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1 Improved Method for the Calculation
2 of Plastic Rotation of Moment-Resisting
3 Framed Structures for Nonlinear Static
4 and Dynamic Analysis

5 Kevin K.F. Wong and Matthew S. Speicher

6 Abstract Given the vast advancements in computing power in the last several
7 decades, nonlinear dynamic analysis has gained wide acceptance by practicing
8 engineers as a useful way of assessing and improving the seismic performance of
9 structures. Nonlinear structural analysis software packages give engineers the

10 ability to directly model nonlinear component behavior in detail, resulting in
11 improved understanding of how a building will respond under strong earthquake
12 shaking. One key component, in particular, for understanding the behavior of
13 moment-resisting frames is the plastic rotation of the flexural hinges.
14 Performance-based standards typically use plastic rotation as the primary parameter
15 for defining the acceptance criteria in moment-resisting frames. Since plastic
16 rotation is a key parameter in the seismic damage assessment, the concept as well as
17 the method to calculate this quantity must be understood completely. Though
18 engineers rely on the plastic rotation output from seismic structural analysis soft-
19 ware packages to determine acceptable performance, the actual calculation methods
20 used in achieving such plastic rotation quantities usually lay within a so-called
21 “black box”. Based on the outputs obtained from most structural analysis software
22 packages, it can be shown that running an algorithm considering material nonlin-
23 earity by itself will produce reasonably accurate results. Moreover, separately
24 running an algorithm considering geometric nonlinearity also can produce accurate
25 results. However, when material nonlinearity is combined with geometric nonlin-
26 earity in an analysis, obtaining accurate results or even stable solutions is more
27 difficult. The coupling effect between the two nonlinearities can significantly affect
28 the global response and the local plastic rotation obtained from the analysis and
29 therefore needs to be verified through some analytical means. Yet, the verification
30 process is difficult because a robust analytical framework for calculating plastic
31 rotation is currently unavailable and urgently needed. In view of this gap, an
32 analytical approach based on small displacement theory is derived using the force
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33 analogy method to calculate the plastic rotations of plastic hinges at various loca-
34 tions of moment-resisting frames. Both static and dynamic analysis with nonlinear
35 geometric effects will be incorporated in the derivation. Here the element stiffness
36 matrices are first rigorously derived using a member with plastic hinges in com-
37 pression, and therefore the coupling of geometric and material nonlinearity effects is
38 included from the beginning of the derivation. Additionally, plastic rotation is
39 handled explicitly by considering this rotation as an additional nonlinear
40 degree-of-freedom. Numerical simulation is performed to calculate the nonlinear
41 static and dynamic responses of simple benchmark models subjected to seismic
42 excitations. Results are compared with various software packages to demonstrate
43 the feasibility of the proposed method in light of the output results among software
44 packages in calculating plastic rotations.45

46 1 Introduction

47 Plastic rotation is one of the most fundamental structural performance metrics for
48 moment-resisting frames. Current performance-based standards such as ASCE/SEI
49 41 [1] use plastic rotation as the primary performance measure in the assessment of
50 flexure components in moment-resisting frames for the life safety and collapse
51 prevention performance levels. Relatively large lateral displacement is expected to
52 occur due to the flexibility of moment-resisting frames. Therefore, structural
53 analysis software packages should possess the capability of handling both material
54 nonlinearity and geometric nonlinearity in order to provide the needed output used
55 to gauge acceptable performance.
56 Geometric nonlinearity causes a reduction in stiffness due to the axial com-
57 pressive force acting on the entire length in the member, while material nonlinearity
58 causes a reduction in stiffness concentrated at the plastic hinges of the member.
59 These two nonlinear phenomena interact with one another in moment-resisting
60 frames, but this interaction may have not been captured in all of the structural
61 analysis software packages and algorithms that are currently available today. Yet,
62 there have been studies concerning moment-resisting frames that involve the use of
63 geometric nonlinearity with material nonlinearity in dynamic analysis (e.g., [2–6])
64 where the interaction is not explicitly handled but rather is left up to the software
65 packages used in the analysis.
66 When addressing material nonlinearity, the plastic rotation action is often han-
67 dled through a plastic reduction matrix, which represents the change in stiffness due
68 to inelastic system behavior. This reduction matrix is derived using principles from
69 the theory of plasticity and assuming an appropriate yield surface. It is often
70 combined with the geometric stiffness matrix to account for both material and
71 geometric nonlinearities and the behavior can then be traced incrementally by
72 solving simultaneous linear algebraic equations to arrive at a solution. In other
73 words, many of these seismic analysis software packages use one algorithm for
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74 performing material nonlinearity analysis and another algorithm for performing
75 geometric nonlinearity analysis.
76 Handling material nonlinearity and geometrically nonlinearity independently is
77 often viewed as the most efficient approach for performing the analysis. It can be
78 shown that running an algorithm considering material nonlinearity by itself will
79 produce reasonably accurate results using most structural analysis software pack-
80 ages. Moreover, separately running an algorithm considering geometric nonlin-
81 earity also can produce reasonably accurate results. However, when material
82 nonlinearity is combined with geometric nonlinearity in an analysis, software
83 packages often neglect the interactions between these nonlinearities, resulting in
84 limited consistency, reduced accuracy, and solution instability. As a result, plastic
85 rotation, as the end product of the analysis, can differ significantly based on the
86 approach taken in the nonlinear algorithm.
87 One reason for this shortcoming in addressing the nonlinear interaction is
88 because currently there is no analytical theory that can be used to capture this
89 interaction exactly. Therefore, a numerical solution is often employed that assumes
90 the nonlinear interaction is automatically taken into account when both material and
91 geometric nonlinearities are captured independently and then combined. The results
92 presented here propose a method to accurately calculate the plastic rotation while
93 capturing the interaction of material nonlinearity and geometric nonlinearity using
94 an analytical theory based on basic principles of structural mechanics. Element
95 stiffness matrices are first derived using a column member with plastic hinges
96 subjected to axial compression; therefore, both geometric nonlinearity and material
97 nonlinearity along with their interactions are captured from the beginning of the
98 formulation. The element stiffness matrices are then assembled in the global stiff-
99 ness matrices to perform nonlinear static analysis, and the global stiffness matrices

100 are used in the dynamic equilibrium equations to perform nonlinear dynamic
101 analysis. Numerical simulations are then performed on a simple moment-resisting
102 frame. Both global responses such as the displacement and local responses
103 including plastic rotations are obtained and compared with those obtained from
104 various structural analysis software packages.

105 2 Element Stiffness Formulations

106 The stability theory of using stability functions is used to derive the element
107 stiffness matrices of framed members with plastic hinges at both ends in a
108 two-dimensional frame analysis. This theory was first developed for elastic struc-
109 tures in the 1960s [7–9], but it found limited application because of its complexity
110 in the closed-form solution as compared to those using either the P−Δ approach
111 [10] or the geometric stiffness approach [11]. Even with the advance in computing
112 technology, only one research publication was found in the recent literature on the
113 analysis of framed structures using stability functions [12]. For structures with
114 significant lateral deflection, large geometric nonlinearity is expected, and linear or
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115 second-order approximation of the geometric nonlinearity may not be able to
116 capture the nonlinear behavior accurately. Therefore, stability functions are rigor-
117 ously derived in this paper to include both geometric and material nonlinearities in
118 the element stiffness formulations.

119 2.1 Element Stiffness Matrix [ki]

120 The element stiffness matrix ki for bending relates the displacement at the two ends
121 of the ith member [commonly labeled as degrees of freedom (DOFs)] with the
122 forces applied at these DOFs. For moment-resisting frame members, these dis-
123 placement quantities include the lateral displacement and rotations at the two ends.
124 This gives 4 DOFs for the bending stiffness of each element in a two-dimensional
125 plane analysis, and these DOFs are labeled as:

126 • Case 1—Lateral displacement at the ‘1’ end or ‘near’ end,
127 • Case 2—Rotation at the ‘1’ end or ‘near’ end,
128 • Case 3—Lateral displacement at the ‘2’ end or ‘far’ end, and
129 • Case 4—Rotation at the ‘2’ end or ‘far’ end.
130

131 To compute the element stiffness matrix ki, each of the 4 DOFs is displaced
132 independently by one unit as shown in Fig. 1 while subjected to an axial com-
133 pressive load P. Here, V1l, M1l, V2l, and M2l represent the required shears and
134 moments at the two ends of the member to cause the deflection in the prescribed
135 pattern, and l ¼ 1; . . .; 4 represents the four cases of unit displacement patterns of
136 member deflection.
137 Using the classical Bernoulli-Euler beam theory on homogeneous and isotropic
138 material where the moment is proportional to the curvature and plane sections are
139 assumed to remain plane, the governing equilibrium equation describing the
140 deflected shape of the member can be written as
141

ðEIv00Þ00 þPv00 ¼ 0 ð1Þ
143143
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Fig. 1 Displacement patterns and the corresponding fixed-end forces
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144 where E is the elastic modulus, I is the moment of inertia, v is the lateral deflection,
145 P is the axial compressive force of the member, and each prime represents taking
146 derivatives of the corresponding variable with respect to the x-direction of the
147 member. By assuming EI is constant along the member, the solution to the
148 fourth-order ordinary differential equation becomes:
149

v ¼ A sin kxþB cos kxþCxþD ð2Þ
151151

152 where k2 ¼ P=EI. Let k ¼ kL to simplify the derivations, where L is the length of
153 the member. The following four cases of boundary conditions (in reverse order) are
154 now considered.
155 Case 4 of Fig. 1: Imposing the boundary conditions vð0Þ ¼ 0, v0ð0Þ ¼ 0,
156 vðLÞ ¼ 0, and v0ðLÞ ¼ 1 gives
157

vð0Þ ¼ 0 : BþD ¼ 0 ð3aÞ

159159 v0ð0Þ ¼ 0 : kAþC ¼ 0 ð3bÞ

161161 vðLÞ ¼ 0 : A sin kþB cos kþCLþD ¼ 0 ð3cÞ

163163 v0ðLÞ ¼ 1 : kA cos k� kB sin kþC ¼ 1 ð3dÞ
165165

166 Solving simultaneously for the constants in Eqs. 3a–3d gives
167

A ¼ L 1� cos kð Þ
k k sin kþ 2 cos k� 2ð Þ ; B ¼ L sin k� kð Þ

k k sin kþ 2 cos k� 2ð Þ ; C ¼ �kA;
169169 D ¼ �B
170 Therefore, Eq. 2 along with the constants in Eq. 4 gives the deflected shape for
171 Case 4. The shears (i.e., V14 and V24) and moments (i.e., M14 and M24) at the two
172 ends of the member (see Fig. 1) are then evaluated using the classical
173 Bernoulli-Euler beam theory formula:
174

MðxÞ ¼ EIv00; VðxÞ ¼ EIv000 þPv0 ð5Þ
176176

177 Now taking derivatives of Eq. 2 and substituting the results into Eq. 5 while
178 using the constants calculated in Eq. 4, the shears and moments at the two ends for
179 Case 4 in Fig. 1 are calculated as:
180

M14 ¼ �EIv00ð0Þ ¼ EIk2B ¼ scEI=L ð6aÞ

182182 V14 ¼ EIv000ð0ÞþPv0ð0Þ ¼ �EIk3AþP� 0 ¼ �sEI=L2 ð6bÞ

184184 M24 ¼ EIv00ðLÞ ¼ �EIk2 A sin kþB cos kð Þ ¼ sEI=L ð6cÞ
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186186 V24 ¼ �EIv000ðLÞ � Pv0ðLÞ ¼ EIk3 A cos k� B sin kð Þ � P� 1 ¼ ��sEI=L2 ð6dÞ
188188

189 where
190

s ¼ k sin k� k cos kð Þ
2� 2 cos k� k sin k

; c ¼ k� sin k
sin k� k cos k

;

�s ¼ sþ sc ¼ k2 1� cos kð Þ
2� 2 cos k� k sin k

ð7Þ

192192

193 The minus signs appear in front of the equations for M14 in Eq. 6a and V24 in
194 Eq. 6d because there is a difference in sign convention between the classical
195 Bernoulli-Euler beam theory and the theory for the stiffness method in structural
196 analysis.
197 Case 3 of Fig. 1: Imposing the boundary conditions vð0Þ ¼ 0, v0ð0Þ ¼ 0,
198 vðLÞ ¼ 1, and v0ðLÞ ¼ 0 gives
199

vð0Þ ¼ 0 : BþD ¼ 0 ð8aÞ

201201 v0ð0Þ ¼ 0 : kAþC ¼ 0 ð8bÞ

203203 vðLÞ ¼ 1 : A sin kþB cos kþCLþD ¼ 1 ð8cÞ

205205 v0ðLÞ ¼ 0 : kA cos k� kB sin kþC ¼ 0 ð8dÞ
207207

208 Solving simultaneously for the constants in Eqs. 8a–8d gives
209

A ¼ � sin k
k sin kþ 2 cos k� 2

; B ¼ 1� cos k
k sin kþ 2 cos k� 2

; C ¼ �kA;
D ¼ �B

ð9Þ

211211

212 Therefore, Eq. 2 along with the constants in Eq. 9 gives the deflected shape for
213 Case 3. Now taking derivatives of Eq. 2 and substituting the results into Eq. 5
214 while using the constants calculated in Eq. 9, the shears and moments at the two
215 ends for Case 3 in Fig. 1 are calculated as:
216

M13 ¼ �EIv00ð0Þ ¼ EIk2B ¼ ��sEI=L2 ð10aÞ

218218 V13 ¼ EIv000ð0ÞþPv0ð0Þ ¼ �EIk3AþP� 0 ¼ �s0EI=L3 ð10bÞ

220220 M23 ¼ EIv00ðLÞ ¼ �EIk2 A sin kþB cos kð Þ ¼ ��sEI=L2 ð10cÞ

222222 V23 ¼ �EIv000ðLÞ � Pv0ðLÞ ¼ EIk3 A cos k� B sin kð Þ � P� 0 ¼ s0EI=L3 ð10dÞ
224224

225 where
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226

s0 ¼ 2�s� k2 ¼ k3 sin k
2� 2 cos k� k sin k

ð11Þ
228228

229 and �s is given in Eq. 7.
230 Case 2 of Fig. 1: Imposing the boundary conditions vð0Þ ¼ 0, v0ð0Þ ¼ 1,
231 vðLÞ ¼ 0, and v0ðLÞ ¼ 0 gives
232

vð0Þ ¼ 0 : BþD ¼ 0 ð12aÞ

234234 v0ð0Þ ¼ 1 : kAþC ¼ 1 ð12bÞ

236236 vðLÞ ¼ 0 : A sin kþB cos kþCLþD ¼ 0 ð12cÞ

238238 v0ðLÞ ¼ 0 : kA cos k� kB sin kþC ¼ 0 ð12dÞ
240240

241 Solving simultaneously for the constants in Eqs. 12a–12d gives
242

A ¼ L k sin kþ cos k� 1ð Þ
k k sin kþ 2 cos k� 2ð Þ ; B ¼ L k cos k� sin kð Þ

k k sin kþ 2 cos k� 2ð Þ ; C ¼ 1� kA;

D ¼ �B
ð13Þ

244244

245 Therefore, Eq. 2 along with the constants in Eq. 13 gives the deflected shape for
246 Case 2. Now taking derivatives of Eq. 2 and substituting the results into Eq. 5
247 while using the constants calculated in Eq. 13, the shears and moments at the two
248 ends for Case 2 in Fig. 1 are calculated as:
249

M12 ¼ �EIv00ð0Þ ¼ EIk2B ¼ sEI=L ð14aÞ

251251 V12 ¼ EIv000ð0ÞþPv0ð0Þ ¼ �EIk3AþP� 1 ¼ �sEI=L2 ð14bÞ

253253 M22 ¼ EIv00ðLÞ ¼ �EIk2 A sin kþB cos kð Þ ¼ scEI=L ð14cÞ

255255 V22 ¼ �EIv000ðLÞ � Pv0ðLÞ ¼ EIk3 A cos k� B sin kð Þ � P� 0 ¼ ��sEI=L2 ð14dÞ
257257

258 where s, c, and �s are given in Eq. 7.
259 Case 1 of Fig. 1: Finally, imposing the boundary conditions vð0Þ ¼ 1,
260 v0ð0Þ ¼ 0, vðLÞ ¼ 0, and v0ðLÞ ¼ 0 gives
261

vð0Þ ¼ 1 : BþD ¼ 1 ð15aÞ

263263 v0ð0Þ ¼ 0 : kAþC ¼ 0 ð15bÞ
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265265 vðLÞ ¼ 0 : A sin kþB cos kþCLþD ¼ 0 ð15cÞ

267267 v0ðLÞ ¼ 0 : kA cos k� kB sin kþC ¼ 0 ð15dÞ
269269

270 Solving simultaneously for the constants in Eqs. 15a–15d gives
271

A ¼ sin k
k sin kþ 2 cos k� 2

; B ¼ cos k� 1
k sin kþ 2 cos k� 2

; C ¼ �kA;
D ¼ 1� B

ð16Þ

273273

274 Therefore, Eq. 2 along with the constants in Eq. 16 gives the deflected shape for
275 Case 1. Now taking derivatives of Eq. 2 and substituting the results into Eq. 5
276 while using the constants calculated in Eq. 16, the shears and moments at the two
277 ends for Case 1 in Fig. 1 are calculated as:
278

M11 ¼ �EIv00ð0Þ ¼ EIk2B ¼ �sEI=L2 ð17aÞ

280280 V11 ¼ EIv000ð0ÞþPv0ð0Þ ¼ �EIk3AþP� 0 ¼ s0EI=L3 ð17bÞ

282282 M21 ¼ EIv00ðLÞ ¼ �EIk2 A sin kþB cos kð Þ ¼ �sEI=L2 ð17cÞ

284284 V21 ¼ �EIv000ðLÞ � Pv0ðLÞ ¼ EIk3 A cos k� B sin kð Þ � P� 0 ¼ �s0EI=L3
ð17dÞ

286286

287 where �s is given in Eq. 7 and s0 is given in Eq. 11.
288 In summary, based on Eqs. 6a–6d, 10a–10d, 14a–14d, and 17a–17d for the
289 above four cases, the element stiffness matrix of the ith member ki after incorpo-
290 rating axial compressive force using stability functions becomes:
291

ki ¼ EI
L3

s0 �sL �s0 �sL
�sL sL2 ��sL scL2

�s0 ��sL s0 ��sL
�sL scL2 ��sL sL2

2
664

3
775
 vð0Þ
 v0ð0Þ
 vðLÞ
 v0ðLÞ

ð18Þ

293293

294 2.2 Element Stiffness Matrix [k0i]

295 The element stiffness matrix k0i relates the plastic rotations at the plastic hinge
296 locations (PHLs) of the ith member with the restoring forces applied at the DOFs.
297 Two plastic hinges typically occur at the two ends of the member, and they are
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298 labeled as ‘a’ for plastic hinge at the ‘near’ end (or ‘1’ end) and ‘b’ for plastic hinge
299 at the ‘far’ end (or ‘2’ end) as shown in Fig. 2. To compute the element stiffness
300 matrix k0i, a unit plastic rotation at each PHL is independently applied to the
301 member and then determine the shear and moment at each of the two ends.
302 However, this is a difficult process because imposing a unit plastic rotation requires
303 the discontinuity of v0ðxÞ to be addressed. To avoid this problem, the k0Ti matrix is
304 constructed instead. The k0Ti matrix relates the lateral displacements and rotations at
305 the two ends of the member (i.e., the four cases of unit displacements at each DOF)
306 with the moments at the PHLs (i.e., Mal and Mbl, l ¼ 1; . . .; 4).
307 Consider the four cases of unit displacements of the member independently as
308 shown in Fig. 2, where the moment at the plastic hinges ‘a’ and ‘b’ (i.e., Mal and
309 Mbl, l ¼ 1; . . .; 4) represent the desired quantities. Note that the moments at the two
310 ends of the member (i.e., M1l and M2l, l ¼ 1; . . .; 4) have already been calculated
311 using the unit displacement patterns in Fig. 1 and summarized in the second and
312 fourth rows of the element stiffness matrix ki given in Eq. 18. Therefore, based on
313 Fig. 2, the moments Mal and Mbl at the two plastic hinges for each of the four cases
314 become:
315 Case 1 of Fig. 2: Imposing the boundary conditions vð0Þ ¼ 1, v0ð0Þ ¼ 0,
316 vðLÞ ¼ 0, and v0ðLÞ ¼ 0 gives
317

Ma1 ¼ M11 ¼ �sEI=L2; Mb1 ¼ M21 ¼ �sEI=L2 ð19Þ
319319

320 Case 2 of Fig. 2: Imposing the boundary conditions vð0Þ ¼ 0, v0ð0Þ ¼ 1,
321 vðLÞ ¼ 0, and v0ðLÞ ¼ 0 gives
322

Ma2 ¼ M12 ¼ sEI=L; Mb2 ¼ M22 ¼ scEI=L ð20Þ
324324

325 Case 3 of Fig. 2: Imposing the boundary conditions vð0Þ ¼ 0, v0ð0Þ ¼ 0,
326 vðLÞ ¼ 1, and v0ðLÞ ¼ 0 gives
327

Ma3 ¼ M13 ¼ ��sEI=L2; Mb3 ¼ M23 ¼ ��sEI=L2 ð21Þ
329329
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Fig. 2 Displacement patterns for computation of moments at the plastic hinge locations
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330 Case 4 of Fig. 2: Finally, imposing the boundary conditions vð0Þ ¼ 0,
331 v0ð0Þ ¼ 0, vðLÞ ¼ 0, and v0ðLÞ ¼ 1 gives
332

Ma4 ¼ M14 ¼ scEI=L; Mb4 ¼ M24 ¼ sEI=L ð22Þ
334334

335 Therefore, from Eqs. 19 to 22, the transpose of stiffness matrix k0i for the ith
336 member becomes
337

k0Ti ¼
�sEI=L2 sEI=L ��sEI=L2 scEI=L

�sEI=L2 scEI=L ��sEI=L2 sEI=L

" #
 h00a
 h00b

ð23Þ
339339

340 Once the k0Ti matrix in Eq. 23 is derived, the k0i matrix can be written as:
341

k0i ¼
Ma1 Mb1

Ma2 Mb2

Ma3 Mb3

Ma4 Mb4

2
664

3
775 ¼

�sEI=L2 �sEI=L2

sEI=L scEI=L
��sEI=L2 ��sEI=L2
scEI=L sEI=L

2
664

3
775
 vð0Þ
 v0ð0Þ
 vðLÞ
 v0ðLÞ

ð24Þ

343343

344 2.3 Element Stiffness Matrix [k00i ]

345 The element stiffness matrix k00i relates the moments at the PHLs ‘a’ and ‘b’ with a
346 corresponding unit plastic rotation at each of these PHLs of the ith member. To
347 determine the k00i matrix, the goal is to compute the plastic hinge moments Maa,
348 Mab, Mba, and Mbb as shown in Fig. 3.
349 The moments computed in the process of determining the 4� 2 k0i matrix shown
350 in Eq. 24 can be used to calculate the element stiffness matrix k00i . For example, the
351 first column of the k0i matrix in Eq. 24 represents the shears (Vnear ¼ Ma1 ¼ �sEI=L2

352 and Vfar ¼ Ma3 ¼ ��sEI=L2) and moments (Ma2 ¼ sEI=L and Ma4 ¼ scEI=L) at the
353 two ends of the member due to a unit plastic rotation at PHL ‘a’, as shown in Fig. 3.
354 Similarly, the second column of the k0i matrix in Eq. 24 represents the shears
355 (Vnear ¼ Mb1 ¼ �sEI=L2 and Vfar ¼ Mb3 ¼ ��sEI=L2) and moments (Mb2 ¼ scEI=L
356 and Mb4 ¼ sEI=L) at the two ends of the member due to a unit plastic rotation at
357 PHL ‘b’, as shown in Fig. 3. Then the plastic hinge moments Maa, Mab, Mba, and
358 Mbb at the PHLs for each of the two cases (i.e., ‘a’ and ‘b’) can be evaluated as:
359 Case ‘a’ of Fig. 3: Imposing a unit plastic rotation h00a ¼ 1 and h00b ¼ 0 gives
360

θ”=1

P P x

y
EI

P P x

y

EICase a

Case b
Mab

Maa
Mba Mbb

a

θ”=1b

Ma4

Ma2 Mb2

Mb4

Ma3Ma1 Mb1 Mb3

Fig. 3 Displacement patterns for computation of moments due to unit plastic rotations
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Maa ¼ Ma2 ¼ sEI=L; Mba ¼ Ma4 ¼ scEI=L ð25Þ
362362

363 Case ‘b’ of Fig. 3: Imposing a unit plastic rotation h00a ¼ 0 and h00b ¼ 1 gives
364

Mab ¼ Mb2 ¼ scEI=L; Mbb ¼ Mb4 ¼ sEI=L ð26Þ
366366

367 Therefore, from Eqs. 25 and 26, the element stiffness matrix k00i for the ith
368 member becomes
369

k00i ¼
sEI=L scEI=L

scEI=L sEI=L

" #
 h00a
 h00b

ð27Þ
371371

372 3 Global Stiffness Matrices

373 By using the element stiffness matrices computed in Eqs. 18, 24, and 27, the
374 assembly of these matrices into the global stiffness matrices K, K0, and K00 is a
375 straightforward procedure; many textbooks (e.g., [11, 13, 14]) have discussed this
376 procedure in great detail. The procedure is to map each DOFs and PHLs of the
377 element stiffness matrices to the corresponding DOFs and PHLs of the global
378 stiffness matrices. Consider a framed structure having a total of n DOFs and
379 m PHLs, the resulting global stiffness matrices can then be obtained and are often
380 written in the form:
381

K ¼ Collection of ki

2
4

3
5
n�n

 DOF #1
..
.

 DOF #n

ð28aÞ

383383

K0 ¼ Collection of k0i

2
4

3
5
n�m

 DOF #1
..
.

 DOF #n

ð28bÞ

385385

K00 ¼ Collection of K00i

2
4

3
5
m�m

 PHL #1
..
.

 PHL #m

ð28cÞ

387387

388 However, consistencies of the global stiffness matrices depend on the consis-
389 tencies of the element stiffness matrices, and therefore it is worth spending the effort
390 to investigate the properties of the element stiffness matrix ki computed in Eq. 18
391 and its relationship with the global stiffness matrix K in Eq. (28a).
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392 The element stiffness matrix ki is obtained by solving the fourth order differ-
393 ential equation, and therefore it is the exact solution based on small displacement
394 theory. It is a nonlinear relationship with sine and cosine functions of the axial
395 compressive force P, and it is capable of capturing both large P−Δ (i.e., geometric
396 nonlinearity due to sidesway of the member) and small P−d (i.e., geometric non-
397 linearity due to local deformation of the member) effects. One can perform Taylor
398 series expansion of Eq. 18 with respect to P and then truncating the higher-order
399 terms. Doing so gives
400

kiðGSÞ ¼ EI
L3

12 6L �12 6L
6L 4L2 �6L 2L2

�12 �6L 12 �6L
6L 2L2 �6L 4L2

2
664

3
775þ P

L

�6=5 �L=10 6=5 �L=10
�L=10 �2L2=15 L=10 L2=30
6=5 L=10 �6=5 L=10
�L=10 L2=30 L=10 �2L2=15

2
664

3
775
ð29Þ

402402

403 where kiðGSÞ is commonly known as the second-order geometric stiffness of the
404 member, with the first term representing the initial elastic stiffness matrix and the
405 second term representing the geometric stiffness matrix. Since kiðGSÞ is obtained by
406 Taylor series expansion, both large P−Δ and small P−d effects are also captured in
407 this formulation.
408 Further simplification of Eq. 29 can be performed by ignoring the small P−d
409 effect, and the resulting element stiffness matrix becomes
410

kiðPDÞ ¼ EI
L3

12 6L �12 6L
6L 4L2 �6L 2L2

�12 �6L 12 �6L
6L 2L2 �6L 4L2

2
664

3
775þ P

L

�1 0 1 0
0 0 0 0
1 0 �1 0
0 0 0 0

2
664

3
775 ð30Þ

412412

413 where kiðPDÞ is here known as the P−Δ stiffness of the member. While geometric
414 nonlinearity due to sidesway can be captured using kiðPDÞ in Eq. 30, the magnifi-
415 cation of response due to local deformation with an axial compressive force is
416 totally ignored in one element model. But the P−d effect of local deformation can
417 be captured using several element P−Δ stiffnesses by subdividing the member into
418 several elements in the model. The following example presents a simple illustration
419 on the improvement of accuracy of P−Δ stiffness by subdividing a member into
420 three elements. It also illustrates the consistencies of using stability functions in the
421 formulation and the lack of consistencies in other element stiffness formulations.
422 Consider a member of length 3L with elastic modulus E and moment of inertia
423 I subjected to an axial compressive force P ¼ 0:3� EI=L2 as shown in Fig. 4. No
424 boundary condition needs to be applied to the member because only the element
425 stiffness matrix is considered. Following Eqs. 18, 29, and 30, different forms of
426 element stiffness matrices ki using one long element with length 3L in the model
427 with DOFs #1 to #4 can be written as

12 K.K.F. Wong and M.S. Speicher
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428

kiðSFÞ ¼ EI
L3

0:32405 0:63607L �0:32405 0:63607L
0:63607L 1:20883L2 �0:63607L 0:69938L2

�0:32405 �0:63607L 0:32405 �0:63607L
0:63607L 0:69938L2 �0:63607L 1:20883L2

2
664

3
775
 DOF#1
 DOF#2
 DOF#3
 DOF#4

ð31aÞ

430430

kiðGSÞ ¼ EI
L3

0:32444 0:63667L �0:32444 0:63667L
0:63667L 1:21333L2 �0:63667L 0:69667L2

�0:32444 �0:63667L 0:32444 �0:63667L
0:63667L 0:69667L2 �0:63667L 1:21333L2

2
664

3
775
 DOF#1
 DOF#2
 DOF#3
 DOF#4

ð31bÞ

432432

kiðPDÞ ¼ EI
L3

0:34444 0:66667L �0:34444 0:66667L
0:66667L 1:33333L2 �0:66667L 0:66667L2

�0:34444 �0:66667L 0:34444 �0:66667L
0:66667L 0:66667L2 �0:66667L 1:33333L2

2
664

3
775
 DOF#1
 DOF#2
 DOF#3
 DOF#4

ð31cÞ
434434

435 where kiðSFÞ is the same as ki in Eq. 18 but with the subscript ‘SF’ added to denote
436 that it is computed using the stability function method.
437 Now assume that the same member is subdivided into three elements of equal
438 lengths L. The element stiffness matrices ki with geometric nonlinearity for each of
439 the three members are formulated, then by assembling each term into the global
440 stiffness matrices according to DOFs #1 to #8 as labeled in Fig. 4, the final global
441 stiffness matrices KSF , KGS, and KPD can be written as
442

ð32aÞ

444444

P PEI EI EI

L L L

1 35 7

2 46 8

Fig. 4 Member subdivided into three elements
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446446

ð32cÞ

448448 where KSF , KGS, and KPD are the global stiffness matrices computed using the
449 stability function method, geometric stiffness method, and P−Δ stiffness method,
450 respectively.
451 Static condensation is now used to eliminate DOFs #5 to #8 from the global
452 stiffness matrices in Eqs. 32a–32c based on the equation
453

ð33Þ

455455 where K11, K12, K21, and K22 are submatrices partitioned according to the
456 dotted lines of those full stiffness matrices shown in Eqs. 32a–32c and 33, and K
457 represents the condensed global stiffness matrix. It can be seen that each of these
458 submatrices is a 4� 4 matrix, with subscript ‘2’ denoting DOFs #5 to #8 to be
459 eliminated and subscript ‘1’ denoting DOFs #1 to #4 to remain after condensation.
460 Now substituting these submatrices presented in Eqs. 32a–32c into Eq. 33 and
461 performing the matrix multiplications gives
462

KSF ¼ EI
L3

0:32405 0:63607L �0:32405 0:63607L
0:63607L 1:20883L2 �0:63607L 0:69938L2

�0:32405 �0:63607L 0:32405 �0:63607L
0:63607L 0:69938L2 �0:63607L 1:20883L2

2
664

3
775
 DOF#1
 DOF#2
 DOF#3
 DOF#4

ð34aÞ
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464464

KGS ¼ EI
L3

0:32410 0:63615L �0:32410 0:63615L
0:63615L 1:20899L2 �0:63615L 0:69945L2

�0:32410 �0:63615L 0:32410 �0:63615L
0:63615L 0:69945L2 �0:63615L 1:20899L2

2
664

3
775
 DOF#1
 DOF#2
 DOF#3
 DOF#4

ð34bÞ

466466

KPD ¼ EI
L3

0:33429 0:65143L �0:33429 0:65143L
0:65143L 1:24030L2 �0:65143L 0:71399L2

�0:33429 �0:65143L 0:33429 �0:65143L
0:65143L 0:71399L2 �0:65143L 1:24030L2

2
664

3
775
 DOF#1
 DOF#2
 DOF#3
 DOF#4

ð34cÞ
468468

469 Comparing the stiffness matrices in Eqs. 31a–31c using one-element formulation
470 with those in Eqs. 34a–34c using three-element formulation shows that only the
471 stability functions approach gives exactly the same stiffness matrix regardless of
472 whether one long element is used or three subdivided elements are used (i.e.,
473 kiðSFÞ ¼ KSF , but kiðGSÞ � KGS and kiðPDÞ 6¼ KPD). This indicates that while all three
474 geometric nonlinearity approaches address large P−Δ appropriately, only the sta-
475 bility functions approach consistently captures the small P−d effect. Note that the
476 difference between kiðPDÞ in Eq. 31c and kiðSFÞ in Eq. 31a is quite significant, but the
477 difference becomes smaller when KPD in Eq. 34c is compared to KSF in Eq. 34a.
478 This indicates that capturing small P−d effect using the P−Δ stiffness matrix is
479 possible by subdividing the member into several elements, but it also indicates that
480 subdividing into three elements at an axial compressive force of P ¼ 0:3� EI=L2 is
481 insufficient to capture the small P−d effect using the P−Δ stiffness matrix only.

482 4 Nonlinear Static Analysis of Framed Structures

483 Once the global stiffness matrices K, K0, and K00 in Eqs. 28a–28c are assembled
484 from the element stiffness matrices ki, k0i, and k00i in Eqs. 18, 24, and 27, respec-
485 tively, they can be used to perform static analysis of moment-resisting framed
486 structures with both geometric and material nonlinearities. For the structure mod-
487 eled as a multi-degree of freedom (MDOF) system, the derivation of the analysis
488 procedure begins with the concept of inelastic displacements. Considering a
489 structure having n DOFs, the displacement can be written in vector form as
490

x ¼ x0 þ x00 ¼
x01
x02
..
.

x0n

8>>><
>>>:

9>>>=
>>>;
þ

x001
x002
..
.

x00n

8>>><
>>>:

9>>>=
>>>;

ð35Þ

492492
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493 where x represents the total displacement vector, x0 is the elastic displacement
494 vector, and x00 is the inelastic displacement vector. For moment-resisting framed
495 structures, let the total moment vector M at the plastic hinge locations (PHLs) be
496 described in vector form as
497

M ¼ M0 þM00 ¼
M01
M02
..
.

M0m

8>>><
>>>:

9>>>=
>>>;
þ

M001
M002
..
.

M00m

8>>><
>>>:

9>>>=
>>>;

ð36Þ

499499

500 where M0 is the elastic moment vector due to elastic displacement x0, and M00 is the
501 inelastic moment vector due to inelastic displacement x00 that is caused by plastic
502 rotations. The value m represents the total number of PHLs in the moment-resisting
503 frame.

504 4.1 Residual Components Due to Plastic Rotations

505 Consider first the inelastic moment vector M00 that is caused by plastic rotations in
506 the moment-resisting frame. Define the plastic rotation vector H00 as
507

H00 ¼
h001
h002
..
.

h00m

8>>><
>>>:

9>>>=
>>>;

ð37Þ

509509

510 An example of having plastic rotations developed at two PHLs of the ith member
511 is shown in Fig. 5a. This state of the structure can never exist because this member
512 violates either the compatibility or the equilibrium condition with the adjacent
513 joints. Without any force applied to this member, it should remain straight, yet the
514 plastic rotations induce incompatibility with the adjacent joints that have no rota-
515 tion. On the other hand, if the member is deformed in a compatible way with the
516 adjacent joint, forces must be applied to this member resulting in violation of the
517 equilibrium condition of the joint. To ensure the member deforms in a compatible
518 way with the rest of the structure while satisfying the equilibrium condition, this
519 member with plastic rotations H00 is first isolated from the structure and restoring
520 forces are applied to restore this member back to the original undeformed shape, as
521 shown in Fig. 5b. This induces internal restoring forces FRF and the fixed-end
522 shears and moments on the member. At the global degree of freedom level, the
523 restoring force is an n� 1 vector of the form:

16 K.K.F. Wong and M.S. Speicher

Layout: T1 Standard Book ID: 330342_1_En Book ISBN: 978-3-319-47796-1

Chapter No.: 6 Date: 30-9-2016 Time: 7:37 pm Page: 16/47

A
u

th
o

r 
P

ro
o

f



U
N
C
O
R
R
EC

TE
D
PR

O
O
F

524

FRF ¼
FRF1

FRF2

..

.

FRFn

8>><
>>:

9>>=
>>; ¼ �K

0H00 ð38Þ

526526

527 where K0 is the n� m assembled global stiffness matrix defined in Eq. 28b. In
528 addition to the restoring forces FRF that are applied at the global DOFs, plastic
529 rotations H00 induce residual moments MR at the PHLs as shown in Fig. 5b. At the
530 local PHL, the residual moment is an m� 1 vector in the form:
531

MR ¼
MR;1

MR;2

..

.

MR;m

8>>><
>>>:

9>>>=
>>>;
¼ �K00H00 ð39Þ

533533

534 where K00 is the m� m global stiffness matrix defined in Eq. 28c. The minus signs
535 appear in Eqs. 38 and 39 because negative actions must be applied in order to rotate
536 a positive plastic rotation back to zero, which results in negative restoring forces
537 and negative residual moments.
538 Now the member is assembled back into the structure and the deformation of this
539 ith member is compatible with the rest of the structure. However, the restoring
540 forces FRF as shown in Fig. 5b are actually not present globally as shown in
541 Fig. 5a, and as a result equal and opposite forces Fa ¼ �FRF must be applied to the
542 structure’s DOFs to cancel these restoring forces, as shown in Fig. 5c. Substituting
543 Eq. 38 into the equation gives
544

Fa ¼ �FRF ¼ K0H00 ð40Þ
546546

547 Applying the equivalent forces Fa results in a permanent deformation of the
548 structure, which is exactly the inelastic displacement x00. The relationship can be
549 obtained through conducting the matrix structural analysis for MDOF systems as:

(a)
(b)

(c)
MR

FRF

Fai

Fig. 5 Satisfying compatibility and equilibrium conditions in nonlinear static analysis
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550 Fa ¼ Kx00 ð41Þ
552552

553 where K is the n� n global stiffness matrix defined in Eq. 28a. Through this pro-
554 cess, the structure remains in equilibrium in addition to being compatible. Equating
555 Fa in both Eqs. 40 and 41 and solving for the inelastic displacements x00 gives
556

x00 ¼ K�1K0H00 ð42Þ
558558

559 Due to the induced equivalent forces Fa, which produce inelastic displacements
560 x00 in the structure, additional moments are also induced at the PHLs. Denoting this
561 induced moment vector as MP, it is related to the inelastic displacement x00 by the
562 equation
563

MP ¼ K0Tx00 ð43Þ
565565

566 where K0T is the transpose of the K0 matrix in Eq. 28b. Then substituting Eq. 42
567 into Eq. 43 gives
568

MP ¼ K0TK�1K0H00 ð44Þ
570570

571 Finally, the inelastic moment vector M00 at the PHLs in Fig. 5a is determined by
572 summing the residual moments MR at the PHLs shown in Fig. 5b and the induced
573 moments MP shown in Fig. 5c, i.e.,
574

M00 ¼ MRþMP ð45Þ
576576

577 Substituting Eqs. 39 and 44 into Eq. 45 gives the equation for inelastic moments
578 M00 as a function of plastic rotations H00:
579

M00 ¼ � K00 �K0TK�1K0
� �

H00 ð46Þ
581581

582 Equations 42 and 46 represent the inelastic displacement and inelastic moment
583 vectors due to the plastic rotations within the structure with no externally applied
584 force. This can be interpreted as the case when an earthquake causes plastic rota-
585 tions within the structure, then the inelastic displacements represent the permanent
586 deformation (or sometimes known as the residual drift) of the structure and inelastic
587 moments represent the forces remaining in the members after the earthquake motion
588 subsides.

589 4.2 Elastic Components Due to Elastic Displacements

590 Now consider the relationship between the elastic moments M0 and the elastic
591 displacements x0 due to the external applied static load Fo. Similar to Eq. 41 where

18 K.K.F. Wong and M.S. Speicher
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592 the inelastic displacements x00 are due to the application of the induced equivalent
593 loads Fa, the elastic displacements x0 of the structure are the result of applying the
594 external static loads Fo. Again by using the matrix structural analysis for
595 multi-degree of freedom systems, the external static loads Fo are related to the
596 elastic displacements x0 through the n� n global stiffness matrix K, i.e.,
597

Fo ¼ Kx0 ð47Þ
599599

600 Similarly from Eq. 43, where the induced moments MP are related to the
601 inelastic displacements x00 due to the application of the induced equivalent load Fa,
602 the elastic moments M0 are related to the elastic displacements x0 through the K0T

603 matrix, i.e.,
604

M0 ¼ K0Tx0 ð48Þ
606606

607 4.3 Analysis Procedure Using Total Responses

608 Once the elastic and inelastic portions of the structures are characterized, the
609 objective now is to apply Eqs. 35 and 36 and represent the analytical procedure
610 using the total displacements x, total moments M, plastic rotation H00, and the
611 external applied static load Fo. Equation 35 is first considered by solving for the
612 elastic displacements x0, i.e., x0 ¼ x� x00, and substituting this result into Eqs. 47
613 and 48 gives
614

Fo ¼ K x� x00½ �; M0 ¼ K0T x� x00½ � ð49Þ
616616

617 Then substituting the inelastic displacements x00 in Eq. 42 into Eq. 49 gives
618

Fo ¼ K x�K�1K0H00
� �

; M0 ¼ K0T x�K�1K0H00
� � ð50Þ

620620

621 Simplifying the first equation of Eq. 50 gives
622

Fo ¼ Kx�K0H00 ð51Þ
624624

625 Now based on Eq. 36, the total moment vector M at all the PHLs is calculated
626 by substituting the elastic moments M0 in Eq. 50 and the inelastic moments M00 in
627 Eq. 46 in the equation. Doing so gives
628

M ¼ M0 þM00 ¼ K0T x�K�1K0H00
� �� K00 �K0TK�1K0

� �
H00 ¼ K0Tx�K00H00

ð52Þ
630630
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631 Combining Eqs. 51 and 52 gives the governing equation of the analysis pro-
632 cedure for solving nonlinear static problems:
633

ð53Þ

635635 Equation 53 shows both the n� 1 total displacement vector x (n unknowns for
636 the DOFs) and the m� 1 plastic rotation vector H00 (m unknowns for the PHLs)
637 make up the unknown vector that is typically required to be solved in the nonlinear
638 structural analysis problem. However, because material nonlinearity is involved in
639 this equation, the solution requires performing an iterative procedure. To illustrate
640 this iterative procedure, the goal is to solve for the unknowns x, H00, and M for any
641 applied static force pattern Fo. This adds up to a total of nþ 2m unknowns, and
642 therefore the solution requires nþ 2m equations provided as follows:

643 • Equation 53 by itself gives nþm independent equations that satisfy both global
644 equilibrium and compatibility conditions.
645 • Each plastic hinge contains its own moment versus plastic rotation relationship,
646 which gives additional m equations that follows the local hysteretic behavior of
647 the plastic hinges.
648

649 Using these nþ 2m equations, the nþ 2m unknowns (i.e., x, H00, and M) in
650 Eq. 53 can be solved uniquely. Once these unknowns are calculated, the inelastic
651 displacements x00 can be determined using Eq. 42. This completes the calculations
652 for the nonlinear static analysis.

653 4.4 Implementation of the Analysis Procedure with Updates
654 to Geometric Nonlinearity

655 The following example is used to illustrate the procedure for statically analyzing
656 moment-resisting framed structure with geometric and material nonlinearities.
657 Consider a one-story one-bay moment-resisting steel frame shown in Fig. 6.
658 Assume that axial deformation is ignored for all three members, this results in a
659 system with 3 DOFs n ¼ 3ð Þ and 6 PHLs m ¼ 6ð Þ as labeled in the figure. Also
660 assume that a lateral force of Fo is applied at x1. This gives F1 ¼ Fo and
661 F2 ¼ F3 ¼ 0, and therefore
662

Fo ¼
F1

F2

F3

8<
:

9=
; ¼

Fo

0
0

8<
:

9=
; ð54Þ

664664

665 Let the gravity load on the frame be P ¼ 890 kN and the lengths of the members
666 be Lb ¼ 6:10 m and Lc ¼ 4:27 m. For W14 � 82 columns, the cross-sectional area
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667 is Ac ¼ 15; 500 mm2, the moment of inertia is Ic ¼ 3:67� 108 mm4, and the
668 plastic section modulus is Zc ¼ 2; 278; 000 mm3. For the W21 � 44 beam, the
669 moment of inertia is Ib ¼ 3:47� 108 mm4, and the plastic section modulus is
670 Zb ¼ 1; 876; 000 mm3, while the cross-sectional area of the beam is not used in the
671 calculation. A elastic modulus of E ¼ 200 GPa and a yield stress of fY ¼ 248 MPa
672 for steel are used.
673 Since the axial force in Member 1 (denoted as P1) will be different from that of
674 Member 2 (denoted as P2) due to overturning induced by the lateral applied force
675 Fo, the resulting stability coefficients will be different as well. The axial force in
676 Member 3 is assumed to be negligible (i.e., P3 � 0) due to the presence of slab.
677 Therefore, let
678

k1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P1=EIc

p
� Lc; k2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2=EIc

p
� Lc ð55Þ

680680

681 It follows that the global stiffness matrices for this one-story frame become:
682

K ¼
s01EIc=L

3
c þ s02EI=L

3
c �s1EIc=L2c �s2EIc=L2c

�s1EIc=L2c s1EIc=Lcþ 4EIb=Lb 2EIb=Lb
�s2EIc=L2c 2EIb=Lb s2EIc=Lcþ 4EIb=Lb

2
4

3
5  x1
 x2
 x3

ð56aÞ
684684

ð56bÞ

686686

ð56cÞ

3

1 2

PHL #1

#2

#3

#4
#5 #6 x1

x2

x3

P P

Fo

W
14

x8
2

W21x44

W
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x8
2
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Fig. 6 One-story one-bay
moment-resisting steel frame
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688688 where s1, c1, �s1, and s01 are the stability coefficients of Member 1 as functions of
689 k1 and P1, and s2, c2, �s2, and s02 are the stability coefficients of Member 2 as
690 functions of k2 and P2. Then Eq. 53 becomes
691

ð57Þ

693693 The yielding characteristics of each plastic hinge must also be defined. Assume
694 the material exhibits elastic-plastic behavior, and an elliptical yield surface is used
695 with the interaction between axial force and moment of the column and beam
696 members following the relationships:
697

Columns :
Pk

fYAc

� �2

þ Mk

fYZc

� �2

� 1; k ¼ 1; . . .; 4 ð58aÞ

699699 Beam :
Mk

fYZb

				
				� 1; k ¼ 5; 6 ð58bÞ

701701

702 Following Eqs. 58a, 58b, this gives the moment versus plastic rotation rela-
703 tionships for the 6 PHLs as
704

if
Mk �MYc;k

Mk [MYc;k



; then

h00k ¼ 0
Mk ¼ MYc;k



i ¼ 1; 2; 3; 4 ð59aÞ

706706 if
Mi� fYZb
Mi [ fYZb



; then

h00i ¼ 0
Mi ¼ fYZb



i ¼ 5; 6 ð59bÞ

708708

709 where MYc;k is the moment capacity of the kth column plastic hinge computed based
710 on a specified axial compressive force and the yield surface equation given in
711 Eq. 58a.
712 To demonstrate the nonlinear static analysis procedure using the currently pro-
713 posed improved method, a pushover curve is now constructed for the frame by
714 taking the following steps.
715 Step U1: The frame is initially assumed to respond in the linearly elastic range
716 i.e., h001 ¼ h002 ¼ h003 ¼ h004 ¼ h005 ¼ h006 ¼ 0. At an applied force of Fo ¼ 414:8 kN and
717 P1 ¼ P2 ¼ 890 kN, extracting the first three equations of Eq. 57 gives
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718 22145 24069 24069
24069 114253 23017
24069 23017 114253

2
4

3
5 x1

x2
x3

8<
:

9=
; ¼

414:8
0
0

8<
:

9=
; ð60Þ

720720

721 Solving for the displacements at the DOFs gives
722

x1 ¼ 0:0303m, x2 ¼ x3 ¼ �0:00531 rad ð61Þ
724724

725 Then substituting the results in Eq. 61 back into the last six equations of Eq. 57
726 gives the moments
727

M1

M2

M3

M4

M5

M6

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
¼

24069 34491 0
24069 68219 0
24069 0 34491
24069 0 68219

0 46034 23017
0 23017 46034

2
6666664

3
7777775

0:0303
�0:00531
�0:00531

8<
:

9=
; ¼

545:5
366:5
545:5
366:5
�366:5
�366:5

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

ð62Þ

729729

730 Based on the setup of the frame as shown in Fig. 5, the column axial forces are
731 determined by computing the shear forces at the two ends of the beam member by
732 using equilibrium of the beam and directly transfer to the columns, i.e.,
733

P1 ¼ Pþ M5þM6ð Þ=Lb ¼ 890þ �366:5� 366:5ð Þ=6:10 ¼ 769 kN ð63aÞ

735735 P2 ¼ P� M5þM6ð Þ=Lb ¼ 890� �366:5� 366:5ð Þ=6:10 ¼ 1010 kN ð63bÞ
737737

738 Then using Eq. 59a to check for yielding at PHLs #1 and #3 gives
739

PHL #1 : 769=3843ð Þ2þ 545:5=565:4ð Þ2¼ 0:971 ð64aÞ

741741 PHL #3 : 1010=3843ð Þ2þ 545:5=565:4ð Þ2¼ 1:000 ð64bÞ
743743

744 which indicates that PHL #3 reaches its yield surface, where any additional loading
745 will cause yielding at this plastic hinge.
746 Step U2: The analysis continues with PHL #3 yielded, i.e.,
747 h001 ¼ h002 ¼ h004 ¼ h005 ¼ h006 ¼ 0. The lateral force is applied up to Fo ¼ 418:7 kN.
748 Rows 1, 2, 3, and 6 are extracted from Eq. 57 with updated geometric nonlinearity
749 based on the column axial forces obtained in Eqs. 63a, 63b:
750

ð65Þ

752752 Solving for the displacements at the DOFs and plastic rotations in Eq. 65 gives
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753 x1 ¼ 0:0307m, x2 ¼ �0:00540 rad; x3 ¼ �0:00535 rad; h003 ¼ 0:00014 rad

ð66Þ
755755

756 Then substituting the results in Eq. 66 back into the last six equations of Eq. 57
757 gives the moments
758

ð67Þ

760760 and the column axial forces are updated as
761

P1 ¼ Pþ M5þM6ð Þ=Lb ¼ 890þ �371:5� 370:3ð Þ=6:10 ¼ 768 kN ð68aÞ

763763 P2 ¼ P� M5þM6ð Þ=Lb ¼ 890� �371:5� 370:3ð Þ=6:10 ¼ 1011 kN ð68bÞ
765765

766 Then using Eq. 59a to check for yielding at PHLs #1 and #3 gives
767

PHL #1 : 768=3843ð Þ2þ 554:0=565:4ð Þ2¼ 1:000 ð69aÞ

769769 PHL #3 : 1011=3843ð Þ2þ 545:5=565:4ð Þ2¼ 1:000 ð69bÞ
771771

772 which indicates that PHL #1 reaches its capacity and PHL #3 continues yielding at
773 this step.
774 Step U3: The analysis continues with PHLs #1 and #3 yielded, i.e.,
775 h002 ¼ h004 ¼ h005 ¼ h006 ¼ 0. The lateral force is applied up to Fo ¼ 457:0 kN. Rows 1,
776 2, 3, 4, and 6 are extracted from Eq. 57 with updated geometric nonlinearity based
777 on the column axial forces obtained in Eqs. 68a, 68b:
778

ð70Þ

780780 Solving for the displacements at the DOFs and plastic rotations in Eq. 70 gives
781
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x1 ¼ 0:0445m; x2 ¼ �0:00676 rad; x3 ¼ �0:00671 rad

783783 h001 ¼ 0:00415 rad; h003 ¼ 0:00429 rad ð71Þ
785785

786 Then substituting the results in Eq. 71 back into the last six equations of Eq. 57
787 gives the moments
788

ð72Þ

790790 At this point, the moment at PHL #5 reaches its capacity of fYZb ¼ 465:6 kN-m,
791 and the column axial forces are updated as
792

P1 ¼ Pþ M5þM6ð Þ=Lb ¼ 890þ �465:6� 464:3ð Þ=6:10 ¼ 737 kN ð73aÞ

794794 P2 ¼ P� M5þM6ð Þ=Lb ¼ 890� �465:6� 464:3ð Þ=6:10 ¼ 1042 kN ð73bÞ
796796

797 Step U4: The analysis continues with PHLs #1, #3, and #5 yielded, i.e.,
798 h002 ¼ h004 ¼ h006 ¼ 0. The lateral force is applied up to Fo ¼ 457:1 kN. Rows 1, 2, 3,
799 4, 6, and 8 are extracted from Eq. 57 with updated geometric nonlinearity based on
800 the column axial forces obtained in Eqs. 73a, 73b:
801

ð74Þ

803803 Solving for the displacements at the DOFs and plastic rotations in Eq. 70 gives
804

x1 ¼ 0:0448m; x2 ¼ �0:00685 rad; x3 ¼ �0:00674 rad

806806 h001 ¼ 0:00421 rad; h003 ¼ 0:00441 rad; h005 ¼ �0:00011 rad ð75Þ
808808

809 Then substituting the results in Eq. 75 back into the last six equations of Eq. 57
810 gives the moments
811
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812

ð76Þ

814814 At this point, the moment at PHL #6 reaches its capacity of fYZb ¼ 465:6 kN-m,
815 and the column axial forces are updated as
816

P1 ¼ Pþ M5þM6ð Þ=Lb ¼ 890þ �465:6� 465:6ð Þ=6:10 ¼ 737 kN ð77aÞ

818818 P2 ¼ P� M5þM6ð Þ=Lb ¼ 890� �465:6� 465:6ð Þ=6:10 ¼ 1042 kN ð77bÞ
820820

821 Step U5: Now that a mechanism has developed with the formation of plastic
822 hinges at PHLs #1, #3, #5, and #6, the frame will continue to deflect without any
823 additional load. But as the displacement increases, the gravity loads of P ¼ 890 kN
824 cause an increase in column moments due to P−Δ effect, resulting in a reduction of
825 the amount of lateral load that can be withstood by the frame. This effect can be
826 captured easily in the current analysis procedure. Let the analysis continue with
827 PHLs #1, #3, #5, and #6 yielded, i.e., h002 ¼ h004 ¼ 0. By using any applied lateral
828 force less than Fo ¼ 457:1 kN (from Step U4) to capture the lateral load reduction,
829 say Fo ¼ 434:1 kN, Rows 1, 2, 3, 4, 6, 8, and 9 are extracted from Eq. 57 with
830 updated geometric nonlinearity based on the column axial forces obtained in
831 Eqs. 77a, 77b:
832

ð78Þ

834834 Solving for the displacements at the DOFs and plastic rotations in Eq. 78 gives
835

x1 ¼ 0:1000m; x2 ¼ �0:01979 rad; x3 ¼ �0:01968 rad
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837837 h001 ¼ 0:01715 rad; h003 ¼ 0:01735 rad; h005 ¼ �0:01305 rad;
h006 ¼ �0:01294 rad

ð79Þ
839839

840 Then substituting the results in Eq. 79 back into the last six equations of Eq. 57
841 gives the moments

ð80Þ

843843 and the column axial forces remain as
844

P1 ¼ Pþ M5þM6ð Þ=Lb ¼ 890þ �465:6� 465:6ð Þ=6:10 ¼ 737 kN ð81aÞ

846846 P2 ¼ P� M5þM6ð Þ=Lb ¼ 890� �465:6� 465:6ð Þ=6:10 ¼ 1042 kN ð81bÞ
848848

849 Finally, the pushover curve can be plotted as shown in Fig. 7 for the case where
850 geometric nonlinearity are updated due to the change in axial forces in the columns.

851 4.5 Implementation of the Analysis Procedure
852 with no Update to Geometric Nonlinearity

853 As shown in Eqs. 60, 65, 70, 74, and 78, it is observed that the first entry to the
854 stiffness matrices remain at 22,145 kN/m even when there are changes to the
855 column axial forces. This suggests that a reduction in stiffness due to an increase in
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856 axial force in Column 2 is offset by an increase in stiffness due to a reduction in
857 axial force in Column 1, as presented in the stiffness matrix in Eq. 56a. Therefore, it
858 may be interesting to investigate the differences in response when geometric non-
859 linearity is updated at every step of the analysis or not.
860 Now consider the case where geometric nonlinearity is not updated when there is
861 a change in the column axial forces. This is achieved by using constant stiffness
862 matrices K, K0, and K00 in Eq. 57 that are computed based on the initial column
863 axial forces throughout the analysis. By using the same one-story frame as shown in
864 Fig. 6 with column axial loads of P1 ¼ P2 ¼ 890 kN, Eq. 57 becomes
865

ð82Þ

867867 Step N1: The same calculation in Step U1 above can be applied to this step,
868 where Fo ¼ 414:8 kN and x1 ¼ 0:0303 m. The moment M3 reaches its moment
869 capacity of 545.5 kN-m and the axial forces in the columns are P1 ¼ 769 kN and
870 P2 ¼ 1010 kN.
871 Step N2: The analysis continues with PHL #3 yielded, i.e.,
872 h001 ¼ h002 ¼ h004 ¼ h005 ¼ h006 ¼ 0. The lateral force is applied up to Fo ¼ 418:7 kN.
873 Rows 1, 2, 3, and 6 are extracted from Eq. 82:
874

ð83Þ

876876 Solving for the displacements at the DOFs and plastic rotations in Eq. 83 gives
877

x1 ¼ 0:0308m; x2 ¼ �0:00540 rad; x3 ¼ �0:00534 rad; h003 ¼ 0:00015 rad

ð84Þ
879879
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880 Then substituting the results in Eq. 84 back into the last six equations of Eq. 82
881 gives the moments
882

ð85Þ

884884 and the column axial forces are updated as
885

P1 ¼ Pþ M5þM6ð Þ=Lb ¼ 890þ �371:7� 370:4ð Þ=6:10 ¼ 768 kN ð86aÞ

887887 P2 ¼ P� M5þM6ð Þ=Lb ¼ 890� �371:7� 370:4ð Þ=6:10 ¼ 1011 kN ð86bÞ
889889

890 Then using Eq. 59a to check for yielding at PHLs #1 and #3 gives
891

PHL #1 : 768=3843ð Þ2þ 554:0=565:4ð Þ2¼ 1:000 ð87aÞ

893893 PHL #3 : 1011=3843ð Þ2þ 545:5=565:4ð Þ2¼ 1:000 ð87bÞ
895895

896 which indicates that PHL #1 reaches its capacity and PHL #3 continues yielding at
897 this step.
898 Step N3: The analysis continues with PHLs #1 and #3 yielded, i.e.,
899 h002 ¼ h004 ¼ h005 ¼ h006 ¼ 0. The lateral force is applied up to Fo ¼ 457:0 kN. Rows 1,
900 2, 3, 4, and 6 are extracted from Eq. 82:
901

ð88Þ

903903 Solving for the displacements at the DOFs and plastic rotations in Eq. 88 gives
904

x1 ¼ 0:0445m; x2 ¼ �0:00676 rad; x3 ¼ �0:0670 rad

906906 h001 ¼ 0:00415 rad; h003 ¼ 0:00430 rad ð89Þ
908908
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909 Then substituting the results in Eq. 89 back into the last six equations of Eq. 82
910 gives the moments
911

ð90Þ

913913 At this point, the moment at PHL #5 reaches its capacity of fYZb ¼ 465:6 kN-m,
914 and the column axial forces are updated as
915

P1 ¼ Pþ M5þM6ð Þ=Lb ¼ 890þ �465:6� 464:3ð Þ=6:10 ¼ 737 kN ð91aÞ

917917 P2 ¼ P� M5þM6ð Þ=Lb ¼ 890� �465:6� 464:3ð Þ=6:10 ¼ 1042 kN ð91bÞ
919919

920 Step N4: The analysis continues with PHLs #1, #3, and #5 yielded, i.e.,
921 h002 ¼ h004 ¼ h006 ¼ 0. The lateral force is applied up to Fo ¼ 457:1 kN. Rows 1, 2, 3,
922 4, 6, and 8 are extracted from Eq. 82:
923

ð92Þ

925925 Solving for the displacements at the DOFs and plastic rotations in Eq. 92 gives
926

x1 ¼ 0:0448m; x2 ¼ �0:00685 rad; x3 ¼ �0:00674 rad

928928 h001 ¼ 0:00420 rad; h003 ¼ 0:00442 rad; h005 ¼ �0:00011 rad ð93Þ
930930

931 Then substituting the results in Eq. 93 back into the last six equations of Eq. 82
932 gives the moments
933

ð94Þ
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935935 At this point, the moment at PHL #6 reaches its capacity of fYZb ¼ 465:6 kN-m,
936 and the column axial forces are updated as
937

P1 ¼ Pþ M5þM6ð Þ=Lb ¼ 890þ �465:6� 465:6ð Þ=6:10 ¼ 737 kN ð95aÞ

939939 P2 ¼ P� M5þM6ð Þ=Lb ¼ 890� �465:6� 465:6ð Þ=6:10 ¼ 1042 kN ð95bÞ
941941

942 Step N5: Now that a mechanism has developed with the formation of plastic
943 hinges at PHLs #1, #3, #5, and #6, the frame will continue to deflect without any
944 additional load. Let the analysis continue with PHLs #1, #3, #5, and #6 yielded, i.e.,
945 h002 ¼ h004 ¼ 0. By using any applied lateral force less than Fo ¼ 457:1 kN (from Step
946 N4), say Fo ¼ 434:1 kN, Rows 1, 2, 3, 4, 6, 8, and 9 are extracted from Eq. 82:
947

ð96Þ

949949 Solving for the displacements at the DOFs and plastic rotations in Eq. 96 gives
950

x1 ¼ 0:1000m; x2 ¼ �0:01979 rad; x3 ¼ �0:01968 rad

952952 h001 ¼ 0:01714 rad; h003 ¼ 0:01735 rad; h005 ¼ �0:01305 rad;
h006 ¼ �0:01294 rad

ð97Þ
954954

955 Then substituting the results in Eq. 97 back into the last six equations of Eq. 57
956 gives the moments

Table 1 Comparison of plastic rotations with and without updates to geometric nonlinearity

Step Plastic rotation (rad) with geo update Plastic rotation (rad) with no update

PHL #1 PHL #3 PHL #5 PHL #6 PHL #1 PHL #3 PHL #5 PHL #6

1 0 0 0 0 0 0 0 0

2 0 0.00014 0 0 0 0.00015 0 0

3 0.00415 0.00429 0 0 0.00415 0.00430 0 0

4 0.00421 0.00441 0.00011 0 0.00420 0.00442 0.00011 0

5 0.01715 0.01735 0.01305 0.01294 0.01714 0.01735 0.01305 0.01294
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958958 and the column axial forces remain as
959

P1 ¼ Pþ M5þM6ð Þ=Lb ¼ 890þ �465:6� 465:6ð Þ=6:10 ¼ 737 kN ð99aÞ

961961 P2 ¼ P� M5þM6ð Þ=Lb ¼ 890� �465:6� 465:6ð Þ=6:10 ¼ 1042 kN ð99bÞ
963963

964 The pushover curve is plotted as shown in Fig. 7 for the case where the update
965 of stiffness matrix due to geometric nonlinearity is ignored when axial forces in the
966 columns change. It is observed that there is practically no difference in the “global”
967 response between whether geometric nonlinearity due to changes in axial forces in
968 the columns for the one-story frame is updated or not. The reason is that while the
969 induced lateral displacement imposes overturning moment on the entire framed
970 structure, global equilibrium requires that there will be an increase in column
971 compression on one side of the frame and an equal amount of reduction in column
972 compression on the opposite side of the frame in order to resist the imposed
973 overturning moment. While an increase in column compression on one side of the
974 frame reduces the lateral stiffness of these columns, a reduction in column com-
975 pression on the opposite side of the frame increases the lateral stiffness of those
976 columns by a similar amount. The end result is that the net change in total lateral
977 stiffness of the entire frame becomes negligible, and this can be observed when the
978 stiffness matrix in Eq. 65 (Step U2) is compared with that in Eq. 83 (Step N2).
979 Similar observations can also be made when the stiffness matrix in Eq. 70 (Step
980 U3) is compared with that in Eq. 88 (Step N3). Therefore, an assumption to keep
981 the geometrically nonlinear stiffness matrices unchanged throughout the analysis
982 even as loading increases is reasonable, and this is consistent with the recom-
983 mendation by Wilson [15] that P–Δ analysis method “does not require iteration
984 because the total axial force at a story level is equal to the weight of the building
985 above that level and does not change during the application of lateral loads”. This
986 observation is important in nonlinear dynamic analysis of moment-resisting frames
987 because significant computational effort can be reduced with reasonable accuracy
988 by using the approximation of constant geometrically nonlinear stiffness matrices.
989 Table 1 summarizes the plastic rotation results obtained in the above analysis
990 procedure. It can be seen that the differences in plastic rotations between whether
991 geometric nonlinearity is updated or not updated is negligible. This suggests that
992 there is practically no difference in the “local” response between whether geometric
993 nonlinearity due to changes in axial forces in the columns for the one-story frame is
994 updated or not, even at a drift ratio of 1.6 % (i.e., 0:10=6:10 ¼ 0:0164).

AQ1
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995 5 Nonlinear Dynamic Analysis of Framed Structures

996 In the previous section, the global stiffness matrices incorporating both geometric
997 and material nonlinearities are used to determine the static behavior and plastic
998 rotation response of structures. In this section, the analysis procedure with plastic
999 rotation calculations is extended to nonlinear dynamic analysis. For an n-DOF

1000 system subjected to earthquake ground motions, the equation of motion can be
1001 written as
1002

m€xðtÞþ c_xðtÞþKðtÞx0ðtÞ ¼ �m€gðtÞ � FaðtÞ ð100Þ
10041004

1005 where m is the n� n mass matrix, c is the n� n damping matrix, _xðtÞ is the n� 1
1006 velocity vector, €xðtÞ is the n� 1 acceleration vector, KðtÞ is the time-varying n� n
1007 stiffness matrix derived in Eq. 28a while subjected to time-varying column axial
1008 compressive forces, €gðtÞ is the n� 1 earthquake ground acceleration vector cor-
1009 responding to the effect of ground motion at each DOF, and FaðtÞ is the n� 1
1010 vector of additional forces imposed on the frame due to geometric nonlinearity of
1011 all the gravity columns in the structure (mainly the P−Δ effect). This nonlinearity
1012 can often be modeled using a leaning column (or sometimes called a P−Δ column)
1013 in a two-dimensional analysis but may require more detailed modeling of all gravity
1014 columns in a three-dimensional analysis that may affect the response due to tor-
1015 sional irregularity of the structure. In a two-dimensional analysis, the relationship
1016 between this lateral force FaðtÞ and the lateral displacement can be written as:
1017

FaðtÞ ¼ KaxðtÞ ð101Þ
10191019

1020 where Ka is an n� n stiffness matrix that is a function of the gravity loads on the
1021 leaning column and the corresponding story height, but it is not a function of time.
1022 For two-dimensional frames with horizontal degrees of freedom only, this Ka

1023 matrix often takes the form:
1024

Ka ¼

�Q1=h1 � Q2=h2 Q2=h2 0 � � � 0

Q2=h2 �Q2=h2 � Q3=h3 . .
. . .

. ..
.

0 . .
. . .

.
Qn�1=hn�1 0

..

. . .
.

Qn�1=hn�1 �Qn�1=hn�1 � Qn=hn Qn=hn
0 � � � 0 Qn=hn �Qn=hn

2
66666664

3
77777775

ð102Þ
10261026

1027 where Qi is the total axial force due to gravity on the leaning column of the ith floor,
1028 and hi is the story height of the ith floor.
1029 While the lateral force FaðtÞ takes care of the nonlinear geometric effects from all
1030 the gravity columns in the structure, the stiffness matrix KðtÞ in Eq. 100 considers
1031 both large P−Δ and small P−d effects of geometric nonlinearity on the
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1032 moment-resisting frame itself. Let this time-dependent global stiffness matrix KðtÞ
1033 be represented in the form:
1034

KðtÞ ¼ KLþKGðtÞ ð103Þ
10361036

1037 where KL denotes the linearized elastic stiffness of the frame due to the gravity
1038 loads only, and KGðtÞ denotes the change in stiffness due to the change in axial load
1039 on members during the dynamic loading. Since the KL matrix is computed by using
1040 the gravity loads on the columns (which means KL ¼ Kðt0Þ ¼ Kð0Þ, i.e., the
1041 stiffness matrix computed at time step 0) only, it is not a function of time and
1042 therefore remains as a constant throughout the dynamic analysis.
1043 The state space method of dynamic analysis uses explicit formulation, which is a
1044 desirable method when nonlinearity is involved. Therefore it is used here in the
1045 derivation of the analysis procedure. However, it requires that the mass matrix m in
1046 Eq. 100 be invertible. In many practical structural analysis problems, masses at
1047 certain DOFs are intentionally set to zero in order to reduce the number of DOFs in
1048 the structural model. When the mass is zero at certain DOFs, such as those DOFs
1049 related to the vertical translation and joint rotations, the mass matrix in Eq. 100 will
1050 become singular and therefore the state space method cannot be readily employed.
1051 To overcome this problem with non-invertible (or singular) mass matrix, static
1052 condensation is first applied in order to eliminate those DOFs with zero mass or
1053 mass moment of inertia before solving the dynamic problem.

1054 5.1 Static Condensation for Nonlinear Dynamic Analysis

1055 Consider a moment-resisting frame with n DOFs and m PHLs as presented in
1056 Eq. 100, the equation of motion can be partitioned in the matrix form as
1057

ð104Þ

10591059
1060 where mdd is the mass matrix associated with DOFs with mass only, cdd is the
1061 damping matrix associated with DOFs with mass only, and KddðtÞ, KdrðtÞ, KrdðtÞ,
1062 and KrrðtÞ are the stiffness submatrices partitioned according to the DOFs with
1063 mass and those with zero mass. The vector x0ðtÞ is the elastic displacement
1064 response, _xðtÞ is the velocity response, €xðtÞ is the acceleration response, FaðtÞ is the
1065 d � 1 vector of additional forces imposed on the translational DOFs due to geo-
1066 metric nonlinearity of gravity columns, and the earthquake ground acceleration
1067 vector €gdðtÞ corresponds to the effect of a ground motion on each DOF associated
1068 with nonzero mass. The subscript d denotes the number of degrees of freedom that
1069 have nonzero mass, and subscript r denotes the number of degrees of freedom that
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1070 have zero mass and zero moment of inertia. This gives n ¼ dþ r in an n-DOF
1071 system.
1072 Equations 52 and 42 related to material nonlinearity can similarly be partitioned
1073 as follows:

ð105Þ
10751075

ð106Þ
10771077 where

ð107Þ

10791079 Static condensation is now performed on Eq. 104. The second equation of
1080 Eq. 104 is extracted and written in the long form as
1081

KrdðtÞx0dðtÞþKrrðtÞx0rðtÞ ¼ 0 ð108Þ
10831083

1084 Solving for x0rðtÞ in Eq. 108 gives
1085

x0rðtÞ ¼ �K�1rr ðtÞKrdðtÞx0dðtÞ ð109Þ
10871087

1088 Now substituting Eq. 109 back into the first equation of Eq. 104 gives
1089

mdd€xdðtÞþ cdd _xdðtÞþKddðtÞx0dðtÞ �KdrðtÞK�1rr ðtÞKrdðtÞx0dðtÞ
¼ �mdd€gdðtÞ � FaðtÞ ð110Þ

10911091

1092 Define
1093

KðtÞ ¼ KddðtÞ �KdrðtÞK�1rr ðtÞKrdðtÞ ð111Þ
10951095

1096 Then Eq. 110 becomes
1097

mdd€xdðtÞþ cdd _xdðtÞþKðtÞx0dðtÞ ¼ �mdd€gdðtÞ � FaðtÞ ð112Þ
10991099

1100 which represents the equation of motion in the statically condensed form.
1101 Since Eqs. 105 and 106 contain both DOFs with mass (i.e., xdðtÞ and x00dðtÞ) and
1102 DOFs without mass (i.e., xrðtÞ and x00r ðtÞ), static condensation must also be applied
1103 to these two equations to reduce the DOFs to those with mass only. Considering
1104 Eq. 106 and pre-multiplying both sides of this equation by the stiffness matrix KðtÞ
1105 gives

ð113Þ

11071107 Extracting the second equation of Eq. 113 and solving for x00r ðtÞ gives
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1108 x00r ðtÞ ¼ �K�1rr ðtÞKrdðtÞx00dðtÞþK�1rr ðtÞK0rðtÞH00ðtÞ ð114Þ
11101110

1111 Now substituting Eq. 114 back into the first equation of Eq. 113 gives
1112

KddðtÞx00dðtÞþKdrðtÞ �K�1rr ðtÞKrdðtÞx00dðtÞþK�1rr ðtÞK0rðtÞH00ðtÞ
� � ¼ K0dH

00ðtÞ
ð115Þ

11141114

1115 and rearranging the terms gives
1116

KddðtÞ �KdrðtÞK�1rr ðtÞKrdðtÞ
� �

x00dðtÞ ¼ K0dðtÞ �KdrðtÞK�1rr ðtÞK0rðtÞ
� �

H00ðtÞ
ð116Þ

11181118

1119 Define
1120

K
0ðtÞ ¼ K0dðtÞ �KdrðtÞK�1rr ðtÞK0rðtÞ ð117Þ

11221122

1123 Substituting Eqs. 111 and 117 into Eq. 116 gives
1124

KðtÞx00dðtÞ ¼ K
0ðtÞH00ðtÞ ð118Þ

11261126

1127 Finally, pre-multiplying both sides of Eq. 118 by the inverse of the condensed
1128 global stiffness matrix in Eq. 111 (i.e., KðtÞ�1) gives
1129

x00dðtÞ ¼ KðtÞ�1K0ðtÞH00ðtÞ ð119Þ
11311131

1132 which represents the condensed form of Eq. 106.
1133 Finally, considering Eq. 105 and expanding the right hand side this equation
1134 gives
1135

MðtÞþK00ðtÞH00ðtÞ ¼ K0dðtÞTxdðtÞþK0rðtÞTxrðtÞ ð120Þ
11371137

1138 The term xrðtÞ in Eq. 120 must be first calculated. Since xrðtÞ ¼ x0rðtÞþ x00r ðtÞ
1139 according to Eq. 107, substituting Eqs. 109 and 114 into this equation gives
1140

xrðtÞ ¼ x0rðtÞþ x00r ðtÞ
¼ �K�1rr ðtÞKrdðtÞx0dðtÞ �K�1rr ðtÞKrdðtÞx00dðtÞþK�1rr ðtÞK0rðtÞH00ðtÞ ð121Þ

11421142

1143 Also, since x0dðtÞþ x00dðtÞ ¼ xdðtÞ according to Eq. 107, substituting this equation
1144 in Eq. 121 gives
1145

xrðtÞ ¼ �K�1rr ðtÞKrdðtÞxdðtÞþK�1rr ðtÞK0rðtÞH00ðtÞ ð122Þ
11471147

1148 Now substituting Eq. 122 into Eq. 120 and rearranging the terms gives
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1149 MðtÞþ K00ðtÞ �K0rðtÞTK�1rr ðtÞK0rðtÞ
� �

H00ðtÞ
¼ K0dðtÞT �K0rðtÞTK�1rr ðtÞKrdðtÞ

� �
xdðtÞ ð123Þ

11511151

1152 Define
1153

K
00ðtÞ ¼ K00ðtÞ �K0rðtÞTK�1rr ðtÞK0rðtÞ ð124Þ

11551155

1156 Substituting Eqs. 117 and 124 into Eq. 123 gives
1157

MðtÞþK
00ðtÞH00ðtÞ ¼ K

0ðtÞTxdðtÞ ð125Þ
11591159

1160 which represents the condensed form of Eq. 105.

1161 5.2 Nonlinear Dynamic Analysis Procedure

1162 By applying static condensation to eliminate the DOFs associated with zero mass
1163 and zero mass moment of inertia (i.e., xrðtÞ), the resulting equations for nonlinear
1164 dynamic analysis are presented in Eqs. 112, 125, and 119, which are rewritten here:
1165

mdd€xdðtÞþ cdd _xdðtÞþKðtÞx0dðtÞ ¼ �mdd€gdðtÞ � FaðtÞ ð126aÞ

11671167 MðtÞþK
00ðtÞH00ðtÞ ¼ K

0ðtÞTxdðtÞ ð126bÞ

11691169 x00dðtÞ ¼ KðtÞ�1K0ðtÞH00ðtÞ ð126cÞ
11711171

1172 where according to Eqs. 111, 117, and 124, the statically condensed global stiffness
1173 matrices are:
1174

KðtÞ ¼ KddðtÞ �KdrðtÞK�1rr ðtÞKrdðtÞ ð127aÞ

11761176 K
0ðtÞ ¼ K0dðtÞ �KdrðtÞK�1rr ðtÞK0rðtÞ ð127bÞ

11781178 K
00ðtÞ ¼ K00ðtÞ �K0rðtÞTK�1rr ðtÞK0rðtÞ ð127cÞ

11801180

1181 and Eqs. 101 and 103 can be written in the forms:
1182

FaðtÞ ¼ KaxdðtÞ; KðtÞ ¼ KLþKGðtÞ ð128Þ
11841184

1185 where again Ka denotes the lateral stiffness due to the gravity columns and KL

1186 denotes the linearized elastic stiffness of the moment-resisting frame only. Solving
1187 for the elastic displacement x0dðtÞ in Eq. 107 gives x0dðtÞ ¼ xdðtÞ � x00dðtÞ, and
1188 substituting the result into Eq. 126a gives
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1189 mdd€xdðtÞþ cdd _xdðtÞþKðtÞxdðtÞ ¼ �mdd€gdðtÞ � FaðtÞþKðtÞx00dðtÞ ð129Þ
11911191

1192 Then substituting Eq. 128 into Eq. 129, the equation of motion after considering
1193 both large P−Δ and small P−d effects of geometric nonlinearity of the entire
1194 structure becomes
1195

mdd€xdðtÞþ cdd _xdðtÞþKLxdðtÞ ¼ �mdd€gdðtÞ �KaxdðtÞ �KGðtÞxdðtÞþKðtÞx00dðtÞ
ð130Þ

11971197

1198 Define
1199

Ke ¼ KLþKa ð131Þ
12011201

1202 where Ke represents the elastic stiffness of the entire structure (i.e., the sum of
1203 elastic stiffness of the moment-resisting frame and that of the gravity columns).
1204 Substituting Eq. 131 into Eq. 130, it follows that
1205

mdd€xdðtÞþ cdd _xdðtÞþKexdðtÞ ¼ �mdd€gdðtÞ �KGðtÞxdðtÞþKðtÞx00dðtÞ ð132Þ
12071207

1208 This equation of motion can now be solved using the state space method. To
1209 represent Eq. 132 in state space form, let the state vector zðtÞ be defined as
1210

zðtÞ ¼ xdðtÞ
_xdðtÞ


 �
ð133Þ

12121212

1213 which is a 2d � 1 vector with a collection of states of the responses. It follows from
1214 Eq. 132 that
1215

_zðtÞ ¼ _xdðtÞ
€xdðtÞ


 �
¼ 0 I

�m�1dd Ke �m�1dd cdd

� 

xdðtÞ
_xdðtÞ


 �

þ 0

�h

� 

aðtÞþ 0

m�1dd

� 

KeðtÞx00dðtÞ �KGðtÞxdðtÞ
� � ð134Þ

12171217

1218 where h is a d � 3 matrix that relates the directions of each DOF with the global X-,
1219 Y-, and Z-directions (i.e., a collection of 0’s and 1’s in all entries), and aðtÞ is the
1220 3� 1 ground acceleration vector in the three global directions of €gXðtÞ, €gYðtÞ, and
1221 €gZðtÞ. The relationship between the ground acceleration vector €gdðtÞ for each DOF
1222 in Eq. 132 and the three-component ground acceleration vector aðtÞ in Eq. 134 can
1223 be expressed as
1224

€gdðtÞ ¼ haðtÞ ¼ h
€gXðtÞ
€gYðtÞ
€gZðtÞ

8<
:

9=
; ð135Þ

12261226
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1227 To simplify Eq. 134, let
1228

A ¼ 0 I
�m�1dd Ke �m�1dd cdd

� 

; H ¼ 0

�h
� 


; B ¼ 0
�m�1dd

� 

ð136aÞ

12301230 fGðtÞ ¼ �KGðtÞxdðtÞ; fMðtÞ ¼ KðtÞx00dðtÞ ð136bÞ
12321232

1233 where A is the 2d � 2d state transition matrix in the continuous form, H is the
1234 2d � 3 ground motion transition matrix in the continuous form, B is the 2d � d
1235 nonlinearity transition matrix in the continuous form, fGðtÞ is the d � 1 equivalent
1236 force vector due to geometric nonlinearity, and fMðtÞ is the d � 1 equivalent force
1237 vector due to material nonlinearity. Then Eq. 134 becomes
1238

_zðtÞ ¼ AzðtÞþHaðtÞþBfGðtÞþBfMðtÞ ð137Þ
12401240

1241 Solving for the first-order linear differential equation in Eq. 137 gives
1242

zðtÞ ¼ eAðt�toÞ zðtoÞþ eAt
Z t

to

e�As HaðsÞ þBfGðsÞþBfMðsÞ½ �ds ð138Þ
12441244

1245 where to is the time of reference when the integration begins, which is typically the
1246 time when the states are known. In a recursive analysis procedure, the known states
1247 are often taken at the current time step zðtoÞ and the objective is to calculate the
1248 states at the next time step zðtÞ. Therefore, let tkþ 1 ¼ t, tk ¼ to, and Dt ¼ tkþ 1 � tk,
1249 and the subscript k denotes the kth time step, then it follows from Eq. 138 that
1250

zkþ 1 ¼ eADt zk þ eAtkþ 1

Z tkþ 1

tk

e�As HaðsÞþBfGðsÞþBfMðsÞ½ � ds ð139Þ
12521252

1253 By using the Dirac delta function approximation for the variables in the integral
1254 for the purpose of carrying out the integration, the ground acceleration vector aðsÞ,
1255 equivalent geometric nonlinear force vector fGðsÞ, and equivalent material non-
1256 linear force vector fMðsÞ take the form:
1257

aðsÞ ¼ akdðs� tkÞDt ; tk � s\tkþ 1 ð140aÞ

12591259 fGðsÞ ¼ fG;kdðs� tkÞDt ; tk � s\tkþ 1 ð140bÞ

12611261 fMðsÞ ¼ fM;kdðs� tkÞDt ; tk � s\tkþ 1 ð140cÞ
12631263

1264 Substituting Eqs. 140a–140c into Eq. 139 and performing the integration gives
1265

zkþ 1 ¼ eADt zk þDt eADtHak þDt eADtBfG;k þDt eADtBfM;k ð141Þ
12671267

Improved Method for the Calculation of Plastic Rotation … 39

Layout: T1 Standard Book ID: 330342_1_En Book ISBN: 978-3-319-47796-1

Chapter No.: 6 Date: 30-9-2016 Time: 7:37 pm Page: 39/47

A
u

th
o

r 
P

ro
o

f



U
N
C
O
R
R
EC

TE
D
PR

O
O
F

1268 where zk, ak, fG;k , and fM;k are the discretized forms of zðtÞ, aðtÞ, fGðtÞ, and fMðtÞ,
1269 respectively. Let
1270

Fd ¼ eADt; Hd ¼ eADtHDt; Bd ¼ eADtBDt ð142Þ
12721272

1273 Then Eq. 141 becomes
1274

zkþ 1 ¼ Fdzk þHdak þBdfG;k þBdfM;k ð143Þ
12761276

1277 In Eq. 143, both equivalent force terms fG;k and fM;k are functions of the column
1278 axial forces at time step k. Therefore, Eq. 143 represents the recursive equation for
1279 calculating the dynamic response of moment-resisting framed structures while
1280 considering updates on geometric nonlinearity as the axial compressive force in
1281 columns changes with time.
1282 For the case where updates on geometric nonlinearity are ignored in the non-
1283 linear dynamic analysis, the KGðtÞ matrix as given in Eq. 128 becomes KGðtÞ ¼ 0.
1284 Therefore, from the same equation, KðtÞ ¼ KL. Then it follows from Eq. 136b that
1285

fGðtÞ ¼ 0½ � � xdðtÞ ¼ 0 ð144aÞ

12871287 fMðtÞ ¼ KðtÞx00dðtÞ ¼ KLx00dðtÞ ð144bÞ
12891289

1290 and Eq. 143 becomes
1291

zkþ 1 ¼ Fdzk þHdak þGdx00d;k ð145Þ
12931293

1294 where
1295

Gd ¼ BdKo ¼ eADt
0

m�1dd

� 

KoDt ¼ eADt

0
m�1dd KL

� 

Dt ð146Þ

12971297

1298 and x00d;k representing the discretized forms of x00dðtÞ. Equation 145 represents the
1299 recursive equation for calculating the nonlinear dynamic response of
1300 moment-resisting framed structures without updates on geometric nonlinearity as
1301 the axial compressive force in columns changes with time.
1302 To perform nonlinear dynamic analysis, either Eq. 143 or Eq. 145 is used in
1303 conjunction with Eqs. 126b and 126c, rewritten here in discretized forms:
1304

Mkþ 1þK
00
kþ 1DH

00 ¼ K
0T
kþ 1xd;kþ 1 �K

00
kþ 1H

00
k ð147Þ

13061306 x00d;kþ 1 ¼ K
�1
kþ 1K

0
kþ 1H

00
kþ 1 ð148Þ

13081308

1309 where xd;k , H00k , and Mk are the discretized forms of xdðtÞ, H00ðtÞ, and MðtÞ,
1310 respectively, DH00 ¼ H00kþ 1 �H00k , and Kk, K

0
k, and K

00
k are the stiffness matrices at
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1311 time step k computed using the axial forces in columns at the same time step. Note
1312 that the stiffness matrices in Eqs. 147 and 148 are written in terms of time step
1313 kþ 1. However, the axial forces in columns at time step kþ 1 are unknown prior to
1314 the calculation of moments and change in plastic rotations, which means Eq. 147
1315 requires an iterative procedure in the solution and may be difficult to execute.
1316 Therefore, the stiffness matrices in these two equations are approximated by
1317 replacing with those at time step k, i.e.,
1318

Mkþ 1þK
00
kDH

00 ¼ K
0T
k xkþ 1 �K

00
kH
00
k ð149Þ

13201320 x00kþ 1 ¼ K
�1
k K

0
kH
00
kþ 1 ð150Þ

13221322

1323 If updates to geometric nonlinearity are ignored throughout the time history
1324 analysis, further approximation can be performed (as demonstrated in the com-
1325 parison of responses in Sects. 4.4 and 4.5) by simplifying the stiffness matrices as:
1326

Kk ¼ Kð0Þ ¼ KL; K
0
k ¼ K

0ð0Þ ¼ K
0
L; K

00
k ¼ K

00ð0Þ ¼ K
00
L ð151Þ

13281328

1329 where K
0
L
and K

00
L (and KL as previously defined in Eq. 131) are the linearized

1330 condensed stiffness matrices with geometric nonlinearity derived from the gravity
1331 load on the frame only. Then Eqs. 149 and 150 become
1332

Mkþ 1þK
00
LDH

00 ¼ K
0T
L xd;kþ 1 �K

00
LH
00
k ð152Þ

13341334 x00d;kþ 1 ¼ K
�1
L K

0
LH
00
kþ 1 ð153Þ

13361336

1337 Equations 145, 152, and 153 represent the set of equations for solving the
1338 nonlinear dynamic analysis problems when no update to geometric nonlinearity due
1339 to changes in axial force is performed.
1340 Finally, the absolute acceleration vector (i.e., €ydðtÞ ¼ €xdðtÞþ €gdðtÞ) can be
1341 computed by rewriting Eq. 126a in discretized form as
1342

€yd;k ¼ �m�1dd cdd _xd;k �m�1dd Kk xd;k � x00d;k
� �

�m�1dd Kaxd;k ð154Þ
13441344

1345 where _xd;k and €yd;k are the discretized forms of _xdðtÞ and €ydðtÞ, respectively.

1346 5.3 Implementation of the Dynamic Analysis Procedure
1347 to the One-Story Frame

1348 As an example of the above derivation, consider the same configuration of a
1349 one-story one-bay moment-resisting frame as shown in Fig. 6 but with different
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1350 member properties. First, let the members be axially rigid. This gives a total of 3
1351 DOFs (i.e., n ¼ 3) and 6 PHLs (i.e., m ¼ 6) as shown in the figure. The global
1352 stiffness matrices have been presented in Eqs. 56a–56c.
1353 Assume that the frame has a mass of mdd ¼ 318:7 Mg and a damping of 0 %
1354 (i.e., cdd ¼ 0:0) at DOF #1, while the mass moment of inertia at DOFs #2 and #3
1355 are ignored. This gives d ¼ 1 and r ¼ 2. Note that dþ r ¼ n. Therefore, static
1356 condensation can be applied to eliminate the DOFs for x2 and x3. For the beam and
1357 columns, let E ¼ 200 GPa, Ib ¼ Ic ¼ 4:995� 108 mm4, Lb ¼ 7:62 m, and
1358 Lc ¼ 4:57 m. Assume that the plastic hinges exhibit elastic-plastic behavior with
1359 plastic moment capacities of Mb ¼ 3130 kN-m for the beam and Mc ¼ 3909 kN-m
1360 for the two columns. Also, let the gravity load be P ¼ 5338 kN. Assuming no
1361 update of geometric nonlinearity due to changes in axial forces in columns is

1362 performed, the condensed stiffness matrices KL, K
0
L, and K

00
L based on Eq. 117

1363 become:
1364

KL ¼ Ke ¼ 10018 kN=m ð155aÞ

13661366 K
0
L ¼ 16907 11331 16907 11331 �11331 �11331½ � kN ð155bÞ

13681368

K
00
L ¼

56761 13494 2458 4585 �13494 �4585
13494 25173 4585 8554 �25173 �8554
2458 4585 56761 13494 �4585 �13494
4585 8554 13494 25173 �8554 �25173
�13494 �25173 �4585 �8554 25173 8554
�4585 �8554 �13494 �25173 8554 25173

2
6666664

3
7777775
kN�m=rad

ð155cÞ
13701370

1371 The period of vibration T is calculated as:
1372

T ¼ 2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mdd=KL

q
¼ 2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
318:7=10017

p
¼ 1:121 s ð156Þ

13741374

1375 With a time step size of Dt ¼ 0:01 s and assuming no updates to the geometric
1376 nonlinearity is performed, the transition matrices are calculated as:
1377

A ¼ 0 1
�31:43 0

� 

; H ¼ 0

�1
� 


; B ¼ 0
0:5495

� 

ð157aÞ

13791379 Fd ¼ eADt ¼ 0:998429 0:009995
�0:31415 0:998429

� 

; Hd ¼ �0:00010

�0:00998
� 


; Gd ¼ 0:00314
0:31381

� 

ð157bÞ

13811381

1382 and Eqs. 145, 152, and 153 for performing the nonlinear dynamic analysis become
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1383 x1
_x1


 �
kþ 1
¼ 0:998429 0:009995
�0:31415 0:998429

� 

x1
_x1


 �
k
þ �0:00010
�0:00998

� 

ak þ 0:00314

0:31381

� 

x00d;k

ð158aÞ

13851385 M1

M2

M3

M4

M5

M6

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

kþ 1

þ

56761 13494 2458 4585 �13494 �4585
13494 25173 4585 8554 �25173 �8554
2458 4585 56761 13494 �4585 �13494
4585 8554 13494 25173 �8554 �25173
�13494 �25173 �4585 �8554 25173 8554

�4585 �8554 �13494 �25173 8554 25173

2
666666664

3
777777775

Dh001
Dh002
Dh003
Dh004
Dh005
Dh006

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

¼

16907

11329

16907

11329

�11329
�11329

2
666666664

3
777777775
x1;kþ 1 �

56761 13494 2458 4585 �13494 �4585
13494 25173 4585 8554 �25173 �8554
2458 4585 56761 13494 �4585 �13494
4585 8554 13494 25173 �8554 �25173
�13494 �25173 �4585 �8554 25173 8554

�4585 �8554 �13494 �25173 8554 25173

2
666666664

3
777777775

h001
h002
h003
h004
h005
h006

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

k

ð158bÞ

13871387

x00d;kþ 1 ¼
1

10017
16907 11329 16907 11329 �11329 �11329½ �

h001
h002
h003
h004
h005
h006

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

kþ 1

ð158cÞ
13891389
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Fig. 8 1995 Kobe earthquake ground acceleration at Kajima station, component 000, with a peak
ground acceleration of 0.821 g
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1390 Equation 158a–158c represents the set of recursive equations used for the entire
1391 nonlinear dynamic analysis. Note that the method for solving Eq. 158b is similar to
1392 those discussed in Sects. 4.4 and 4.5, where an iterative procedure is used to
1393 determine whether each plastic hinges is at the loading phase (i.e., plastic rotation
1394 becomes the unknown) or at the unloading phase (i.e., moment becomes the
1395 unknown).
1396 The frame is now subjected to the 1995 Kobe earthquake ground motion as
1397 shown in Fig. 8 but magnified with a scale factor of 1.3 to produce larger dis-
1398 placement response and more yielding in the plastic hinges. The global displace-
1399 ment response at DOF #1 is plotted in Fig. 9 using the currently proposed method
1400 (PM) of nonlinear analysis. In addition, two small-displacement-based structural
1401 analysis software packages (here labeled as S1 that uses P−Δ stiffness as shown in
1402 Eq. 30 and S2 that uses geometric stiffness as shown in Eq. 29) and a
1403 large-displacement-based finite element analysis software package (here labeled as
1404 L1) are used to develop the same one-story one-bay moment-resisting frame model
1405 as shown in Fig. 6, and the undamped displacement responses obtained from S1
1406 and S2 are also plotted in Fig. 9 for comparisons. Note that even though using 0 %
1407 damping is an idealized situation, it helps eliminate the potentially differing effects
1408 of using damping parameters on the responses that may occur due to differences in
1409 damping formulations used in various software packages.
1410 As shown in Fig. 9, it is observed that the proposed method (PM) produces a
1411 “global” response that is comparable to other software packages that use different
1412 material nonlinearity and geometric nonlinearity formulations. At such a large
1413 displacement response of the frame, the large-displacement-based finite element
1414 analysis software package L1 is assumed to give accurate results; therefore, it serves
1415 as a benchmark for other small-displacement-based software packages. It is
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Fig. 9 Displacement response comparisons of the one-story frame using the proposed method
(PM) with two small-displacement-based structural analysis software packages (S1 and S2) and a
large-displacement-based finite element software package (L1)
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1416 observed that while S1 differs noticeably from the L1 prediction, S2 performs
1417 slightly better than the PM in the displacement response.
1418 Figure 10 shows the plastic hinge moment responses at PHLs #1, #3, #5, and #6
1419 of the one-story one-bay frame among the same software packages used in the
1420 study. As shown in this figure, the L1 results show that the moment responses at all
1421 the plastic hinges should be skewed to the positive direction. However, only the
1422 proposed method (PM) captures this behavior, while S1 captures this behavior to a
1423 lesser extent and S2 misses the behavior completely. This suggests that starting
1424 from the basic principles at the element level is important in capturing the local
1425 responses of the structure.
1426 Finally, Fig. 11 shows the plastic rotations responses at PHLs #1, #3, #5, and #6
1427 of the one-story one-bay frame using the small-displacement-based structural
1428 analysis software packages. The large-displacement-based finite element software
1429 package L1 produces plastic strain as the output, yet the conversion from plastic
1430 strain to plastic rotation is not readily available. Therefore, the output from L1 is not
1431 plotted in the figure. By comparing the proposed method (PM) with S1 in Fig. 11, it
1432 can be seen that even though the local plastic rotation responses change suddenly
1433 (jumps) due to yielding at the same time steps, the magnitudes of the changes are
1434 different. Given the performance accuracy of PM in Fig. 10, this suggests that the
1435 software package S1 may not have addressed the effect of plastic rotation on the
1436 residual response of the structure appropriately. Finally, at such a large displace-
1437 ment response as shown in Fig. 9, software package S2 predicts only a slight
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Fig. 10 Moment response comparisons at various plastic hinge locations using the proposed
method (PM) with two small-displacement-based structural analysis software packages (S1 and
S2) and a large-displacement-based finite element software package (L1)
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1438 damage in the plastic rotation responses shown in Fig. 11 with fairly elastic
1439 moment responses in Fig. 10 throughout the analysis. This suggests that there may
1440 be a fundamental issue in calculating the local response that software package S1
1441 may have missed.

1442 6 Conclusion

1443 Plastic rotation in moment-resisting frame is an important parameter in the
1444 assessment process for performance-based seismic engineering, and therefore it
1445 needs to be calculated correctly. In this research, basic principles were used to
1446 derive the stiffness matrices of a column member with axial load to capture the
1447 interaction between geometric nonlinearity and material nonlinearity. This results in
1448 a method for capturing the plastic rotation demand for both nonlinear static analysis
1449 and nonlinear dynamic analysis that produces displacement results comparable with
1450 the large-displacement-based finite element software package L1 used in the study.
1451 It also suggests that this method is an improvement to the two
1452 small-displacement-based software packages S1 and S2 used in the study. While
1453 there are many structural analysis software packages available that consider both
1454 geometric and material nonlinearities, it is unclear which ones have addressed the
1455 interaction appropriately. Therefore, engineers should be careful in assessing plastic
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Fig. 11 Plastic rotation response comparisons at various plastic hinge locations using the
proposed method (PM) with two small-displacement-based structural analysis software packages
(S1 and S2) and a large-displacement-based finite element software package (L1)
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1456 rotation responses in moment-resisting frames with large displacement, where
1457 significant material nonlinearity is coupled with significant geometric nonlinearity.
1458 This leads to a bigger question as to the accuracy and reliability on assessing
1459 damages in moment-resisting framed structures based on the ASCE/SEI 41-13
1460 recommendations, which is something that eventually must be addressed in the
1461 future updates of the standard.
1462 The method for calculating plastic rotations developed in this research was based
1463 on two-dimensional analysis. Two-dimensional stiffness matrices for beams seem
1464 appropriate, but these matrices may need to be extended to three-dimensions for
1465 columns when biaxial bending is significant. In addition, elastic-plastic behavior
1466 was used in the examples for simplicity of illustrations on the calculation method.
1467 However, in order to capture the actual behavior more accurately, a hysteretic
1468 bilinear model with post-capping degrading strength may be necessary. Therefore,
1469 further research in these areas are needed.
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