
h)

x2
53

6.
1:

(6
83

4:
68

15
:b

as
h)

x2
53

8.
1:

(6
83

5:
68

15
:b

as
h)

x2
54

0.
1:

(6
83

6:
68

15
:b

as
h)

x2
54

1.
1:

(6
83

7:
68

15
:b

as
h)

x2
52

2.
2:

(6
82

7:
68

15
:b

as
h)

x2
52

2.
3:

(6
82

7:
68

15
:ls

)

x2
52

2.
4:

(6
82

7:
68

15
:ls

)

x2
52

4.
2:

(6
82

8:
68

15
:b

as
h)

x2
52

4.
3:

(6
82

8:
68

15
:c

at
)

x2
52

5.
2:

(6
82

9:
68

15
:b

as
h)

x2
52

5.
3:

(6
82

9:
68

15
:ls

)

x2
52

5.
4:

(6
82

9:
68

15
:ls

)

x2
52

7.
2:

(6
83

0:
68

15
:b

as
h)

x2
52

7.
3:

(6
83

0:
68

15
:to

uc
h)

x2
52

9.
1:

(/v
iru

s:
24

61
0)

x2
53

0.
2:

(6
83

1:
68

15
:b

as
h)

x2
53

0.
3:

(6
83

1:
68

15
:w

ho
am

i)

x2
53

0.
4:

(6
83

1:
68

15
:w

ho
am

i)

x2
53

2.
2:

(6
83

2:
68

15
:b

as
h)

x2
53

2.
3:

(6
83

2:
68

15
:ls

)

x2
53

2.
4:

(6
83

2:
68

15
:ls

)

x2
53

4.
2:

(6
83

3:
68

15
:b

as
h)

x2
53

4.
3:

(6
83

3:
68

15
:ls

)

x2
53

4.
4:

(6
83

3:
68

15
:ls

)

x2
53

6.
2:

(6
83

4:
68

15
:b

as
h)

x2
53

6.
3:

(6
83

4:
68

15
:rm

)

x2
53

8.
2:

(6
83

5:
68

15
:b

as
h)

x2
53

8.
3:

(6
83

5:
68

15
:ls

)

x2
53

8.
4:

(6
83

5:
68

15
:ls

)

x2
54

0.
2:

(6
83

6:
68

15
:b

as
h)

x2
54

0.
3:

(6
83

6:
68

15
:rm

)

x2
54

1.
2:

(6
83

7:
68

15
:b

as
h)

x2
54

1.
3:

(6
83

7:
68

15
:rm

)

Fig. 8: The zero-day attack path in the form of SOIDG.

6.2 Experiment Results

While conducting the three-step attack, we simultaneously log the system calls
on each host and collect the security alerts. After analyzing a total number of
143120 system calls generated by three hosts, an SOIDG-based BN with 1853
nodes and 2249 edges is constructed. The evidence as in Table 1 is collected and
fed into BN.

Correctness. Given the evidence, Fig. 8 illustrates the identified candidate
zero-day attack paths in the form of an SOIDG, with the contact infection rate
τ as 0.9, the intrinsic infection rate ρ as 0.001, and the probability threshold
of recognizing high-probability nodes as 80%. The processes, files, and sockets
are denoted with rectangles, ellipses, and diamonds respectively. We mark the
evidence with red color and the nodes that are verified to be malicious with
grey color. Therefore, Fig. 8 shows that our approach can successfully reveal
the actual zero-day attack path. It is worth noting that although no evidence
is provided on NFS Server, but the identified attack path can still demonstrate
how NFS Server contributes to the overall intrusion propagation: the file work-
station attack.tar.gz is uploaded from SSH Server to the /exports directory on
NFS Server, and then downloaded to /mnt on Workstation 3. More importantly,
the identified path can expose key objects that are related to the exploits of zero-
day vulnerabilities. For example, the identified system objects on NFS Server can
alert system admins for possible configuration errors because SSH Server should
not have the privilege of writing to the /exports directory. As another example,
the object PAGE0: memory(0-4096) on Workstation is also exposed as highly
suspicious on the identified attack path. Page-zero is actually what triggers the
null pointer dereference and enables attackers gain privilege on Workstation 3.
Therefore, exposing the page-zero object can help system admins to further di-
agnose how the intrusion happens and propagates.

An additional merit of our approach is that the SOIDG-based BN can clearly
show the state transitions of an object using instances. By matching the in-

http:attack.tar.gz

Pr0bA 13

Workstation

NFS Server

SSH Server

x4.2:(6560:6559:mount.nfs)

x10.1:(/etc/mtab:8798397) x1007.6:(172.18.34.5:2049)

x142.25:(192.168.101.5:22)

x350.1: Snort Brute Force Alert

x253.8:(6706:6703:sshd)

x254.7:(6707:6706:scp)

x259.1:(/mnt/workstation_attack.tar.gz:9453574)

x260.1:(/mnt:)

x1008.5:(5118:1:unfsd) x2006.3:(6737:6736:mount.nfs)

x1017.1:(/exports/workstation_attack.tar.gz:9453574) x2061.1:(/etc/mtab:1493088) x2083.1:(/mnt/workstation_attack.tar.gz:9453574)

x2078.6:(6761:6719:cp)

x2082.2:(/home/user/test-bed/workstation_attack.tar.gz:1384576)

x2086.5:(6763:6719:tar)

x2102.1:(/home/user/test-bed/workstation_attack/exploit.sh:1540318) x2107.1:(/home/user/test-bed/workstation_attack/wunderbar_emporium/exploit.c:1548376)x2108.1:(/home/user/test-bed/workstation_attack/wunderbar_emporium/wunderbar_emporium.sh:1548377)

x2114.3:(/home/user/test-bed/workstation_attack/wunderbar_emporium/pwnkernel.c:1548383)

x2144.4:(6781:6285:exploit.sh)

x2311.64:(6794:6793:cc1)

x2147.2:(6783:6781:exploit.sh)

x2153.4:(6787:6783:sed)x2157.2:(/home/user/test-bed/workstation_attack/wunderbar_emporium/pwnkernel2.c:1548383)

x2152.3:(/home/user/test-bed/workstation_attack/wunderbar_emporium/pwnkernel1.c:1548396)

x2154.5:(6788:6783:mv) x2158.5:(6789:6783:mv) x2308.3:(6793:6783:cc)

x2383.3:(6798:6783:cc)

x2397.21:(6803:6783:pulseaudio)x2460.5:(6812:6783:mv)

x2160.1:(/home/user/test-bed/workstation_attack/wunderbar_emporium/pwnkernel.c:1548396)

x2385.35:(6799:6798:cc1)

x2310.3:(/tmp/cccXQxZn.s:2984222)

x2372.2:(/tmp/ccfRR34r.o:2984223)

x2373.5:(6795:6793:as)

x2384.3:(/tmp/ccQXpwLK.s:2984226)

x2388.2:(/tmp/ccUZcd3t.o:2984227)

x2389.5:(6800:6798:as)

x2404.1:(/tmp/pulse-cart/pid:2984081) x2409.1:(/home/cart/.esd_auth:974883) x2411.1:(/home/cart/.pulse-cookie:974885)x2421.1:(PAGE0:memory(0-4096)) x2423.1:(/tmp/sendfile.p4lbtq:2984231) x2429.14:(6811:6803:useradd)

x2433.1:(/etc/.pwd.lock:1491065) x2434.1:(/etc/passwd.6811:1493103) x2437.1:(/etc/shadow.6811:1493104) x2440.1:(/etc/group.6811:1493105) x2443.1:(/etc/gshadow.6811:1493106) x2448.1:(/etc/passwd-:1491134)x2449.1:(/etc/passwd+:1493107) x2451.1:(/etc/shadow-:1491147)x2452.1:(/etc/shadow+:1493108)x2454.1:(/etc/group-:1491089) x2455.1:(/etc/group+:1493109)x2457.1:(/etc/gshadow-:1491091)x2458.1:(/etc/gshadow+:1493110)

x2450.1:(/etc/passwd:1493107) x2453.1:(/etc/shadow:1493108)

x2524.4:(6828:6815:cat)

x2456.1:(/etc/group:1493109)x2459.1:(/etc/gshadow:1493110)x2493.12:(6815:6813:bash)

x2503.1:(6818:6815:bash)x2522.4:(6827:6815:ls) x2525.4:(6829:6815:ls) x2527.3:(6830:6815:touch) x2530.4:(6831:6815:whoami) x2532.4:(6832:6815:ls) x2534.4:(6833:6815:ls) x2536.3:(6834:6815:rm) x2538.4:(6835:6815:ls) x2540.3:(6836:6815:rm) x2541.3:(6837:6815:rm)

x2529.1:(/virus:24610)

Fig. 9: The zero-day attack path in the form of SODG.

stances and dependencies back to the system call traces, it can even find out the
exact system call that causes the state-changing of the object. For example, the
node x2086.4:(6763:6719:tar) in Fig. 8 represents the fourth instance of process
(pid:6763, pcmd:tar). Previous instances of the process are considered as inno-
cent because of their low infection probabilities. The process becomes highly sus-
picious only after a dependency occurs between node x2082.2:(/home/user/test-
bed/workstation attack.tar.gz:1384576) and node x2086.4. Matching the depen-
dency back to the system call traces reveals that the state change of the pro-
cess is caused by “syscall:read, start:827189, end:827230, pid:6763, ppid:6719,
pcmd:tar, ftype:REG, pathname:/home/user/test-bed/workstation attack.tar.gz,
inode:1384576 ”, a system call indicating that the process reads a suspicious file.

Table 1: The Collected Evidence
ID Host Evidence
E1 SSH Server Snort messages “potential SSH brute force attack”
E2 Workstation Tripwire reports “/virus is added”
E3 Workstation Tripwire reports “/etc/passwd is modified”
E4 Workstation Tripwire reports “/etc/shadow is modified”

Size of Candidate Zero-day Attack Paths. If all the instances belonging
to the same object are merged into one node, we will generate a zero-day attack
path in the form of SODG as shown in Fig. 9. This path contains only objects
and can be used for verification when details regarding instances are not needed.
The main candidate path identified by Patrol contains 175 objects, while the
path by our system is composed of only 77 objects, and thus can be verified
with ease. Considering that the total number of objects involved in original
SOIDG is only 913, the 56% reduction of path size is substantial. Our further
investigation shows that when the time period of being analyzed is longer, our
system can generate candidate paths much smaller than Patrol without hurting
the correctness of the paths.

Influence of Evidence. We choose a number of nodes in Fig. 8 as the
representative interested instances. Table 2 shows how the infection probabilities

http:attack.tar.gz

14 Xiaoyan Sun, Jun Dai, Peng Liu, Anoop Singhal, John Yen

of these instances change after each piece of evidence is fed into BN. We assume
the evidence is observed in the order of attack sequence. The results show that
when no evidence is available, the infection probabilities for all nodes are very
low. When E1 is added, only a few instances on SSH Server receive probabilities
higher than 60%. After E2 is observed, the infection probabilities for instances
on Workstation 3 increase, but still not much. As E3 and E4 arrive, 5 of the 9
representative instances on all three hosts become highly suspicious. Therefore,
the evidence makes the instances on the actual attack paths emerge gradually
from the “sea” of instances in the SOIDG. However, it is also possible that the
arrival of some evidence may decrease the probabilities of certain instances, so
that these instances will get removed from the final path. In a word, as more
evidence is collected, the revealed zero-day attack paths become closer to the
actual fact.

Table 2: The Influence of Evidence

Evidence
SSH Server NFS Server Workstation

x4.1 x10.1 x253.3 x1007.1 x1017.1 x2006.2 x2083.1 x2108.1 x2311.32
No Evi.

E1
E2
E3
E4

0.56% 0.51% 0.57%
63.76% 57.38% 79.13%
63.76% 57.38% 79.13%
86.82% 78.14% 80.76%
86.84% 78.16% 80.77%

0.51% 0.54%
57.38% 46.54%
57.38% 46.94%
84.50% 75.63%
84.53% 75.65%

0.54% 0.51% 0.51% 1.21%
41.92% 37.75% 24.89% 26.93%
42.58% 38.34% 27.04% 30.09%
81.26% 79.56% 75.56% 81.55%
81.3% 79.59% 75.60% 81.66%

Influence of False Alerts. We assume that E4 is a false alarm generated by
Tripwire and evaluate its influence to the BN output. Table 3 shows that when
only one piece of evidence exists, the observation of E4 will at least greatly
influence the probabilities of some instances on Workstation 3. However, when
other evidence is fed into BN, the influence of E4 decreases. For instance, given
just E1, the infection probability of x2006.2 is 97.78% when E4 is true, but
should be 29.96% if E4 is a false alert. Nonetheless, if all other evidence is
already input into BN, the infection probability of x2006.2 only changes from
81.13% to 81.3% if E4 becomes a false alert. Therefore, the impact of false alerts
can be reduced substantially if sufficient evidence is collected.

Table 3: The Influence of False Alerts
Evidence x4.1 x10.1 x253.3 x1007.1 x1017.1 x2006.2 x2083.1 x2108.1 x2311.32

Only E1
E4=True
E4=False

98.46% 88.62% 81.59% 98.20% 88.30% 97.78% 97.67% 90.23% 94.44%
56.33% 50.70% 78.60% 48.65% 37.60% 29.96% 24.92% 10.89% 12.48%

All Evidence
E4=True
E4=False

86.84% 78.16% 80.77% 84.53% 75.65% 81.3% 79.59% 75.60% 81.66%
86.74% 78.06% 80.76% 84.41% 75.54% 81.13% 79.42% 75.39% 81.38%

Sensitivity Analysis and Influence of τ and ρ. We also performed sen-
sitivity analysis and evaluated the impact of the contact infection rate τ and the
intrinsic infection rate ρ by tuning these numbers. ρ is usually set at a very low
value, so our experiment results are not very sensitive to the value of ρ. Since
τ decides how likely sinkj get infected given srci is infected in a srci→sinkj

dependency, the value of τ will definitely influence the probabilities produced
by BN. If a node is marked as infected, other nodes that are directly or indi-
rectly connected to this node should expect higher infection probabilities when

Pr0bA 15

τ is bigger. Our experiments show that adjusting τ within a small range (e.g.
changing from 0.9 to 0.8) does not influence the output probabilities much, but
a major adjustment of τ (e.g. changing it from 0.9 to 0.5) can largely affect the
probabilities. However, we still argue that although τ influences the produced
infection probabilities, it will not greatly affect the identification of zero-day
attack paths. Our rationale is that the probability threshold of recognizing high-
probability nodes for zero-day attack paths can be adjusted according to the
value of τ . For example, when τ is a small number such as 50%, even nodes that
have low infection probabilities of around 40% to 60% should be considered as
highly suspicious because it is hard for an instance to get infected with such a
low contact infection rate.

Complexity. One concern of adopting SOIDG is that it can become too
large due to introduction of instances. However, the techniques of pruning the
SOIDG can significantly reduce the number of instances. Table 4 summarizes the
total number of instances in SOIDGs for each host before and after the pruning.
It shows that the number of instances can be reduced to an acceptable value.

The experiment results also show that the off-line data analysis is very effi-
cient. Considering that our system shares the system call logging component with
Patrol, we will not repeat the evaluation of its run-time performance overhead.
We only evaluate time cost for the off-line data analysis, which includes the time
for SOIDG-based BN generation, probability inference and zero-day attack path
identification. The time cost for probability inference depends on the algorithm
employed in SamIam. The time complexity can be O(|V |2) for both SOIDG-
based BN generation and zero-day attack path identification, because the DFS
algorithm is applied towards every node in the SOIDG. For our experiments, Ta-
ble 4 already shows the time required for constructing the SOIDG-based BN for
each host, so the total time of BN construction comes to around 27 seconds. For
a BN with approximately 1854 nodes, assuming that the evidence is already fed
into BN and the algorithm used is recursive conditioning, the average time cost
is 1.57 seconds for BN compilation and probability inference, and 59 seconds for
zero-day attack path identification. Combining all the time required together,
the average data analysis speed is 280 KB/s, which is reasonable comparing to
the system call generation speed of around 1.03 KB/s [10]. The average memory
used for compiling a BN with approximately 1854 nodes is 4.32 Mb.

Table 4: The Impact of Pruning the SOIDG
SSH Server NFS Server Workstation

before after before after before after
number of syscalls in raw data trace
size of raw data trace (MB)
number of extracted object dependencies
number of objects

82133
13.8
10310
349

14944
2.3

11535
20

46043
7.9

17516
544

number of instances(nodes) in SOIDG
number of dependencies(edges) in SOIDG
number of contact dependencies
number of state transition dependencies
average time for graph generation(s)
.net file size(KB)

10447
20186
9888
10298
14

2000

745
968
372
596
11
123

11544
19863
8329
11534

6
2200

39
37
8
29
5
8

17849
34549
17033
17516
13

3600

1069
1244
508
736
11
180

16 Xiaoyan Sun, Jun Dai, Peng Liu, Anoop Singhal, John Yen

7 Related Work

The work that is most related to us is Patrol. Our work differs from Patrol in sev-
eral aspects. First, Patrol relies on “shadow indicators” to distinguish zero-day
attack paths from other candidate paths. However, investigating and crafting
shadow indicators requires human analysts’ or even the whole community’s ef-
forts. Instead, our approach solely relies on the collected intrusion evidence to
generate a zero-day attack path. Second, Patrol identifies the candidate zero-day
attack paths by tracking from a trigger point. If the trigger points are provided
by security sensors with high false rates, the identified paths can also suffer from
certain false rates. In constrast, our system does not perform any tracking, but
only relies on the computed probabilities. By taking various evidence in, the
SOIDG-based BN can cope with false rates to a large extent. Third, Patrol only
conducts qualitative analysis and treats every object on the identified paths as
having the same malicious status. Scrutinizing every object on the path to verify
its status is a daunting job, especially when the identified path is very big. Com-
pared to Patrol, the SOIDG-based BN quantifies the infection status of system
objects with probabilities. By only focusing on system objects with relatively
high probabilities, we can significantly reduce the set of suspicious objects, and
make the subsequent verification of zero-day attack paths practical.

Other related work includes system call dependency tracking and zero-day
attack identification. System call dependency tracking is first proposed in [16] to
help the understanding of intrusion sequence. It is then applied for alert corre-
lation in [4, 5]. Instead of directly correlating these alerts, our system takes the
alerts as evidence and quantitatively compute the infection probabilities of sys-
tem objects. [27] conducts an empirical study to reveal the zero-day attacks by
identifying the executable files that are linked to exploits of known vulnerabili-
ties. A zero-day attack is identified if a malicious executable is found before the
corresponding vulnerability is disclosed. Attack graphs have been employed to
measure the security risks caused by zero-day attacks [19–21]. Nevertheless, the
metric simply counts the number of required unknown vulnerabilities for com-
promising an asset, rather than detects the actually occurred zero-day exploits.
Our system takes an approach that is quite different from the above work.

8 Limitation and Conclusion

The current system still has some limitations. For example, when some attack
activities evade the system calls (although difficult, but possible), or the attack
time span is much longer than the analyzed time period, the constructed SOIDG
may not reflect the complete zero-day attack paths. In such cases, our system
can only reveal partial of the paths.

This paper proposes to use Bayesian networks to identify the zero-day attack
paths. For this purpose, a System Object Instance Dependency Graph is built to
serve as the basis of Bayesian networks. By incorporating the intrusion evidence
and computing the probabilities of objects being infected, the implemented sys-
tem Pr0bA can successfully reveal the zero-day attack paths at run-time.

Pr0bA 17

Disclaimer
This paper is not subject to copyright in the United States. Commercial products
are identified in order to adequately specify certain procedures. In no case does
such identification imply recommendation or endorsement by the National Insti-
tute of Standards and Technology, nor does it imply that the identified products
are necessarily the best available for the purpose.

References

1. V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection: A survey. ACM
Computing Surveys (CSUR), 2009.

2. C. Kruegel, D. Mutz, F. Valeur, and G. Vigna. On the detection of anomalous
system call arguments. ESORICS, 2003.

3. S. Bhatkar, A. Chaturvedi, and R. Sekar. Dataflow anomaly detection. IEEE S&P,
2006.

4. S. T. King, Z. M. Mao, D. G. Lucchetti, P. M. Chen. Enriching intrusion alerts
through multi-host causality. NDSS, 2005.

5. Y. Zhai, P. Ning, J. Xu. Integrating IDS alert correlation and OS-Level dependency
tracking. IEEE Intelligence and Security Informatics, 2006.

6. S. Jajodia, S. Noel, and B. O’Berry. Topological analysis of network attack vul-
nerability. Managing Cyber Threats, 2005.

7. P. Ammann, D. Wijesekera, and S. Kaushik. Scalable, graph-based network vul-
nerability analysis. ACM CCS, 2002.

8. X. Ou, W. F. Boyer, and M. A. McQueen. A scalable approach to attack graph
generation. ACM CCS, 2006.

9. X. Ou, S. Govindavajhala, and A. W. Appel. MulVAL: A Logic-based Network
Security Analyzer. USENIX security, 2005.

10. J. Dai, X. Sun, and P. Liu. Patrol: Revealing zero-day attack paths through
network-wide system object dependencies. ESORICS, 2013.

11. Symantec Report. http://www.symantec.com/content/en/us/enterprise/other resources/b-
istr main report v19 21291018.en-us.pdf

12. Wireshark. https://www.wireshark.org/.
13. Snort. https://www.snort.org/.
14. Tcpdump. http://www.tcpdump.org/.
15. Tripwire. http://www.tripwire.com/.
16. S. T. King, and P. M. Chen. Backtracking intrusions. ACM SIGOPS, 2003.
17. X. Xiong, X. Jia, and P. Liu. Shelf: Preserving business continuity and availability

in an intrusion recovery system. ACSAC, 2009.
18. Nessus. http://www.tenable.com/products/nessus-vulnerability-scanner.
19. L. Wang, S. Jajodia, A. Singhal, and S. Noel. k-zero day safety: Measuring the

security risk of networks against unknown attacks. ESORICS, 2010.
20. M. Albanese, S. Jajodia, A. Singhal, and L. Wang. An Efficient Approach to

Assessing the Risk of Zero-Day Vulnerabilities. SECRYPT, 2013.
21. L. Wang, S. Jajodia, A. Singhal, P. Cheng, and S. Noel. k-Zero day safety: A

network security metric for measuring the risk of unknown vulnerabilities. IEEE
Transactions on Dependable and Secure Computing, 2014.

22. P. Xie, J. H. Li, X. Ou, P. Liu, and R. Levy. Using Bayesian networks for cyber
security analysis. DSN, 2010.

http://www.tenable.com/products/nessus-vulnerability-scanner
http:http://www.tripwire.com
http:http://www.tcpdump.org
http:https://www.snort.org
http:https://www.wireshark.org
http://www.symantec.com/content/en/us/enterprise/other

18 Xiaoyan Sun, Jun Dai, Peng Liu, Anoop Singhal, John Yen

23. SamIam. http://reasoning.cs.ucla.edu/samiam/.
24. R. Tarjan. Depth-first search and linear graph algorithms. SIAM journal on

computing 1, 1972.
25. GraphViz. http://www.graphviz.org/.
26. Ntop. http://www.ntop.org/.
27. L. Bilge, and T. Dumitras. Before we knew it: an empirical study of zero-day

attacks in the real world. ACM CCS, 2012.

Appendix

Table 5: System Call Dependency Rules
Dependency Events System calls
process→file a process creates or writes a file write, pwrite64, rename, mkdir, fchmod, chmod,

fchownat, etc.
file→process a process reads or executes a file stat64, read, pread64, execve, etc.
process→process a process creates or kill a process vfork, fork, kill, etc.
process→socket a process writes a socket write, pwrite64, send, sendmsg, etc.
socket→process a process reads a socket read, pread64,recv, recvmsg, etc.
socket→socket socket communication sendmsg, recvmsg, etc.

http:http://www.ntop.org
http:http://www.graphviz.org
http://reasoning.cs.ucla.edu/samiam

Pr0bA 19

Algorithm 1 Algorithm of SOIDG Generation

Require: set D of system object dependencies
Ensure: the SOIDG graph G(V , E)
1: for each dep: src→sink ∈D do
2: look up the most recent instance srck of src, sinkz of sink in V
3: if sinkz ∈/V then
4: create new instances sink1

5: V ← V ∪ {sink1}
6: if srck ∈/V then
7: create new instances src1

8: V ← V ∪ {src1}
9: E ← E ∪ {src1→sink1}
10: else
11: E ← E ∪ {srck→sink1}
12: end if
13: end if
14: if sinkz ∈V then
15: create new instance sinkz+1

16: V ← V ∪ {sinkz+1}
17: E ← E ∪ {sinkz →sinkz+1}
18: if srck∈/V then
19: create new instances src1

20: V ← V ∪ {src1}
21: E ← E ∪ {src1→sinkz+1}
22: else
23: E ← E ∪ {srck→sinkz+1}
24: end if
25: end if
26: end for

20 Xiaoyan Sun, Jun Dai, Peng Liu, Anoop Singhal, John Yen

Algorithm 2 Algorithm of Candidate Zero-day Attack Paths Identification

Require: the SOIDG graph G(V , E), a vertex v ∈ V
Ensure: the candidate zero-day attack path Gz (Vz , Ez)
1: function DF S(G, v, direction)
2: set v as visited
3: if direction = ancestor then
4: set nextv as parent of v that nextv →v ∈ E
5: set flag as has high probability ancestor
6: else if direction = descendant then
7: set nextv as child of v that v→nextv ∈ E
8: set flag as has high probability descendant
9: end if
10: for all nextv of v do
11: if nextv is not labeled as visited then
12: if the probability for nextv prob[nextv]≥ threshold or nextv is marked

as flag then
13: set find high probability as T rue
14: else
15: DF S(G, nextv , direction)
16: end if
17: end if
18: if find high probability is T rue then
19: mark v as flag
20: end if
21: end for
22: end function
23: for all v ∈ E do
24: DF S(G, v, ancestor)
25: DF S(G, v, descendant)
26: end for
27: for all v ∈ V do
28: if prob[v]≥ threshold or (v is marked as has high probability ancestor and v

is marked as has high probability descendant) then
29: Vz ← Vz ∪ v
30: end if
31: end for
32: for all e : v→w ∈ E do
33: if v ∈ Vz and w ∈ Vz then
34: Ez ← Ez ∪ e
35: end if
36: end for

